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Abstract

Peptide dendrimers are a class of molecules that exhibit a large array of biological effects including antiviral activity. In this
report, we analyzed the antiviral activity of the peptide-derivatized SB105-A10 dendrimer, which is a tetra-branched
dendrimer synthetized on a lysine core, in activated peripheral blood mononuclear cells (PBMCs) that were challenged with
reference and wild-type human immunodeficiency virus type 1 (HIV-1) strains. SB105-A10 inhibited infections by HIV-1 X4
and R5 strains, interfering with the early phases of the viral replication cycle. SB105-A10 targets heparan sulfate
proteoglycans (HSPGs) and, importantly, the surface plasmon resonance (SPR) assay revealed that SB105-A10 strongly binds
gp41 and gp120, most likely preventing HIV-1 attachment/entry through multiple mechanisms. Interestingly, the antiviral
activity of SB105-A10 was also detectable in an organ-like structure of human cervicovaginal tissue, in which SB105-A10
inhibited the HIV-1ada R5 strain infection without altering the tissue viability. These results demonstrated the strong antiviral
activity of SB105-A10 and suggest a potential microbicide use of this dendrimer to prevent the heterosexual transmission of
HIV-1.
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Introduction

HIV induces a life-long infection, which, if untreated, progres-

sively evolves to acquired immunodeficiency syndrome (AIDS)

with the ultimate death of the infected patients [1]. The World

Health Organization has globally estimated that 34 million people

were living with HIV-1 at the end of 2011, a year in which 2.5

million of people were newly infected and 1.7 million individuals

died with AIDS-related diseases [2]. HIV epidemics may produce

20–60 million new infections during the next 15–20 years,

particularly in the developing world [3]. To tackle the HIV

infection, two traditional approaches, represented by the pharma-

cological treatment and prophylaxis measures, have been

proposed [3,4]. Combined antiretroviral therapy (cART) has

dramatically changed the evolution of HIV disease but, unfortu-

nately, has not been able to eradicate the HIV infection [5–8].

However, the treatment of HIV positive patients with cART

suppresses viral replication with a consequent decrease in the viral

load that can limit HIV transmission and reduce the number of

new infections [9]. Preventive socio-behavioural measures, the

medical treatment of other sexually transmitted diseases and

immunological strategies have also been proposed in an attempt to

combat the spread of HIV infections [3,10,11]. In particular,

several vaccines have been evaluated in trials, but none have been

able to induce a sterilizing immune response that prevents HIV

transmission and infections in the population [12]. The absence of

a broadly protective vaccine against the various HIV subtypes

indicates that the development of alternative pharmacological

approaches to HIV infection prophylaxis may be considered a

major avenue for controlling HIV transmission. Because approx-

imately 85% of HIV cases originate from sexual transmission [13]

and because heterosexual contact represents the major route of

infection [14], the development of pharmacological topical

treatments, that employ so-called microbicides, might be crucial

to prevent or reduce the transmission of HIV at the level of the

genital mucosa [15–17]. Mathematical models have predicted that

60%-effective microbicides with 20% coverage could prevent 2.5

millions new infections within three years [18,19], suggesting that

the identification of novel microbicides might play an important
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role in HIV infection control, pending the development of a

functional vaccine.

The viral replication cycle offers several targets for microbicide

development [20], although both the inhibition of entry and

retrotranscription processes are currently considered the most

promising targets [15]. The strategies to block HIV entry into cells

are mainly focused on interference of viral capture, CD4

engagement inhibition, co-receptor binding and gp41 rearrange-

ment resulting in the use of many microbicides, such as

polyanions, lectins, monoclonal antibodies, CXCR4, CCR5,

CD4 and gp120 binding factors and gp41-fusion inhibitors

[9,21]. In addition, some non-nucleoside (NNRTIs) and nucleo-

side retrotranscriptase inhibitors (NRTIs) may also be considered

microbicides [22]. Recently, a tenofovir (TDF) gel that was used

during intercourse by women in the Centre for the AIDS

Programme of Research in South Africa (CAPRISA) 004 study

[23] yielded effective results; however, in the VOICE trial, the use

of a daily-administered TDF gel failed to reproduce these data

[24]. Interestingly, similarly controversial results were observed

with oral TDF or TDF/FTC once-daily treatments in three

separate studies [25–27], most likely, caused by the different levels

of patient adherence to the tested therapy [28,29]. There are

approximately 50 candidate microbicides currently in develop-

ment, and some of these compounds are in trial phases 2 and 3

[21]. Unfortunately, many molecules have not passed the

preclinical safety and/or efficacy tests or have failed when

clinically tested. An interesting class of molecules with antiviral

activity is represented by dendrimers [30]. Dendrimers are highly

branched macromolecules that possess a poly-functional core

associated with multiple functional groups on the surface layer

[30–31]. Dendrimer-based molecules have been described as

yielding many potential therapeutic applications and, most

importantly, as exhibiting antiviral and antibacterial activities

[32,33]. Notably, dendrimers display polyvalent viral inhibition

using multiple repeat domains on a single molecule that can

induce a derangement of virus/cell surface and interaction.

Sulfonated polylysine dendrimers have shown anti-HSV and

antiretroviral activities; indeed, the SPL7013 compound, which is

the most active of these dendrimers, has been proposed as a

candidate topical microbicide. Interestingly, SPL7013 has exhib-

ited anti-HIV activities in vitro [34,35], ex vivo [36] and in a

macaque challenge study [37].

In the present study, we analyzed the anti-HIV activity of the

SB105-A10 dendrimer synthetized on a lysine core, which exposed

four 9-mer peptide chains [38] that have been previously

demonstrated to block viral attachment and entry of different

viruses [39–41]. In this investigation, we tested the antiretroviral

activity of the SB105-A10 dendrimer on the replication of HIV-1

X4 and R5 strains to determine whether this molecule may be

considered a novel compound with anti-HIV properties.

Materials and Methods

Cell cultures
The study is in accordance with the provisions of the

Declaration of Helsinki and St Orsola-Malpighi Hospital, Bolo-

gna, Italy. Peripheral blood samples were collected from healthy

blood donors during their routine laboratory analysis at Blood

Bank, S.Orsola-Malpighi Hospital, Bologna in according to the

rules established by Italian Law (Legislative Decree 03-03-2005,

published in G.U. n. 85, 13.04.2005). No approval from Ethical

Committee was requested because all blood samples were

anonymous and could not related to any blood donor. The

PBMCs were separated from peripheral blood samples using a

Ficoll gradient (Ficoll-Histopaque, Pharmacia, Uppsala, Sweden)

and were seeded in RPMI1640 plus 10% FCS and 2 mM L-

glutamine at 56105 cells/ml. The PBMCs were activated by PHA

(5 mg/ml; Sigma, St Louis, MO, USA) plus IL-2 (10 U/ml; Pierce,

Rockford, IL, USA) treatment for three days. The medium was

replaced every three days with fresh medium

(RPMI1640+10%FCS, 2 mM L-glutamine and 10 U/ml IL-2).

Virus stocks
Sixteen HIV-1 X4 or R5 strains were selected for the

experiments. HIV-1IIIb and HIV-1ada are classical laboratory X4

and R5 strains, respectively. Six additional HIV-1 reference strains

(ARV-2, RU132, SE9173, MP535, CBL-4 and BaL) were

obtained from NIBSC (NIBSC, London, UK), whereas eight

HIV-1 isolates were achieved from naı̈ve or cART-treated HIV

positive subjects (Table 1). Reference HIV strain stocks were

prepared in C8166 cells (HIV-1IIIb) or in activated PBMCs [42]

whereas the HIV-1 primary viral isolates from eight HIV-infected

subjects were obtained using a co-culture technique, as described

previously [42]. All of the viral stocks were titrated using an HIV-1

gag p24 antigen ELISA kit (Biomerieux, Marcy L9Etoile, France)

at 1000 ng/ml of the HIV-1 gag p24 protein. Viral tropism of

HIV-1 primary viral isolates from eight HIV-infected subjects was

evaluated by genotypic methods as previously described [43].

Dendrimers
SB105-A10 ([H-ASLRVRIKK]4 Lys2-Lys-b-Ala-OH;

Figure 1) and SB104 ([H-NKKIRVRL]4-Lys2-Lys-b-Ala-OH)

dendrimers (Spider Biotech, Turin, Italy) were synthesized as

described previously [39,40]. The lyophilized dendrimers with a

purity of .95%, as determined by HPLC-UV (Waters, Milford,

MA, USA), were solubilized (1 mg/ml) in phosphate buffered

saline (PBS) and stored at 280uC until use. FITC-conjugated

SB105-A10 (Polypeptide Laboratories France, Strasbourg, France)

was solubilized in PBS at 0.5 mg/ml and stored at 220uC until

use. A labeled tetrameric peptide, which bore a biotin moiety

Table 1. HIV-1 strains.

HIV-1 strains HIV-1 subtype HIV-1 tropism

HIV-1IIIb B X4

HIV-1Ada B R5

HIV-1ARV-2 B R5/X4

HIV-1RU132 G R5

HIV-1SE9173 J R5

HIV-1MP535 K R5

HIV-1CBL-4 D X4

HIV-1BaL B R5

HIV-1VNBR5N* B R5

HIV-1AMBR5N* B R5

HIV-1ACBR5N* B R5

HIV-1MCBR5N* B R5

HIV-1CLBX4T** B X4

HIV-1ARR564T** B R5/X4

HIV-1FLR564T** B R5/X4

HIV-1CSX4T** B X4

*HIV-1 isolated from HIV-1 positive naive patients.
**HIV-1 isolated from cART-treated HIV-1 positive patients.
doi:10.1371/journal.pone.0076482.t001

SB105-A10 Dendrimer Inhibits HIV-1 Infection
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linked to the lysine core by a 30-atom pegylated spacer, called

SB105-A10-PEG-biotin (Polypeptide Laboratories), had a purity

of .95% and was employed in surface plasmon resonance (SPR)

analysis.

HIV infection and dendrimer treatment
The HIV-1 strains (100 pg/ml of HIV-1 gag p24) were pre-

incubated for 1 hour at 37uC with scalar concentrations (0, 0.1, 1,

5, 10 and 20 mg/ml) of SB105-A10 or SB104, and then added to

activated PBMCs that were adjusted to a final density of 16106

cells/ml for 2 hours at 37uC. After four washes in PBS, the cells

were seeded at 56105 PBMCs/ml into fresh medium with scalar

concentrations of SB105-A10 or SB104. One-half of the medium

was replaced with fresh medium plus dendrimers at day 4 post-

infection (pi). The HIV-1 gag p24 content was determined at days

4 and 7 pi in culture supernatants, using HIV-1 p24 antigen

ELISA kit (Biomerieux). The cell viability was evaluated by the

Trypan Blue exclusion technique in the presence of scalar

concentrations of the dendrimers.

Attachment assays
Four different assays were performed.

In the pre-attachment assay, activated PBMCs (16106 cells/ml)

were incubated with SB105-A10 (20 mg/ml; 4.2 mM) for 1 hour at

4uC. After removal of the compound by PBS washes, either HlV-

1lllb or HlV-1ada (100 pg/ml of HIV-1 p24) was added to activated

PBMCs (16106 cells/ml) and incubated for 1 hour at 4uC. After

two washes with PBS, the activated PBMCs were seeded at 56105

cells/ml into fresh medium containing the dendrimer (20 mg/ml),

and the temperature was changed to 37uC. As control, the

activated PBMCs were treated with the same protocol without

dendrimer. The HIV-1 gag p24 content was determined at day 4

in the culture supernatants, using an HIV-1 p24 antigen ELISA kit

(Biomerieux).

In the post-attachment assay, the activated PBMCs (16106

cells/ml) were incubated either with HlV-1lllb or HlV-1ada

(100 pg/ml of HIV-1 p24) for 1 hour at 37uC. After the PBS

washes to remove the unbound virus, the activated PBMCs were

seeded at 56105 cells/ml and incubated at 37uC into fresh

medium containing SB105-A10 (20 mg/ml; 4.2 mM). As control,

the activated PBMCs were treated with the same protocol without

dendrimer. The HIV-1 gag p24 content in the culture superna-

tants was determined at day 4 using an HIV-1 p24 antigen ELISA

kit (Biomerieux).

In the attachment assay, SB105-A10 (20 mg/ml; 4.2 mM) was

pre-incubated with either HlV-1lllb or HlV-1ada (100 pg/ml of

HIV-1 p24) for 1 hour at 4uC. The mixture was added to the

activated PBMCs (16106 cells/ml) and incubated for 1 hour at

4uC to ensure HIV-1 attachment but not entry. After the PBS

washes, activated PBMCs were sedeed at 56105 cells/ml into a

medium containing SB105-A10 (20 mg/ml; 4.2 mM) and shifted to

a temperature of 37uC. As control, the activated PBMCs were

treated with the same protocol without dendrimer. The HIV-1 gag

p24 protein content in the culture supernatants was determined at

day 4 using an HIV-1 p24 antigen ELISA kit (Biomerieux).

In the dilution experiments, SB105-A10 (20 mg/ml; 4.2 mM)

was pre-incubated with either HlV-1lllb or HlV-1ada (100 pg/ml of

HIV-1 p24) for 1 hour at 37uC. The sample volume was diluted

50-fold with RPMI 1640 to reduce the free peptide concentrations

to a level below that at which the HIV replication would have

been significantly inhibited. The diluted mixture was added to the

activated PBMCs (16106 cells/ml) and incubated for 2 hours at

37uC. After two washes, the cells were seeded at 56105 cells/ml

into fresh medium, and HIV-1 p24 protein content in the culture

supernatants was determined at day 4 using an HIV-1 p24 antigen

ELISA kit (Biomerieux). As control, activated PBMCs were treated

with the same protocol without dendrimer.

Cell-binding assay for the FITC-SB105-A10 peptide
Activated PBMCs (56106/ml) were incubated for 1 h at 4uC in

PBS containing 2% FBS, with increasing concentrations of the

FITC-SB105-A10 dendrimer (0, 2.5, 25, 100 and 250 mg/ml). At

the end of the incubation period, the cells were extensively washed

with PBS, and the activated PBMCs were analyzed by FACScan

flow cytometry (Becton-Dickinson, Palo Alto CA). In parallel

experiments, the activated PBMCs were pre-incubated with

FITC-SB105-A10 dendrimer (25 mg/ml; 5.3 mM) and then

washed with PBS containing 2M NaCl, which is a treatment that

removes cationic polypeptides from the cell surface HSPGs [44].

Alternatively, the activated PBMCs were either incubated with

heparinase III (40 mU/ml; Sigma, St Louis, MO, USA) in 20 mM

TrisHCl pH 7.5, 0.1 mg/ml BSA and 4 mM CaCl2 for 2 h at

37uC or left untreated prior to being assayed for binding between

the activated PBMCs and 25 mg/ml (5.3 mM) of FITC-SB105-A10

dendrimer. The samples were analyzed by FACScan flow

cytometry.

Surface plasmon resonance (SPR) assay
SPR measurements were performed on a BIAcore X100

instrument (GE-Healthcare, Milwaukee, WI), using a research-

grade SA streptavidin-precoated sensorchip. To study the SB105-

A10 interaction with the HIV-1 glycosilated recombinant gp41

ectodomain (amino acids 546-682; NIBSC, UK) and the full-

lenght recombinant gp120 glycoprotein (NIBSC), biotinylated

SB105-A10 [10 mg/ml in 10 mM HEPES buffer pH 7.4 contain-

ing 150 mM NaCl, 3 mM EDTA, 0.005% and surfactant P20

(HBS-EP)] was injected onto the SA sensorchip, allowing the

immobilization of 560 resonance units (RU) equal to 0,12 pmol/

Figure 1. Structure of SB105-A10 and SB104 dendrimers. The
general structure of peptide is indicated. These dendrimers were
synthesized by the addition of four identical short peptide chains to a
tetrameric lysine central core. The aminoacid sequence of four peptide
chains in SB105-A10 and SB104 is also shown.
doi:10.1371/journal.pone.0076482.g001

SB105-A10 Dendrimer Inhibits HIV-1 Infection
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mm2 of the tetrameric peptide. A sensorchip coated with

streptavidin alone was used for blank subtraction and to evaluate

the non-specific binding. Increasing concentrations of gp41 and

gp120 in HBS-EP buffer were allowed to associate with the

SB105-A10- or streptavidin-coated surfaces for 3 min and then

washed for 10 min to allow their dissociation. As a further control

of specificity, bovine serum albumin (BSA) and the glycosylated

lectin from Sambucus nigra (SNA) (Vector Lab, Burlingame, CA,

USA) were injected on the SB105-A10 surface under the same

experimental conditions described above. After every run, the

sensorchip was regenerated by the injection of 2 M NaCl. The

steady-state affinity was calculated by the Biacore X100 evaluation

software from the RU values of HIV proteins that were bound at

equilibrium to the SB105-A10 surface.

Cervicovaginal tissue model
The EpiVaginal Tissue Model (VLC-100FT; MatTek Corp.,

Ashland, MA, USA) was kept in a 24-well plate containing a

proprietary growth medium, according to the manufacturer’s

indications. This in vitro-reconstituted, full thickness vaginal tissue

model was formed by a complete, stratified vaginal–ectocervical

epithelial layer mixed with Langerhans cells and with an

additional fibroblast-containing lamina propria. Each EpiVagi-

nalTM tissue-containing well was treated with 100 ml of topically

applied PBS (negative control), PBS containing HIV-1ada (25 ng

p24/tissue) or PBS containing HIV-1ada plus the SB105-A10

dendrimer (2 or 10 mg/tissue) for 24 hours. The apical surface of

each tissue was washed twice with PBS, and either 50 ml of PBS or

PBS plus the SB105-A10 dendrimer (1 or 5 mg/tissue) was added

at day 1. The underlying media (2 ml/tissue) was changed every

other day, and the tissues were harvested at day 4 pi. The vaginal

tissues and culture supernatants were collected for isolation of the

HIV-1 DNA. The total DNA was extracted and purified from the

vaginal tissues using the DNA easy kit (Qiagen, Hilden, Germany).

The HIV-1 DNA content was determined by SYBR Green-based

quantitative real-time PCR and normalized as already described

[45]. The oligonucleotide pairs were gag and pol gene specific

primers previously indicated [45,46].

Evaluation of the irritation potential of SB105-A10 on
EpiVaginal system

The cytotoxicity of SB105-A10 on the mucous membranes was

assessed using the EpiVaginal system and an MTT ET-50 tissue

viability assay, followed by analysis of the lactate dehydrogenase

(LDH) levels, according to the manufacturer’s instructions. SB105-

A10 (100 mg/ml; 21 mM) was added to the cell culture insert on

top of the EpiVaginal tissue samples and incubated for 1, 4, or

18 hours in duplicate. At the end of the incubation at 37uC, any

liquid on top of the EpiVaginal tissue was decanted, and the inserts

were gently rinsed with PBS to remove the residual material.

Subsequently, the tissues were processed according to the MTT kit

protocol (MatTek Corporation) and read using an ELISA plate

reader at a wavelength of 570 nm. Tissues, incubated with

ultrapure water, were employed as negative controls. Triton X-

100 (1%) was used as the positive control. The ET50 is the time

required to reduce the tissue viability to 50% and was determined

using the Prism software (GraphPad Software, San Diego, CA). To

analyze the release of LDH from the treated EpiVaginal tissues

into the culture medium, an LDH cytotoxicity detection kit

(TaKaRa Bio Inc, Japan) was utilized according to the manufac-

turer’s protocol.

To evaluate the inflammatory response, the EpiVaginal tissues

were treated with the dendrimeric peptide SB105-A10 (100 mg/

ml; 21 mM) for different exposure times of 1, 4, and 18 h, as

reported previously. After incubation, the concentration of

interleukin-1 alpha (IL-1a) in the culture medium was measured

using an IL-1a ELISA kit (Bender Medsystem, Wien, Austria).

The concentration of IL-1a was calculated by interpolation of a

standard calibration curve. IL-1a was chosen as a marker of pro-

inflammatory activity as suggested by the technical data sheet from

MatTek Corporation.

Statistical analysis
The results were expressed as the means 6 standard deviations

(SD) of at least three separate experiments performed in duplicate.

A two-tailed Student’s test was used for the statistical comparison.

Results

SB105-A10 inhibits HlV-1IIIb and HlV-1ada replication in
activated PBMCs

In the first set of experiments, the antiviral effects of SB105-A10

on the HIV-1 replication were evaluated. SB105-A10 was

challenged with the HIV-1 X4 and R5 laboratory strains,

represented by HIV-1IIIb and HlV-1ada, respectively. Scalar

concentrations of SB105-A10 (0, 0.1, 1, 5, 10 and 20 mg/ml)

were incubated with either HIV-1IIIb or HlV-1ada (100 pg of p24/

ml) and, after 2 hours at 37uC, this mixture was added to the

activated PBMCs. The HIV-1 p24 protein content was evaluated

in the culture supernatants at days 4 and 7 post-infection (pi). A

significant decrease in the p24 protein was detected in a SB105-

A10 concentration-dependent way. The determination of the IC50

yielded values of 1.42 mg/ml (0.3 mM) and 1.28 mg/ml (0.27 mM)

at day 7 pi in the samples that were infected with HIV-1IIIb and

HlV-1ada, respectively (Figure 2A).

When the same experimental protocol was performed by

substituting SB105-A10 with SB104, which is a dendrimer

possessing a same net positive charge (four basic amino acids)

but a different sequence (NKKIRVRL) in the external peptide

chains, no significant decrease in the levels of the p24 protein

amount was observed (Figure 2B). To rule out a relationship

between the HIV-1 p24 decrease and the SB105-A10-related

cytotoxicity, scalar concentrations of SB105-A10 (0.1, 1, 5, 10, 20

and 50 mg/ml) were assayed on PBMCs, and the cell viability was

analyzed by the trypan blue exclusion technique. The viability of

both SB105-A10- and SB104-treated cells was not significantly

affected when compared with the untreated cell cultures

(Figure 2C-D) and yielded a CC50 value .50 mg/ml

(.10.5 mM).

SB105-A10 exhibits antiretroviral activities in the HIV-1
reference and patients’ isolated strains

Reference HIV-1 R5 (RU132, SE9173, MP535, BaL), dual

tropic X4/R5 (ARV-2) and X4 tropic (CBL-4) strains (Table 1)

were challenged with scalar concentrations of SB105-A10 (0.1, 1,

5, 10 and 20 mg/ml) in the activated PBMCs. The higher

concentrations of SB105-A10 (5, 10, and 20 mg/ml) significantly

(p,0.05) decreased the HIV-1 p24 content in the cellular

supernatants at day 7 pi, irrespective of the HIV-1 strain

employed (Figure 3A). Subsequently, eight HIV strains were

isolated and purified from the HIV-positive patients. Four of the

subjects were naı̈ve patients, whereas the remaining four were

patients exhibiting therapeutic failure and resistance against

certain protease and reverse transcriptase inhibitors. These viral

strains were sequenced and characterized for their cellular

tropism. All naı̈ve patients were infected with R5 viral variants,

two of the cART-treated patients were infected with the X4/R5

dual tropic strains, and the remaining two of the cART-treated

SB105-A10 Dendrimer Inhibits HIV-1 Infection
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patients harboured X4 strains (Table 1). The activated PBMCs

were challenged with these HIV-1 isolated from HIV-1 positive

patients. Similarly to the experiments using HIV-1 reference

strains, the higher concentrations of SB105-A10 (5, 10 and 20 mg/

ml; p,0.05) inhibited the viral replication, as demonstrated by the

HIV-1 gag p24 ELISA assay (Figure 3B) at day 7; in contrast,

SB104 did not exhibit any significant anti-retroviral effects (data

not shown). The determination of the IC50 yielded values between

1.26 (0.27 mM) and 2.1 mg/ml (0.44 mM) among all the tested

reference and patients’ isolated HIV-1 strains.

Analysis of the inhibitory mechanism of SB105-A10
To determine the stage of the viral replication cycle at which

SB105-A10 interferes with the infection, time-binding assays

(Figure 4 A-C) were performed using activated PBMCs that were

challenged with either HIV-1IIIb or HIV-1ada.

In the ‘‘attachment assay’’ (Figure 4A), SB105-A10 was pre-

incubated with either HIV-1IIIb or HIV-1ada strains for 1 hour at

4uC, and this mixture was added to the activated PBMCs and

incubated for 1 hour at 4uC. This protocol facilitated the eventual

attachment of the virus to the cell membrane but did not allow for

viral entry. After washes with PBS, the activated PBMCs were

shifted to a temperature of 37uC, and the infection was allowed to

proceed. The analysis of the HIV-1 p24 protein content, in the cell

culture supernatants at day 4 pi, demonstrated a strong

neutralizing effect on infections of HIV-1 strains (Figure 4D)

thus indicating that SB105-A10 might act on the viral attachment

to the cell membranes of the activated PBMCs.

In the ‘‘pre-attachment assay,’’ (Figure 4B) the activated

PBMCs were treated with SB105-A10 for 1 hours at 4uC to allow

for interaction of the dendrimer with the cell surface. After several

washes, the activated PBMCs were incubated with HIV-1IIIb or

HIV-1ada for 1 hour at 4uC, washed, and shifted to a temperature

of 37uC. The analysis revealed that, at day 4 pi, and under these

experimental conditions, SB105-A10 consistently inhibited the

infections by both HIV-1 strains (Figure 4D), indicating that the

activity of the dendrimer might also depend on its interaction with

the PBMC membrane surface.

The ‘‘post-attachment assay’’ (Figure 4C) was performed to

evaluate whether SB105-A10 could also prevent infection by the

cell-bound virus. The activated PBMCs were incubated with

either HIV-1IIIb or HIV-1ada for 1 hour at 37uC and were

Figure 2. SB105-A10 inhibits HIV-1IIIb and HIV-1ada replication in activated PBMCs. HIV-1IIIb and HIV-1ada were pre-incubated for 1 hours at
37uC with different concentrations (0, 0.1, 1, 5, 10 and 20 mg/ml) of SB105-A10 (A) or SB104 (B) and challenged with activated PBMCs for 2 hours at
37uC. HIV replication was monitored by HIV-1 p24 ELISA and values were determined from cell culture supernatants at day 7 pi. Data were expressed
as the means 6 standard deviations (6SD) of HIV-1 gag p24 amount relative to untreated controls (set to 100%). Three experiments in duplicate were
performed. The last two panels (C and D) show that the two dendrimers are not toxic for PBMCs at concentrations tested as documented by trypan
blue technique. Data were expressed as the means (6SD) of viable cells relative to untreated controls (set to 100%) obtained from three independent
experiments in duplicate. * p,0.05.
doi:10.1371/journal.pone.0076482.g002
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repeatedly washed to remove the unbound virus. Subsequently,

SB105-A10 was added to activated PBMCs, and HIV-1 p24 was

analyzed at day 4 pi. The inhibition of the HIV-1 infection was

not detected by this experimental approach, suggesting that the

antiviral effect of SB105-A10 might be related to the interference

of HIV adsorption and/or entry (Figure 4D).

SB105-A10 interacts with HIV envelope proteins
We also investigated the possibility that at least some of the

antiviral effects might be related to a direct interaction between

the HIV particles and SB105-A10. Either HIV-1IIIb or HIV-1ada

was incubated with 20 mg/ml (4.2 mM) of SB105-A10 for 1 hour

at 4uC or 37uC. Following incubation, these mixtures were diluted

50-fold in a medium to reduce the concentration of dendrimer to

below the concentration capable of preventing the HIV infection;

the diluted mixtures were subsequently added to the activated

PBMCs. The analysis of HIV-1 p24 revealed that SB105-A10

significantly reduced the level of HIV-1 infection, suggesting the

direct activity of SB105-A10 on the virion structures (Figure 5).

To substantiate the hypothesis that SB105-A10 inhibits the HIV

infection by sequestering the virus in the extracellular environ-

ment, we investigated the dendrimer capacity to bind HIV-1 gp41

and/or gp120. To this end, SB105-A10 was immobilized onto a

SPR sensorchip, and evaluated for its capacity to bind the two

viral proteins when injected in the fluidic system of a BIAcore X-

100 apparatus. As displayed in Figure 6 (left panels), the

ectodomain of gp41 (amino acids 546–682) and full-lenght

gp120 interacted with SB105-A10. The specificity of the bindings

was proven by the observations that: i) both the HIV proteins did

not bind to a control surface containing only streptavidin; ii) one

eukaryotic protein (BSA) and one glycosylated plant protein (SNA)

poorly bound the SB105-A10 surface (less than 5 RU and 34 RU,

respectively) when injected at 300 nM in the same experimental

conditions used for the HIV proteins (data not shown). Dose

response experiments allowed us to generate saturation curves

(Figure 6, right panels), from which dissociation constant (Kd)

values for the two interactions were calculated. In detail, SB105-

A10 binds to gp41 with an affinity that is 10 times higher than that

for gp120 (Kd equal to 3.9 nM and 46 nM, respectively). These

results suggest that the dendrimer might interact with the viral

envelope, most likely altering the virus attachment and entry.

SB105-A10 binds to heparan sulfates (HS) on activated
PBMC membranes

In addition to the direct activity of SB105-A10 on the envelope

glycoproteins, the pre-attachment assay indicated that the

Figure 3. SB105-A10 treatment inhibits the HIV replication of HIV-1 reference strains and isolates from HIV-1 positive pateints.
Different concentrations (0, 0.1, 1, 5, 10 and 20 mg/ml) of SB105-A10 were added to HIV-1 reference (A) and isolated (B) strains (100 pg/ml p24) for
1 hours at 37uC and then added to activated PBMCs. After two hours, several PBS washings were carried out and p24 determination was performed
at day 7. Significant decreases of HIV-1 p24 amount were detected in infected samples treated with 5, 10 and 20 mg/ml of SB105-A10 with respect to
the untreated controls. Data were expressed as the means (6SD) of HIV-1 gag p24 amount relative to untreated controls (set to 100%) obtained from
three independent experiments in duplicate. * p,0.05.
doi:10.1371/journal.pone.0076482.g003
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dendrimer might inhibit HIV infection through direct binding

with molecular targets on the cell membrane. Moreover, the

effects of SB105-A10 on the replication of viruses such as HSV,

HPV, RSV and HCMV have demonstrated that this molecule

binds to HSPGs [39–41]. Because HSPGs play an important role

in HIV adsorption and entry, we evaluated whether the binding

between SB105-A10 and HSPGs was also detectable in activated

PBMCs. A flow cytometry analysis performed using increasing

concentrations of the dendrimer (Figure 7), yielded a net

increased fluorescence following the FITC-SB105-A10 exposure

with a binding saturation at 25 mg/ml (5.3 mM). This interaction

was partially inhibited by pre-treatment with heparinase III, which

cleaved the HSPGs and significantly decreased, but did not

eliminate, the positive signal. Moreover, the activated PBMCs

treated with FITC-SB105-A10 and further washed with 2M NaCl,

which is a treatment that removes cationic peptides from HSPGs

in the cell membrane [44], displayed decreased fluorescence, as

measured by flow cytometry; however, the binding of FITC-

SB105-A10 with HSPGs was not abolished, thus suggesting that

the dendrimer might also recognize additional receptors on the

cell surface.

SB105-A10 inhibits the HIV-1 infection of cervicovaginal
tissues

To investigate the possible use of SB105-A10 as a microbicide,

we also examined its role in preventing the HIV-1 infection, using

a biologically organotypic model of cervicovaginal epithelial tissue.

To determine whether SB105-A10 acts as an antiretroviral agent

in vaginal tissues, cervico-vaginal samples were infected apically by

HIV-1ada (100 ng HIV-1 p24/tissue) either with or without the

dendrimer (2 or 10 mg/tissue) and were incubated for 24 hours;

subsequently, the HIV-1 proviral DNA levels were determined by

quantitative real-time PCR at day 4 pi using two oligonucleotide

pairs specific for HIV-1 gag and pol genes. The samples that were

treated with SB105-A10 exhibited approximately 10-fold decrease

in their viral DNA burden compared with the untreated HIV-1-

infected vaginal tissue, suggesting that SB105-A10 inhibits the

HIV-1 infection of a biologically relevant human cervicovaginal

tissue model (Figure 8). Because the EpiVaginal tissue is ideally

suited to predict the vaginal toxicity of novel microbicides we also

evaluated the irritation and inflammatory potential of SB105-A10.

Briefly, 100 mg/ml (21 mM) of SB105-A10 was applied to the

apical surface at the air-tissue interface for 1, 4, and 18 hours at

37uC, and the tissues were subsequently analyzed for (i) the

Figure 4. Investigation of SB105-A10-related antiviral mechanisms in activated PBMCs infected by HIV-1IIIb or HIV-1ada strains.
Attachment, pre-attachment and post-attachment assays were carried out as described in panel A, B and C respectively. Significant decreases of HIV-
1 gag p24 in the cellular supernatants were detected at day 4 pi, in SB105-A10-treated samples with respect to untreated controls in pre-attachment
and attachment assays (panel D). Data were expressed as the means (6SD) of HIV-1 gag p24 amount relative to untreated controls (set to 100%)
obtained from three independent experiments in duplicate. *p,0.05.
doi:10.1371/journal.pone.0076482.g004
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reduction of tetrazolium salt (MTT), to study the metabolic

activity of the living cells; (ii) LDH release, to measure the

accumulation of dead cells; and (iii) the release of IL-1 a, to

evaluate the inflammatory activation of cells (see the Materials and

Methods for further details). As reported in Table 2, SB105-A10

was not cytotoxic, and the time required to reduce tissue viability

to 50% (ET50) was greater than 18 hours. No significant difference

in the release of the cytoplasmic enzyme LDH was observed

between SB105-A10-treated and untreated tissues. Finally, our

results indicate that SB105-A10-exposed human-derived vaginal

epithelial cells do not exhibit significant differences in the levels of

the pro-inflammatory cytokine IL-1a, (Table 2), compared with

the untreated samples. Similar results were obtained when a 10-

fold higher dose of SB105-A10 was applied to the EpiVaginal

Figure 5. Pre-incubation of SB105-A10 either with HIV-1IIIb or HIV-1ada strains inhibits the viral infectivity in dilution assay. HIV-1
strains were incubated for 1 hour at 37uC with SB105-A10 (20 mg/ml; 4.2 mM). Following this incubation the samples were diluted 50-fold to reduce
dendrimer concentrations to a level below that at which SB105-A10 significantly inhibits HIV replication and challenged with activated PBMCs.
Significant decrease of HIV-1 p24 amount was detectable at day 4 pi. Data were expressed as the means (6SD) of HIV-1 p24 amount relative to
untreated controls (set to 100%) for each HIV-1 strain obtained from three independent experiments in duplicate. * p,0.05.
doi:10.1371/journal.pone.0076482.g005

Figure 6. SPR analysis of the interaction of SB105-A10 with HIV-1 gp41 and gp120 proteins. Left panels: blank-subtracted sensorgrams
showing the binding of gp41 ectodomain (aminoacids 546–682; 10 nM) and full-lenght recombinant gp120 glycoprotein (100 nM) to the sensorchips
containing streptavidin and biotinylated SB105-A10 (straight line) or streptavidin alone (dotted line). Right panels: saturation curves of the binding of
gp41 and gp120 to immobilized SB105-A10 peptide. The saturation curves were obtained using the values of RU bound at equilibrium after the
injection of different concentrations (0.61, 1.25, 2.5, 5.0, 10 nM for gp41 and 12.5, 25, 50, 100 nM, for gp120). The x2 values of the fitting of the
saturation curves were equal to 2.6 and 4.3 for gp41 and gp120 respectively.
doi:10.1371/journal.pone.0076482.g006
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tissue (data not shown). Overall, these results indicate that SB105-

A10 is neither toxic nor pro-inflammatory to the vaginal mucosa.

Discussion

We aimed to determine whether the SB105-A10 dendrimer

inhibits HIV-1 infection in activated PBMCs. The present study

mainly demonstrated that: i) SB105-A10 inhibited HIV replication

of all of the tested reference and HIV-1 strains that were isolated

from HIV-positive patients in activated PBMCs, as indicated by

the HIV-1 p24 protein ELISA assay in the cell culture

supernatants; ii) SB105-A10 interfered with the attachment/entry

of HIV-1 by multiple mechanisms targeting cell membrane

HSPGs and HIV virions; in particular, SB105-A10 bound gp41

and gp120 as revealed by the SPR analysis; and iii) SB105-A10

also inhibited the HIV infection in a biologically organotypic

model of cervicovaginal epithelial tissue.

The antiviral effect of SB105-A10 was tested on a wide range of

R5, X4 and dual tropic R5/X4 HIV-1 strains, and a significant

and reliable decrease of HIV-1 p24 protein amount was detected

by the HIV-1 p24 ELISA assay in supernatants of the activated

PBMCs. Interestingly, among the HIV-1 strains that were

challenged by SB105-A10, it was observed that this dendrimer

was also able to suppress HIV-1 strains that were isolated from

HIV-1 naı̈ve patients and HIV-1-positive patients infected by

strains resistant to certain reverse transcriptase and protease

inhibitors. Hence, SB105-A10 exhibited an antiviral effect that

was independent of the HIV strain tropism, with comparable IC50

values observed in the R5 and X4 strains.

Analysis of the antiretroviral mechanisms indicated that the

dendrimer might target an early event during the viral replication.

The pre-attachment and attachment assays revealed that SB105-

A10 effectively inhibited the HIV infection, whereas a significant

p24 protein decrease was not detected following the post-

attachment procedure. These observations suggest that SB105-

A10 may prevent HIV-1 infection by acting on the first phases of

the viral replication cycle, which are most likely represented by

viral attachment/entry. The initial interaction between HIV and

the cell membrane is facilitated by interactions between the

positively charged domains on gp120 and the negatively charged

heparan-sulfated proteoglycans on the target cell membrane or by

interactions with cell membrane lectin-binding proteins such as

Figure 7. Flow cytometry analysis of binding between SB105-A10 and heparan sulphates. Typical experiments were shown. (A), Different
concentrations of FITC-conjugated SB105-A10 (from 0 to 250 mg/ml) were assayed for 1 hour at 4uC on activated PBMCs (56106/ml). The saturation
was achieved at 25 mg/ml. (B), Activated PBMCs (56106/ml) were treated with 25 mg/ml of FITC-conjugated SB105-A10 for 1 hour at 4uC and then
washed with PBS containing 2 M NaCl, a treatment known to remove cationic polypeptides from cell surface HSPGs. (C), Activated PBMCs (56106/ml)
were incubated with heparinase III for 2 h at 37uC or left untreated before the binding assay with 25 mg/ml of FITC-conjugated SB105-A10. Both
heparinase III and 2 M NaCl treatments reduce but not abolish the specific fluorescence signal suggesting an interaction between SB105-A10 and cell
membrane that is not related to HSPGs.
doi:10.1371/journal.pone.0076482.g007
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DC-SIGN [47–49]. Protein gp120 then binds to CD4, and this

interaction induces a conformational shift of the gp120 structure

that causes the formation of a bridging sheet with the exposure of

the V1/V2 and V3 loop [50–52]. These steric changes allow for

the binding of gp120 to the CXCR4 and CCR5 co-receptors and

the fusion of the gp41 ectodomain with the cell membrane

[53,54]. The fusion is determined via the formation of a six-helical

bundle in which three gp41 N-terminal heptad repeats form a

trimeric inner core and three C-terminal heptad repeats are

packed in an antiparallel manner against the inner trimer [55].

The free energy that is released by the bundle formation leads to

the juxtaposition and subsequent fusion of the viral and target cell

membranes [56]. The SPR assay demonstrated that SB105-A10

bound at a high affinity to the HIV envelope protein gp41 and, to

lesser extent, gp120. It is conceivable that binding of SB105-A10

to the two viral envelope glycoproteins may determine, through

the dendrimer’s multivalency, an alteration in the correct steric

interaction between the viral envelope glycoproteins and the

cellular receptors thereby inhibiting HIV-1 entry into activated

PBMCs. Interestingly, the SPR indicated that the high-affinity

binding between SB105-A10 and gp41 is localized to the

ectodomain of gp41. SB105-A10 binds the ectodomain of gp41

in a region that encompasses the amino acids between 546 and

682. This domain is strongly involved in the formation of the

bundle and plays a pivotal role in the fusion between the virus and

the cell surface [57,58]. SB105-A10 might then be considered a

factor that binds to both the gp41 and the gp120 envelope binding

glycoproteins. It is noteworthy that several anti-HIV agents bind

to the gp41 or gp120 glycoproteins. Among the agents that target

gp41, T-20 is the most important and is used in antiretroviral

therapy [59]. T-20 is derived from gp41 ectodomain sequences

and prevents formation of the viral gp41 bundle, as well as the

fusion and entry of HIV-1 into the target cell [60–61], by forming

heterotrimers with its counterparts in gp41. The synthesis and

utilization of T-20 as an antiretroviral has promoted the

development of similar drugs that inhibit gp41 fusion by

competitive mechanisms; in fact, C52L and HR212 suppress

formation of the viral gp41 bundle and viral entry [62–63].

Conversely, other drugs have non-competitive mechanisms: RC-

101, which is a cationic derivate of the defensin theta, binds

directly to gp41 and suppresses the HIV infection by inhibiting

HIV entry [64–65]. Several molecules bind to gp120, thereby

interfering with the interaction between gp120/CD4 and/or the

gp120/co-receptors. Lectins, polyanions, agents targeting the

CD4-binding site of gp120 and antibodies have been described

and employed in some trials [9,48,66–68]. Mannose-rich glycans

are present on the envelope structure and are the target of several

anti-HIV molecules, such as the lectins [9]. Cyanovirin, Griffithsia

are two of the substances, with anti-HIV characteristics, that bind

to gp120 glycosylated structures and inhibit the entry of the R5

and X4 HIV-1 isolates [69,70]. Moreover, polyanions such as

PRO 2000, PC-515 and cellulose sulfate recognize positively

charged regions on gp120 [71,72]. PRO-2000 displays a wide

range of activity by recognizing gp120, CD4 and co-receptors

showing antiviral effects, especially against X4 tropic strains [73].

Polyanions represent a classical group of HIV-entry inhibitors;

indeed two dendrimers with negatively charged branching arms

(namely SPL7103 and SPL 7115) have demonstrated gp120-

binding activities [74]. Interestingly, experiments on non human

primates indicated that the intravaginally treatment of macaques

by 3-5% w/w SPL7013 gel effectively prevented the vaginal

transmission of SHIV89.6 chimeric virus strain [37]. SB105-A10

is a peptide-derived dendrimer that originates from the M6

prototype, which is a tetra-branched dendrimer [38]. This

molecule contains a lysine core that tethers four 9-mer peptide

chains [38] and exhibits a polycationic sequence of basic amino

acids in the branching arms, in contrast with the polyanionic

stretch of SPL7103 and SPL7115 [74]. The antiviral effectiveness

of SB105-A10 is related to this sequence of basic aminoacids. In

fact, the dendrimer SB104, which has a different sequence, did not

show any significant anti-viral activity. Polycation substances exert

opposite effects on the HIV infection; however, recently, defensin,

defensin-derived (RC-101) cationic peptides and other dendrimers

(polycationic viologen) have demonstrated reliable anti-HIV

effects via binding to gp41 and CXCR4, respectively

[64,65,75,76]. SB105-A10 exhibits a more complex antiretroviral

activity; in fact, the SB105-A10 administration prior to an HIV

challenge yields inhibitory effects on HIV replication suggesting an

additional cell-membrane target. As demonstrated recently, the

basic amino acids residues of SB105-A10 bind to the negatively

charged sulfated/carboxyl groups of the heparan sulfate chain of

HSPGs in several cell models and inhibit the attachment/entry of

several viruses, such as HSV-1, HSV-2, HPV, HCMV, RSV and

Ebola virus [39–41,77]. HSPGs are cell membrane receptors

composed of a core protein linked to sulfated glycosaminoglycans

(GAGs). GAGs are long, negatively charged polysaccharides that

Figure 8. Determination of HIV-1 proviral DNA content in
Epivaginal tissue infected by HIV-1ada. EpiVaginalTM tissues were
challenged with HIV-1ada (25 ng/ml) plus the SB105-A10 dendrimer (2
or 10 mg/tissue) for 24 hours, and total DNA was extracted and purified
from vaginal tissues at day 4 pi. HIV-1 DNA burden was determined by
SYBR Green-based quantitative real time PCR using either HIV-1 gag or
pol gene-specific primer pairs [45,46]. Data are expressed as the fold
decrease (6SD) of the DNA proviral content in dendrimer-treated cell
culture with respect to DNA proviral amount determined in untreated
cell cultures, obtained from two independent experiments in quadru-
plicate.
doi:10.1371/journal.pone.0076482.g008

Table 2. Evaluation of the irritation potential of 100 mg/ml of
SB105-A10 (21.3 mM) on the EpiVaginal tissue model.

Viability LDH Release IL-1 a Release

(%) (Abs) (pg/ml)

Untreated (1 hour) 100 0.960.1 13.462.9

SB105-A10 (1 hour) 81.8 0.960.1 11.764.5

Untreated (4 hours) 100 0.760.1 8.362.6

SB105-A10 (4 hours) 100.9 0.960.01 16.663.5

Untreated (18 hours) 100 1.360.1 33.264.2

SB105-A10 (18 hours) 78.5 1.160.01 24.563.0

doi:10.1371/journal.pone.0076482.t002
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are linked to HS and that are widely detectable on cell membranes

of various cell types [78]. HSPGs are involved in the initial

attachment of many viruses to the cell surface [79]. Examples of

these viruses include Herpesviridae (HSV, HCMV), Papovaviridae

(HPV), Flaviviridae (HCV, dengue), Paramyxoviridae (RSV) and

Retroviridae (HIV, HTLV) [80–86]. HIV gp120 recognizes HS

through V3 loop that facilitates the attachment to the host cell and

subsequent infection [86–89]. Interestingly, the removal of HS or

the use of heparin as a competing molecule reduced both HIV

attachment and infection in several cell models such as CD4+
HeLa, T-cell lines and macrophages [90–92]. Moreover, HS are

involved in the gp41-mediated fusion of HIV with the cell

membrane and play an important role in the HIV infection of

CD4-negative cell models (such as CD4 negative brain endothelial

cells) by affecting HIV attachment and entry [93,94]. SB105-A10

consistently binds to HS in activated PBMCs. Interestingly, the

activation of PBMCs by PHA induces a strong increase in heparan

sulfates exposed on the cell membrane compared with unactivated

PBMCs [85]. SB105-A10 binds to HS on the cell membrane of

activated PBMCs although the treatment with either heparinase or

NaCl did not completely inhibit the binding of SB105-A10 to the

cell membrane, suggesting that the dendrimer may also interact-

with additional cellular targets.

As reported above, SB105-A10 exhibits a broad antiviral

activity against several viruses, as has been demonstrated for

another dendrimer (SPL7013) that strongly inhibits the entry of

HIV, HSV-1 and HSV-2 [74]. SB105-A10 exerts its antiviral

activity against certain viruses that are transmitted by sexual

intercourse; these viruses include HPV and HSV, which recognize

cell targets through the viral anti-receptor binding of HS [39–41].

This characteristic indicates that SB105-A10 is a good candidate

for use as a broad-spectrum microbicide that counteracts not only

HIV but also HPV and HSV. It is noteworthy that the presence of

inflammatory and genital lesions due to HSV and HPV infections

facilitates the HIV infection transmission [9]. The microbicides

are compounds that would protect the user from sexually

transmitted infections when applied topically to mucosal structures

such as the vagina and rectum. This topical prevention strategy

represents a prophylactic approach that may be employed

especially in individuals who do not use condoms during sexual

intercourse. Interestingly, different classes of microbicides have

been proposed for prevention of the HIV infection. These

compounds act on various stages of the HIV mucosal infection;

in fact, agents that disrupt the free virus, blocking cell capture, or

target the viral structure or cell receptors or specific viral

replication stages have been widely described as microbicides

although the majority of these compounds have not passed the

trials [21]. However, TDF administered orally or by gel [23] has

yielded effective results; however, certain studies have not

reproduced these results most likely because of low levels of

patient compliance [28,29]. Novel evidence has also supported

the use of other antiretrovirals, including combinations (TDF and

emtricitabine) used in cART for oral prophylaxis, and promising

results have been obtained from the initial analyses [95,96].

SB105-A10 was challenged with R5 tropic HIV-1ada strain in

human cervico-vaginal tissues [64]. The analysis of SB105-A10

antiviral activity against the R5 tropic HIV-1 strains is pivotal

because the HIV-1 R5 strains are predominantly involved in the

sexual transmission of HIV. The quantitative analysis of HIV-1

proviral DNA by real-time PCR demonstrated a strong decrease

of the HIV-1 DNA content in the SB105-A10-treated samples

compared with the untreated samples. In addition, SB105-A10

does not elicit an inflammatory response or cytotoxicity in this

tissue model thus validating the potential use of this molecule as a

topical microbicide. However, toxicity and efficacy studies

conducted using non-human primate models must be performed

to validate SB105-A10 as a topical microbicide candidate for

prevention of the heterosexual transmission of HIV-1 and other

specific sexually transmitted viruses.
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