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Abstract The aim of the paper is to propose the introduction of power prior
distributions in the ability estimation of item response theory (IRT) models.
In the literature, power priors have been proposed to integrate information
coming from historical data with current data within Bayesian parameter es-
timation for generalized linear models. This approach allows to use a weighted
posterior distribution based on the historical study as prior distribution for
the parameters in the current study. Applications can be found especially in
clinical trials and survival studies. Here, power priors are introduced within
a Gibbs sampler scheme in the ability estimation step for a unidimensional
IRT model. A Markov chain Monte Carlo algorithm is chosen for the high
flexibility and possibility of extension to more complex models. The efficiency
of the approach is demonstrated in terms of measurement precision by using
data from the Hospital Anxiety and Depression Scale (HADS) with a small
sample.
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1 Introduction

In Bayesian estimation, where posterior evidence is derived from the combi-
nation of the likelihood and a prior distribution, the elicitation of the prior re-
mains a crucial issue. Although non-informative priors can be employed in ab-
sence of prior information (see [14]), they can cause instability in the posterior
estimates and convergence problems for the Gibbs sampler ([13]). In applied
research, prior information on the parameters of interests is often available in
the form of historical data, collateral information or predictions from subject
matter experts. In order to combine historical data with observed data, power
prior distributions were proposed for the parameter estimation of regression
models ([13]) and more generally of generalized linear models ([6]). This ap-
proach allows to discount historical data by introducing an appropriate weight.
Generally, the introduction of informative priors is strongly encouraged with
small sample sizes, in case the available data provide only indirect informa-
tion about the parameters of interests, and for preventing from inappropriate
inferences, consistent with the likelihood (see [11]).

The availability of a small sample is also a recurring context in educational
and psychological measurement, where item response theory (IRT) models
([15]) are commonly used. Given the responses of a sample of subjects to cate-
gorical test items, IRT models express the probability of an item response as a
function of the item psychometric properties and the latent abilities underlying
the response process. Therefore, parameter estimation involves two phases: (a)
calibration, where the item parameters are estimated, and (b) scoring, where
the subjects are located on the latent trait scale. In both phases, the issue
of measurement precision is very important, especially with small samples. In
fact, a large number of respondents is needed for calibration and, conversely,
as many items as possible are needed for an accurate ability estimation. As a
rule of thumb, for a two-parameter unidimensional model, a calibration sample
size of at least 500 subjects and 20 or more items is suggested (see [7], page
105). Obviously, in practice it is not always possible to rely on optimal testing
conditions. For this reason, the introduction of collateral or historical informa-
tion in model estimation assumes a particular importance and one possibility
for improving the parameter estimation would be to include informative prior
distributions.

Bayesian estimation of IRT models through Markov chain Monte Carlo
(MCMC) has become very popular recently (see, among others, [3]; [10]; [21];
[19]) because it allows the simultaneous estimation of item parameters and in-
dividual abilities while overcoming multiple integration problems of marginal
maximum likelihood (MML) estimation and model limitations of conditional
maximum likelihood (CML) estimation (for a review of both methods in IRT,
see [23]). Under this approach, both item parameters and abilities are viewed
as random variables, with a corresponding prior distribution. Therefore, it is
easily possible to introduce informative priors, both empirical or not empirical,
to increase measurement precision and compensate for a small sample size. In
particular, the capability of taking uncertainty into account, i.e. to treat the
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item parameters not as fixed quantities, is fundamental ([24]). Further advan-
tages are the possibility of using Bayesian model comparison techniques, such
as Bayes factors, Bayesian deviance and posterior predictive model checks (for
a recent study see [2]). Despite the use of MCMC was limited in the past due
to its computational intensity, the increasing availability of cheap computing
power stimulated its present diffusion. The introduction of random item mod-
els, where the items are assumed to be random draws from a population with a
specific distribution, is rather recent. This approach was found to be effective
in measuring longitudinal ability change, explanation of item difficulties and
studies on differential item functioning (see [4] and [8]).

In order to increase the measurement precision, the introduction of empiri-
cal prior information was proposed by capitalizing on the relationship between
the parameters of interests and a set of auxiliary variables (e.g. [22]; [17]; [18];
[16]). However, historical data such as data on previous testing rounds or pre-
vious test administrations, consisting in the item responses, the estimated item
parameters and abilities of respondents, can also be introduced in the prior
distributions.

For these reasons, we propose the introduction of historical data through
the approach of power priors for ability estimation in the unidimensional two-
parameter normal ogive (2PNO) IRT model. The power prior distribution is
defined directly in the Gibbs sampler step performing the ability sampling. As
a case study, we take into account response data collected through the admin-
istration of the Hospital Anxiety and Depression Scale (HADS) questionnaire
to a sample of patients.

The paper is organized as follows. Section 2 gives a brief overview of the
approach of power priors. In Section 3, MCMC estimation for IRT models
is reviewed taking into account the 2PNO model, and the new proposal of
introducing the power prior distribution in the ability sampling step is pre-
sented. Section 4 discusses the application of the approach to real data while
concluding remarks end the paper.

2 Power priors

The underlying idea of power priors is to introduce information coming from
historical data in the estimation of the model parameters based on current
data. According to Ibrahim and Chen ([13]), historical data are defined as
data arising from previous similar studies, where the same response variable
and covariates of the current study have been collected. In applied research,
and especially in medical research, it is very common that similar studies
are conducted repeatedly. For example, in clinical trials, data on similar or
slightly modified treatments are often available. Also previous data collected
in longitudinal studies can be classified as historical data, and could be used
to compare and interpret the results based on current data.

Given the current data D = (n,y,X), where n, y, and X are the sample
size, the vector of dependent variables, and the matrix of covariates, respec-



4 Mariagiulia Matteucci, Bernard P. Veldkamp

tively, the likelihood function for the current study can be expressed generally
by L(θ|D) with θ representing the parameters of interests. Analogously, let
D0 = (n0,y0,X0), be the historical data. Given the initial prior distribution
π0(θ|·) for θ before the historical data are observed, the power prior distribu-
tion of θ for the current study can be defined as

π(θ|D0, a0) ∝ L(θ|D0)a0π0(θ|c0), (1)

where 0 ≤ a0 ≤ 1 is a scalar parameter controlling for the influence of the
historical data on the current data, and c0 is the hyperparameter of the initial
prior ([13]). According to this definition, the power prior distribution is the
product of the likelihood function based on the historical data, raised to a
power a0, and the initial prior distribution for θ. The parameter a0 is a relative
precision parameter for the historical data which controls the heaviness of the
tails for π(θ|D0, a0), in fact as a0 becomes smaller, the tails become heavier.
Two limit cases can be distinguished: a0 = 1 where the prior of the current
study corresponds to the posterior of the previous study, and a0 = 0 where no
historical data are incorporated.

By following an hierarchical approach, it is also possible to specify a proper
prior distribution for the precision parameter a0 in order to obtain the so called
joint power prior distribution, as follows

π(θ, a0|D0) ∝ L(θ|D0)a0π0(θ|c0)π(a0|γ0), (2)

where γ0 is a vector of hyperparameters. There are several choices for the
prior distribution for a0, such as beta, truncated gamma and truncated normal
distributions ([13]). Starting from the initial idea of Diaconis and Ylvisaker
([9]), power priors have been developed for regression models ([13]), and more
generally for generalized linear models ([6]).

3 Bayesian estimation via MCMC of IRT models

IRT models (see, e.g., [15]) allow the analysis of categorical response data
through the assumption of one or more latent variables underlying the re-
sponse process. Given a set of k categorial items submitted to a sample of
n subjects, the model is designed to infer the psychometric characteristics
of test items and the individual traits. Depending on the number of model
parameters and the latent dimensionality, these models can be very complex
making the classical estimation based on MML rather difficult due to multiple
integration problems. An alternative approach is represented by simulation
techniques such as MCMC, a general class of methods where the posterior
distribution of interest is reproduced through the simulation of one or more
sequences of correlated random variables. Basically, the advantages of MCMC
are the simultaneous estimation of item parameters and candidate scores, the
incorporation of the dependencies among variables and all sources of uncer-
tainties and the possibility of using Bayesian model comparison techniques. A
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practical problem of MCMC is represented by the computational intensity of
the method. However, thanks to the increasing availability of cheap computing
power, this obstacle is going to be removed, even for large data sets.

In the IRT literature, within the MCMC methods, the Gibbs sampler ([12])
was introduced for the estimation of the unidimensional 2PNO model by Al-
bert ([1]). The 2PNO model is chosen because of its feasibility within Bayesian
estimation, in fact the probit link function allows to use normal-normal conju-
gate families. In the literature, the method was extended to, for example, the
implementation of the Gibbs sampler for the estimation of multidimensional
IRT models ([3]), multilevel IRT models ([10]) and IRT models with general
and specific latent traits ([21]).

In the following, the general algorithm for the estimation of the 2PNO
model is described and a modification of the Gibbs sampler step for ability
estimation is proposed in order to introduce the power prior.

3.1 Gibbs sampler for the 2PNO model

Under the assumption of unidimensionality, i.e. the existence of a single latent
ability underlying the response process, given a binary response variable Yij
for individual i to item j, where Yij = 1 for a correct response and Yij = 0 for
an incorrect response, with i = 1, ..., n and j = 1, ..., k, the 2PNO model ([15])
specifies the probability of a correct response as a monotonically increasing
function of the trait, as follows

P (Yij = 1|θi, αj , δj) = Φ(αjθi − δj) =

∫ αjθi−δj

−∞

1√
2π
e−z

2/2dz, (3)

where θi is the ability of person i, αj and δj are the item parameters for
item j, and Φ is the cumulative normal distribution function. In particular,
the discrimination parameter αj assesses the power of the item to differentiate
respondents of different ability, while the difficulty parameter δj represents the
threshold or difficulty level of the item. Theoretically, discriminations could
take all values in the real line. However, positive values are found in practice,
ensuring that the probability of endorsing an item increases as ability increases.
Difficulties can take values in the set of real numbers and a mean and median
value around zero would ensure a balanced pool between easy and difficult
items in the test.

In order to be used within the Gibbs sampler, the dichotomous response
variables Yij should be modeled as indicators of the corresponding underlying
variables Zij , which are defined to be conditionally independent and identically
distributed as Zij ∼ N(ηij ; 1), where ηij = αjθi−δj . Given a standard normal
prior distribution for θi, i.e. θi i.i.d.∼ N(0, 1), and an indicator function of
positiveness for discrimination parameters as prior distribution for the item
parameters ξ, i.e. P (ξ) =

∏k
j=1 I(αj > 0), where ξ is the vector containing
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the k elements ξj = (αj , δj), the joint posterior distribution (see [1]) can be
expressed as

P (Z,θ, ξ|Y) =P (Z|θ, ξ,Y)P (θ)P (ξ)

∝
n∏
i=1

k∏
j=1

{φ(Zij ; ηij , 1)[I(Zij > 0)I(yij = 1) + I(Zij ≤ 0)I(yij = 0)]}

n∏
i=1

φ(θi; 0, 1)

k∏
j=1

I(αj > 0).

(4)

Distribution (4) has an intractable form, so we should resort to the Gibbs
sampler. The algorithm is applied in order to iteratively sample from the
following conditional distributions, given Y, until convergence:

1. Z|θ, ξ
2. θ|Z, ξ
3. ξ|θ,Z.

The first conditional distribution of the Zij is truncated normal, as follows

Zij |θ, ξ ∼
{
N(ηij , 1) with Zij > 0 if Yij = 1,
N(ηij , 1) with Zij ≤ 0 if Yij = 0.

(5)

The second conditional distribution is obtained by starting from the nor-
mal regression model Zij + δj = αjθi + εij , where εij i.i.d.∼ N(0, 1) and θi is
viewed as regression coefficient. Therefore, the likelihood function of θi follows
the normal distribution with mean equal to the least square estimate of θi,
specifically θ̂i =

∑k
j=1 αj(Zij + δj)/

∑k
j=1 α

2
j , and variance v = 1/

∑k
j=1 α

2
j .

According to the standard normal prior imposed on θi, the posterior distribu-
tion turns out to be normal and parameterized as

θi|Z, ξ ∼ N
(

θ̂i/v

1/v + 1
,

1

1/v + 1

)
. (6)

The third conditional distribution can be derived by following the same ap-
proach and considering the normal regression model Zj = Xξj+εj , where X =
[θ −1], εj is a random sample from N(0; 1), ξj are viewed as regression coeffi-
cients. Given a multivariate normal likelihood Zj |ξj ∼ N((X′X)−1X′Zj ; (X′X)−1),

a vague prior P (ξ) =
∏k
j=1 I(αj > 0) turns out with the following posterior

distribution for the item parameters

ξj |Z,θ ∼ N((X′X)−1(X′Zj); (X′X)−1)I(αj > 0). (7)

Alternatively, by using a normal prior distribution for both discrimination
and threshold parameters αj ∼ N(0;σ2

α), δj ∼ N(0;σ2
δ ) ([3]), the correspond-

ing posterior distribution becomes
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ξj |Z,θ ∼ N((X′X + Σ−10 )−1(X′Zj); (X′X + Σ−10 )−1), (8)

where Σ0 is the variance-covariance matrix for the item parameters.
Starting from a set of starting values, the Gibbs sampler proceeds with the

iterative sampling from the conditional distributions until convergence. The
choice of starting values is not crucial in MCMC but reasonable initial points
may speed convergence.

3.2 Ability estimation for the 2PNO model with power priors

The introduction of a power prior distribution for the ability requires a mod-
ification of the second conditional distribution within the Gibbs sampler de-
scribed in Sect. 3.1. First of all, recall that the conditional distribution for θi
derives from the regression model Zij + δj = αjθi + εij , where θi is treated as
regression coefficient. Our historical data consist of D0 = (k0, Zij0 + δj0, αj0),
where k0 is the number of items in the historical study, Zij0 + δj0 and αj0 are
the observed values for the dependent variable and the regressor, respectively.

Given the scalar precision parameter a0, a general formulation for the power
prior is π(θi|D0, a0) ∝ L(θi|D0)a0π0(θi). The likelihood is again normal and

specifically: Zij + δj |θi, D0 ∼ N(θ̂i0, a
−1
0 v0), where θ̂i0 =

∑k
j=1 αj0(Zij0 +

δj0)/
∑k
j=1 α

2
j0 and v0 = 1/

∑k
j=1 α

2
j0. Assuming a standard normal as initial

prior π0(θi), i.e. θi ∼ N(0, 1), it can be easily shown that, from its combination
with the normal likelihood, the following power prior distribution for ability
can be derived

θi|D0, a0 ∼ N
(
a0θ̂i0/v0
a0/v0 + 1

;
1

a0/v0 + 1

)
. (9)

The last step consists in deriving the corresponding posterior distribution
for ability, to be used as the conditional distribution for θi in the Gibbs sam-
pler step. Taking into account once again the normal-normal Bayesian model,
combining the power prior (9) with the normal likelihood for ability described
in Sect. 3.1, the following posterior distribution can be derived after simple
arithmetic manipulations

θi|Z, ξ, D0, a0 ∼ N
((

θ̂i
v

+
a0θ̂i0
v0

)(
1

v
+
a0
v0

+ 1

)−1
;

(
1

v
+
a0
v0

+ 1

)−1)
. (10)

4 Case study

An empirical application is presented in order to show the effectiveness of
including a power prior distribution in increasing the measurement precision
of the ability estimates when the sample size is small.
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Despite IRT applications are mainly in the field of educational and psycho-
logical measurement, there is an increasing interest in using these models in
the medical field. In fact, data used in this study come from the administration
of the well-known Hospital Anxiety and Depression Scale (HADS) question-
naire to a sample of Dutch hospital patients. The questionnaire investigates
the anxiety and depression state by using a set of 14 items, which are originally
scored on an ordinal scale from 0 to 3, denoting an increasing level of psycho-
logical disease. Here, the item responses were reverse scored, when needed,
and dichotomized so that 0 means “lack of disease” and 1 means “presence of
disease”. Data consist of the item responses at a baseline measurement and
four subsequent repeated measurements. The idea is to use the data at the
third measurement as historical data to estimate the “ability” θ of patients
for the current and last fourth measurement. In this context, ability should be
interpreted as the anxiety and depression state, so that patients with an high
ability estimates are associated to an high level of disease.

The sample of patients at the baseline measurement consists of 58.2% of
males and 34.6% of smokers. The average age is about 72, with the youngest
patient being 52 and the oldest one being 85 years old. At baseline measure-
ment, the average rate of negative responses meaning the presence of disease
was 47.67%. This rate is only slightly reduced at measurement 3 (47.62%)
while at measurement 4 a relevant improvement may be observed in the pa-
tients’ state, in fact the rate becomes 46.17%. By computing the raw score
for all the measurements, a median value of 7 can be observed for the base-
line and the third measurement, while a median value of 6.5 is recorded for
the fourth measurement, meaning again that the psychological conditions of
patients improved over time.

The 2PNO item parameters were estimated in the baseline measurement
on a sample of n = 154 patients. The parameter estimates are reported in
Table 1.

Table 1 Item parameter estimates for the baseline measurement (Sd=standard deviation)

Item α̂j Sdα δ̂j Sdδ

1 1.25 0.26 -0.70 0.16
2 1.04 0.19 0.04 0.12
3 0.78 0.16 0.12 0.11
4 1.57 0.28 0.90 0.17
5 1.35 0.26 -0.31 0.14
6 2.05 0.48 0.61 0.18
7 1.17 0.23 -0.72 0.15
8 0.67 0.19 -1.26 0.16
9 0.90 0.17 0.33 0.12
10 0.71 0.15 0.31 0.11
11 1.62 0.32 -0.64 0.16
12 1.32 0.25 -0.14 0.13
13 1.31 0.28 0.72 0.16
14 0.81 0.18 0.63 0.13
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Fig. 1 Boxplots of ability estimates under different choices for a0

The results show that the α parameters are all largely positive ensuring
a good capability of all items to differentiate among patients with different
levels of anxiety and depression. Moreover, the threshold parameters δ are
rather balanced in terms of positive and negative values ensuring that the
questionnaire contains items with different levels of criticity, i.e. items which
are more or less likely to be answered positively by patients with different
levels of anxiety and depression. The estimated item parameters in the baseline
measurement are then treated as fixed over test administrations.

The focus is instead on investigating the measurement precision of the
ability estimates under different approaches. For this reason, we used the Gibbs
sampler under the 2PNO model to estimate the abilities of n = 123 patients
that responded to the HADS questionnaire at measurement 4. We introduced
historical data on measurement 3 in the form of the power prior distribution
(9) for ability, by specifying different precision parameters: a0 = 0.0, a0 = 0.2,
a0 = 0.5, and a0 = 0.9. In particular, a0 equal to zero means that historical
data are not introduced in the ability estimation for the current study while,
on the contrary, a0 equal to 0.9 means an assignment of a very large prior
weight to historical information. The Gibbs sampler reached the convergence
within all approaches after 5000 iterations (500 burn-in). All analyses were
conducted by using a Matlab program written by the Authors. The output
consists on the entire posterior distribution of the ability for each patient.
The estimated abilities are derived as the expected mean from the posterior
distribution. Box-plots showing the distribution of the estimated abilities for
all patients are reported in Fig. 1. The results clearly show that, when a prior
weight is given to historical data, the range is higher meaning that it is possible
to distinguish patients with different levels of the latent trait deeply.
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Table 2 Summary statistics for the standard deviation (Sd) and the 95% credibility interval
(CI) width of the ability estimates under different choices for a0

a0 = 0 a0 = 0.2 a0 = 0.5 a0 = 0.9

Sd
Mean 0.35 0.29 0.23 0.19
Median 0.32 0.28 0.23 0.19
Min 0.26 0.23 0.20 0.18
Max 0.57 0.40 0.29 0.22
CI width
Mean 1.35 1.12 0.91 0.76
Median 1.24 1.09 0.90 0.75
Min 1.01 0.92 0.80 0.68
Max 2.21 1.55 1.11 0.86

Fig. 2 Kernel density for the ability of a respondent with θ̂ = 0.03 under different choices
for a0

For each ability parameter, the expected a posteriori estimate, the standard
deviation, and the 95% credibility interval were identified. In Table 2, some
summary statistics on the measurement precision (standard deviation and
width of the credibility interval) are reported to summarize the results.

As can be easily noticed, there is a relevant improvement in the precision
of the ability estimates as the prior weight is increased. This is demonstrated
by lower standard deviation and CI width on average.

Lastly, Fig. 2 reports the kernel density for the ability of a respondent with
an intermediate ability which is estimated within all approaches in θ̂ = 0.03.
An increase in the prior weight a0 is represented by an increase in the thick-
ness of the density line. The plot clearly shows that the heaviness of the tails
is reduced as a0 becomes larger and, consequently, there is a noticeable im-
provement in the measurement precision. The large influence of the historical
data is also enhanced by the presence of a small sample (n=123).
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5 Discussion

In this work, the introduction of a power prior distribution based on historical
data is proposed for the ability estimation based on the current data in the
unidimensional 2PNO IRT model. In particular, the power prior is introduced
in the ability sampling step for the Gibbs sampler, within a fully Bayesian
approach. The effectiveness of the method is demonstrated in a case study
by using data coming from a HADS study, where the latent trait of interest
is the anxiety and the depression state of hospital patients. A small sample
was taken into account in order to show the potential of the power prior to
improve the measurement precision when there is lacking information from the
current study. The inclusion of power priors allowed to integrate coherently
data coming from the current study and historical data, by adopting different
weights. An increase in the importance given to the prior weight resulted in an
improvement in the measurement precision of the anxiety and depression state
of patients. However, we should note that the effectiveness of the approach
relies on the quality of historical data.

The paper provided several insights from which draw on some further re-
search. First of all, a sensitivity study should be conducted on different choices
for the relative precision parameter a0. In particular, elicitation of the param-
eter a0 can be driven by meta-analytic arguments by using the connections
between power priors and hierarchical models as underlined in [5]. An alter-
native approach would be to specify a joint power prior distribution for the
parameter of interest and the power parameter ([13]). However, some difficul-
ties have been highlighted in the literature with reference to the specification
of a prior distribution for the a0 parameter (see, [20]). Also, more informative
initial priors could be combined in the definition of the power prior. Another
relevant issue would be to study the integration of multiple sources of infor-
mation in the power prior and the possibility of combining multiple historical
data which can be easily available in longitudinal studies. Finally, from the
IRT model point of view, it would be very important to derive an analogous
approach to introduce power priors in the estimation of item parameters.
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