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SPATIO-TEMPORAL REGRESSION ON COMPOSITIONAL COVARIATES:  1 

MODELING VEGETATION IN A GYPSUM OUTCROP 2 

 3 

Francesca Bruno, Fedele Greco, Massimo Ventrucci 4 

Dipartimento di Scienze Statistiche “P. Fortunati”, 5 

University of Bologna, Italy 6 

 7 

SUMMARY 8 

Investigating the relationship between vegetation cover and substrate typologies is important for habitat 9 

conservation. To study these relationships, common practice in modern ecological surveys is to collect 10 

information regarding vegetation cover and substrate typology over fine regular lattices, as derived from 11 

digital ground photos. Information on substrate typologies is often available as compositional measures, 12 

e.g., the area proportion occupied by a certain substrate. Two primary issues are of interest for ecologists: 13 

first, how much substrate typologies differ in terms of relative suitability for vegetation cover and, 14 

second, whether suitability varies over time. This paper develops a novel procedure for managing 15 

compositional covariates within a Bayesian hierarchical framework to effectively address the 16 

aforementioned issues. A spatio-temporal model is adopted to estimate the temporal pattern 17 

characterizing substrate relative suitability for vegetation cover and, at the same time, to account for 18 

spatio-temporal correlation. Relative suitability is modeled by time-varying regression coefficients, and 19 

spatial, temporal and spatio-temporal random effects are modeled using Gaussian Markov Random Field 20 

models. 21 

 22 

KEYWORDS: binomial data; compositional covariates; Intrinsic Gaussian Markov 23 

Random Fields; hierarchical Bayesian model; vegetation cover; suitability 24 

 25 

  26 
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1 INTRODUCTION 27 

 28 

In ecological applications, over the past years, there has been an increasing interest in 29 

collecting and analyzing datasets with both spatial and temporal dimensions. The 30 

increasing use of imaging tools able to collect and process digital ground photos 31 

managed by Geographic Information System (GIS) (Bennett et al. 2000; Richardson et 32 

al. 2001; Booth et al. 2005) has introduced ecologists to a new framework in which the 33 

analysis of ecological outcomes, such as species richness, abundance and vegetation 34 

cover, is based on high-resolution spatially referenced data. Vegetation cover is one of 35 

the most important indicators of rangeland condition and plays a key role in habitat 36 

management and conservation policies (Booth and Tuller 2003).  37 

In this paper, we investigate the relationship between vegetation cover and substrate 38 

typologies within a rupicolous basophilic habitat defined as priority by the European 39 

Commission (Council Directive 92/43/CEE). Available data consist of post-processed 40 

ground photos taken at several points throughout the study period, which provide 41 

information about vegetation cover and substrate typology in a fine regular lattice. 42 

Modeling vegetation cover in terms of substrate typologies is crucial to evaluating 43 

substrate suitability, i.e., substrates’ natural ability to support vegetation. Knowledge 44 

concerning substrate suitability is strategic in predicting future developments and 45 

reactions to possible environmental changes in the considered habitat. The ecological 46 

behavior of vegetation in arid and rocky environments has been investigated in several 47 

studies (Kuntz and Larson 2006; Pueyo and Alados 2007).  48 

Regression models, often including spatio-temporal components, have been largely 49 

adopted in the ecological literature to investigate the relationships between ecological 50 

outcomes and environmental factors (Guisan and Zimmermann 2000; Fortin et al. 2012; 51 
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Kneib et al. 2008). A flexible framework for ecological data is represented by 52 

hierarchical Bayesian models (Wikle 2003). The hierarchical structure is useful for 53 

accounting for multiple sources of uncertainty and allows for model complexity to be 54 

handled in a suitable manner, namely by factorizing the joint distribution into simple 55 

conditional models. The role of hierarchical modeling in ecological studies has been 56 

discussed in Latimer et al. (2006).  57 

In this paper, a hierarchical Bayesian approach is adopted to investigate the temporal 58 

pattern of substrate suitability for vegetation, considering four types of substrate that are 59 

found in the habitat under examination, namely moss, litter, soil and bare rock. To 60 

properly capture substrate suitability, spatio-temporal correlation must be taken into 61 

account: when handling lattice data, Gaussian Markov Random Fields (GMRFs, Rue 62 

and Held 2005) are popular tools for modeling structured effects in space and time or 63 

both.  64 

A peculiar feature of the case study is that data concerning substrate typology are 65 

compositional, i.e., at a given time, substrate data are expressed as the proportion of cell 66 

grid occupied by each type of substrate. The compositional nature of substrate 67 

information implies an additional challenge for statistical modeling: regression on 68 

compositional covariates requires suitable techniques to obtain meaningful regression 69 

coefficients indicating the effect of each single compositional part. Analyses involving 70 

compositional data begin by mapping the compositional values belonging to the simplex 71 

onto real space by any of several possible transformations (Aitchison 1986; Egozcue 72 

and Pawlowsky-Glahn 2006). A popular transformation for compositional data is the 73 

isometric log-ratio (ilr) transformation (Egozcue et al. 2003), which has the advantage 74 

of isolating the contribution of a given compositional part with respect to all others. In 75 

the context of linear regression on compositional covariates, ilr transformation was 76 
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adopted by Hron et al. (2012), who proposed an inferential procedure that requires the 77 

estimation of as many models as the number of compositions.  78 

In the present paper, starting from the proposal of Hron et al. (2012), a new approach 79 

for handling compositional covariates in regression models is developed within a 80 

Bayesian hierarchical framework. The proposed strategy provides regression 81 

coefficients that are easy to interpret as relative suitability values. 82 

This paper is organized as follows. A motivating example describing the structure of the 83 

data concerning an ecological application is outlined in section 2. In section 3, the 84 

modeling approach is discussed, and the procedure for handling compositional 85 

covariates is proposed. The application results are discussed in section 4. The 86 

concluding remarks are provided in section 5. 87 

 88 

 89 
2 MOTIVATING EXAMPLE 90 

 91 

Our focus is on a study designed within the framework of the priority defined by the 92 

European Commission (Council Directive 92/43/CEE), with the aim of investigating 93 

habitat “6110* Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion 94 

albi”. A sampling campaign was performed on a gypsum outcrop within the Site of 95 

Community Importance “IT4050001 Gessi Bolognesi e Calanchi dell’Abbadessa” 96 

located in the Emilia Romagna Region, Italy. For a detailed description of the case 97 

study, see Velli (2014). 98 

Data were collected over a study period going from April 2012 to late March 2013. 99 

Sampling campaigns were adjourned during the dryness period of August and 100 

September, when low vegetation cover is expected, and on January because of snow 101 

cover. A total of nine sampling campaigns were conducted at unequally spaced times, 102 
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denoted as . The study area consists of a  quadrat, structured as a 103 

regular lattice of dimension 30x30, containing 900 grid cells, indexed by , 104 

which are denoted as plots in the ecological literature . At each time, a ground-photo of 105 

the study area was taken and then processed via GIS algorithms to produce a digital 106 

image for vegetation cover and ground composition. Namely, ground composition 107 

considers  substrates: moss, litter, soil and bare rock. . Each grid cell (plot) in the 108 

digital image provides information collected over  pixels.  At time  and plot , 109 

the number of pixels covered by a plant is denoted as , and the proportions of 110 

substrate typologies are collected in the vector .As an example, 111 

 is the count, or the proportion, of pixels covered by moss in plot  at time ; 112 

analogously we obtain the substrate proportions for  litter ( ), soil ( ) and bare 113 

rock ( ). It is worth noticing that, at any time  and plot , 114 

, thus substrate typology  is a compositional variable.  115 

Some descriptive statistics concerning pixel-specific vegetation cover (expressed as 116 

) are summarized in Table 1, where means and quartiles over the study area are 117 

reported for each time.  118 

 119 

T 1 2 3 4 5 6 7 8 9 
Mean 0.158 0.127 0.102 0.046 0.195 0.258 0.338 0.340 0.393 
Q1 0.010 0.000 0.000 0.000 0.000 0.000 0.040 0.060 0.110 
Median 0.060 0.040 0.000 0.000 0.080 0.140 0.210 0.220 0.310 
Q3 0.210 0.150 0.110 0.000 0.310 0.420 0.600 0.560 0.640 
Moran’s I 0.433 0.569 0.510 0.469 0.534 0.600 0.612 0.615 0.614 

Table 1 Descriptive statistics of vegetation cover ( ) over time  120 

 121 

The average vegetation cover changes substantially across time. A decreasing trend is 122 

observed until ; at the fourth time point, vegetation is almost absent, later it 123 
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increases in terms of both the number of pixels where vegetation is present (i.e., Q1 is 124 

greater than zero only for ) and average coverage. Last row in Table 1 reports the 125 

Moran’s I statistics measuring spatial correlation. Moran’s I index (Moran 1948) 126 

measures the degree of correlation between observations at neighboring plots. This 127 

index takes continuous values from -1 (maximum negative spatial correlation) to 1 128 

(maximum positive spatial correlation) with 0 indicating absence of spatial correlation.  129 

A spatio-temporal representation of the vegetation cover is reported by maps in Figure 130 

1.The spatial correlation characterizing the vegetation cover measured at the pixel level 131 

is considerable throughout the entire study period and becomes more evident from the 132 

fifth to the last time point, as evidenced by the Moran’s I values in Table 1.  Overall, the 133 

data show both spatial and temporal correlation. 134 

 135 

 136 

Fig. 1 Maps of vegetation cover at each collection time (indicated within brackets) 137 

 138 

 139 

7t ³
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In Table 2, the pixel-specific shares  of substrate typologies are summarized, 140 

demonstrating the existence of temporal variability both within and between substrates. 141 

 142 

T 1 2 3 4 5 6 7 8 9 
Moss 0.46 0.30 0.35 0.35 0.42 0.50 0.57 0.54 0.49 
Litter 0.29 0.15 0.14 0.19 0.06 0.01 0.03 0.01 0.01 
Soil 0.09 0.30 0.26 0.14 0.22 0.23 0.17 0.20 0.18 
Bare rock 0.16 0.25 0.25 0.32 0.30 0.26 0.23 0.25 0.32 

Table 2 Share of substrate typology averaged over the study region at each collection time 143 
 144 

To investigate the effect of substrate typology on vegetation cover, the marginal average 145 

cover over time (see the first row of Table 1) is considered as a benchmark to be 146 

compared to the substrate-specific conditional average. These syntheses are shown in 147 

the four panels of Figure 2 as solid and dashed lines, respectively. Noisy behavior 148 

characterizes the pattern observed on litter substrates, particularly at the end of the study 149 

period, when such a typology is scarcely represented in the region (see Table 2). 150 

Vegetation cover on moss, soil and bare rock substrates shows a decreasing trend until 151 

summer, followed by an increasing trend; such a pattern reflects the general behavior of 152 

vegetation over the study period due to the natural vegetation life cycle in dry 153 

grasslands. 154 

 155 

156 
Fig. 2 Comparison of trends for average vegetation cover (solid line) and conditional vegetation cover 157 

(dashed lines) for each substrate 158 
 159 

stz



 8 

The aim of the model proposed in the following section is both to capture the marginal 160 

temporal trend for vegetation, basically due to climate, and to quantify the substrate-161 

specific effect on vegetation, i.e., the ability of a substrate typology to favor/inhibit 162 

vegetation cover . Because of the compositional nature of the substrate data, such an 163 

ability can only be evaluated comparatively among substrates. In fact, if a substrate 164 

typology shows a higher-than-average vegetation cover, necessarily some other 165 

substrates will show lower-than-average cover; for this reason, substrate effects will be 166 

interpreted as “relative suitability” measures. Two main questions arise: How much do 167 

substrate typologies differ in terms of relative suitability? Does this difference vary over 168 

time? From a statistical point of view, substrate suitability estimates can be obtained as 169 

regression coefficient estimates of a regression model where vegetation cover is the 170 

response variable and substrate typology is aa compositional covariate. A spatio-171 

temporal modelling framework is seek in this work for two reasons. First,  spatial and 172 

temporal dependencies observed in the descriptive plots for vegetation cover need to be 173 

modelled for reliable estimates of the regression coefficients to be obtained (ref?). 174 

Second, it is of interest to model the temporal structure in the regression coefficients to 175 

predict suitability of all substrates at unobserved times and investigate their temporal 176 

variations across the study period. 177 

 178 

 179 

3 MODEL 180 

 181 

The relationship between substrate typology and vegetation cover is modeled by the 182 

hierarchical Bayesian model described in what follows; the strategy for handling 183 

compositional covariates is discussed in the next subsection. Let  denote the count of 184 sty
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pixels covered by vegetation at plot s and time t. Conditional on the vegetation 185 

occupancy probability , counts are assumed to follow a Binomial distribution, i.e., 186 

the binary response at each pixel within a plot is considered as the realization of an 187 

independent trial. Spatio-temporal variability and dependence on covariates are 188 

managed at higher levels of the hierarchy. The likelihood is specified as follows: 189 

 190 

    191 

 192 

where n denotes the constant number of pixels belonging to each plot. The model can be 193 

easily generalized to the case of a variable number of trials; nevertheless, having a 194 

constant number of trials simplifies the algebraic representation of the model presented 195 

in section 3.2 and in Appendix A. To model the vegetation occupancy probability as a 196 

function of covariates, we adopt the probit link; the linear predictor is specified as 197 

follows: 198 

 199 

     (0) 200 

 201 

where  is a -dimensional covariate vector and  denotes the 202 

vector of time-varying regression coefficients. Postulating time-varying coefficients 203 

implies that time is an effect modifier; checking this assumption in our case study is 204 

crucial because the aim is to evaluate the evolution (if any) of substrate suitability over 205 

time. Three sets of random effects are included to account for spatio-temporal 206 

variability not explained by the dependence on the covariates:  and 207 

stp

( )st st sty ~ Binomial ,np p 1  1s ,...,S; t ,...,T= =

( )1 '
st st st t t s stp h a q d-F = = + + +x β 1  1s ,...,S; t ,...,T= =

stx P ( )1t t pt Pt,..., ,...,b b b=β

( )1 t T,..., ,...,a a a=α
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 are vectors of temporal and spatial main effects, respectively, 208 

whereas vector  contains space-time interactions. 209 

Modeling of both regression coefficients and random effects is based on the theory 210 

concerning Intrinsic Gaussian Markov Random Fields (IGMRFs, see Rue and Held 211 

2005, for a comprehensive review), which are very popular tools for spatio-temporal 212 

modeling of lattice data. Because of the Markov property, which implies the sparseness 213 

of the precision matrix, IGMRFs allow for extremely fast computations. IGMRFs have 214 

also been extended to cope with irregularly spaced time locations by Lindgren and Rue 215 

(2008); this is particularly useful in our case study, in which measurements have been 216 

collected at unequally spaced times, as often occurs in ecological studies.  217 

In the following,  denotes the (multivariate normal) distribution of a -218 

dimensional random vector with -dimensional structure matrix  and precision 219 

parameter ; the IGMRFs are improper, i.e.,  is rank-deficient. Structure matrix  220 

describes conditional dependence relationships derived from assumptions concerning 221 

the spatial and temporal structure of the phenomenon. 222 

Let  denote the T-dimensional vector of regression coefficients 223 

referring to the p-th covariate obtained by re-arranging the p-th elements of vectors 224 

 for all . We introduce a temporal dependence among 225 

these coefficients, assuming a smooth variation of the covariate effect over the study 226 

period, by specifying the prior ; . Following the 227 

modeling strategy first proposed in Knorr-Held (2000) in the context of spatio-temporal 228 

disease mapping, prior distributions for spatio-temporal random effects are specified as 229 

follows: ,  and .  230 

( )1 s S,..., ,...,q q q=θ

( )11 st ST,..., ,...,d d d=δ

( )JIGMRF tK J

J J´ K

t K K

( )1p p pt pT,..., ,...,b b b=β

( )1t t pt Pt,..., ,...,b b b=β 1t ,...,T=

( )p pp T~ IGMRF b btβ K 1p ,...,P=

( )T~ IGMRF a atα K ( )S~ IGMRF q qtθ K ( )ST~ IGMRF d dtδ K
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Structure matrices  and  need to be specified to capture a smooth temporal 231 

behavior. In this context, Random Walk (RW) priors (i.e., IGMRFs on the line) of order 232 

1 is a popular choice; we set common temporal structure matrices . It 233 

follows that . Because our data are irregularly spaced over time, the 234 

structure matrix typically used for this process must be adapted. To this aim, Rue and 235 

Held (2005) propose a solution by considering the integration of the Wiener process 236 

(Wahba, 1978). 237 

Structure matrix  is specified as the -dimensional Laplacian matrix of the 238 

graph induced by a first-order neighboring structure on the regular lattice formed by the 239 

plots. The i-th diagonal entry is equal to the number of neighbors of plot i, whereas the 240 

ij-th entry equals  iff plots i and j share a common boundary and zero otherwise. With 241 

this specification, . 242 

Regarding the spatio-temporal interaction term, four types of interactions are envisioned 243 

in Knorr-Held (2000), leading to different structure matrices  obtained as a 244 

Kronecker product of temporal and spatial structure matrices . 245 

Specifying corresponds to a Type I interaction, in which independence 246 

among s is postulated; a Type II interaction, obtained by specifying the structure 247 

matrix as , is suitable if plots show different temporal trends with no 248 

structure in space; a Type III interaction, , assumes different spatial trends 249 

with no structure in time. Finally, a Type IV interaction, , involves both 250 

a spatial and a temporal structure. 251 

To ensure model identifiability, appropriate linear constraints need to be imposed on the 252 

spatial ( ) and spatio-temporal ( ) random effects, whereas the temporal random 253 

pb
K aK

p RWb a= =K K K

( ) 1RWrank T= -K

qK S S´

1-

( ) 1rank Sq = -K

dK

time spaced = ÄK K K

T Sd = ÄK I I

δ

RW Sd = ÄK K I

Td q= ÄK I K

RWd q= ÄK K K

θ δ
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effects ( ) are unconstrained and can be considered time-dependent random intercepts. 254 

The number of linear constraints needed to ensure identifiability corresponds to the rank 255 

deficiency of the structure matrix of an IGMRF. As pointed out in Schrödle and Held 256 

(2011), identifiability can be ensured by computing the null space of the structure 257 

matrix and using the obtained eigenvectors as linear constraints. A simple sum-to-zero 258 

constraint is required for the identifiability of the spatial effects because 259 

 (i.e., the null space of  is spanned by a constant vector). Because 260 

of the properties of the Kronecker product, the rank deficiency of  depends on the 261 

specified type of interaction: ; when a 262 

Type IV interaction is considered, the number of required linear constraints becomes 263 

extremely high when  and  are large. 264 

Model hierarchy is completed by prior specification for precision parameters of the 265 

IGMRFs: we assume independent, small-parameter Gamma distributions both to 266 

preserve non-informativeness and to take advantage of the conjugacy between the 267 

Gaussian and the Gamma distribution in building the MCMC sampler. 268 

 269 

3.1 Managing compositional covariates 270 

 271 

As discussed in section 2, the main aim of this study is to investigate the effect of 272 

substrate typology on vegetation cover. Because at each plot substrate typology is 273 

expressed as a proportion, these explanatory variables need to be managed coherently 274 

with compositional algebra. For the sake of simplicity, in this section, spatio-temporal 275 

subscripts are dropped, and the focus is on a simple linear regression model; 276 

nevertheless, the developed theory can be readily applied to model (1).  277 

α

( ) 1rank Sq = -K qK

dK

( ) ( ) ( )time spacerank T S rank rankd = ´ - ´K K K

S T
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Consider a -dimensional vector of compositional covariates, , that 278 

can be represented with unit-sum constraint in the simplex 279 

. If untransformed compositional 280 

covariates are used, the design matrix of the proportional representation of compositions 281 

is singular due to the sum-to-one constraint. This issue can be addressed by a 282 

transformation that allows for a transition from the -dimensional simplex to 283 

unconstrained -dimensional real space, . In this paper, we adopt the ilr 284 

transformation (Egozcue et al., 2003), which is an isometry between  and , 285 

leading to ilr-transformed covariates . Following Egoczue 286 

et al. (2003), an orthonormal basis matrix  associated with the coordinate system 287 

generated by  can be obtained by sequential binary partitioning. The i-th row of 288 

this matrix is 289 

 290 

;  ; .    (0) 291 

 292 

The i-th component of the ilr coordinates vector  is defined as 293 

 294 

for .    (0) 295 

 296 

In the context of compositional data analysis, other widely used transformations include 297 

the centered log-ratio (clr) and the additive log-ratio (alr) transformations. The alr 298 
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transformation raises several issues in terms of interpretability because  it is not an 299 

isometric transformation. According to Tolosana-Delgado and Van Den Boogaart 300 

(2013), the clr representation of a composition is often convenient in a regression 301 

framework because each coefficient can be related to an original component. 302 

Nonetheless, the clr is not expressed in terms of an orthogonal basis, neither of the 303 

simplex nor of the real space and it generates a singular design matrix that requires a 304 

sum-to-zero constraint for estimation of the regression coefficients. In a simple linear 305 

regression framework, this does not raise particular issues, since estimation of the 306 

regression coefficients is obtained by computing the Moore-Penrose inverse. This is not 307 

practical in models where regression coefficients are modelled along time, as in our 308 

application, since time-specific constraints would result in considerable computational 309 

burden. Hence, our strategy for regression on compositional covariates consists in 310 

estimating the model with ilr coordinates and in obtaining the clr coefficients by 311 

exploiting the relationship betwee ilr and clr coordinates.  312 

The ilr transformation is directly associated with orthogonal coordinates in the simplex 313 

(Egozcue et al. 2003). The first component of the ilr-transformed vector is defined as a 314 

function of the ratio between  and the geometric mean of all of the remaining 315 

components of . Thus, when ilr-transformed covariates, , are introduced into the 316 

linear model , the first regression coefficient, , is directly interpreted 317 

as the relative effect of part 1; namely, it is the expected increment of the response 318 

variable when the first part increases its relative weight with respect to an average of all 319 

the other parts. The other regression coefficients cannot be interpreted analogously, 320 

nonetheless, as will be discussed in the following, meaningful regression coefficients 321 

for all parts can be obtained by switching from ilr to clr coefficients by a simple linear 322 

transformation exploiting the relationship between ilr and clr coordinates.  323 

1z

z X

a= + +y Xβ ε 1b
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The orthonormal basis B introduced in equation (XX) allows to switch from ilr to clr 324 

coordinates by the linear transformation .  325 

The model fit is not sensitive to the chosen transformation, i.e., the models 326 

 and , based respectively on ilr and clr transformed 327 

covariates, deliver the same fit and the same estimate of the intercept, in fact the two 328 

models have the same hat matrix:  329 

 330 

 331 

 332 

since  and , where  denotes the Moore-penrose 333 

generalized inverse of . Eventually, clr coefficients can be obtained by means of the 334 

transformation . 335 

 336 

Vector   should be considered as the key parameter in the context of regression on 337 

compositional covariates. Indeed, the vector contains all the relevant information 338 

concerning the effect of each part on the response variable. A remarkable feature of  339 

is that 340 

 341 

          (0) 342 

 343 

holds by construction. Relationship (0) demonstrates an intuitive dependence structure 344 

characterizing  that is readily interpretable and particularly appealing in the context of 345 

regression on compositional covariates. For further illustration, consider an obvious 346 

( ) ( )' 'clr ilr= = =x z z B x B!

a= + +y Xβ ε a= + +y Xβ ε!!

( ) ( ) ( ) 1' ' ' ' ' ' '- - -
= =X X X X XB B X XB B X X X X X! ! ! !

( ) ( ) 1' ' ' '- -
=B X XB B X X B ' =BB I -A

A

=β Bβ!

β!

β!

1
0

D
'
D d

d
b

=
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feature of compositional data: if the proportion of part d increases, then the proportion 347 

of at least one of the other parts must decrease because of the sum-to-one constraint. 348 

Thus, if increasing the share of the d-th part does have a positive effect on the response 349 

variable, then increasing the share of some other part will necessarily have a negative 350 

effect. For this reason, we interpret  coefficients as “relative effects” of a part w.r.t. 351 

all of the others. 352 

Referring to model (1), the set of compositional covariates  at plot s and time t is 353 

included in the linear predictor after ilr transformation as , i.e.,354 

; hence, model (1) contains  regressors. 355 

 356 

3.2 Computational details 357 

 358 

As is typical in complex hierarchical Bayesian models, the joint posterior distribution is 359 

not available in closed form and needs to be approximated. The Markov property of 360 

IGMRF models implies sparseness of the precision structure matrix, which allows fast 361 

computations, making spatio-temporal modeling with a large amount of lattice data 362 

feasible. Two alternative strategies are currently very popular for approximating the 363 

joint posterior distribution: MCMC sampling and Integrated Nested Laplace 364 

Approximations (INLA, Rue and Martino 2009). The latter is particularly suited for 365 

latent GMRF models and provides very accurate approximations of the posterior 366 

distribution. In addition, INLA definitely outperforms MCMC approaches in terms of 367 

computational time and for more precise approximations to be obtained. Thus, such a 368 

method appears to be preferable and should be used whenever possible. INLA has been 369 

made easily implementable by the R package INLA (Rue et al. 2013). The problem with 370 

β!

stz

( )st stilr=x z

( )1 '
st st t t s stp a q d-F = + + +x β 1P D= -



 17 

applying INLA to our case study is that, when a Type IV interaction is considered, the 371 

large number of linear constraints required for model identifiability makes the approach 372 

computationally unfeasible, causing computer crash.  373 

For this reason, MCMC sampling is a necessary tool for the purpose of this paper. The 374 

MCMC algorithm has been implemented by adopting the popular auxiliary variable 375 

approach introduced in Albert and Chib (1993) and developed successively in several 376 

papers. This approach preserves full conditionals in GMRF form, which are lost in the 377 

case of non-normal likelihood: this is crucial for fast sampling. The approach based on 378 

data augmentation introduces, for each Bernoulli trial denoted by subscript i, in plot s at 379 

time t, the following auxiliary variables: 380 

 381 

  ;  382 

 383 

The Binomial likelihood is retrieved by specifying  384 

 385 

   386 

 387 

where  and  appear  and  times, respectively. It follows that the 388 

full conditional distributions of the auxiliary variables are truncated Normal: 389 

 390 
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Summing over the pixels, we obtain . Conditionally on , MCMC 393 

sampling can proceed as in a standard Bayesian linear model, where  serves as 394 

pseudo-data. The linear predictor can be written in compact form as follows: 395 

 396 

 397 

 398 

where  denotes a k-dimensional unit vector,  is the 399 

-dimensional block-diagonal matrix with -dimensional blocks 400 

 containing ilr-transformed covariates at time t and  is the 401 

-dimensional vector of time-varying coefficients. 402 

In the context of the Bayesian linear regression model, implementing a Gibbs sampler 403 

involves standard MCMC tools; it is worth noting that sampling under linear constraints 404 

for the interaction term, even for a Type IV interaction model, is not an hard task. In 405 

fact, it can be shown that the null space spanned by the eigenvectors associated with 406 

null eigenvalues of the structure matrix  is equivalent to the null space spanned by 407 

the eigenvectors associated with null eigenvalues of the Kronecker product , 408 

where  denotes the k-dimensional centering matrix. Therefore, samples from the full 409 

conditional distribution of  can be obtained by centering samples over space and time 410 

on the fly at each MCMC iteration. Full conditional distributions for all of the 411 

parameters are reported in Appendix A.  412 

Several further refinements to the Gibbs sampler built for our case study can be adopted 413 

to improve the efficiency of the MCMC algorithm. Regarding the auxiliary variable 414 
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approach, Frühwirth-Schnatter et al. (2007) propose an augmented model with lower 415 

dimensionality, where the number of required latent variables per observation becomes 416 

independent of the number of trials. Furthermore, block-sampling has been shown to 417 

considerably improve the mixing of Markov chains when some parameters show high 418 

correlation. Nonetheless, we adopt a Gibbs sampler in our case study because it allows 419 

for accurate results to be obtained within a fairly reasonable computational time. 420 

 421 

 422 

4 APPLICATION 423 

 424 

4.1 Model selection 425 

Starting from model (1), several specifications can be proposed, according to different 426 

assumptions regarding the effect of substrate typology and the structured spatio-427 

temporal effects. Namely, we estimate and compare a total of 10 competing models: all 428 

of them include a pure temporal effect (i.e., ) and a pure spatial effect (i.e., ). The 429 

models differ with respect to the spatio-temporal interaction type (I,II,III,IV); moreover 430 

substrate effect is specified either as constant or time-varying. All temporal effects are 431 

modeled as RW1 opportunely adapted for considering unequally spaced times. 432 

The models are compared in terms of the Deviance Information Criterion (DIC, 433 

Spiegelhalter et al. 2002) in Table 3.  434 

 435 

 Interaction 
Substrate effect Type 1 Type 2 Type 3 Type 4 No 
Constant  33501 33518 33349 33510 188053 
Time-varying 33496 33513 33343 33515 183137 
Table 3 Deviance Information Criterion (DIC) corresponding to different model specifications for spatio-436 

temporal interaction and substrate effect (time-constant or time-varying) 437 
 438 

ta sq
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From the last column of this table, it can be observed that neglecting spatio-temporal 439 

interactions produces very poor performance. The selected model (whose DIC is 440 

reported in bold in the table) includes time-varying coefficients and a Type 3 441 

interaction. The inclusion of a Type 4 interaction does not improve the model fit, 442 

regardless of the assumption made about substrate effects. Despite the small differences 443 

in terms of DIC exhibited by models with a Type 3 interaction, the results presented in 444 

the following section provide evidence of a significant change in the covariate effect 445 

over time, supporting the selection of the time-varying coefficient model.  446 

Ultimately, the selected model is: 447 

 448 

       449 

 where   450 

;  451 

, ;  452 

 453 

where , in accordance with a Type III interaction. Because, as mentioned 454 

in section 3, vector  is unconstrained in model estimation, this purely temporal effect 455 

is devoted to capture, in the probit scale, the natural vegetation life cycle. 456 

 457 

 458 

4.2 Results 459 

Results are obtained from a post-convergence MCMC sample of size 10,000 obtained 460 

by thinning a 100,000 sample to reduce correlation while guaranteeing an adequate 461 

effective sample size. 462 
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In the upper panels (a1-a3) of Figure 3, posterior distributions ( ) of parameters 463 

 are reported for  as an example. The lower panels (b1-464 

b4) report posterior distributions of clr-regression coefficients ; these posterior 465 

distributions are obtained by transforming  at each MCMC iteration. Panels (a1) and 466 

(b1) contain the same information, up to a scaling constant relating  and . The 467 

positiveness of this coefficient implies that the first substrate typology (moss) 468 

encourages vegetation cover when compared with other substrates typologies, i.e., moss 469 

shows positive “relative suitability”. Panels (a2) and (a3) contain, respectively, the 470 

posterior distributions of  and : these parameters do not convey readily 471 

interpretable information concerning substrate suitability because, as discussed in 472 

section 3.1, they do not refer to any direct comparison between one compositional part 473 

and all others. As a consequence, testing for the nullity of these coefficients is pointless 474 

because a null coefficient does not directly imply a non-significant effect of some 475 

compositional part on the response variable. As a matter of fact, no sound 476 

considerations about the relative suitability of litter, soil and bare rock can be drawn 477 

from panels (a2) and (a3). On the other hand, panels (b2)-(b4) convey direct 478 

information about substrate relative suitability: the posterior distribution of regression 479 

coefficient associated with litter (panel b2) is centered at zero, meaning that litter shows 480 

average suitability, whereas soil (panel b3) and bare rock (panel b4) have positive and 481 

negative relative suitability, respectively. 482 

 483 

tβ y
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  484 

Fig. 3 Posterior distributions of the regression coefficients for the last collection time (panels a1-a3). 485 
Posterior distributions of transformed regression coefficients expressing the relative suitability for moss 486 

(b1), litter (b2), soil (b3) and bare rock (b4). Vertical lines correspond to zero 487 
 488 

Because transformed coefficients are directly comparable, we provide some suggestions 489 

on how posterior estimates can be used to describe findings about substrate suitability. 490 

Upon first glance, at a given time, the substrates can be ordered from the most to the 491 

least suitable for vegetation cover based on the posterior means : at time 9, 492 

moss turns out to be the most suitable substrate typology, followed by soil, litter and 493 

bare rock. Moreover, a rigorous comparison between the suitability of substrates  and 494 

 that takes account of the uncertainty about parameter estimates can be obtained by 495 

evaluating , i.e., the posterior probability that the suitability of 496 

substrate  is higher than that of substrate . This task is easily addressed by 497 

exploiting the MCMC sample. It is observed that, at time 9, the posterior probabilities 498 

that moss is more suitable than litter, soil and bare rock are 0.98, 0.81 and 1, 499 

respectively. 500 

Furthermore, it is interesting to determine whether the heterogeneity characterizing 501 

substrate suitability changes over time; it is worth noting that the more the estimated 502 
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coefficients at time t are dispersed around zero, the more the substrates show differences 503 

in terms of suitability. Thus, the posterior distribution , t=1,…,9, gives 504 

information about the heterogeneity of substrates in terms of the suitability at each time. 505 

Figure 4 shows that the heterogeneity increases over the study period. 506 

 507 

 508 

Fig. 4 Posterior distribution of  over time 509 

 510 
The biological motivation of this behavior can be found in the increase in vegetation 511 

cover, from October to the end of the study period, caused by a higher propensity of 512 

vegetation to occur in the substrates that exhibit greater availability of nutrient resources 513 

(i.e., moss and soil) than do the others (litter and bare rock). 514 

Finally, we describe findings about the temporal evolution of substrate relative 515 

suitability that are helpful in addressing the ecological questions posed at the end of 516 

section 2. In each panel of Figure 5, the posterior mean of  at the collection times 517 

(filled circles), the predictions at unobserved times (black solid line) and credible bands 518 
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(grey dashed lines) are reported. Predictions are obtained via MCMC sampling from the 519 

posterior predictive distribution of .  520 

 521 

 522 

Fig. 5 Substrate relative suitability over time 523 

 524 

Moss is revealed to be the most suitable substrate at the beginning of the study period, 525 

and its relative suitability remains nearly constant over time. On the other hand, the 526 

relative suitability of soil is approximately zero (i.e., approximately average) at the 527 

beginning and increases over time, reaching a positive relative suitability level in 528 

winter. The opposite behavior is exhibited by bare rock, which is less suitable than 529 

average and shows a decreasing pattern over time. Finally, litter presents constant 530 

average suitability over time. 531 

It is worth noting that, in contrast to the results shown in Figure 2, where the temporal 532 

pattern of substrate-specific effects is confounded with the marginal trend for 533 

vegetation, the results shown in Figure 5 provide direct information on the relative 534 

suitability level of each substrate and how these levels vary over the study period, after 535 

properly accounting for spatial and temporal correlation. These results are in agreement 536 

with the ecological literature on this type of habitat (Lundholm 2003, Otsus and Zobel 537 

2002) as stated in Velli (2014). 538 

 539 

 540 

tβ!



 25 

5. CONCLUSIONS 541 

 542 

In this work, a spatio-temporal model for ecological data derived from digital ground 543 

photos is presented. The primary focus is on quantifying the relation between vegetation 544 

cover and substrate typology, expressed as compositional data, by accounting for spatial 545 

and temporal correlation. The proposed models include spatial, temporal and spatio-546 

temporal effects modeled as IGMRFs. A novel approach for estimating the relative 547 

effect of compositional covariates on the response variable is developed within a 548 

Bayesian framework, through a procedure based on appropriate transformations of the 549 

regression coefficients. This procedure exploits the properties of the ilr transformation, 550 

which admits an orthonormal basis representation; this transformation allows for a 551 

transition between different coordinate systems, providing meaningful regression 552 

coefficients. In our opinion, the proposed approach constitutes a basis for future 553 

developments in such fields as non-linear and nonparametric regression for 554 

compositional covariates. To the best of our knowledge, these topics have been scarcely 555 

debated in the literature concerning both compositional data and Bayesian analysis. 556 

The lattice structure of the data make GMRFs particularly suitable tools for modeling 557 

spatial and temporal dependence by specifying a conditional dependence structure. This 558 

ability allows for feasible computations that can be implemented both by the INLA 559 

approach and MCMC sampling; fast algorithms that allow for efficient sampling by 560 

exploiting the sparseness of the precision matrices are implemented within a Gibbs 561 

sampling scheme. Both the INLA and MCMC codes are available upon request from the 562 

corresponding author. 563 

The model is applied to a dataset concerning a habitat included in the framework of the 564 

priority defined by the European Commission, where investigating the relationship 565 
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between vegetation cover and substrate typology can be helpful in quantifying substrate 566 

suitability. The case study demonstrates that the proposed modeling strategy produces 567 

valuable outcomes for ecologists. First, in ecological studies, knowledge of substrate 568 

suitability is strategic for habitat conservation, for instance, to predict future 569 

developments and reactions to possible environmental changes. Second, a modeling 570 

approach that is able to predict substrate suitability or other ecological responses over 571 

un-monitored periods of time is extremely useful in many common situations in which 572 

surveys cannot follow a regular plan, as in the case in which fieldwork activity is 573 

impossible because of adverse environmental and weather conditions.  574 

One interesting ecological finding of the paper is that substrate relative suitability varies 575 

over time. A future line of research will focus on extending the proposed model to allow 576 

for smooth, rather than simply linear, effects of compositional covariates on ecological 577 

responses. Non-linear effects of substrate shares on ecological responses may often be 578 

observed, especially when the response of interest is a biodiversity index, such as 579 

species richness or evenness. 580 

 581 

 582 
APPENDIX 583 

 584 

The Gibbs sampler is implemented as follows: 585 

1. Sample auxiliary variables from the truncated normal full conditionals (0).  586 

Let  be the -dimensional vector of the auxiliary variables, full conditionals for 587 

the other parameters can be obtained as in the standard linear model with Gaussian 588 

likelihood, starting from the following expression of the linear predictor: 589 

 590 

W! nST



 27 

 591 

 592 

In what follows, the multivariate normal distribution is expressed in the canonical form 593 

(Rue and Held, 2005; page 27) 594 

2. Sample the regression parameters from the distribution  595 

  596 

;  597 

 598 

where  and  is a permutation matrix with the following 599 

structure: 600 

 601 

 602 

The T-dimensional vector  contains 1 at position t and zero elsewhere. 603 

3. Sample the temporal effects, i.e., the time-varying intercepts, from the distribution 604 

  605 

;  606 

 607 

4. Sample the spatial effect from the distribution 608 

  609 
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;  610 

 611 

Centre the sampled values. 612 

 613 

5. Sample the spatiotemporal random effects from the distribution  614 

  615 

; 616 

  617 

Centre the sampled values either row wise, column wise or both depending on the type 618 

of interaction. 619 

6. Sample the precision parameters . The full conditionals for these 620 

parameters are Gamma, for instance: 621 

 622 

 623 

 624 
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