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ABSTRACT

The massive production of biological data by means
of highly parallel devices like microarrays for gene
expression has paved the way to new possible
approaches in molecular genetics. Among them the
possibility of inferring biological answers by query-
ing large amounts of expression data. Based on this
principle, we present here TOM, a web-based
resource for the efficient extraction of candidate
genes for hereditary diseases. The service requires
the previous knowledge of at least another gene
responsible for the disease and the linkage area, or
else of two disease associated genetic intervals. The
algorithm uses the information stored in public
resources, including mapping, expression and func-
tional databases. Given the queries, TOM will select
and list one or more candidate genes. This approach
allows the geneticist to bypass the costly and time
consuming tracing of genetic markers through entire
families and might improve the chance of identifying
disease genes, particularly for rare diseases. We
present here the tool and the results obtained on
known benchmark and on hereditary predisposition
to familial thyroid cancer. Our algorithm is available
at http://www-micrel.deis.unibo.it/~tom/.

INTRODUCTION

Ceaseless advances in biotechnology, along with the growing
experience cumulated by researchers in recent years, has
allowed a continuous and faster blooming of the number of
genomes being sequenced and, most importantly, annotated.
The consequent necessities of storing, retrieving, sharing

and, in particular, understanding this vast amount of data
led to the creation of genome databases, an open source of
genetic information for scientists worldwide.

Whereas the genomic era opened the doors to the very
existence of such large and comprehensive (omic) data repos-
itories, the strongest urgency of the post-genomic era is now
to interrelate various sources of biomedical information.

Several parallel efforts are currently underway to achieve
a better understanding of the human genome. These actions
are turned to the extraction of high-throughput information
from global approaches such as the International HapMap
Project (1) for identification of single nucleotide polymorph-
isms or the prosecution of the ENCODE [ENcyclopedia
Of DNA Elements (2)] for the identification of all functional
elements in the genome sequence. Therefore the integration
of various existing and upcoming efforts is going to be a
key element for the full comprehension of the cellular
machinery.

We focus here on one of the many fields that will strongly
benefit from such an integration: the study of hereditary dis-
eases. Often more than one gene is involved in life threaten-
ing misfunctioning of cellular functions. To characterize such
diseases the identification of all the responsible genes is even-
tually a crucial requirement. This process usually involves
costly, time consuming and difficult tracing of large family
lineages to follow the line of transmission of genes and
thus to define the linkage areas where genes responsible for
the disease could be located.

Computational technologies can appropriately be
employed to integrate available data and can, in principle,
be used to save on the expensive process of candidate
genes selection. In this article we describe TOM [Transcrip-
tomics of OMIM, (3)], an automated pipeline for the extrac-
tion of the best candidate genes for a given genetic disease.
The procedure is based on two possible starting points. On
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one instance the accepted input is a list of one or more
genes (called the seed(s) of our search) plus the chromosomal
area where the unknown gene is located. This option (One
Locus option) is suited for cases where the disease is minim-
ally characterized and at least one responsible gene is known.
The algorithm performs the necessary steps to extract from
the linkage area, listed in the input, the genes that have the
highest chances of being functionally related to the seeds.
The second option (Two Loci option) is designed for poorly
characterized diseases, when no specific gene is a priori
known. At least two bona fide linkage areas need to be pre-
sent. It is therefore possible to query the two genome tracts
associated to the same pathology. The algorithm extracts
the lists of genes annotated on each linkage region and
searches for pairs that have similar expression or functional
profiles.

The scientific rationale behind TOM is rooted on three
characteristic gene features: gene mapping, expression profil-
ing and functional annotations. The combination of these
three features enables the selection of genes that have desir-
able characteristics, and meanwhile the filtering of possible
candidates that do not share them.

The first step, gene mapping, often a bottleneck in past
times, is now inherent to the human DNA sequence. Since
the decoding of the human genome, it is in fact possible to
select genes matching any specific area of the genome. The
definition of one or two genome regions of interest represents
obviously the first selection criterion for the candidates to a
given disease. TOM then proceeds to retrieve the list of
annotated genes that are located in the regions.

Second, genes that have a common transcriptional regula-
tion (resulting in coherent expression profiles), also have a
high likelihood of being involved in the same cellular process
(4–7). Expression profiling allows to record the activation/
silencing of number of genes across different experiments
or conditions and it is most commonly performed by means
of DNA microarrays. Measuring with appropriate metrics
the distance in the transcriptional profiles (i.e. the mRNA
levels of two or more genes across a set of conditions)
enables the identification of gene sets sharing similar behavi-
ors. Applying this second selection criterion to the queried
genetic interval(s), and extracting only the messengers with
significant correlation to the seeds, leads to a strong reduction
of the list of candidates.

Finally, proteins involved in the seed’s cellular processes are
likely to be encoded by candidate genes as well. Functional
analysis consists in characterizing a gene’s cellular role. Func-
tional views of a protein can be obtained using the controlled
vocabulary defined by the Gene Ontology Consortium [GO
(8)]. The GO in fact enables the identification of a gene’s
molecular function and, in particular, of the biological process/
processes in which it is involved. This third and final selection
step then focuses one more time on the potentially relevant
genes, selecting only those that are functionally related to
the seeds (One Locus) or that share the same function/s
(Two Loci). To allow more flexibility to the user, it is possible
to disjoin the second and third step.

Dealing with the human genome represents a complex
challenge and several efforts have been undertaken with the
specific aim of facilitating the understanding of genetic
diseases, namely the extraction of candidate gene lists for

a given disease. These approaches can be divided in two
broad categories, one mainly based on the use of ontologies
(structured vocabularies for the classification of items) and
the other that relies more on structural characteristics of the
genes or their products. For both approaches several interest-
ing strategies have been implemented. In the first category,
approaches range from (i) the estimate of the association
between terms from controlled vocabularies, that define a dis-
ease, and genomic sequences associated in literature to (ii)
the evaluation of similarity among genes based on phenotypic
descriptions (9,10). In the second category algorithms (11,12)
are based on structural characteristics such as protein size or
degree of conservation across evolution. Other approaches
rely on the information obtained performing composite quer-
ies across several databases, including mouse and human
gene expression (13). Besides their meaningful rationale,
both approaches also have their disadvantages. The first
class suffers from incompleteness owing to the still ongoing
annotation process. The second class makes use of character-
istics that are less biased than annotations, and relies on rules
that have broad applicability, but may miss the specificity of
the gene-by-gene discovery that is conversely available
through ontologies.

TOM de facto merges the strategies used by the different
approaches described above and its main advantage can be
defined in its flexibility. On one hand, it is not strictly
designed for queries on disease-related genes, but can be
used for any type of gene(s)–locus or locus–locus inquiry.
Furthermore, it can be used both by an investigator with a
good level of a priori knowledge on the disease (One
Locus option) and when the research is still at early stages
(Two Loci option). Finally, the user can modulate the
filtering ability, since he can decide whether to apply
unsupervised expression neighborhood analysis, taking
advantage of the unbiased transcriptional information, or
the functional annotation, relying on the careful curation of
the GO vocabulary.

We describe here in details the differences between TOM
and two other applications that, among the published works,
appear to be more related to our approach. The work of Tiffin
et al. (14) makes use of gene expression information and con-
stitutes an interesting approach based on the association (per-
formed on Medline abstracts text-mining) between diseases
and anatomy terms, based on frequency of occurrence. The
top ranking associations are then used to mine ENSEMBL
(http://www.ensembl.org) in search of the disease genes
annotated to the corresponding anatomic sites. This approach
lacks three features that are advantageously implemented in
TOM: first it is presented as a method and not offered as
an online service to geneticists; second, gene expression
data are obtained as ENSEMBL annotation, thus generating
the drawbacks described above for the annotation methods
and third, TOM extracts genes coexpressed in any anatomic
site or tissue, in diseased and non diseased samples. This
opportunity allows a broader search and the identification
of genes potentially difficult to capture in the disregulated
processes, but that still share strong synergistic activities, pre-
sent in the normal status.

A second program named POCUS, designed by Turner
et al. (15) takes advantage of a sophisticated use of both
GO and InterPro domain (16), evaluating the enrichment
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for any annotation of a set of genes localized on two given
chromosomal areas defined by the user. The enrichment rep-
resents an indicator of commonalities among the genes. This
approach is partially related to our Two Loci option, offering
the advantage of allowing researches with very little a priori
knowledge. However, it misses two issues addressed by
TOM: (i) our One Locus option allows a more focused and
targeted approach for better known diseases and (ii) Turner’s
approach may miss information that could be obtained by
mining on other databases. In fact the authors state that the
quality and number of annotation is biased by the number
and quality of previous findings made on the genes (that
appear as annotations IDs).

Finally, a very recent work from Franke et al. (17)
approaches the problem of the relationships among genes of
interest that can in some cases overlap with hereditary disease
research. This work describes a complete integrated
approach, making use of Bayesian networks, based on GO,
gene expression and protein–protein interaction, as well as
pathways and information from human yeast two hybrid
(Y2H) experiments (18). This tool allows the prediction of
genes that are functionally related to candidate chromosomal
areas and is thus related to the Two Loci approach described
in TOM. The interesting strategy described in this paper
could then be used to integrate our tool.

In conclusion, we believe that TOM, which parallels
the successful work of Mootha et al. (19) who devised an
integrative approach to gain insight into cytochrome c oxi-
dase deficiency, can be a valuable and efficient resource to
help in genes extraction. Certainly, more options can be
integrated to take better advantages of the existing but partial
information sources, i.e. to detect unpredicted or non-coding
genes.

MATERIALS AND METHODS

The Seeds of the search

The input data to TOM can be constituted by a (list of)
gene(s) and one or two chromosomal areas of interest. In
the One Locus option, while the chromosomal area represents
the hypothesis to test, the input gene(s) are the queries of the
search. For this reason almost invariably, but not exclusively,
the seed of the search will belong to the repository of the
Online Mendelian Inheritance in Man (OMIM) database.
This repository stores a comprehensive collection of genes
known to be related to human diseases. OMIM is updated
daily and stores information (mainly genes) related to dis-
orders inherited in a Mendelian manner, where traits are
passed from parents to children. Any type of gene can be
used with this method. Nevertheless, because most of the
power in our procedure is given by expression data, we
named the application TOM (Transcriptome of OMIM).

The three-step filtering algorithm

We describe here the detailed steps allowing the selection of
the final candidate gene sets for an hereditary disease (see
Figure 1).

The first step is designed to select the list of genes mapped
on the chromosomal area/s of interest, using genome
sequence information.

Then, in the second step, TOM employs transcriptome data
from public repositories. TOM retains here only the genes
that have related expression variations in the datasets, either
among them (Two Loci) or to the seeds (One Locus). Form-
ally, this is achieved defining the expression neighborhood,
i.e. the set of genes encoded in the genomic area of interest
that are related among them or to the seeds, based on the

Figure 1. Global description of the process. The three steps of the algorithm, along with the databases and the intermediate and final results are shown in the
figure. The output can be used at the end of the second step, in the form of co-expressed genes, or refined through the third step where the functional analysis
(based on GO) is performed. The longest arrow depicts the alternate route to the functional analysis.
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similarity of their expression. We define a metric space M ¼
(X,r), where X are vectors of expression values a gene
assumes on a given sorted set of experiments (activation pro-
file) and r the Spearman rank coefficient of correlation (20), a
non-parametric measure of data trend correlation based on
rankings. We then define the set N as the expression neigh-
borhood of a gene g if there exists an open ball with center
s and radius r, BrðsÞ ¼ Bðs;rÞ ¼ fx 2 X j rðx‚gÞ < sg,
where the radius r was defined by means of statistical signi-
ficance. Namely, we evaluate the P-values of the correlation
tests and select the genes whose correlation value is signific-
ant at a given value of rejection. Evaluation of P-values is
performed assuming that the correlation values are distributed
using Student’s t cumulative distribution, with a number of
degrees of freedom corresponding to the number of samples
in the microarray experiment.

Given the high number of correlation tests performed in
TOM, P-values are corrected for multiple testing by using
the false detection rate (FDR), as defined by Ref. (21).
FDR controls a different probability than that which is con-
trolled with the better known P-value. In fact, P-values con-
trol the number of false positive over the number of truly null
tests, while FDR controls the number of false positive over
the number of significant tests. Several ways of estimating
this number have been proposed, we adopted the solution
devised by Tom Nichols (see http://froi.sourceforge.net/
documents/technical/matlab/FDR.html), that rescales the
P-value obtained on a single test multiplying it by a combina-
tion of indexes related to the total number of tests performed:
Kpi/ði

PK
i¼1 i�1Þ, where pi represents the i-th of the total K

single P-values. Correction was performed on a seed by
seed basis, this means that the genes in the seeds list or
in the first chromosomal area are considered independent
tests.

Finally, in the third optional step, we further filter candid-
ates, based on their functional role(s). To this end we use GO
[the more widespread controlled and hierarchically structured
vocabulary for the description of genes and genes’ products
characteristics in any organism (8)] to better interpret the
genes selected in the expression neighborhood, and extract
genes related to the same biological process(es). In particular,
we use the hypergeometric distribution

p ¼ 1 �
Xr�1

i¼1

�
n1

i

�
·
�

N � n1

n � i

�

�
N
n

� ,

to evaluate the probability that in a sample of size n, r items
of a given type—a type characterizing n1 items in a popula-
tion of N items—can be selected without replacement (20).
This probability statistically validates the proportion of
genes in the group of candidate genes (enriched for some
known function), compared with what would be expected
by chance alone. The third step can alternatively be per-
formed directly after the first step, simply by skipping the
transcriptional analysis.

This statistically validated triple filtering allows the tar-
geted extraction of a shortlist of candidate genes, thus saving
resources for the following costly and time-consuming gen-
etic analysis.

Implementation

The tool core is developed under R and the user interface is
developed using Php. Users requests are initially stored in a
database (MySql), where a batch scheduled task retrieves
and processes them, while the user interface is waiting. For
defining the position of the bands, we use the NCBI Map-
Viewer (http://www.ncbi.nlm.nih.gov/mapview/). The
BUILD.35.1 genome data are stored in the TOM database.
Once the results are obtained, the website will access and dis-
play them on the user’s browser. The two alternative types of
input are accessed from two different web-pages. One Locus
allows the algorithm to accept as input one or more gene
symbols or Affymetrix id (separated by semicolons) plus a
linkage region; Two Loci accepts two distinct linkage
regions. Both pages allow the user to select the maximum
P-value (corrected for multiple hypotheses) accepted for sig-
nificance. Regions are input as chromosome numbers, arms
and bands. All stored genes found in the region(s) are
retrieved from the database and associated to the annotations
provided by Affymetrix. These features are contained in the
Annotation files provided by the NetAffx analysis center
(http://www.affymetrix.com).

The stored microarrays can then be searched to retrieve
the expression values for the correlation analysis by checking
the Expression Correlation filtering check box and setting the
FDR threshold field. Microarray expression values undergo a
double filtering process on the basis of the calls (flexible fil-
tering) and of a fold-change and absolute filter variation over
samples (max/min < 3 and max � min < 100, fixed filtering).
This double filtering is meant to allow a stringent and con-
stant selection based on the variation of the expression pro-
file, while preserving the maximum amount of information,
based on the general quality of the array. The quality of the
array is related to the number of present calls available. For
this reason, we filtered the array spots based on the assump-
tion that a minimum amount of information can be extracted
from the arrays. Thus, while we performed a strong filtration
for 95% present calls in better quality arrays, we accepted
also 50% present calls in worse ones. This information is
stored with the array name. This procedure leads to expres-
sion matrices whose final size is around <5000 probe sets.
Additional quality control information is also stored for
each candidate gene as the percentage of samples in which
both probe set evaluated in the correlation were called
present.

Experiments conducted on Affymetrix chips (Human Gen-
ome U133A, U95A, U133A and B and U1333plus2 chips
with detection calls available) were downloaded from the
repository of Gene Expression Ominbus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) and EBI repository ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) using a Perl script to
capture the expression values. We performed these results
loading 	40% of the human microarray experiments with
detection calls available. The process of populating TOM is
ongoing and will be updated on a monthly basis. Besides
the expression values, samples description, detection, plat-
forms, gene chip array, sample conditions and authors are
also stored. These data are accessible in the Results page.

The functional analysis based on GO identifies distribution
and can be performed by checking the Validate GO IDs check
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box. We applied the Biobase and GOstats bioconductor pack-
ages (22) to perform the functional analysis. This package
computes the hypergeometric probability using as items the
LocusLink identifiers (http://www.ncbi.nih.gov/entrez) of
each Affymetrix probe of query results. Each LocusLink
identifier belongs to several GO categories and the package
counts the number of appearances of each GO term for the
genes in the candidate group as well as in the whole pool
of genes extracted from the chip (reference group). We modi-
fied the GOstats package so that it was possible to evaluate
the P-value for a group composed by the union of all the
sets of GO identifiers belonging to the Affymetrix chips
involved in the user request.

Since running these tasks can require several minutes, an
e-mail service is provided that sends to the user a request
identifier as soon as the user request is stored. Results are
then mailed in tabular format with the URL to their online
version when the process is terminated. The assigned code
also allows the user to retrieve results at later times, since
they are stored for two weeks. It is also possible to assign a
friendly user-defined name to the request for tasks manage-
ment facilitation.

The output contains a matrix with information for each
candidate gene and the corresponding seed (in case of One
Locus option it is stored indifferently in the first or second
column) related to the analyses performed such as correlation
values, corresponding FDR, percentage of overlapping pre-
sent samples for correlation evaluation, GOIDs, enrichment
P-values for the three GO categories: Molecular Function,
Biological Process and Cellular Component as well as several
records from Affymetrix descriptive annotations (Figure 2a).
The website finally offers an histogram showing a visual rep-
resentation of the GO categories involved and their P-values
(Figure 2b).

RESULTS AND DISCUSSION

We present here some examples of the use of TOM for One
Locus and Two Loci option.

The following section presents results that show the ability
of TOM to reproduce known genetic information (validation).
We present three carefully documented benchmark tests
whose results are summarized in the table of Figure 3a, and
then broaden the validation with the analysis of five more
examples. Global results are summarized in the rank distribu-
tion of Figure 3b that shows how the expected results rank in
majority of the candidate genes list extracted with TOM.

The Discovery section shows the results obtained on a Two
Loci problem to gain further insight into a poorly character-
ized disease, namely familial thyroid cancer (discovery).

Validation

TOM was tested by searching for several genes known to
interact with each other using the One Locus option of
TOM. The aim of this approach was to ensure that the system
correctly identifies gene–gene interplay. The examples used
are reported in Figure 3a. Each gene was used as seed against
the chromosomal region where the known interacting gene
maps (ENSEMBL v.35), and vice versa. The examples con-
sidered for this first run of One Locus option were PKD1

and PKD2, T0MM70A and TIMM17A, ANNXA11 and
PP1F.

PKD1 and PKD2 are genes mutated in polycystic kidney
disease. In a majority of cases, the gene involved is PKD1,
which is located on chromosome 16 (16q13.3) and encodes
polycystin-1, a large receptor-like integral membrane protein.
In the remaining (10–15%) cases, the disease is caused by
mutational changes in another gene (PKD2), which is located
at chromosome 4 (4q21–23) and encodes polcystin-2, a trans-
membrane protein, which acts as a non-specific calcium-
permeable channel. Both polycystins function together in a
non-redundant fashion, through a common pathway, and
produce cellular responses that regulate proliferation, migra-
tion, differentiation and kidney morphogenesis [for a review
see Ref. (23)].

TOMM70A and TIM17A are part of the mitochondrial com-
plexes, through the outer and inner membrane respectively, for

(a)

(b)

Figure 2. (a) It shows an example of Results page for familial Breast Cancer,
highlighting the known relationship between BRCA1 and JAK1. The Results
table can scroll and more information, such as correlation values, then
become visible. (b) It shows the graphical output of the functional analysis of
Two Loci problem, namely Thyroid Cancer. This allows a rapid overview of
the results. Every GO category of the candidate genes is represented in the bar
graph. Categories are sorted based on the number of hits (height of the bar)
and the P-value information is carried by a white to red shade of color. Tall
white bars represent the best candidates, small red ones the worse.
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the import inside the mitochondria of nuclear-encoded pro-
teins (21). Annexin 11 (ANXA11) is member of the annexin
family, Ca2+-binding, membrane-fusogenic proteins with
diverse functions. PP1F and RPS19 are two known interacting
proteins with Annexin. Annexin 11 during cell cycle progres-
sion translocates from the nucleus to the spindle poles in meta-
phase and to the spindle midzone in anaphase (25).

We also tested the program for complex traits such as
tumor predisposition and development. Since several genes
are already known to be involved in predisposition to
tumor, we tested TOM for the major gene for familial breast
cancer, BRCA1. Loss of function of BRCA1 caused by inher-
ited mutation and tissue-specific somatic mutation leads to
breast and ovarian cancer. Nearly all BRCA1 germline muta-
tions involve truncation or loss of the C-terminal BRCT tran-
scriptional activation domain, suggesting that transcriptional
regulation is a critical function of the wild-type gene. Several
microarray analyses have been carried out to identify a pecu-
liar gene expression profile characteristic of carriers of
BRCA1 mutations, which would have an important impact
also for diagnostic purpose [for an example see (26)]. It has

been shown that there is a link between the role of BRCA1 in
transcriptional regulation and its role in tumor suppression.
Previous microarray analyses comparing transcription pro-
files of epithelial cells with low endogenous levels of
BRCA1 versus transcription profiles of cells with 2 to
4-fold higher induced levels of expression of BRCA1
identified several genes with at least a 2-fold increase in
expression, such as JAK1, a tyrosine protein kinase with a
key role in cytokine signal transduction pathway (27). We
thus tested whether by using BRCA1 as seed we could
identify JAK1, giving as chromosomal location chr1p13.3,
the region where JAK1 maps. The interaction was correctly
identified, and also the reciprocal, i.e. JAK1 as seed and the
region 17q21.31, where BRCA1 maps.

We also evaluated Tuberous Sclerosis with TSC1 and
TSC2 involved genes, Fanconi Anemia with FANCA,
FANCG and FANCL genes, Muscular Dystrophy with
CAV3, CAPN3, TRIM32, SGCB, SGCG and DYSF genes,
Myeloproliferative disorders with DTL and ZNF198, and
finally the Neurotransmitter transport with NAT1 and
NET1. We evaluated the correlations setting the threshold

(b)

(a)

Figure 3. (a) The table summarizes the results of the first three examples. In the first four lines we record the results for One Locus problems for known
interacting proteins. The last three lines show One Locus results for BRCA1-JAK1. (b) It shows a rank distribution of the genes known to be related to the eight
examples discussed in Validation section, adding to the three described above five more benchmark examples, notably: Tuberous Sclerosis, Fanconi Anemia,
Muscular Dystrophy, Myeloproliferative disorders and Neurotransmitter transport. The expected genes rank in majority within the first 20% of the list of
candidate genes identified by TOM.
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for FDR ¼ 0.01. For these and previous results we ranked the
candidate genes by correlation values (preserving the abso-
lute values) using TOM automatic sorting of candidates
genes based on correlation or corrected P-values. The ranking
distribution is shown in Figure 3b.

Discovery—thyroid cancer

The TOM resource analyzes at the same time two different
regions of interest and identifies the genes that are highly cor-
related and map to both regions. This approach proves very
useful for genetic disorders in which a single gene has not
yet been identified but genome scans provided regions of
association on different chromosomes. We could hypothesize
that genes with similar behavior might have a complementary
effect on disease development.

We tested our hypothesis on the familial form of non-
medullary thyroid carcinoma. Papillary thyroid carcinoma
and follicular thyroid carcinoma are the most common
forms of thyroid cancer accounting for between 80 and
90% of thyroid cancer patients. This disorder is associated
with some of the highest familial risks among all cancer
sites, with reported risks to first-degree relatives between
5- and 10-fold. Consequently, familial non-medullary thyroid
cancer (fNMTC) has been recognized as a distinct clin-
icalentity, characterized by a higher degree of aggressiveness
and mortality with respect to its sporadic counterpart (28).
Transmission of susceptibility for fNMTC is compatible
with an autosomal dominant mode of inheritance and incom-
plete penetrance. In collaboration with the International
Consortium for the Genetics of fNMTC, two predisposing
loci were previously mapped. The first one, TCO (Thyroid
tumor with Cell Oxyphilia, MIM#603386), was mapped to
the 19p13.2 region (29) and confirmed in additional families.
Oxiphilic thyroid tumors are a particular form of thyroid neo-
plasia, characterized by cells with mitochondrial proliferation
and hyperplasia, (oxyphilic or Huerthle cells). The second
locus, NMTC1 (non-medullary thyroid carcinoma1), was
mapped to chr2q21 and was associated with the follicular
variant of PTC (fvPTC-MIM# 606240) (30). Evidence for
an interaction between the two loci has been provided in a
subset of fNMTC, and a two-locus mode of inheritance is
consistent with stratification based on both the histological
variants of oxyphilia and fvPTC (31).

We thus performed a search using TOM to verify whether
the genes mapping to the two areas of interest have any
degree of correlation between them, and they might also be
considered as potential candidate genes based on their func-
tions. Interestingly, 38 hits were identified and several
genes showed a highly significant correlation and P-values
(see Figure 2a and b). Among these genes, some look prom-
ising candidates for their biological function, such as
UQCRFS1 on chromosome 19q, which is a mitochondrial
ubiquitinol cytochrome c reductase iron–sulphur subunit
and correlates with RAB3GAP on chromosome 2q, a Rab3
GTPase-protein involved in cell proliferation (correlation
0.626181; P-value < 0.001). This is very interesting since
there is evidence of interaction between the two loci and
the locus on chromosome 19 is associated with a mitochon-
drial phenotype. Thus, these genes could be considered plaus-
ible candidate genes based on position and function.

Experimental studies will be needed to assess the presence
of mutation/variants in affected individuals and prove an
involvement in thyroid carcinoma predisposition. The advant-
age of using TOM here was to reduce the number of genes
that can be selected for a first mutation screening, after hav-
ing identified two regions of significant linkage.

CONCLUSIONS

We devised and implemented TOM, an algorithm for the
identification of candidate genes responsible for genetic dis-
eases. We took advantage of the microarray datasets available
online to exploit novel computational biology approaches to
molecular genetics. TOM allows a user to seamlessly associ-
ate functional and mapping data and to efficiently employ
them in a quest for novel candidate genes in hereditary dis-
eases.

Additional selection principles can be implemented to
extend TOM, such as declaring a putative pathway for the
candidate gene, in the case of poorly characterized diseases.
Moreover, constant updating TOM with new expression data-
sets will increase the robustness of the assay. Our work rep-
resents a novel computational tool for gene hunters and could
help to integrate and improve the comprehension of the gen-
etic roots and the molecular mechanisms of complex life-
threatening diseases.
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