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ABSTRACT
We present an approach to the design of distribution functions that depend on the phase-
space coordinates through the action integrals. The approach makes it easy to construct
a dynamical model of a given stellar component. We illustrate the approach by deriving
distribution functions that self-consistently generate several popular stellar systems, including
the Hernquist, Jaffe, and Navarro, Frenk and White models. We focus on non-rotating spherical
systems, but extension to flattened and rotating systems is trivial. Our distribution functions
are easily added to each other and to previously published distribution functions for discs
to create self-consistent multicomponent galaxies. The models this approach makes possible
should prove valuable both for the interpretation of observational data and for exploring the
non-equilibrium dynamics of galaxies via N-body simulations.
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1 I N T RO D U C T I O N

Axisymmetric equilibrium models are extremely useful tools for the
study of galaxies. A real galaxy will never be in perfect dynamical
equilibrium – it might be accreting dwarf satellites, or being tidally
disturbed by the gravitational field of the group or cluster to which
it belongs, or displaying spiral structure – but an axisymmetric
equilibrium model will usually provide a useful basis from which a
more realistic model can be constructed by perturbation theory.

By Jeans (1915) theorem, every equilibrium model can be
described by a distribution function (DF) that depends on the
phase-space coordinates (x, v) only through isolating integrals of
motion. In an axisymmetric potential, most orbits prove to be
quasi-periodic, with the consequence that they admit three isolating
integrals (Arnold 1978). Consequently, a generic DF for an axisym-
metric equilibrium galaxy is a function of three variables.

The major obstacle to exploiting this insight is that we have ana-
lytic expressions for only two isolating integrals of motion in a gen-
eral axisymmetric potential, namely the energy E = 1

2 v2 + �(x)
and the component of the angular momentum about the symmetry
axis, Jφ = (x × v)z. Several authors have examined model galaxies
with DFs of the two-integral form f(E, Jφ) (Prendergast & Tomer
1970; Wilson 1975; Rowley 1988; Evans 1994), but in such models
the velocity dispersions σ R and σ z in the radial and vertical direc-
tions are inevitably equal. This condition is seriously violated in
our Galaxy and we have no reason to suppose that the condition
is better satisfied in any external galaxy. Hence, it is mandatory to
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extend the DF’s argument list to include a ‘non-classical’ integral,
I3, for which we do not have a convenient expression.

Since any function J(E, Jφ , I3) of three isolating integrals is
itself an isolating integral, we actually have an enormous amount of
freedom as to what integrals to use as arguments of the DF. Given
that we must use at least one integral for which we lack an expression
for its dependence on (x, v), there is a powerful case for making the
DF’s arguments action integrals. These integrals are alone capable
as serving as the three momenta Ji of a canonical coordinate system
– this property makes them the bedrock of perturbation theory. Their
canonically conjugate variables, the angles θ i, have two remarkable
properties: (i) along any orbit they increase linearly with time at
rates �i( J), so

θi(t) = θi(0) + �i( J) t, (1)

and (ii) they make the ordinary phase-space coordinates periodic
functions

x(θ + 2πm, J) = x(θ , J) (integer mi). (2)

The actions Ji also have nice properties. In particular, (i) any triple
of finite numbers (Jr, Jφ , Jz) with Jr, Jz ≥ 0 corresponds to a bound
orbit with the orbit J = 0 being that on which a star is stationary
at the middle of the galaxy, and (ii) the volume of phase space
occupied by orbits with actions in d3 J is (2π)3d3 J . Consequently,
any non-negative function f ( J) that tends to zero as |J | → ∞ and
has a finite integral

∫
d3 J f ( J) specifies a valid galaxy model of

mass

M = (2π)3
∫

d3 J f ( J). (3)
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The actions are defined by integrals

Ji = 1

2π

∮
γi

dx · v, (4)

where γ i is a closed path in phase space. If we require that the first
action Jr quantifies the extent of a star’s radial excursions and the
third action Jz quantifies the extent of its excursions either side of
the potential’s equatorial plane, then the actions are unambiguously
defined. What we here call Jr is sometimes called JR or Ju, and what
we call Jz is sometimes called Jϑ or Jv , but no significance attaches
to these different notations. In a spherical potential Jz = L − |Jφ |,
where L is the magnitude of the angular momentum vector.

To obtain the observable properties of a model defined by f ( J),
for example its density distribution ρ(x) = ∫

d3v f ( J) and its ve-
locity dispersion tensor σ 2

ij (x), one has to be able to evaluate J(x, v)
in an arbitrary gravitational potential. Recently, a number of tech-
niques have been developed for doing this (Binney 2012a; Sanders
& Binney 2014, 2015). Consequently, while the last word on action
evaluation has likely not yet been written, we now have algorithms
that enable one to extract the observables from a DF f ( J) with
reasonable accuracy.

DFs f ( J) that depend on the phase-space coordinates only
through the actions were first used to model the disc of our Galaxy
in an assumed gravitational potential (Binney 2010, 2012b). Re-
cently, Binney (2014, hereafter B14) showed how to derive the self-
consistent gravitational potential that is implied by a given f ( J) by
exploring a family of flattened, rotating models that he derived from
the ‘ergodic’ DF of the isochrone model: that is the DF f(H) that de-
pends on the phase-space coordinates only through the Hamiltonian
H = 1

2 v2 + �(x). Hénon (1960) derived the isochrone’s ergodic
DF, and in the case of the isochrone potential explicit expressions
are available for J(x, v) and H ( J) (Gerhard & Saha 1991). Sub-
stituting H ( J) in f(H) B14 obtained the DF f ( J) of the isotropic
isochrone model. In this paper, we present simple analytic functions
f ( J) that generate nearly isotropic models of other widely used
models, such as the Hernquist (1990), Jaffe (1983), and Navarro,
Frenk & White (1996, hereafter NFW) models.

Once a DF of the form f ( J) is available for a spherical, non-
rotating model, the procedure B14 used to flatten the isochrone
sphere and to set it rotating can be used to flatten and/or set rotating
one’s chosen model. So DFs for spherical models in the form f ( J)
are valuable starting points from which quite general axisymmetric
models are readily constructed.

Galaxies are generally considered to consist of a number of com-
ponents, such as a disc, a bulge, and a dark halo, that cohabit a
single gravitational potential. If we represent each component by a
DF of the form f ( J), it is straightforward to find the gravitational
potential in which they are all in equilibrium (e.g. Piffl et al. 2014;
Piffl, Penoyre & Binney in preparation). An analogous composition
using DFs of the form f(E, Jφ , I3) has never been achieved and may
be impossible, because when components are added, their poten-
tials must be added, and the energies of physically similar orbits in
a given component are quite different before and after we add in the
potential of another component. For example, the orbit on which a
star sits at the centre of the galaxy will have different energies before
and after addition. If E is used as an argument of the DF, the change
in E will change the density of stars on the given orbit, which is
contrary to the fundamental idea of building up the galaxy by adding
components. By contrast, the actions of the orbit on which a star sits
at the galactic centre vanish in any potential, and if a component is
defined by f ( J), it contributes the same density of stars to this orbit
regardless of the external potential in which that component finds

itself. This fact is a major motivation for discovering what DF of
the form f ( J) is required to generate each component of a galaxy.

The DF of an isotropic spherical model must depend on the ac-
tions only via the Hamiltonian H ( J). The dependence of f on H is
readily obtained from the inversion formula of Eddington (1916),
but an exact expression for H ( J) is only available for the isochrone
potential and its limiting cases, the harmonic oscillator and
Kepler potentials. Our ignorance of H ( J) for potentials other than
the isochrone amounts to a barrier to the extension of B14’s ap-
proach to model building. One way to break through this barrier is
to devise numerical approximations to H ( J) and some success has
been had in this direction by Fermani (2013) and Williams, Evans
& Bowden (2014). In this paper, we pursue a slightly different strat-
egy, which is to develop simple algebraic expressions for DFs f ( J)
that generate self-consistent models that closely resemble popular
spherical systems. We also show that a very simple form of f ( J)
generates a model that is almost identical to the isochrone sphere
and we give a useful analytic expression for the radial action as a
function of energy and angular momentum for a Hernquist sphere.

The paper is organized as follows. In Section 2, we use analytic
arguments to infer f ( J) for scale-free models. These models are
not physically realizable as they stand, so in Section 3 we consider
models that consist of two power-law sections joined at a break
radius. In Section 4, we extract realizable models from scale-free
models by the alternative strategy of adding a core to the system
and/or tidally truncating the model. Section 5 sums up.

2 P OW E R - L AW M O D E L S

Consider a gravitational potential that scales as a power of the
distance from the galactic centre, i.e. �(ξ x) ∝ ξa�(x) with a �= 0:
in the limit a → 0 the gravitational potential tends to a logarithmic
potential, which is an interesting special case that we will treat in
Section 2.1.

An orbit in a power-law potential has time-averaged kinetic and
potential energies, K and W, respectively, that are related by the
virial theorem: 2K = aW. The instantaneous total energy, given
by the sum of the instantaneous kinetic and potential energies, is
conserved along the orbit and consequently is given by

E = K + W =
( a

2
+ 1

)
W. (5)

In any power-law potential, we need only to study orbits of one
arbitrarily chosen energy E because each of these orbits can be
rescaled to a similar orbit at any given energy E′. Indeed, if an orbit
is rescaled by a spatial factor, i.e. x → x′ = ξ x, then the orbit’s
total energy scales as

E → E′ = ξaE, (6)

since obviously W → W′ = ξ aW. Further v2 ∝ K = 1
2 aW , so under

rescaling v → v′ = ξa/2v.
Given the scalings derived above for x and v it follows that

J → J ′ = ξ 1+a/2 J . (7)

Thus, both the energy and the actions of an orbit that is rescaled by
the spatial factor ξ are rescaled by powers of this factor.

From equations (6) and (7) we deduce that the Hamiltonian is of
the form

H ( J) = [h( J)]a/(1+a/2), (8)

where h( J) is a homogeneous function of degree one, i.e. h(ζ J) =
ζh( J) for every constant ζ . In particular, H is itself a homogeneous
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function of the three actions of degree a/(1 + a/2). It is easy
to check that equation (8) gives the correct scalings H ∝ |J | and
H ∝ |J |−2 for the harmonic oscillator (a = 2) and Kepler (a = −1)
potentials. Williams et al. (2014) derive a closely related result in
which a specific form is proposed for h( J).

The homogeneous function h is strongly constrained by the or-
bital frequencies. Indeed

�i

�j

= ∂H/∂Ji

∂H/∂Jj

= ∂h/∂Ji

∂h/∂Jj

. (9)

In a scale-free model, the frequency ratio on the left is a homoge-
neous function of degree zero, i.e. scale independent, in agreement
with the right-hand side. A natural choice for h that we will use
extensively is

h( J) = Jr + �φ( J)

�r ( J)
|Jφ | + �z( J)

�r ( J)
Jz. (10)

In a scale-free model, this is homogeneous of degree one, as re-
quired. Moreover, so long as the frequency ratios do not change
rapidly within a surface of constant energy in action space, the
derivatives of h satisfy equation (9) to good precision.

In the definition (10) of h( J), the modulus of the angular mo-
mentum Jφ appears because we are concerned with the construction
of the part of the DF that is even in Jφ . If we wish to set the model
rotating, we will add to this even part an odd part as discussed by
B14.

Consider now the density distribution that generates a power-law
potential. In the spherical case,1 we have

d�(r)

dr
= ∂�(ξr)

r∂ξ

∣∣∣∣∣
ξ=1

= a

r
�(r). (12)

Hence

4πGρ = 1

r2

d

dr
r2 d�

dr
= 1

r2

d

dr
(ar�) = a + a2

r2
�. (13)

If a = −1, we recover the expected result ρ = 0, but for a �= 0 we
obtain the polytropic relation for index n = 1 − 2/a (e.g. Binney &
Tremaine 2008, section 4.3.3a):

ρ ∝ |�|1−2/a. (14)

From this relation, it is easy to derive the ergodic DF

f (E) ∝ E−(4+a)/2a (15)

from Eddington’s formula (e.g. Evans 1994). From equations (8)
and (15) it follows that the DF of a power-law model is

f ( J) = [h( J)]−(4+a)/(2+a). (16)

The DF of a power-law model is itself a power law of the three
actions and the exponent is completely determined by that of �(x).

1 In the non-spherical case,

4πGρ(ξ r) = a + a2

ξ2r2
�(ξ r) + 1

ξ2r2 sin θ

∂

∂θ
sin θ

∂�(ξ r)

∂θ

+ 1

ξ2r2 sin2 θ

∂2�(ξ r)

∂φ2

= 4πGξa−2ρ(r). (11)

Consequently, ρ and � have simple scalings with r but they are not neces-
sarily functions of each other.

2.1 Logarithmic potentials

Now consider the limit a → 0 when the scaling of � becomes
additive

�(ξ x) = �(x) + v2
c log(ξ ), (17)

where vc is a constant that one can easily show is the circular speed.
Since galaxies have quite flat circular speed curves, potentials of
this form are very useful.

The kinetic energy K does not change on rescaling, while the
potential energy W → W ′ = W + v2

c log(ξ ), so

E → E′ = E + v2
c log(ξ ). (18)

The invariance of K implies invariance of v under orbit rescaling,
so the scaling of the actions is

J → J ′ = ξ J = exp
E′ − E

v2
c

J . (19)

We now use each side of this equation as the argument of a homo-
geneous function of degree one, h( J), and obtain

h( J ′) = exp
E′ − E

v2
c

h( J), (20)

or on rearrangement

E′ = E + v2
c log[h( J ′)/h( J)]. (21)

Here E′ and E are the energies of any two orbits whose actions
J ′ and J are proportional to each other. We can choose to make
J an orbit with vanishing energy, and we can choose h to be the
homogeneous function that satisfies h( J) = 1 as J moves over the
surface E = 0 in action space. With these choices, we have

H ( J ′) = v2
c log[h( J ′)]. (22)

The ergodic DF that self-consistently generates the spherical log-
arithmic potential is well known to be

f (H ) = exp
E0 − H

σ 2
, (23)

where σ 2 = v2
c /2 and E0 is a constant (e.g. Binney & Tremaine

2008, section 4.3.3b). Using equation (22) it follows that the ergodic
DF is

f ( J) = constant × [h( J)]−2. (24)

This result is consistent with the limit a → 0 of equation (16) for a
power-law model.

Note that equation (24) implies that the phase-space density di-
verges as J → 0. It follows that this DF unambiguously specifies
the singular isothermal sphere, in contrast to the DF (23), from
which one can derive both cored and singular isothermal spheres
(e.g. Binney & Tremaine 2008, section 4.3.3b). It is characteristic of
DFs of the form f ( J) that they uniquely and transparently specify
the phase-space density both at the centre of the model ( J = 0) and
for marginally bound orbits ( J → ∞). From a DF that depends
on energy, by contrast, the phase-space density at the centre of the
model is implicitly specified by the boundary condition adopted
at r = 0 when solving Poisson’s equation for the self-consistent
potential.

The considerations of the last paragraph apply equally to the
power-law DFs (16): although we used the standard form (15) of
the energy-based DF of the polytropes to derive this DF, it implies
infinite phase-space density at the system’s centre, so it is inconsis-
tent with familiar cored polytropes, such as the Plummer model.
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3 TWO-POWER MODELS

Any power-law model is problematic in the sense that the mass
interior to radius r diverges as r → ∞ if the density declines as
r−b with b ≤ 3, and the mass outside radius r diverges as r → 0
when b ≥ 3. Hence, there is no value of b for which the model is
physically reasonable at both large and small r. One way we can
address this problem is to assume that ρ scales as different powers
of radius at small and large radii. A widely used family of models
of this type is given by the density profile

ρ(r) = ρ0

(r/rb)α(1 + r/rb)β−α
, (25)

where rb is the break radius (e.g. Binney & Tremaine 2008). Three
particular cases of importance are the Jaffe (1983) model (α, β) =
(2, 4), the Hernquist (1990) model (α, β) = (1, 4), which belong
to the family of Dehnen (1993) models (β = 4), and the NFW
model (α, β) = (1, 3) (Navarro et al. 1996). The ergodic DFs of
the Jaffe and Hernquist models are known analytic function, but
that of the NFW model is not. Our goal in this section is to find
analytic functions f ( J) that generate models that closely resemble
these three classic models.

In the regime r 
 rb the mass M(r) enclosed by the sphere of ra-
dius r is M ∝ r3−α , so the gravitational acceleration is d�/dr ∝ r1−α

and thus the potential drop between radius r and the centre is

�(r) − �(0) ∝ r2−α or log(r) when α = 2. (26)

Setting a = 2 − α we can now employ the results we derived above
for power-law potentials to conclude that

f ( J) = [h( J)]−(6−α)/(4−α). (27)

The Hernquist and NFW models both have α = 1 so we expect their
DFs to have asymptotic behaviour

f ( J) = [h( J)]−5/3 as |J | → 0. (28)

A Jaffe model has α = 2, so the asymptotic behaviour of the Jaffe
model’s DF as J → 0 is given by equation (24).

Consider now the asymptotic behaviour of a two-power model as
r → ∞. If the model has finite mass, the potential will asymptote
to the Kepler potential, � ∝ r−1, so ρ ∝ |�|β . In the Kepler regime,
the dependence of the Hamiltonian on the actions is (e.g. Binney &
Tremaine 2008, equation 3.226a)

H ( J) = [g( J)]−2, (29)

where g( J) is a homogeneous function of degree one. Although ρ

is a simple power of |�| we cannot employ the polytropic formula
(15), because that rests on Poisson’s equation, which does not apply
in this case: the model’s envelope is a collection of test particles
that move in the Kepler potential generated by its core. We instead
go back to Eddington’s formula

f (E) ∝ d

dE
∫ E

0

d�√E − �

dρ

d�
, (30)

where E = −E and � = −�. From this formula, it is easy to show
that ρ ∝�β implies

f (E) ∝ Eβ−3/2. (31)

Combining this with equation (29) we conclude that for β > 3 the
asymptotic behaviour of a double-power DF is

f ( J) = [g( J)]−2β+3 as |J | → ∞. (32)

For the Jaffe and Hernquist models β = 4, so for these models

f ( J) = [g( J)]−5 as |J | → ∞. (33)

Now that we have the asymptotic behaviour of f in the limits of
both small and large J , it is straightforward to devise a suitable
form of the DF

f ( J) = M0

J 3
0

[1 + J0/h( J)](6−α)/(4−α)

[1 + g( J)/J0]2β−3
. (34)

Here M0 is a constant that has the dimensions of a mass and J0

is a characteristic action. If the two homogeneous functions are
normalized such that h( J) � g( J) � |J |, orbits that linger near the
break radius rb have |J | � J0. These conditions ensure that f tends
to the required powers of h and g when |J | 
 J0 and |J |  J0,
respectively.

We use different homogeneous functions for the regimes of small
and large J because the frequency ratios in these two regimes will
differ. In the Kepler regime, which is handled by g, all frequencies
are equal, so if we require an isotropic model we choose

g( J) = Jr + |Jφ | + Jz. (35)

In the regime of small J , �r > �φ = �z, and we take h to
be of the form (10) with a frequency ratio that is less than
unity. Unfortunately, in this regime the frequency ratio does
vary over a surface of constant energy and an exactly isotropic
model cannot be constructed using constant ratios. We simply use
�φ/�r = �z/�r = 1/2, which are the frequency ratios of a har-
monic oscillator.

The DF (34) is infinite on the orbit J = 0 of a star that is stationary
at the model’s centre. Cuspy models such as the Hernquist, Jaffe and
NFW models do have such centrally divergent DFs, while in other
cored systems the phase-space density reaches a finite maximum.
Cored systems will be treated in Section 4.

3.1 Technicalities

Here, we touch on some technical issues that arise when one sets
out to recover the observable properties of a model from the DF
that defines it. The first step is to normalize the DF to the desired
total mass by evaluating the integral (3). When the DF depends
only on the function h( J) defined by equation (10) [i.e. the case
g( J) = h( J)] with the frequency ratios ω ≡ �φ/�r = �z/�r taken
to be constant, it is convenient to change coordinates from (Jr, Jφ ,
Jz) to (Jr, L, Jz) and integrate out Jz, and then to change coordinates
to (h, L) and integrate out L. Then one finds

M

(2π)3
=

∫
dh f (h)

∫ h/ω

0
dLL = 1

2ω2

∫ ∞

0
dh h2f (h). (36)

In the more general case, when h( J) �= g( J), the integral (3) cannot
be reduced to one dimension. Equation (36) can be written as

M
(2π)3 = M0

∫
d y[1 + 1/h( y)](6−α)/(4−α)

[1 + g( y)]2β−3,
(37)

where y ≡ J/J0. The integral in equation (37) is dimensionless and
depends only on the model’s parameters α, β and on the forms of
the homogeneous functions h and g. It can therefore be computed
at the outset. Then the value of M0 can be set that ensures that the
model has whatever mass is required.

The physical scales of the models are determined by the action
scale J0 and by the mass scale M0, so the natural length-scale is

r0 ≡ J 2
0

GM0
. (38)

In following sections, we will present f ( J) analogues of three
classic models that have a finite mass: the Hernquist, Jaffe and
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Table 1. The ratio of the half-mass radius rh to the
scale radius r0, defined by equation (38), for the f ( J)
isochrone, f ( J) Hernquist and f ( J) Jaffe models. For
comparison, we list also the ratio rh/rb, where rb is the
break radius, of the corresponding classical models.

Isochrone Hernquist Jaffe

rh/r0 3.4 2.42 0.76
rh/rb 3.06 2.41 1

isochrone models. For our analogue models the top row of Table 1
gives the ratio rh/r0 of half-mass radius to the scale radius defined
by equation (38). The second row gives for the classical models the
ratio of rh to the break radius, and we see that for the Hernquist
model r0 = rb to good precision, while in the other two cases the
difference between r0 and rb is less than 25 per cent.

Once f ( J) has been normalized, we are able to determine the
potential �(x) that the model self-consistently generates by the
iterative procedure described by B14.

Figure 1. The red full curves show surfaces on which the DF of the classical
isotropic Hernquist sphere is constant in the (Jr, L) plane of action space,
while the black dashed curves show surfaces on which the corresponding
f ( J) DF is constant.

3.2 Worked examples

3.2.1 The Hernquist model

The Hernquist (1990) model is an interesting example both because
it is a widely used model and because we can derive its ergodic DF
as a function of the actions for comparison with the f ( J) model
given by equation (34) with (α, β) = (1, 4), which hereafter we
refer to as f ( J) Hernquist model.

In Appendix A, we derive an analytic expression for Jr = Jr(H,
L) in the spherical Hernquist potential. By numerically inverting
this expression, we arrive at H = H(Jr, L) for the Hernquist sphere.
Combining this with the sphere’s ergodic DF, which was given
already by Hernquist (1990), we have the exact f = f [H ( J)]. In
Fig. 1, we show surfaces in action space on which this DF is constant
together with surfaces on which DF of the f ( J) Hernquist model is
constant. The differences are small but apparent and arise because
the surfaces of constant energy are not exactly planar.

Fig. 2 compares the radial profiles of density, circular speed
and radial component of velocity dispersion in the exact isotropic
model and in the f ( J) Hernquist model. The largest discrepancy
is in the velocity dispersion and reflects the fact that the model is
significantly radially biased around r0. The long-dashed curve in
Fig. 3 shows that the f ( J) Hernquist model has a slight radial bias

Figure 3. Anisotropy profiles for f ( J) Hernquist, f ( J) Jaffe, f ( J) NFW,
f ( J) isochrone and f ( J) isothermal models. The profiles are normalized
to r0 (equation 38).

Figure 2. Density (left-hand panel), circular velocity (central panel), and radial velocity dispersion (right-hand panel) profiles for the classical isotropic
Hernquist sphere (normalized to rb) and for the f ( J) Hernquist model (normalized to r0).
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at all radii by plotting the anisotropy parameter

βa = 1 − σ 2
φ + σ 2

z

2σ 2
r

. (39)

By virtue of the adopted form of g (equation 35), βa → 0 in the
Keplerian regime. Even though the potential is not harmonic at the
centre, still the model tends to isotropy also at small radii, which
justifies our simple choice for h( J).

3.2.2 The Jaffe model

The Jaffe (1983) model behaves as Hernquist’s at large radii, while
tending to ρ ∝ r−2 close to the centre. Fig. 4 shows the radial profiles
of the f ( J) Jaffe model defined by setting (α, β) = (2, 4) in the
DF (34), and compares them with the classical isotropic model. The
discrepancies in σ r are due to the slight radial bias of the f ( J)
model around r0. The full curve in Fig. 3 shows that this bias is
actually quite mild – |βa| < 0.1.

3.2.3 NFW halo

The NFW model has β = 3 with the consequence that its mass
diverges logarithmically as r → ∞ and its potential is never
Keplerian. Consequently, the reasoning used to construct a DF
above equation (34) does not apply. If we nevertheless adopt equa-
tion (34) with (α, β) = (1, 3), we obtain a DF that implies that

as J → ∞ the mass with actions less than J diverges like log J.
Asymptotically, the circular speed of the standard NFW model is

vc ∼ log(1 + r/r0)

r
, (40)

so in this model the action of a circular orbit is Jφ ∼ √
r log r . This

shows that mass diverging like log J in action space corresponds,
to leading order, to divergence of the mass in real space like log r.
Hence, it is plausible that the DF (34) with (α, β) = (1, 3) generates
a model similar to the NFW model.

Computation of ρ(r) for the f ( J) model with (α, β) = (1, 3)
bears out this expectation. However, the slope of the model’s density
profile at large r is slightly steeper than desired, and a better fit to
the classical NFW profile is obtained by adopting

f ( J) = M0

J 3
0

[1 + J0/h( J)]5/3

[1 + g( J)/J0]2.9
. (41)

Fig. 5 shows the radial profiles of the classical NFW model and
those of the model generated by the DF (41), which we shall call
f ( J) NFW model. The dotted curve in Fig. 3 shows that this model
is mildly radially biased at radii larger than r0 and it becomes very
slightly tangentially biased for r < r0. These anisotropies account
for the difference between the σ r profiles of the f ( J) and classical
NFW models.

4 C O R E S A N D C U T S

In the last section, we addressed the problematic nature of power-
law models – that their mass diverges at either small or large radii –
by introducing separate slopes of the dependence of f on J at small

Figure 4. Same as Fig. 2, but for the classical isotropic Jaffe sphere and for the f ( J) Jaffe model.

Figure 5. Same as Fig. 2, but for the classical isotropic NFW sphere and for the f ( J) NFW model defined by equation (41).
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and large J . The recovered models had central density cusps similar
to those of the Hernquist, Jaffe and NFW models. If a homogeneous
core is required, the natural DF to adopt is

f ( J) = M0

J 3
0

1

[1 + g( J)/J0]2β−3
, (42)

for then the phase-space density has the finite value M0/J
3
0 at the

centre of the model, and the asymptotic density profile is expected
to be ρ ∝ r−β . For β ≤ 3 the system has infinite mass, so for these
models we taper the DF by subtracting a constant from the value
given by equation (42)

f ( J) �→ f ′( J) = max [0, f ( J) − f ( J t)] , (43)

where J t is some large action, which defines a truncation radius

rt = |J t|2
GM

. (44)

4.1 Isochrone model

Fig. 6 compares the density profiles of the model equation (42)
generates for β = 4 (black curves) with those of the isochrone
(Hénon 1960). The two models are extremely similar, so we shall
refer to the model generated by the DF (42) when β = 4 as the
f ( J) isochrone model. The density profiles of the two models are
essentially identical, but at r � r0 σ r is slightly smaller in the f ( J)
isochrone than in the classical isochrone because the f ( J) isochrone
is mildly radially biased near r0 – the thin full curve in Fig. 3 shows
βa(r) for this model. It is non-zero because action space surfaces
of f ( J) do not quite coincide with surfaces of constant H ( J), as
the upper panel of Fig. 7 shows by plotting contours of f and H.
For the isochrone potential, we have an analytic expression for the
frequency ratio �φ/�r as a function of L. The lower panel of Fig. 7
shows that the constant-energy and constant-DF contours are more
closely aligned when the argument of the homogeneous function
uses the exact frequency ratio.

Given that the exact DF of the isochrone is a complicated function
of J , it is astonishing that the trivial DF (42) provides such a good
approximation to it.

4.2 Cored isothermal sphere

In Section 2.1, we derived an approximation (24) to the DF of the
singular isothermal sphere. Here, we modify this model into one
that is numerically tractable by (i) adding a core and (ii) tapering

Figure 7. Surfaces of constant H ( J) (red) and of constant f ( J) black in
action space for two f ( J) isochrone models with different choice of the
function g appearing in the DF (42). In the upper panel, g is Jr + L whereas
in the lower panel it is Jr + (�φ/�r)L where the frequency ratio is a function
of L.

its density at large radii so the model’s mass becomes finite. Then
the DF is

f ( J) = M0

J 3
0

max
(
0, [1 + J0/h( J)]2 − [1 + J0/h( J t)]

2 , (45)

where h( J) is given by equation (10) with both frequency ratios set
to 1/

√
2 and J t = (0, vcrt, 0). As full curves in Fig. 8 show this DF

generates a model that has a core that extends to r0 and a density
profile that plunges to zero near the truncation radius rt. The short-
dashed curve in Fig. 3 shows the model’s anisotropy parameter βa,
which is always small (|βa| < 0.04).

Figure 6. Same as Fig. 2, but for the classical isotropic isochrone sphere and for the f ( J) isochrone model.
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Figure 8. Same as Fig. 2, but for the truncated isotropic cored isothermal sphere (equation 46) and for the f ( J) truncated isothermal model. We show the
location of the truncation radius defined by equation (44).

An ergodic model with a simple functional form of ρ(r) to which
we can compare our f ( J) model has

ρ(r) = v2
c

2πG
(
r2 + r2

b

e−r2/r2
t . (46)

The dashed curve in the left-hand panel of Fig. 8 shows that the
model defined by the DF (46) provides an excellent fit to the density
profile of our f ( J) model. Curiously, in the f ( J) model σ r(r) is
more nearly constant within rt than in either of the models with
analytic density profiles. The dashed curve in the right-hand panel of
Fig. 8 shows that the model defined by the DF (46) has a significantly
deeper central depression in σ r than the f ( J) model.

5 C O N C L U S I O N S

Studies of both our own and external galaxies will benefit from
the availability of a flexible array of dynamical models of galactic
components such as disc, bulge and dark halo. The construction
of general models of this type is rather straightforward when one
decides to start from an expression for the component’s DF as a
function of the action integrals Ji. In this paper, we have illus-
trated this fact by deriving simple analytic forms for DFs that self-
consistently generate models that closely resemble the isochrone,
Hernquist, Jaffe, NFW and truncated isothermal models. In previ-
ous papers, Binney (2010, 2012b) has given simple analytic DFs
that provide excellent fits to the structure of the Galactic disc,
so now DFs are available for all commonly occurring galactic
components.

Our models are tailored to minimize velocity anisotropy at both
small and large radii. In all of them, the anisotropy parameter βa

peaks at intermediate radii. The peak is by far sharpest in the f ( J)
isochrone, but even in this model βa stays below 0.25.

Our presentation has been elementary in the sense that we have
confined ourselves to spherical, almost isotropic components that
live in isolation. However, B14 showed that given a near-ergodic
DF f ( J) of a component such as those presented here, it is trivial
to modify it so it generates a system that is flattened by velocity
anisotropy, or by rotation, or by a combination of the two. Equally
important, when the DF of an individual component is given as
f ( J), it is straightforward to add components. Such addition was
exploited by Piffl et al. (2014) in a study of the contribution of
dark matter to the gravitational force on the Sun: in that study the
models fitted to data comprised a sum of DFs f ( J) for the disc and
the stellar halo. The dark halo was assigned a density distribution
rather than a DF, but Piffl et al. (in preparation) represent the dark

halo by the f ( J) NFW model, making the Galaxy a completely
self-consistent object. A key point for such work is that the mass of
each component can be specified at the outset.

Our approach has several points of contact with that of Williams
et al. (2014) and Evans & Williams (2014), who derive approxima-
tions to H ( J) for models that are defined by DFs of the form f(E,
L). In particular, they show that for their models better approxima-
tions to the iso-energy surfaces in action space can be obtained if
one’s homogeneous function has as its argument the sum of a lin-
ear function of the actions, as used here, and a small term ε

√
LJr .

We expect that the anisotropy of our models could be enhanced by
adding such a term.

In addition to assisting in the dynamical interpretation of obser-
vations of galaxies, the models that this work makes possible could
provide useful initial conditions for N-body simulations. The first
step would be the construction of a self-consistent galaxy model
from a judiciously chosen DF. Then one could Monte Carlo sample
the action space using the DF as the sampling density, and torus
mapping (e.g. Binney & McMillan 2011) could be used to generate
an orbital torus at each of the selected actions. Finally, some num-
ber n of initial conditions (x, v) would be selected on each torus,
uniformly space in the angles θ i. The resulting simulation would
be in equilibrium to whatever precision had been used in the solu-
tion of Poisson’s equation, and it would experience a ‘cold start’
(Sellwood 1987). Moreover, given that it would be possible to eval-
uate the original DF at any phase-space point, the model would lend
itself to the method of perturbation particles (Leeuwin, Combes &
Binney 1993) in which the simulation particles represent the dif-
ference between a dynamically evolving model and an underlying
equilibrium rather than the whole model. This method has been lit-
tle used in the past on account of the lack of interesting models with
known DFs, which is precisely the need that we have here supplied.
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APPENDIX A: ANALYTICAL EXPRESSION
F O R T H E R A D I A L AC T I O N I N T H E
HE RNQUIST SPHERE

The radial action is defined as

Jr = 1

2π

∮
prdr = 1

π

∫ r2

r1

dr 2E − 2�(r) − L2

r2
, (A1)

where �(r) = −GM/(r + rb) and r1, r2 are the pericentric and
apocentric radii for the given energy E and angular momentum L,
i.e. the two roots of the integrand in equation (A1). Introducing
the dimensionless quantities s ≡ r/rb, E ≡ −Erb/GM and l =
L/

√
2GMrb, equation (A1) can be rewritten as

Jr =
√

2GMrb

π

∫ s2

s1

ds −E + �(s) − l2

s2
, (A2)

where �(s) ≡ 1/(1 + s) is the relative dimensionless potential. We
now change the integration variable from s = (1 − �)/� to �

(Ciotti 1996), and have

Jr =
√

2GMrb

π

∫ �1

�2

d�

√P(�)

(1 − �)�2
, (A3)

where �1 ≡ �(s1), �2 ≡ �(s2) and

P(�) = −E(1 − �)2 + �(1 − �)2 − l2�2 (A4)

is a cubic in �, the roots of which can be found by standard methods
(e.g. Dickson 1914). �1, �2 are two roots in the physical range
0 ≤ � ≤ 1. Let A be the third real root, so

P(�) = (�1 − �)(� − �2)(A − �). (A5)

While it is physically obvious that two of the three real solutions
of equation (A4) are in the range (0, 1) and the remaining one is
outside (A > 1), we remark that the same conclusion can be reached
by purely algebraic arguments by using the Routh–Hurwitz theorem
(see e.g. Gantmacher 1959). By evaluating equations (A4) and (A5)
at � = 0 one gets A = E/�1�2 > 0. By splitting into its partial
fractions the integrand in equation (A3), it is possible to express the
integral for Jr in terms of complete elliptic integrals (see Byrd &
Friedman 1971):

Jr =
√

2GMa

π
D5[D1�(α1, k

2) + D2E(k2)

+ D3K(k2) + D4�(α2, k
2)],

(A6)

where K, E, � are, respectively, the complete elliptic integral of the
first, second and third kind,

α1 ≡ �1 − �2

�2
, α2 ≡ �1 − �2

1 − �2
, k2 ≡ �1 − �2

A − �2
(A7)

and finally

D1 = [(1 − 2�1)�2 + �1]A + �1�2,

D2 = �2(�2 − A),

D3 = �2(A − 2),

D4 = 2�2(A − 1)(�1 − 1),

D5 = − A − �2/D2.

(A8)

We have tested the formula (A6) for consistency by numerically
integrating equation (A1) for a large set of orbits at different (E, L)
and the numerical and analytical results agree within the error of
the employed routine.
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