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Abstract

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predom-
inant in the literature are two different, but related problem classes. One can be described by the notion of network design, while
the other is more aptly termed by network operation. The basic underlying model in both cases is a nonlinear network flow model,
and we give an overview on the more specific modeling aspects in each case. The overall mathematical model is a Mixed Integer
Nonlinear Program having a common structure with respect to how water dynamics in pipes is described. Finally, we survey the
algorithmic approaches to solve the proposed problems and we discuss computation on various types of water networks.

Keywords: Networks, Mixed Integer Nonlinear Programming, Combinatorial optimization, Global optimization

1. Introduction

In classic network flow problems the task is to route a flow
through a network from a set of sources to a set of sinks. This
point of view can become coarse when dealing with pressurized
water networks, where the fluid is transported in pipes with no
air contact and thus possibly varying pressure levels. To ac-
curately model the physical aspects of such networks one can
introduce pressure variables at nodes in addition to flow vari-
ables on arcs. In this modeling enhancement, what actually
induces a flow between two nodes is explained by a pressure
difference. To subsume a broader field of applications, the addi-
tional variables in such approaches are also referred to as node
potentials, including as well the electric potential of a point in
an electric circuit. Pressure again is an important quantity in
gas networks. In water network optimization, such a modeling
approach has experienced eminent interest in order to develop
physically sound models for real-world applications. The draw-
back of the resulting accuracy gain is the fact that the relation
between flow and potential difference usually leads to nonlinear
equations. Together with discrete decisions that can be made
regarding different network elements, this puts the optimization
tasks faced here in the context of Mixed Integer Nonlinear Pro-
gramming (MINLP).
In the following we focus on surveying topics related to the op-
timization of water networks. We use the term water networks
to subsume anything that is named by water distribution net-
works, water supply systems, or combinations of the two. The
term network underlines the fact that we deal with applications
in which the underlying structure can be modeled by a graph in
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a mathematical sense. Out of the different stages in that water
network optimization can be subdivided, we focus on the some-
what different tasks of optimal design of water networks on the
one hand and optimal operation of water networks on the other.
On both sides, one assumes to have an underlying network with
a fixed topology, i.e., a fixed set of nodes and arcs represent-
ing sources, sinks, pipes, pumps, valves, and tanks. The former
of the two optimization tasks, i.e., the design problem, usually
disregards pumps, valves and tanks. One then seeks to choose
for each pipe in the network a diameter among a discrete set of
commercially available diameters in a cost-minimal way, while
maintaining the satisfiability of all costumer demands located
at sinks. The diameter has of course an important impact on the
pipe’s capacity, but also on the pressure distribution in the net-
work. The operation problem instead typically assumes fixed
pipe diameters but allows for the modeling of pumps, valves,
and tanks. The task is then to operate pumps and valves, which
again affect flow and pressure distribution, over a certain time
horizon in order to satisfy the customer demands, while min-
imizing the operational costs mainly arising from power con-
sumption of pumps. In its full-scale form, the operation prob-
lem hence incorporates the aspect of time into the model and is
thus a dynamic problem, unlike the static design problem. In
spite of these differences, there are still some obvious similar-
ities from a mathematical point of view, due to the way water
dynamics in a pipe is described. Typically, the majority of the
arcs in a network is constituted by pipes, and the equation asso-
ciated with a pipe will be at the heart of the present survey.
As mentioned earlier, the problems we consider here belong
to the class of MINLPs, and the presented approaches ex-
ploit (different variants of) different algorithmic paradigms to
solve MINLPs, including Mixed Integer Linear Programming
(MILP) techniques. We try to provide an overview of how dif-
ferent techniques succeed in different situations. We are inter-
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ested in mathematical programming approaches, i.e., methods
that explicitly use a mathematical programming model. We do
not dwell on the variety of meta-heuristic approaches that exist
in the field. For a broader discussion of topics related to wa-
ter networks that covers also aspects that are not of algorithmic
nature, we refer the reader to [1].

2. Modeling

To begin with, we present the main modeling aspects found
in the literature concerning the design and the operation prob-
lem. We say the main aspects, because different variants at dif-
ferent levels of detail can be found. The most detailed modeling
description of the relevant aspects is provided in [2]. A network
is naturally represented by a directed graph G = (N ,A), where
nodes stand for sources and sinks and arcs stand for pipes,
pumps, and valves. Tanks are usually modeled as nodes, but
this is not always true.

2.1. Flow & pressure

A main difference between the design and the operation prob-
lem is of course the contrast between the static and the dynamic
setting. In the latter, in principle all variables and parameters
can be made continuous-time dependent on t ∈ [0,T ], where
[0,T ] ⊂ R is the considered time horizon. However, to get
a tractable optimization model, time is usually discretized and
the quantities depend on the discrete time period n ∈ {1, . . . ,N}
of length τ ∈ {τ1, . . . , τN}. A typical planning horizon is one
day, divided in 24 hourly periods. In [2] it is pointed out that
the discretization has another practical motivation. Namely, de-
mand forecasts and electricity price tariffs are usually given for
discrete and not continuous time. In the following we will high-
light the time dependency of variables or parameters with a su-
perscript n only when different periods are involved in an equa-
tion or constraint. Otherwise, the equation usually has to be
imposed in every time period. In a static setting there is of
course no time dependency to be highlighted. In any case, we
introduce a flow variable qa on each arc a ∈ A. By allowing the
flow to take negative values, a directed graph accounts for its
both possible directions: a positive flow qa on an arc a = (i, j)
means that it goes from i to j, while a negative value of qa

stands for a flow of amount |qa| from j to i. It is as well possible
to allow only positive flow values and account for the directions
with a binary variable.
From classical network flow problems one inherits the flow
conservation constraints. For a node i ∈ N with demand di,
which for the moment is assumed to be a constant, and the set
of incoming and outgoing arcs, δ−i and δ+

i , respectively, one has
the linear constraint

∑
a∈δ−i

qa −
∑
a∈δ+

i

qa = di. (1)

Sinks have a positive demand, which means that water actu-
ally leaves the network at those nodes. At sources, often called

reservoirs in the water context, constraint (1) is usually not im-
posed. Otherwise, one can model di as a variable that can as-
sume only non-positive values, possibly bounded from below.
Of course, there can be nodes with zero demands. Sometimes
all nodes with positive or zero demand are called junctions.
Next, one introduces the node potential variables hi, i ∈ N ,
representing the water pressure at a node. In water network op-
timization, pressure is conventionally measured as a height, or
more precisely as the sum of the geographical elevation of a
node above sea level or any other fixed reference point, called
elevation head, and the so-called pressure head, that is an el-
evation difference according to the pressure of the water. The
pressure head is proportional to the actual pressure when water
is assumed to be incompressible, which is done in most appli-
cations. The node potential hi is also called the hydraulic head
at node i.
An important set of constraints arise from the fact that the two
groups of variables introduced above are typically bounded.
The absolute value of the flow is bounded by above due to the
capacity of the arcs. For example, taking into account the flow’s
maximum velocity that is allowed in a pipe a, vmax

a , the flow
bound can be written [3] as

−
π

4
vmax

a D2
a ≤ qa ≤

π

4
vmax

a D2
a, (2)

where Da is the diameter of pipe a. The node potentials have
to stay between certain bounds in order to guarantee minimum
and maximum pressure levels at the nodes. Usually, the node
potentials are fixed at source nodes, reflecting the fact that at
sources water is not pressurized, but it exploits a fixed geo-
graphical height.

2.2. Pipes

Typically, the majority of the arcs in a network represent
pipes in which water is transported from one node to another,
and this transportation is induced by different potentials at the
nodes. The fundamental equation for a pipe a = (i, j) is
the head-loss equation, also nominated potential-flow coupling
constraint in [4] (and we will use this term in the following),
that is regularly of the form

hi − h j = Φa(qa), (3)

where Φa : R → R is a strictly increasing uneven function,
concave on the negative half-axis of its domain and convex on
the positive half-axis, see Figure 1. The induced flow is not
linear in the potential difference because this kind of function
accounts for the modeling of friction in the pipes. A positive
flow as a function of the potential difference is strictly increas-
ing but concave: higher flow values mean higher influence of
friction. The other way round, for the same reason, a positive
potential loss as a function of the flow is strictly increasing and
convex. Equation (3) is also referred to as the potential-loss
equation, because it describes the pressure, or equivalently the
energy, loss along a pipe. It is easy to see that once constraints

2



qa

hi − h j

Figure 1: Potential-flow coupling function

(3) are embedded in a mathematical programming problem, the
latter becomes non-convex. This is the case in most of the mod-
els we consider in this article.
Explicit forms of the potential-flow coupling equation are the
so-called Hazen-Willliams equation,

hi − h j =
sign(qa)|qa|

1.852 · 10.7 · La

k1.852
a D4.87

a
, (4)

or the Darcy-Weisbach equation,

hi − h j =
sign(qa)q2

a · 8 · La · fa
π2g · D5

a
, (5)

both of which include some constants like the gravitational ac-
celeration g, or ones depending on the pipe, such as the length
La or the roughness coefficient ka depending on the material
of the pipe. In the denominator appears the diameter Da of a
pipe, which in optimal water network design becomes a discrete
variable but stays a constant in the operation case. The friction
factor fa actually depends on the flow in a nonlinear manner.
There are several approximation formulas, for details see again
[2]. The most simplifying approximation neglects the depen-
dency on the flow and thus treats the friction factor as a con-
stant. This is done in most optimization models, see, e.g., [5, 6].
It can however be kept in the model, see, e.g., [7]. As well in
the Hazen-Williams equation, the quantity corresponding to the
friction factor does not depend on the flow (it depends on the di-
ameter though). Another downside of the above head-loss equa-
tions can arise when studying their differentiability for qa = 0.
The second derivative of the Darcy-Weisbach function is dis-
continuous at the origin, while the Hazen-Williams equation is
not even second order differentiable there. This can create prob-
lems when relying on derivative-based optimization methods as
in [2], which is why therein is used some kind of second or-
der polynomial approximation of the Darcy-Weisbach equation
with constant friction factor. The Darcy-Weisbach equation is
often found with the substitution sign(qa)q2

a = qa|qa|.
The pipe models seen so far assume a constant flow in a pipe,
which is natural in a stationary setting. When dealing with a
dynamic problem, this can be modeled even more accurately.

A pipe model that allows for varying flow inside a pipe is based
on the so-called water hammer equations. This set of partial
differential equations describes the variation of the state vector
(q, h) in function of time and space,

∂h
∂t

+
c2

gA
∂q
∂x

= 0, (6)

∂q
∂t

+ gA
∂h
∂x

= −λ
q|q|
2DA

, (7)

again with some coefficients among which the diameter D and
the cross-sectional area A of a pipe and a friction coefficient λ,
like before possibly depending on the flow q. Note that when
one assumes constant pressure and flow over time, i.e., turns to
the static case, constraint (6) implies constant flow in the pipe,
and constraint (7) becomes the Darcy-Weisbach equation with
∂h
∂x approximated by h j−hi

La
and fa = λ.

Here, just like the time dimension, that, as already mentioned,
is usually discretized in optimization models, the same can be
done in space, for example by implicit box schemes, see, e.g.,
[8]. However, a slight modification of the underlying graph
model is necessary, see, e.g., [7]. In fact, the flow in a pipe
a = (i, j) is not constant anymore, so a single variable qa is not
appropriate. Choosing the length of a pipe as spatial step size in
the discretization scheme results in one flow value at the begin-
ning of a pipe, as well as one at the end. This can be modeled
by intermediate nodes. For node i ∈ N let δ−i denote the set of
incoming pipes and δ+

i the set of outgoing ones. Then, consider
the additional nodes ia, a ∈ (δ−i ∪ δ

+
i ), which can be imagined

to be attached to the graph between the original node and the
corresponding incident arc. We then have two flow variables
per pipe per time step, qn

ia
and qn

ja
. With this, the discretized

versions of (6) and (7) for a pipe a = (i, j) become

hn+1
i + hn+1

j

2τn
−

hn
i + hn

j

2τn
+

c2

gA
·

qn+1
ja
− qn+1

ia

La
= 0, (8)

qn+1
ia

+ qn+1
ja

2τn
−

qn
ia

+ qn
ja

2τn
+ gA

hn+1
j − hn+1

i

La
=

−
1

2DA

λ(|qn+1
ia
|)qn+1

ia
|qn+1

ia
|

2
+
λ(|qn+1

ja
|)qn+1

ja
|qn+1

ja
|

2

 . (9)

While equation (8) is linear, (9) is not, just like its static coun-
terpart (3).

2.3. Pumps

On the design side, the problem that is usually attacked dis-
regards pumps and thus assumes that the underlying network is
gravity-fed. In other words, a source node has a higher eleva-
tion than the nodes to which it induces a flow. If a network is
fed with groundwater, so that gravity does not suffice, or also
if the flow has to be transported over very long distances and
hence loses too much pressure along an arc in order to satisfy
the required minimum pressure level at the end node, certain
node potentials have to be raised. This can be done by pumps.
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h j − hi

Figure 2: Fitted characteristic curve of a pump

Moreover, on the operational side pumps can serve to fill tanks
for intermediate storage purposes (see below).
A pump is usually modeled as an arc a = (i, j), so in particular
there is a flow qa passing through it. In comparison to pipes,
pumps have a negligible length and thus the matter of constant
or variable flow in a pump is not encountered. The flow through
a pump is usually restricted in sign, that is, qa ≥ 0, allowing for
flows from i to j only. Usually, the flow through a pump is
considered semicontinuous, that is, either zero or in an interval
[q

a
, q̄a], with q

a
> 0. This already shows the need of a binary

variable xa for a pump, switching on the pump (xa = 1) or
switching it off (xa = 0), i.e., acting like a closed valve (qa = 0,
see below).
In the context of gas networks, the authors in [4] present an
elegant overall MINLP formulation for network flow problems
exploiting a rather simple static model for potential raising el-
ements, i.e., pumps in the context of water networks. The
potential-flow coupling equation in [4] has the explicit form
hi−h j = αaqa|qa|

κa , where αa and κa summarize all the physical
aspects of flow and pipe. The potential loss on the left-hand side
is manipulated into a potential raise by multiplying the whole
equation by minus one and adding a variable operating term,

h j − hi = −αaqa|qa|
κa + βaya. (10)

Here either the bounds of the variable ya or the sign of the co-
efficient βa have to be set in such a way that βaya ≥ 0. In other
words, instead of losing some potential along the arc represent-
ing a pump, at its head node, the flow can have a potential value
strictly higher than the one at its tail node. The same equation
with βaya ≤ 0 can be used to model network elements that are
able to reduce the pressure in some way.
A different pump model tries to replicate the characteristic
curve of a pump. More precisely, for a pump a = (i, j), the
potential raise can be written as

h j − hi = ∆Ha − γ
1
aqγ

2
a

a , (11)

where the parameters ∆Ha, γ
1
a and γ2

a are chosen to approximate
empirical pump data. A typical characteristic curve is shown in
Figure 2. There are also pumps that operate at variable speed

wa ≥ 0. Basically, this quantity allows to shift the pump’s char-
acteristic curve in the plane and thus to manipulate the relation
between potential raise and flow through the pump. The above
equation becomes

h j − hi = w2
a

∆Ha − γ
1
a

(
qa

wa

)γ2
a
 . (12)

Also for a variable-speed pump the parameters of their charac-
teristic curve are estimated through empirical data of the pump
working at its nominal speed (wa = 1). Equation (11) describes
fixed-speed pumps that work at their nominal speed only. In-
stead, second order polynomials are used to fit the characteris-
tic curve of a pump in [6].
The obvious differences between the model approaches (10)
and (11)/(12) can be explained by the discrepancy between net-
work design and network operation. When designing a net-
work, the pump to be installed might be chosen from a certain
production series. A typical pressure raise that can be realized
by the pumps of such a series is shown schematically in Figure
3. A very simple way to model this situation is actually equa-
tion (10). Things change when considering the task to operate
an already existing pump in an existing network. This pump
is already chosen and has its own specific characteristic curve,
which can be modeled quite accurately, for example by equa-
tions (11) or (12), respectively.
Another important quantity in the context of pumps is their
power consumption pa, which often appears in the objective
function. The power consumption can be modeled as propor-
tional to the product of the pressure raise of a pump and the
flow through it, which adds a nonlinear equality constraint as in
[5]. Otherwise, an equation similar to (12) or again a polyno-
mial of degree two is fitted to empirical pump data at nominal
speed.
Pumps are part of the active elements in a network and thus
they allow for some discrete decision, that is, turning them on
or off. Being turned on or off has implications on two aspects,
one of which is the already mentioned semi-continuity of the
flow variables. The same is valid in an analogous fashion also
for the speed of pumps wa. The second aspect concerns the
potential-flow coupling equations (10) - (12), that are to be im-
posed only when the pump is working (xa = 1). When xa = 0,

qa

h j − hi

Figure 3: Operation range of a pump series
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the pump is not working, and in this case it is usually regarded
to act as a closed valve (see below). The potential values at the
two ends of the arc are then uncoupled and do not follow any
equation.
In order to avoid these combinatorial aspects, the authors in [2]
make some modeling modifications. A single pump a = (i, j) in
a graph often models an aggregation of real pumps in the net-
work. The individual pumps in such a pumping station a = (i, j)
have a common pressure raise h j − hi, but the flow qa through
the pumping station is the sum of the individual flows. Ap-
proximately, the pressure raise of a pumping station becomes a
degree of freedom independent of the aggregated flow value. To
accurately measure the power consumption of such a pumping
station, additional considerations about its efficiency are made.
But all in all, the benefit is that there are no equations that have
to be turned on or off.

2.4. Valves

Another set of active elements is given by valves. As for
pumps, a valve is modeled by an arc a = (i, j) with negligible
length. There are models for different types of valves with no
unified terminology in the literature. The authors in [7] for ex-
ample consider a total of four different types of valves. Valves
can be used to actively block the flow completely or to reduce
the pressure or the flow in its direction by a controlled amount.
They are usually modeled by a binary variable xa. As an ex-
ample consider the (rather simple) valve type that can be used
to separate or join two pipes, that is, to avoid that fluid can
pass between the two of them. If q

a
, q̄a, hi, h̄i, h j and h̄ j denote

the upper and lower bounds of the flow and potentials, an open
(xa = 1) or closed (xa = 0) valve state can be modeled by the
big-M constraints

q
a
xa ≤qa ≤ q̄axa, (13)

(hi − h̄ j)(1 − xa) ≤ hi − h j ≤ (h̄i − h j)(1 − xa). (14)

A closed valve forces the flow to be zero and decouples the two
potentials, while an open valve forces the potential values to be
equal.
Again in [2], the authors model one specific valve type without
auxiliary binary variables. Namely, the valve type considered
allows to reduce the pressure by a controlled amount, but only
in the direction of the flow. This behavior is guaranteed by the
inequality

(hi − h j)qa ≥ 0. (15)

2.5. Tanks

Tanks can make the operation of the network more flexible.
In a dynamic setting, where the demand at consumer nodes can
vary in time, water can be stored in a tank during a period of
low demand and be extracted from it to satisfy peak demands.
In the static setting of [5] tanks are modeled as nodes in the
graph that have a variable demand, which can also be negative

so as to account for a positive initial tank filling. The water in a
tank is usually not pressurized, which means the pressure head
is zero, so that the potential value hi represents the elevation
head only. Accordingly, in [5] the potential value of the tanks
is kept fixed as for reservoirs. In a dynamic setting, variable
potential values can be used to describe the filling level of the
tank at different points in time, which can then be linked to the
tank’s variable demand of a time period. A simplified version
of the model for tank i ∈ N in [2] is given, for example, by

∑
a∈δ−i

qn
a −

∑
a∈δ+

i

qn
a = en

i , (16)

en
i =

1
τn

(
hn

i − hn−1
i

)
Ai, (17)

with en
i denoting the variable volumetric tank inflow and Ai be-

ing the cross-sectional area of the tank. A quite detailed tank
model that includes binary variables is found in [6]. Unless the
discretized water hammer equations (8)-(9) are used, the tank
filling equations constitute the most important point where sub-
sequent time periods are coupled. Note that it is also possible,
see, e.g., [7], to model tanks as arcs in the graph, although this
is far less common and essentially equivalent.

3. Algorithmic aspects of MINLP

In this section we outline some algorithmic paradigms widely
applied to MINLPs, both convex and non-convex. We actually
show those techniques that are useful and have been applied
to water network optimization. For a very complete survey on
MINLP techniques the reader is referred to [9].

3.1. Nonlinear branch and bound
The most straightforward extension of MILP techniques to

the nonlinear case is nonlinear branch and bound. As in branch-
and-bound or branch-and-cut schemes for MILP, initially all
integer requirements on the variables are relaxed and subse-
quently forced to be fulfilled by branching. The resulting node
problems in a branch-and-bound tree are Nonlinear Program-
ming problems (NLPs), which can be tackeld by a variety of
different NLP-solvers. In general, to solve such problems to
global optimality is NP-hard, so that this is rarely an option in
a subproblem of a search tree. However, there are algorithms
for solving NLPs to local optimality in polynomial time (for
example interior point methods), and one usually restricts to
that in the nodes of a nonlinear branch-and-bound tree. In the
case of convex MINLPs, the node problems are convex NLPs
and their locally optimal solutions are automatically globally
optimal and can be computed in polynomial time. Thus, the
optimal solution values of node subproblems can be used for
pruning rules in the tree. However, as already mentioned in
Section 2.2, for the mathematical models including constraints
(3), the nodes’ NLPs are non-convex instead. In that case, prun-
ing a node might be based on an only locally optimal solution,
while the globally optimal one is disregarded. In consequence,
the solution obtained by the algorithm cannot be guaranteed to
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Figure 4: Outer approximation cuts of the potential-flow coupling function

be globally optimal either. Nevertheless, nonlinear branch and
bound can be applied to non-convex MINLPs as an only heuris-
tic solver. In the context of water network design this has been
done in [3].

3.2. LP/NLP-based branch and bound

Another algorithmic framework for solving convex MINLPs
to global optimality is the so-called LP/NLP-based branch and
bound, which is a modification of the outer approximation algo-
rithm. In outer approximation, the feasible region of an MINLP
is approximated by a polyhedron that is formed by first or-
der taylor approximations of the nonlinear functions at certain
points, also called outer approximation cuts. Provided the non-
linear functions are convex, this results in a mixed integer linear
relaxation of the original MINLP, which is solved to optimality.
The first order taylor approximations of the nonlinear functions
at the optimal solution are then used to refine the polyhedral
relaxation. This process is repeated iteratively, which leads to
a series of MILPs being solved. If the set of points of which
the corresponding outer approximation cuts are added to the
MILP is populated by the “correct” points, at some iteration the
refined polyhedron will suffice to solve the MINLP to global
optimality.
The above algorithmic scheme is able to provide globally opti-
mal solutions to convex MINLPs, basically because the first or-
der taylor approximations of convex functions do not cut off any
part of the feasible region, while this is not true for non-convex
functions. So also LP/NLP-based branch and bound leads to
only heuristic solvers for non-convex MINLPs. The effect of
outer approximation cuts on the potential-flow coupling equa-
tion (3) is depicted in Figure 4. (Actually, having a nonlinear
equality constraint in this case, the failure of outer approxima-
tion cuts to approximate the feasible region can be seen even
more drastically than for non-convex inequality constraints.)
Outer approximation is also referred to as a multi-tree method,
because in each iteration an MILP is solved by exploring an en-
tire search tree. At each iteration the (same) MILP is slightly
modified and again solved by exploring another search tree
from scratch. The LP/NLP-based branch and bound, which is
implemented for example in FILMINT ([10]) and BONMIN [11],
aims at reducing this approach into a single search tree. Instead

of solving every single MILP to optimality and then adding the
corresponding outer approximation cuts, in every integer feasi-
ble node of an initial MILP approximation, the corresponding
NLP is solved to optimality and the outer approximation cuts
corresponding to that optimal point are added. The Linear Pro-
gramming (LP) relaxation with the newly added cuts is then
resolved and the search continues.
Based on this algorithm and outer approximation cuts, a method
to solve water network design problems to global optimality,
despite containing the non-convex constraints (3), is developed
in [12]. This is discussed in Section 4.

3.3. Spatial branch and bound

As mentioned, solving NLPs to global optimality is a NP-
hard task in general. Anyway, one way to do so is to use spa-
tial branching, a paradigm first investigated by the global opti-
mization community. Integrating spatial branching with mixed
integer branching techniques opens the possibility of develop-
ing general-purpose algorithms that can in principle solve non-
convex MINLPs to global optimality. The basic idea of such
an algorithm remains to iteratively divide the problem into sub-
problems and to solve (usually linear) relaxations of these. The
division of subproblems though is done not only by branch-
ing on integer variables, but also by branching on continuous
ones. In other words, in a subproblem of the branching tree
the continuous domain of some nonlinear function is divided at
some breakpoint into two smaller domains, thus creating two
new subproblems. Provided the relaxation of a nonlinear con-
straint becomes tighter when the domain of the corresponding
nonlinear function is reduced, spatial branching gradually re-
fines the relaxations, see Figure 5. Branching is continued until
finally the relaxations are tight enough to provide solutions that
are ε-feasible for the original problem.
A way to obtain relaxations of subproblems is to use reformu-
lation techniques aiming for a reformulation of all nonlinear
functions into some “basic” functions. For these basic func-
tions, linear relaxations are then readily available. The tight-
ness of the relaxations and thus performance of the algorithm
are highly dependent on the bounds on the domains of the non-
linearities. This fact makes an efficient domain propagation be-
tween subproblems essential.
Such an algorithm is implemented for example in the MINLP
framework COUENNE [13]. Also the constraint integer program-
ming framework SCIP [14] employs spatial branching if ap-
plied to MINLPs, see [15]. In water network optimization,
SCIP has been applied in different contexts, as we will see fur-
ther down.

3.4. Piecewise linear approximation

Another way to approach MINLPs is to approximate all non-
linearities by piecewise linear functions. The advantage is that
a piecewise linear function can be modeled by linear constraints
in mixed integer variables, which opens the possibility of apply-
ing MILP solvers to an approximated MINLP. It has to be clear
though, that this is only an approximation of the original prob-
lem. Therefore, when the MINLP at hand is convex, there are
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Figure 5: Linear relaxation of the potential-flow coupling contraint and its refinement after spatial branching in the origin

more attractive methods (see above) towards which one usually
orients. But when dealing with non-convex MINLPs, piece-
wise linear approximation becomes an intriguing alternative to
expensive and sometimes ineffective MINLP methods. Espe-
cially in water network optimization, due to the presence of
constraint (3) (among others), MILP approximations have ex-
perienced vast attention.
Piecewise linear approximations roughly work as follows.
Imagine the domain of a univariate function to be partitioned
into several intervals. That function can then be approximated
by the line segments connecting the end points of these inter-
vals (the break points), see Figure 6a. This simple point of view
already makes clear that the accuracy of such an approximation
depends on the number of break points.
There are several methods to model univariate piecewise linear
functions, such as the so-called incremental method or the con-
vex combination method. For a comparison of different piece-
wise linear modeling techniques, particularly applied to nonlin-
ear network flow problems, see [16]. It is also in this context
that topics related to special ordered sets of type 2 and there-
fore developed branching rules came up [17]. The piecewise
linear modeling techniques have also been extended to mul-
tivariate functions, as becomes necessary, e.g., when attempt-
ing to approximate the function in (9) as done in [7] and [18].
Instead of intervals, the domain of such a function is usually
partitioned into several simplices, and over each simplex the
function is approximated by an affine function. Some kind of
curse of dimension is encountered here, because the number
of required simplices, that is directly connected to the number
of auxilary binary variables in a mixed-integer formuation, is
strongly growing with the dimension of the function’s domain.
Therefore, in this context we often find reformulation ideas that
increase the number of variables and constraints, but decrease
the dimension of the functions to be approximated.
Anyway, one has to keep in mind that all the above leads to
an approximation of the original problem only. This means that
the obtained globally optimal solution of the MILP is not neces-
sarily globally or locally optimal for the MINLP. Even worse,
it might not even be feasible to the nonlinear constraints. A
way to estimate a priori the approximation error and to refine

it until it stays inside some desired predefined error bound is
proposed in [16]. The authors also show how to use piecewise
linear functions to create relaxations of the MINLP instead of
approximations only. Basically, the maximum error of an ap-
proximation over each simplex is overestimated as tightly as
possible, and a continuous variable bounded by this maximum
error is added to the function value. The resulting relaxation of
this procedure is depicted in Figure 6b.
There has also been some effort to integrate MILP and NLP
concepts. Very intuitively, by fixing the integer variables to the
values of a globally optimal MILP solution, one could solve
the remaining NLP to local optimality. This would guarantee
at least the feasibility of the solution, but not necessary global
optimality. For a more detailed idea of how to integrate MILP
and NLP in the context of piecewise linear approximations in
the water context see [19].
Also interesting is the extension of piecewise linear relaxations
to an algorithm where the approximation is refined dynamically
in order to compute a globally optimal solution for the origi-
nally non-convex MINLP. This approach has been investigated
in the context of gas networks in [20].

4. Convex leaf problems

As mentioned earlier, the combinatorial optimization prob-
lems surveyed in this article are in the problem class of non-
convex MINLPs. However, a recurring feature is the possibility
of solving certain subproblems by convex optimization meth-
ods.
Consider a static network as in Section 2 with no active ele-
ments and with fixed pipe diameters, that is, a network with
a flow variable qa for each arc and a potential variable hi for
each node. Denote the set of source nodes by N src and assume
further that the potential values are fixed to some value hsrc

i at
source nodes i ∈ N src. Finally, assume that the flow conser-
vation constraints (1) hold at each non-source node for a given
set of fixed demands, and that each arc satisfies a potential-flow
coupling equation like (3), where the only requirement about
the function Φa : R → R is strictly increasing monotonicity.
Mathematically, this gives rise to the feasibility problem
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Figure 6: Piecewise linear approximation and piecewise linear relaxation of a potential-flow coupling constraint

∑
a∈δ−i

qa −
∑
a∈δ+

i

qa = di ∀ i ∈ N \ N src, (18)

hi − h j = Φa(qa) ∀ a ∈ A, (19)
hi = hsrc

i ∀ i ∈ N src, (20)
qa ∈ R ∀ a ∈ A, (21)
hi ∈ R ∀ i ∈ N \ N src. (22)

A reformulation of the above as a strictly convex optimization
problem was originally studied in [21]. It is shown that the so-
lution space of the above set of |A| + |N| equations in the same
number of variables has a unique solution. A slightly different
version of the problem is studied in [4]; the flow conservation
constraint is imposed at every node but the node potentials are
not fixed at sources. The number of variables and equations
stays the same, and the existence of a solution is given for bal-
anced flows only, that is,

∑
i∈N di = 0. In that case, one flow

conservation constraint at a node becomes redundant and the
solution is a one-dimensional subspace. More precisely, the
vector of flow variables q is unique and the vector of potential
values h is on a straight line in R|N|+|A|. It is easy to deduce that
if one fixes the potential at any node, for example a source node,
also the potential values become unique here. The most crucial
assumption leading to the striking argument in a potential proof
of the uniqueness in both versions is just the monotonicity of the
function Φa. More precisely, a potential duplicity of flows can
arise in the presence of circles only. By a circle in a graph we
mean the existence of two different paths between two nodes.
As an illustrating example consider a simple (sub-)graph as in
Figure 7, see also [22]. (Actually, this is a multigraph, the two
arcs a1 and a2 are to be thought of as two different paths from
node i to node j.) Flow conservation implies that the relation
between the flow values qa1 and qa2 is a line with negative slope,
say qa2 = ∆− qa1 for some ∆ ∈ R. From the potential-flow cou-
pling constraints (3) we get

Φa1 (qa1 ) = Φa2 (∆ − qa1 ). (23)

The function on the right-hand side of (23) is now strictly de-
creasing in qa1 and as such has exactly one intersection point

with the strictly increasing function on the left-hand side. Such
considerations and the resulting methods are implemented in
widely used software packages like EPANET [23], designed for
numerically calculating flow and potential values in pressurized
water networks.
As already mentioned, problem (18)-(22) represents a network
with only pipes with fixed diameters and relaxed bounds on the
variables. However, when we allow for discrete variable di-
ameters, the problem occurs also as leaf problem with relaxed
bounds in a branch-and-bound tree, i.e., when all integer vari-
ables are fixed. In such a situation, a subproblem of this type
can in principle be solved by a NLP-solver that solves to local
optimality only. The fact that the bounds are relaxed does not
create a problem in the exploitation of this property, because
their satisfaction can easily be checked after having obtained a
unique solution. Also when the potential values are not unique
but located on a line, it is easy to check whether there is one
solution inside the bounds. Also in other situations uniqueness
of solutions in subproblems can occur. Consider, for example,
a network with working pumps that follow equation (11). Here,
the pressure gain h j−hi on arc a = (i, j) is strictly decreasing in
the flow qa, meaning that the pressure loss is strictly increasing.
At least this is true in the domain of qa, so when relaxing the
bounds maybe the function has to be extended conveniently, in
such a way that it stays strictly increasing on R. However, also
a network with such pumps has a unique solution in its leafs,
i.e., when the discrete decisions on which pumps are actually
working and which are switched off have been taken.
The situation becomes different when pumps follow models
(10) or (12). What actually happens here is that a degree of

a1

a2

i j

Figure 7: Simple example of a network containing a circle
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Figure 8: The Hazen-Williams equation for some discrete diameters

freedom is added. In the equation for a fixed-speed pump (11)
the pressure raise is uniquely determined by the unique flow
through the pump. This is not true for variable-speed pumps,
where the pressure raise can be influenced by variation of the
speed wa. The same happens for model (10), where the pressure
raise can be influenced by variation of the variable ya indepen-
dently of the flow qa. Uniqueness or just convexity gets lost
here. Staying with the previous example, imagine the arc a2 in
Figure 7 to be a pump obeying equation (10). Equation (23)
then becomes

Φa1 (qa1 ) = Φa2 (∆ − qa1 ) + βa2 ya2 (24)

for some βa2 ∈ R, which is clearly representing a non-convex
subspace of R2. A remedy, just like in [4], is to discretize the
degree of freedom, i.e., to allow the variables ya or wa to take
values in a discrete set only. Then, when they are fixed to one of
these values in a leaf of a branch-and-bound tree, the functions
describing the pressure loss are strictly increasing in the flow qa

and uniqueness or convexity can be exploited.
We believe that there is a lot of potential in the property of
uniqueness or convexity, which has partially been exploited in
water network optimization as we will see later. It might also
be a key feature when developing techniques for discretized dy-
namic problems in water network optimization. For example,
one can prove uniqueness of the solution when tanks are cou-
pled by an equation of type (17) in a passive network with re-
laxed bounds considered over several discrete time periods.

5. Solving water network optimization problems

In this section we show in more detail what kind of ap-
proaches were presented in the literature for solving water net-
work design problems, on the one hand, and water network op-
eration problems, on the other hand.

5.1. Optimal design of water networks
On the design side, one specific formulation together with

a set of literature and real-world instances have been studied
by several authors. As anticipated, active elements as pumps
and valves and also tanks are disregarded. In return, we can
choose the diameter for each pipe from a discrete set. The for-
mulation basically consists of the flow conservation constraint

(1) for each non-source node and the Hazen-Willliams equa-
tion (4) for each pipe. The diameter Da on a single pipe a is a
variable constrained to belong to a discrete set {Da,1, . . . ,Da,ra }.
The Hazen-Williams equation for some discrete diameters is
depicted in Figure 8.

To each diameter Da,i is associated a positive unit length cost
Ca,i in such a way that costs increase with the diameter. Finally,
there are lower and upper bounds on the flows, cf. (2), as well
as lower and upper bounds on the node potentials, and poten-
tials at source nodes are fixed. In an MINLP formulation, the
membership of the diameter to a discrete set can be represented
by introducing additional binary variables Xa,i, i = 1, . . . , ra and
using SOS-1 type equations,∑

i=1,...,ra

Xa,i = 1, (25)∑
i=1,...,ra

Da,iXa,i = Da, (26)

in which case the objective function becomes∑
a∈A La

(∑
i=1,...,ra

Ca,iXa,i

)
. As seen in Section 4, if the

diameters were fixed, this would result in a convex (feasibility)
problem. This does not hold for a variable diameter, especially
not when it is discrete. As mentioned, there is a set of 9
instances for the design problem, out of which 4 are smaller
literature instances and 5 are larger real-world ones repre-
senting water networks of three Italian cities, one of which is
counted three times due to three different diameter sets. The
characteristics of the instances are subsumed in Table 1. The
set of available diameters is actually the same for each pipe in
each instance, i.e., ra is constant for each a ∈ A.

The nonlinear branch-and-bound algorithm implemented in
BONMIN [11] was applied to these instances in [3]. Remember
that this acts as a heuristic solver for non-convex MINLPs.
Several amendments to the model, on the one hand, and
to the algorithm itself, on the other hand, were made. In
[3] for example a fitted polynomial Ca(Da) is used as ob-
jective function instead of the sum

∑
i=1,...,ra

Xa,iCa,i in order
to get a smooth function. Moreover, this function usually
produces tighter bounds because the optimal cost value for
pipe a of some NLP relaxation is a point on the graph of
Ca(Da) instead of just a point in the convex hull of the points
(Da,1,Ca,1), . . . , (Da,ra ,Ca,ra ), see Figure 9. However, the
polynomial is not chosen to be an exact fit in the arguments
{Da,1, . . . ,Da,ra }, which is why the fitted objective is only used

instance name #nodes of which #pipes #diameterssources
shamir 7 1 8 14
hanoi 32 1 34 6

new york 20 1 21 12
blacksburg 31 1 35 11
foss poly 0 37 1 58 7
foss iron 37 1 58 13
foss poly 1 37 1 58 22
pescara 71 3 99 13
modena 272 4 317 13

Table 1: Characteristics of water network design instances
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Figure 9: Fitted polynomial and convex hull of diameter costs

to guide the search in the tree, while the real objective is used
to calculate the cost of integer feasible solutions. This is a
nice example of how problem specific solution paradigms
can give rise to enhancements of general-purpose solvers.
Indeed, the option of working with two objective functions was
added to the implementation of BONMIN afterwards. Also the
implementation of proper SOS-1 branching in BONMIN, which
can be used instead of the binary requirement of the variables
Xa,i, was stimulated by the water network design application.

A modified LP/NLP-based branch-and-bound framework
that exploits the convexity structure presented in Section 4
is proposed in [12]. This algorithm is then exact for the
non-convex design problem. There are three crucial points in
the approach. First, each arc in the network is cloned as many
times as there are diameters available on it. One therefore gets
much more potential-flow coupling constraints, but each of
them is given by a univariate function (because the diameter
on a cloned arc is fixed). Second, for each arc, it is then
kept record of the flow direction by explicitely introducing an
additional binary variable indicating the direction. The gain
of both reformulations above is that the resulting non-convex
constraints can easily be relaxed to two convex constraints,
because only an either concave or convex part of the function
Φ has to be regarded. For example, for a positive flow qa with
upper bound q̄a, these two constraints are precisely

hi − h j ≥ Φa(qa) and hi − h j ≤
Φa(q̄a)

q̄a
· qa. (27)

This situation is depicted in Figure 10.
In this way, in [12] a convex MINLP is obtained that is a
relaxation of the original MINLP. A branch-and-cut scheme as
in an LP/NLP-based branch-and-bound algorithm is applied
to such a convex MINLP relaxation. Instead of solving the
associated NLP in integer feasible nodes, and this is the third
crucial point, the unique solution to the feasibility problem
stated in Section 4 is found. If this unique solution additionally
satisfies flow and potential bounds, the node is feasible for the
original non-convex MINLP. In this way a stronger condition,
directly related to the original MINLP, is tested instead of just
solving the sub-NLP of its convex relaxation. If the bounds are
violated, the node is eliminated from the search tree by some
cut. Note that a globally optimal solution to the non-convex

MINLP is found since the objective function depends on the
integer variables only.

5.1.1. Computation in the design case

Here we want to present the computational results that were
reported in conclusion with the two algorithms presented in the
previous section applied to the described water network design
instances. We also include the results of applying plain SCIP,
i.e., spatial branch and bound, to these instances, without any
exploitation of problem structure, reported in [25, Sec. 8.2], and
updated in [24]. The results of these three different approaches
are shown in Table 2.
All reported results were obtained on different computers and
with respect to some time limit and in one case with respect
to an additional memory limit in terms of branch-and-bound
nodes. The machine characteristics are given in the respective
column. The best lower and upper bounds found are reported.
For the BONMIN-based approach in the second column we ob-
viously have no lower bounds due to the heuristic nature of the
approach. The algorithm in [3] reached the time limit in all
except the first instance. The results of the exact approach of
[12], for brevity called LP/CVXNLP, are given in columns 3 and
4. Here, an optimal solution is found in all of the four smaller
literature instances, as a side effect certifying the optimality of
the heuristic solutions in column 2. For the larger instances, the
algorithm LP/CVXNLP is not able to terminate within the speci-
fied limits, but in any case finds feasible solutions, that, except
for the instance pescara, are worse than the solution found by
the BONMIN-based algorithm. Taking into account the spatial
branch-and-bound algorithm of SCIP in columns 5 and 6, there
appear some inconsistencies. The reported optimal solution of
the small instance blacksburg is smaller than the optimal so-
lution found by LP/CVXNLP. In addition, the optimal solutions
of foss poly 0 and foss iron are below the lower bounds
given by LP/CVXNLP. We can only explain these inconsisten-
cies with numerical issues in either of the two algorithms. One
source of these issues might be the reformulation techniques
used in SCIP, which sometimes produce slight infeasibilities
[26].

qa

hi − h j

q̄a

Figure 10: Relaxed potential-flow coupling constraint

10



BONMIN-based [3] LP/CVXNLP [12] SCIP [24]

time limit 7,200 sec.
time limit 14,400 sec.

time limit 10,000 sec.instance mem. limit 165,000 nodes

name single core 2.4 GHz dual core 2.63 GHz dual core 3.2 GHz

1.94 GB RAM 3 GB RAM 48 GB RAM

ub lb ub lb ub
shamir 419,000.00 419,000.00 419,000.00 419,000.00 419,000.00
hanoi 6,109,620.90 6,109,620.90 6,109,620.90 6,109,620.90 6,109,620.90

new york 39,307,799.72 39,307,799.72 39,307,799.72 23,363,470.00 39,307,800.00
blacksburg 118,251.09 118,251.09 118,251.09 116,945.00 116,945.00
foss poly 0 70,680,507.90 70,062,509.72 71,741,922.90 67,559,218.00 67,559.218
foss iron 178,494.14 177,515.24 178,494.14 175,992.00 175,992.00
foss poly 1 29,117.04 26,236.17 31,352.87 28,043.86 28,043.86
pescara 1,820,263.72 1,700,108.17 1,814,271.91 1,639,746.00 1,938,885.00
modena 2,576,589.00 2,206,137,43 4,191,445.38 2,115,898.00 N/A

Table 2: Reported computational results for the water network design instances

5.2. Optimal operation of water distribution networks

The full-scale problem of optimal water network operation
appears to be a rather hard task. By full-scale we mean being
based on a time (and space) discretized formulation. To the
best of our knowledge, there is no successful solution for this
complete form in the literature. Three simplifications are pro-
posed, which we will present in the following. Unfortunately,
there does not seem to be an unified test set, which makes a
concise comparison difficult.

The first simplification is obtained in [5] by dropping the
time dimension and regarding a static operation problem.
Such a problem may arise as subproblem in the full-scale task,
possibly useful in heuristic approaches to the latter. At the basis
is a network model with fixed-speed pumps following equation
(11), valves that can be closed or reduce the pressure in the
direction of the flow, and tanks with a fixed initial filling level.
The pipes have a fixed diameter and the potential-flow coupling
equation is given by (5). The objective function is the sum of
the cost of water purchased at source nodes and the cost of the
power consumption of pumps. An innovation of the study is
the introduction of the concept of real and imaginary flows. It
is observed that due to valves, it is possible that actually no
water is present at certain nodes. Enforcing the potential-flow
coupling constraint on an arc that is incident to such a node,
which means inducing a flow on that arc, is wrong. If no
water is present at a node, no flow emerging from it can be
induced. The concept of real and imaginary flows is modeled
with the help of additional binary variables. Some interesting
preprocessing steps for that model are also presented, one
of which can be applied to sequences of pipes and valves.
Due to the presence of valves that can reduce the pressure
in the direction of the pipe, the pressure-loss of an entire
pipe-valve-sequence is not described by the Darcy-Weisbach
equation itself but by some relaxation of it, see Figure 11. With
some extra effort, this union of two convex sets can be modeled
by convex constraints. Again, as in [12], the potential-flow
coupling function’s property of being “half-concave” and

“half-convex” is exploited.
The resulting MINLP is solved by using SCIP, testing the ap-
proach on two real-world networks, of which the smaller one is
schematically represented in Figure 12. The approach is tested
on different scenarios in the two networks, given by different
initial tank fillings and the forecast demands of different time
windows of a day. The larger of the two networks consists of
88 nodes and 128 arcs, resulting in a program with about a
hundred binary variables (without presolve). The most difficult
scenario requires about half an hour of computing time. When
applying the presolving steps, the computation times reduce
drastically. All of the tested scenarios are solved within less
than two minutes of computation time, on average much faster.
A natural question to ask is how the solution method in [5],
that is, the spatial branch-and-bound algorithm of SCIP, works
on the full-scale operation problem. The authors reported that
already going up to the full-scale problem with only two or
three time periods is troublesome with the - at that time current
- version of SCIP [27].

Another simplification of the full-scale operational prob-
lem is obtained by piecewise linearly approximating the

qa

hi − h j

Figure 11: Pressure loss of a pipe-valve sequence
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Figure 12: Schematic representation of a typical network

nonlinear functions in the time discretized model, as shown
in [7] and [18], or in more detail in [28]. The model therein
mainly consists of flow conservation constraints (1) adapted to
time-dependent variables, potential-flow coupling constraints
(8) and (9) and pump equations (12). As mentioned, four dif-
ferent types of valves are modeled and two types of constraints
on each tank, that are modeled as arcs, are imposed. It is also
accounted for modeling a terminal filling level of each tank and
for the technical requirement of “breathing”, that is filling and
emptying the tank completely for a given number of times over
the considered time horizon. Finally, there are additional linear
constraints that account for minimum runtimes and downtimes
of pumps.
Preprocessing techniques, see Section 3.4 and [16], are used to
approximate all nonlinear functions within a controlled error
bound of 10−2. Some results on the comparison between the
different models for piecewise linear functions especially in
the water network context are reported in [16]. The winning
method therein is the incremental method, which is also the
method of choice in [7] and [18]. The tests are conducted on
three networks of varying size, optimized over a time horizon
of either four hours divided into 12 time steps or one day
divided into 24 hourly steps. It is interesting to note that there
is some flexibility of what is represented by the objective
function, according to the underlying application. So, in some
tests, the objective function is chosen to be the minimization of
the number of tanks with a filling level below a certain limit,
so as to maximize the supply guarantee of the network. In
other cases, the overall power consumption is minimized. As
we have seen earlier, also the purchase cost of water at source
nodes can be taken into account in the objective function. The
largest considered network consists of 25 arcs, resulting in an
approximating MILP with almost 11,000 binary variables, for
which an MILP solver finds an optimal solution within 694
CPU seconds. Further computational results can be found in
[28, Sec. 8.1].

A MILP approach through piecewise linear approxima-
tions is also presented in [6]. Besides the Darcy-Weisbach
equation there are second order polynomials that represent the
characteristic curve of pumps with fixed-speed only, while the

empirical power consumption of a pump is fitted by (linear)
polynomials of degree one. The objective function is again
a combination of the cost of purchased water and the power
consumption of pumps.
The nonlinear univariate functions are piecewise linearly
approximated by a modification of the convex combination
method. This modification was proposed in [29] and observes
that in SOS-2 situations as for piecewise linear approxima-
tions, the required number of auxiliary binary variables is
actually only logarithmic in the number of approximating line
segments. The formulation is further strengthened by adding
valid inequalities.
In addition, the authors actually use a piecewise linear relax-
ation as described in [16] rather than an approximation, see
again Figure 6b. The test network consists of 30 arcs, and
the time horizon of one day is divided into 5 time steps. The
reported results consider linear relaxations based on a number
of approximation intervals ranging from 2 to 8. An MILP
solver terminates at an optimal solution in the range of less
than 30 seconds.

Computational results obtained with the very detailed model
developed in [2] are reported in the follow-up paper [30]. As
stated at the end of Sections 2.3 and 2.4, there are ways to
approximate the MINLP model without introducing binary
variables. For their large network with 1,481 nodes and 1,935
arcs arising from the drinking water distribution network in the
city of Berlin, the authors apply purely nonlinear programming
techniques without any kind of branching, thus no search trees
are explored. Due to the non-convexities that are still present,
this leads again to only locally optimal solutions of the problem
with discrete aspects neglected.

5.3. Unified modeling of design and operation
As mentioned before, the inherent difference of the design

and the operation problem is the contrast between static and
dynamic modeling. Dynamic modeling can make sense under
two conditions. First of all, considering a dynamic model is
useful only if exogenous parameters that have impact on the
decision variables, like the demand patterns of consumers, nat-
urally change over time. In such a situation, neglecting time
completely and taking for example mean values to express these
parameters results in an accuracy loss. Of course, also a dis-
cretization leads to mean values, but nevertheless these mean
values are based on single time windows. The second condi-
tion is that it has to make physical sense to take different deci-
sions at different points in time. A pump, for example, can be
switched on and off over time. For design problems in the form
that we discuss them here, this is hardly the case. The variables
in our model represent the decision to build a pipe with some
diameter, which is not something that is easily reversed within
a reasonable time horizon.
Nevertheless, even when neglecting the time dependency, it is
quite natural to seek for an approach that from the modeling
point of view handles both design and operation problems. This
is done in [4] and [31] in the context of gas networks. The ba-
sic structure of that static model can in principle be applied to
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water networks as well. Gas transmission networks are con-
sidered, with flow conservation constraints at the nodes and arc
equations of type (10), where the operational component βaya is
forced to be zero for pipes, positive for compressors (the equiv-
alent of pumps in gas networks) or negative for pressure reg-
ulators. The striking point is that variable ya is modeled as a
discrete variable. This leads to the fact that the leaf problems in
a search tree that branches on the integer variables are convex
optimization problems, as shown in Section 4.
The first paper [4] is of operational type. Fixed entry and exit
flows into and out of the network at certain nodes are given,
and the task is to determine if the network is able to satisfy
this scenario, also called “nomination” in this context. Thus,
a feasibility problem without the minimization of power con-
sumption or anything else is solved. The convex leaf problems
are therefore solved by an NLP solver via different relaxation
strategies. For example, one possibility is to relax the bounds
on the variables q and h and minimize the bound violation. A
leaf is then feasible if the optimal value of the relaxed problem
is equal to zero. Networks with up to almost five hundred pipes
are handled, although in the computations variables ya’s are re-
laxed as continuous. Hence the procedure is not able to proof
infeasibility, but only the feasibility of a scenario. However, in
the considered tests infeasibility did not occur.
The follow-up paper [31] treats the so-called topology opti-
mization problems for the same type of gas networks. Based
on the same equations, the model is now allowed to extend a
network (that is infeasible for some scenario) by choosing on
each arc exactly one of a discrete number of parallel network el-
ements with different characteristics in a cost-minimal way. In
principle, these elements can contain also pumps, but as a spe-
cial case is contained the problem of choosing on each arc ex-
actly one pipe out of a discrete set of pipes with varying param-
eters, i.e., the classic water network design problem. Again the
convex leaf problems are solved through a relaxation. If such
a relaxed leaf problem is infeasible for the original MINLP, a
cut is derived that is based on information from the nicely in-
terpreted dual problem of the relaxed leaf problem. Some tests
were conducted on networks with only pipes, and it is shown
that the cuts derived from the relaxed leaf problems can signif-
icantly reduce the computing times. This again underlines the
potential that lies in the exploitation of the leaf problems.

6. Discussion

We have surveyed a class of challenging optimization
problems and the attempts to solve them. The problems exhibit
some differences among them, but all have in common the
underlying nonlinear network flow model. The potential-flow
coupling constraint is present in almost all formulations (and if
not, its dynamic extension (8)-(9) is), and this constitutes one
of the main difficulties.

We would like to discuss a very simple computational
example. Consider the water network design instance shamir

from Section 5.1. The network is depicted in Figure 13. Node
1 is the only source node and water is transported from there
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Da [mm]
a1 457.2
a2 254.0
a3 406.4
a4 101.6
a5 406.4
a6 254.0
a7 254.0
a8 25.4

i = 1 2 3 4 5 6 7
hi [m] 210 180 190 185 180 195 190

Figure 13: The shamir network

to all the other (consumer) nodes. In that figure are also listed
the diameters on each pipe, that we consider as fixed for the
moment. This diameter set actually represents the optimal
diameter set of the water network design problem, which on
this small instance can be determined by any of the three
methods presented in Section 5.1.1. Since this diameter set is
optimal, it is in particular feasible, i.e., leads to a NLP-feasible
(and unique) solution (q, h) that satisfies the flow conservation
constraints, the potential-flow coupling constraints and the
bounds on flow and pressure, and can be determined by any
(also local) NLP solver.

The example helps to illustrate the physical bottleneck in
many subproblems. This bottleneck is actually constituted
by the lower pressure bounds. For example, decreasing the
diameter on arc a6 to the next available discrete one from the
water network design instance would result in a network flow
that does not violate the capacity on that arc, but the lower
bound on the pressure of node 7. This again can be certified by
any NLP solver. The same effect can be obtained by reducing
the diameter on several other arcs.

Another characteristic of the underlying nonlinear network
flow model is given by the property described in Section 4. We
have seen that in some situations a nonlinear network flow in
a subproblem is unique, provided it is feasible at all. It seems
sensible to compute this solution by a convex NLP solver in
polynomial time, instead of exploiting other methods. Take for
example the classic formulation for the water network design
problem described in Section 5.1. It turns out, that an MILP
approach via piecewise linear approximations performs terribly
bad. Indeed, even when linearizing the Hazen-Williams equa-
tion with only a few linearization points, no feasible solution
is found by an MILP-solver within a reasonable time limit on
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medium size instances. This is because the subproblems with
fixed integer variables corresponding to the diameter choices,
i.e., subproblems, that are encountered during a tree search, are
either infeasible or have exactly one solution (note that as well
the linearized version of the potential-flow coupling constraint
is strictly increasing). Certifying infeasibility or searching this
unique solution with a MILP formulation cannot be a good
idea.
The same conceptual problem occurs if the subproblem with
an at most unique solution is solved by spatial branching. A
feasible solution will be found in at most one of the many
branches. An additional difficulty in design problems often
arises from the fact that the objective function is constant in
such a subproblem, since it only depends on the diameter
chioces. This results in exploring a sub-tree without the
guidance of the objective function.
We conclude that in this situation, the most promising thing to
do is to exploit the uniqueness of the leaf problems by some
combination of integer branching and nonlinear programming
techniques.

We now turn to the above example in order to shed some
light on a side effect of MILP approximations of the potential-
flow coupling equation. Imagine to have such an approximation
for the shamir network with diameters fixed to the optimal
diameter set, as above. Since the potential-flow coupling
function is convex in |qa|, the energy loss will be overestimated
by this approximation, cf. Figure 6a. The worse the approxi-
mation is, the higher will be this overestimation. In fact, when
fixing the diameters to the optimal diameter set and using five
linearization points per pipe in a MILP model for our example,
any MILP solver certifies the infeasibility of the optimal (and
thus NLP-feasible) diameter set. The bottleneck are again the
lower pressure bounds, this time at nodes 3, 5, 6 and 7. So,
MILP approximations lead to conservative solutions in general,
because they overestimate the energy loss in a network. The
worse the approximation is, the more conservative gets the
solution. If one keeps the approximation coarse as to keep
the number of auxilary binary variables low, fewer diameter
configurations become feasible, which is why it becomes
harder to find feasible solutions in the branch-and-bound tree.
Refining the approximation augments the number of binaries
and thus slows down the MILP solver.

At this point, it is possible to illustrate the role of pumps.
Abstracting from the original physical setting of the shamir

instance, imagine that there is a pump associated with arc a3,
modeled by the equation

h4 − h2 = −
sign(qa3 )|qa3 |

1.852 · 10.7 · La3

k1.852
a3 D4.87

a3

+ y, (28)

where y ∈ R+, cf. equation (10). Obviously, the network with
fixed optimal diameters still has a NLP-feasible solution. But
also decreasing the diameter on arc a6 leads to a NLP-feasible
solution now, namely with y > 0. Adding another such
virtual pump on arc a2 turns feasible also the above mentioned

MILP approximation of the optimal diameter set with five
linearization points. In this case, pumps could also be placed
on arcs a2 and a5 or just on arc a1.
In other words, pumps are somehow able to compensate for
the approximation error made by MILP approximations. This
could lead to computational advantages by producing more
quickly diameter configurations that, tested a posteriori by
solving convex leaf problems, show no need of pump usage.
Of course, this depends on the cost of the pumps that is,
however, somehow difficult to evaluate in a static framework
like the design one. Namely, taking decisions on pump usage
in the design context might imply operation problems that are
feasible only if the pump is always used. Thus, the cost saved
for installing pipes might be spent for the continuos use of
pumps.
An interesting paradox is encountered in this context. Imagine
to have some water network optimization problem for which all
subproblems with fixed integer variables possess the convexity
or uniqueness structure described in Section 4. Again, take for
example the classic water network design problem and imagine
to have pumps modeled by equation (28) in the network. In
order to be able to use the above mentioned algorithmic combi-
nation of integer branching and explotation of uniqueness, one
would have to discretize the variable y as in [4]. Otherwise, the
introduced pump destroys the convexity of the subproblems.
This is not true for an MILP approximation of the problem.
Because everything is linear in such a model, the additive y
does not destroy any convexity. On the contrary, it acts as a
slack variable and can make things easier. Discretizing the
variable y instead would again lead to the same situation as in
a MILP approximation of the water network design problem
without pumps: a branch-and-bound tree where subproblems
solveable in polynomial time are instead attacked by integer
branching.

Another aspect related to the role of pumps is more of
algorithmic nature. As seen above, they actually have the abil-
ity to augment the number of feasible integer configurations in
a tree search. It is in general easier to find feasible solutions.
This algorithmic advantage can be seen directly. In an equation
like (28), y acts as a slack variable. It becomes easier to find
a solution somewhere above the graph of the Hazen-Williams
function instead of exactly on that graph. Another piece of
evidence of this can be found in [5]. One of the several effects
of presolving therein is that some Darcy-Weisbach constraints
are replaced by their relaxations depicted in Figure 11. Instead
of being constrained to find a feasible point on the graph,
we can find it somewhere above (or below) the graph, and
the performance of the algorithm is drastically improved by
presolving. Also pumps with variable speed in an operational
setting somehow allow to augment the set of feasible solutions.
All in all, it depends of course on the cost of the above “slacks”,
whether an overall procedure is improved or not.

Another way of approximating (sub-)problems in a man-
ner that the space of feasible solutions is augmented is to use
piecewise linear relaxations instead of piecewise linear approx-
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imations. In this way, it should become easier to find feasible
solutions. In [16] is reported that the switch from piecewise
linear approximation to piecewise linear relaxation does not
result in an overall speed-up for the problem considered in that
paper. Also for the water network design instances we did not
experience a significant speed-up in the solution time when
using a piecewise linear relaxation.
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[2] J. Burgschweiger, B. Gnädig, M. C. Steinbach, Optimization models for
operative planning in drinking water networks, Optim. Eng. 10 (2009)
343–373.

[3] C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, P. Toth, On the optimal de-
sign of water distribution networks: A practical minlp approach, Optim.
Eng. 13 (2012) 219–246.
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