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ABSTRACT 

In recent years, the measure of regional disparities on poverty and social 
exclusion has received increasing attention by policy makers and this has 
produced a growing demand of sub-national statistical information on income 
parameters. Taking into account the multidimensionality of this phenomenon, 
in the Laeken European Council (Eurostat, 2003) a set of financial poverty 
indicators were suggested to monitor the progress in fighting inequality. In the 
European Union regional statistical information on income can be obtained 
from the European Community Household Panel, a survey designed to provide 
reliable estimates for large regions in the countries. The aim of this work is to 
estimate at sub-national level some of the income indicators suggested in the 
Laeken council. We propose Bayesian small area estimators based on 
multivariate area level models exploiting the correlation between different 
indicators. The tendency of model based estimates to over-shrink towards the 
synthetic component can be a draw-back for policy makers interested in 
capturing regional disparities in financial poverty. To preserve the relationship 
between different indicators and disparities over areas, we adopt a multivariate 
constrained Bayes estimator. The comparison between results based on 
different models allows us to select the estimator realizing the best 
compromise between gain in efficiency and reduction of the over-shrinkage. 
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1. Introduction 

In recent years, the assessment and the reduction of the territorial disparities 
in the distribution of income and the promotion of an homogeneous economical 
development have become a priority for the European Union (EU).  

Since the focus of many policies in this field is regional, the need for reliable 
estimates of poverty indicators at sub-national level rose (European Commission, 
2004). 

In EU the measurement of income and poverty is based on the information 
collected in the European Community Households Panel (ECHP), an annual panel 
survey coordinated by Eurostat (Betti and Verma, 2002; Eurostat, 2002) covering 
a wide range of topics on economic, social and living conditions of households. 
From 2003 the ECHP is being replaced by a new survey, the “European Union — 
Statistics on Income and Living Condition” (EU-SILC). Unfortunately, EU-SILC 
data has not been published yet, at least for Italy. Due to the similarity between 
the two surveys, the proposals defined in this work could be used in the EU-SILC 
context too. 

The ECHP is designed to provide estimates for large areas within countries, 
known as NUTS1 (NUTS is European Union’s “Nomenclature of Units for 
Territorial Statistics”; see Eurostat, 2003 or   

http://europa.eu.int/comm/eurostat/ramon/nuts/home_regions_en.html).  

Since this geographical detail is too large to meet the need of the policy 
makers in measuring income territorial disparities, Small Area Estimation tools 
have to be used to derive estimates of adequate precision at a finer level. Using 
information provided by the last wave of the ECHP survey (2001 year) referred to 
Italy, we propose a model based small area estimation strategy to obtain reliable 
estimates of poverty indicators for the 21 NUTS2 Italian regions. 

Poverty is a multi-dimensional phenomenon which is better described by a 
set rather than a single indicator. Even focusing on financial poverty, to consider 
more than one indicator is advisable. In particular we focus on the most popular 
financial poverty indicators endorsed by the Laeken European Council: the Per-
Capita Income, the Poverty Threshold, the At-risk-of-poverty rate based on a 
regional Poverty Threshold, the At-risk-of-poverty rate based on a national 
Poverty Threshold, the Gini coefficient. 

To take advantage of the sampling correlations between these indicators we 
propose to use estimators based on aggregated multivariate small area models 
(Fay, 1987; Datta et al., 1991; Datta et al., 1996; Ghosh et al., 1996; Rao, 2003), 
that borrow strength not only across areas but also from correlations between 
survey estimates of different parameters. 

Considering the complex survey design and the fact that some of the 
indicators considered are very complicated functions of data, to estimate 
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variances as well as covariance of the direct estimators we adopt a solution based 
on a bootstrap algorithm. 

Small area estimators usually take advantage from covariate information 
known without uncertainty from Censuses or other administrative sources. 
Unfortunately in Italy, Censuses are conducted only once every ten years, and 
fiscal and administrative data are not available timely. For these reasons in this 
work, we introduce as covariate the regional unemployment rate estimates, 
produced by the Italian Statistical Institute. As these survey estimates are 
characterized by their own variability, we devise a method to incorporate it into 
the evaluation of the variability of the estimators we propose. 

As estimation method we adopt a hierarchical Bayesian approach. In this 
field relatively complex models, as the multivariate one, can be easily 
implemented (approximation of posterior distributions via MCMC algorithms is 
computationally feasible when area-level models are carried out). Moreover 
posterior variances provide a natural measure of uncertainty accounting for all 
sources of uncertainty or of variation in the estimation process, as the sampling 
variability of the covariate. The consideration of all this features in a frequentist 
context could make difficult the derivation of the estimators and, above all, of 
their MSE. 

In economic analysis of poverty the usual goal is to obtain estimates of the 
parameters for the whole ensemble of the areas, well representing the distribution 
of the parameters between areas. This request is generally displayed when small 
area estimates are used to develop economical policies at the local level or to plan 
resource allocation on areas when some parameters fall below some specified 
poverty threshold. To this aim we need a set of estimates with good “ensemble” 
properties. Unfortunately, most small area estimators, such as EBLUP or posterior 
means in Hierarchical Bayes models improve the precision of area-specific 
estimates at the price of shrinking estimates, with possible effect of making 
disparities look less than they really are (see Louis (1984), Ghosh (1992), Heady 
and Ralphs (2004), Zhang (2003)). To limit this loss of between-area variation 
and to preserve the covariance between estimates of different poverty indicators 
as close as possible to the covariance distribution referred to the parameters 
distribution, we adopt a multivariate constrained Bayes estimator (Ghosh and 
Maiti, 1999).  

The outline of the paper is as follows. In section 2 the strategy adopted to 
derive direct estimates of the income indicators and their standard error is 
described. Sections 3 and 4 provide a description of the adopted multivariate 
hierarchical Bayes model and of its estimation. In section 5 the small area 
estimators’ performances are compared in terms of efficiency and shrinkage. 
Section 6 gives a description of the constrained estimators and of their 
performance. In Section 7 some concluding remarks and possible further 
development of this work are presented. 
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2. Direct estimates derived from European Household Community 
Panel data 

The target population of the ECHP survey is given by all resident 
households of EU member countries. Although general guidelines were issued by 
Eurostat for drawing the first wave sample, some flexibility was also allowed, so 
some differences in the design across countries exist. As far as Italy is concerned, 
the first wave’s design is a stratified two stage design, in which strata were 
formed grouping the PSUs (municipalities) according to geographic region 
(NUTS2) and demographic size (for more details see Eurostat (2002)). The ECHP 
deals with unit non-response, sample attrition and new entries by providing 
weights and using imputation. As attrition could lead to biased estimates on 
income if it does not appear at random, the effect of poverty on dropout 
propensity has been investigated (Rendtel et al., 2003; Vandecasteele and Debels, 
2004). Results provided by these studies show that for some countries (including 
Italy), this effect disappears under control of weighting variables. 

2.1. The financial poverty indicators 

As anticipated, the aim of this work is to estimate at sub-national level some 
of the financial poverty indicators suggested in the Laeken council. The set of 
selected indicators, each of whom evaluating a particular aspect of the income 
distribution, allows us to obtain a picture of the characteristics of income 
distribution and of poverty’s diffusion and intensity in each region. 

All indicators are obtained on the basis of the “personal equivalent total net 
income”, that in the following will be called simply “income” or “EQ_INC”. It is 
calculated dividing household total net income by equivalent household size 
according to the OECD scale (which gives a weight of 1.0 to the first adult, 0.5 to 
the other persons aged 14 or over who are living in the household and 0.3 to 
children aged less then 14). Consequently, the same equivalent total net income is 
assigned to each person in the same household.  

A brief description of the indicators selected and their meaning is reported 
below, with reference to the i-th region (i =1,…,m). As the ECHP is a complex 
survey, sampling weight has to be considered. 
1. Average of EQ_INC (PCIi). It represents the personal equivalent total net 

income owned by each member of the household under the hypothesis of 
uniform distribution. Hence it does not take into account of the income 
distribution. 

2. Regional at risk of poverty threshold (RPTi). It is 60% regional median of 
personal equivalent total net income. It is an indicator of income distribution. 

3. At risk of poverty rate, regional threshold (ARPR1i). It is the share of 
persons with an equivalent total net income below 60% regional median 
income (RPTi): 
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where “ is ” denotes the sample of region i (i=1, …, m) and wij the sampling 

weight of the j-th unit belonging to the i-th region. It is an indicator of the 
intensity of the poverty. 

4. At risk of poverty rate, national threshold (ARPR2i). It is the share of 
persons with an equivalent total net income below 60% national median 
income (that is the National Poverty Threshold, NPT): 
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Looking at this indicator, the regional intensity of poverty is compared on 
the basis of the same threshold for each region, while ARPR1i provides a 
different information, because regional intensity of poverty is measured with 
reference to different regional thresholds. 

5. Gini coefficient (Gi). It is the most commonly used concentration index. It 
expresses the relationship of cumulative shares of the population arranged 
according to the level of income (1 = poorest person and Ni = richest person 
belonging to the i-th region), to the cumulative share of the equivalent total 
net income received by them. 
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The Gini coefficient measures the income concentration and varies between 
0% and 100%. It is equal to 0% in the case of perfect equality and to 100% in the 
case of maximum concentration (all the regional income is owned by one person). 

2.2. The bootstrap estimation of the direct estimates covariance matrix  

The first step in our analysis is to evaluate the variability associated to direct 
estimates of the five financial poverty parameters previously described. This is 
made difficult by the complexity of the underlying sampling design and by the 
fact that some of the indicators are very complex functions of data (as the two 
rates ARPR1 and ARPR2 which depend on the sample based threshold RPT). 
Moreover, to adopt a multivariate model we are interested in estimating 
covariances as well as variances of estimators. For these reasons we opt for a 
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solution based on re-sampling algorithms. In particular, consistently with some 
other work in this field (Betti and Verma, 2004), we propose a bootstrap 
estimation strategy. 

Standard bootstrap theory for stratified multistage designs (see Shao and Tu, 
1995 chap. 6) requires that at least two PSUs are selected from each stratum either 
with replacement or without replacement provided that the sampling fraction is 
negligible. 

In this case the bootstrap sample is obtained drawing a with-replacement 

random sample of 1hu   PSUs out the hu  sampled from each stratum ( 1,...,h L  
2hu  ). The bootstrap design weights are given by: 

( ) ( )
1

h
hzj hzj hz

h

u
w b w n b

u



        (1) 

where hzjw  is the survey weight of secondary sampling unit j within PSU z in 

stratum h and ( )hzn b  is the number of times that PSU ( )hz  is selected into the 
bootstrap sample b. 

For the particular case of one-stage stratified designs the bootstrap sample is 
obtained by drawing L independent random samples of size 1hn   (where nh is 

the sample size in stratum h) from each stratum. Survey weights hjw  1,..., hj n , 

1,...,h L  are then modified similarly to (1): 

( ) ( )
1
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hj hj j
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n



            (2) 

where ( )jn b  is the number of times in which unit j within stratum h is included 

into the bootstrap sample. 

The discussed assumptions are not met in the ECHP case, because the 23 
large municipalities are sampled with probability 1, that is they form an auto-
representative or certainty stratum. 

The ECHP sampling design (for the first wave) can then be represented as 
mixed: households residing in large cities are stratified according to municipality 
and a (one-stage) stratified sample is drawn. The rest of the population is sampled 
according to a stratified two stage design in which PSUs are sampled without 
replacement but with negligible sampling fraction.  

We propose to treat the two parts of the sample separately, extracting two 
sub-samples for each bootstrap replicate. In the first, secondary sampling units are 
selected according to a stratified design, and in the second municipalities are 
selected. Survey weights are modified according to (1) and (2) respectively. The 
two bootstrap samples are then merged, and a unique bootstrap samples is formed. 
This sampling procedure is replicated 500R   times. 
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Let’s denote with θ  the vector of the population quantities of interest and θ̂  
its design consistent estimator (described before) The weights defined in (1) and 

(4) are used to obtain the bootstrap estimate r
*θ ; the variance estimator of θ̂  is 

obtained by: 

  1 * * * *

1

R
BOOT

r r
r

R



    θ θ θ θ         (3) 

where       * 1 *

1

R

r
r

R



 θ θ .  

As it represents ad-hoc extension of a known estimator, formal results on the 
statistical properties of (3) are not available. By the way, for a survey with a 
similar design we found the estimates obtained by (3) consistent to those obtained 
by the linearization method (Ferrante et al., 2004).  

2.3. Direct estimates 

Regional direct estimates, their Coefficient of Variation (CV) and the sample 
dimensions associated to those estimates are reported in Table 1. 

Focusing on the estimates’ reliability, we may observe how it varies among 
different indicators. The estimates of ARPR1 and ARPR2 are the least efficient 
(the CV are on average equal to 0.25 and 0.28 respectively). This is probably due 
to a further source of sampling variability of the first two indicators, based on the 
estimates of RPT (at regional or national level). On the other hand, the estimates 
of PCI and RPT are the most reliable, and may be considered sufficiently efficient 
for various regions.  

As already noted, to estimate a multivariate small area model we need the 
sampling correlation matrix between the different poverty indicators. From the 
Table 2, where the estimated correlation coefficients averaged over the areas are 
reported, we note that the correlation is large in almost all cases. This features 
should make multivariate model based estimators more effective in reducing the 
variability of direct estimators than those based on simpler univariate models. 

 

 

 

Table 1. Direct estimates and their coefficients of variation 
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Region 
PCI RPT ARPR1 ARPR2 G 

n 
Estimatea CV Estimatea CV Estimateb CV Estimateb CV Estimateb CV 

Piemonte 25.32 0.03 14.26 0.06 12.43 0.23 7.51 0.36 23.60 0.10 591 

Valle 
D'Aosta 25.20 0.07 13.74 0.03 13.67 0.33 13.18 0.34 28.34 0.10 239 

Liguria 23.08 0.06 12.94 0.05 11.49 0.29 9.43 0.28 22.18 0.10 441 

Lombardia 26.98 0.03 14.92 0.03 15.76 0.17 6.28 0.35 25.03 0.07 1,515 

Bolzano 25.12 0.10 13.82 0.06 12.83 0.39 9.73 0.41 26.12 0.11 369 

Trento 22.00 0.07 13.81 0.09 18.63 0.43 16.98 0.52 21.66 0.20 201 

Veneto 26.47 0.05 14.01 0.02 12.88 0.14 6.39 0.17 28.52 0.09 887 

Fr.-V. 
Giulia 26.44 0.03 14.56 0.03 5.66 0.45 2.71 0.34 17.99 0.10 228 

Em. 
Romagna 27.95 0.04 15.51 0.03 11.14 0.17 4.47 0.24 23.70 0.07 707 

Toscana 24.32 0.05 13.92 0.06 14.64 0.28 9.09 0.56 23.59 0.15 657 

Umbria 22.81 0.06 13.28 0.07 8.92 0.23 6.87 0.41 20.95 0.06 482 

Marche 24.87 0.04 13.44 0.09 11.37 0.49 7.10 0.21 26.45 0.08 495 

Lazio 19.92 0.05 10.91 0.05 19.55 0.17 24.62 0.17 30.54 0.08 849 

Abruzzo 21.58 0.03 12.42 0.02 14.55 0.38 14.55 0.40 24.62 0.13 601 

Molise 17.62 0.04 9.36 0.04 12.15 0.12 26.84 0.20 27.32 0.05 412 

Campania 16.16 0.02 8.79 0.03 16.70 0.15 34.18 0.10 27.42 0.04 1,837 

Puglia 16.49 0.06 8.64 0.08 20.78 0.15 37.70 0.16 32.61 0.06 1,337 

Basilicata 19.37 0.10 10.56 0.12 20.30 0.29 26.60 0.36 29.32 0.09 696 

Calabria 15.77 0.11 8.04 0.07 18.02 0.15 43.72 0.13 31.92 0.12 561 

Sicilia 15.58 0.07 7.74 0.06 18.56 0.09 41.28 0.11 32.62 0.04 1,614 

Sardegna 16.20 0.09 8.26 0.11 18.77 0.13 39.46 0.13 32.26 0.07 1,224 

Min 15.58 0.02 7.74 0.02 15.76 0.09 2.71 0.11 17.99 0.04 201 

Max 27.95 0.11 15.51 0.12 20.78 0.49 43.72 0.56 32.92 0.20 1,837 

Average  0.06 0.06 0.25 0.28  0.09  

a in thousands of euro, b in percentage 

Table 2. Estimated correlation matrix (average over the areas) 

 PCI RPT ARPR1 ARPR2 G 

PCI 1 0.590 0.486 0.447 0.396 

RPT  1 0.610 0.618 0.612 

ARPR1   1 0.384 0.413 

ARPR2    1 0.756 

G     1 
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The basic data to obtain model based estimates consists in the direct 
estimates (D) of the five parameter above presented, 

 ˆ ˆ ˆˆ ˆ ˆ, , 1 , 2 ,
T

i i i i i iPCI RPT ARPR ARPR Gθ , and the associated covariance matrix 

iΨ . For computational convenience it is useful to rescale all indicators in order to 

express them in about the same scale. For this reason we consider PCI, RPT in 
thousand of euros, the ratios and G in percentage. 

3. The multivariate hierarchical Bayes model 

To estimate the financial poverty indicators at NUTS2 level, we propose 
estimators based on multivariate area level models that relate small area survey 
estimates to area specific covariates and borrow strength not only of areas but also 
of the sampling correlation between survey estimates of different parameters. 
Similar models are considered in Datta et al., 1996 and in Ghosh et al., 1996. 

Let  1,..., ,...,
T

i i ik iK  θ  be the vector of K parameters of interest for the i-

th small area (i=1,…,m) and ˆ
iθ  the corresponding vector of survey estimates. iθ  

and ˆ
iθ  are linked by the following sampling model: 

ˆ
i i i θ θ e                                                             (4) 

where the sampling errors  1,..., ,...,
T

i i ik iKe e ee are independent K-variate 

normal,  ,K iN 0 Ψ  with mean 0, the null vector, and known covariance matrix 

iΨ  conditional on iθ . Consistently with the bootstrap estimates described in 

previous section we assume  * *T
i iE i i  e e 0 . Normality of ie  is justified 

invoking central limit effects. 
The iθ ’s is related to area specific auxiliary data through the following 

linking linear model: 
+i i iθ X β v                                    (5) 

where the area-specific random effects iv  are independent  ,KN v0 Σ , iX  is an 

K KP matrix of the P covariates, β  is an KP-vector of regression coefficient 

and  2
,v v kdiag Σ  a matrix containing the variances of the area-specific 

effects (k=1,…,K). Normality of iv  is chosen for simplicity. In fact departures 

from Normality of random effects are difficult to check (see Sinharay and Stern, 
2003) and, moreover, models with non-normal random effects are more 
complicated and difficult to estimate, particularly in the multivariate case. 
The formulas (4) and (5) can be combined in: 

ˆ
i i i i  θ X β v e  



596                                      E. Fabrizi, M. R. Ferrante, S. Pacei: Estimation of Poverty… 

 

 

Our model can be re-written in a more compact notation: 

(a)     ˆ | ,
ind

i i K i iNθ θ θ Ψ  

(b)     , ,
ind

i K iNv vθ β Σ X β Σ  

In the following the prior specification for the described model is reported: 

     2 2
, ,, v k v kf f f β β ,   1,...,k K  

1(0, )KPN aβ I  

 , 2(0, )v kf Unif a   

where 1 2,a a  are large with respect to the scale of data, thus defining “diffuse 

proper priors”. We select conjugate priors for the regression parameters in order 

to simplify Markov Chain computation and we choose 2
,v k  as uniform to avoid 

convergence problems of the Gibbs sampler. Moreover we adopt diffuse priors to 
reflect the lack of prior information about the model parameters. 

For comparison purposes and mainly to evaluate possible advantages 
associated to a lower dimension of the parameter space, we consider a special 

case of the outlined model for which 2 2
k   (MM1). This is made possible by 

the reduction of all indicators on a similar scale. The unrestricted model will be 
referred to as MM2. We also consider separate normal univariate Fay-Herriot 
models for each indicator: 

 
 

( )

2

ˆ ,

,

ik ik i kk

ik i k

N

N x

  

  




 

Note that these univariate models (UM) overlook the sampling correlation 
existing between different indicators calculated for the same area. 

As covariate we use the estimates of regional unemployment rate, obtained 
from the Italian Labour Force Survey. The covariate is the same for each of the 
parameters of interest because of its good or acceptable predictive power in each 
case (R2 ranging from 0.36 to 0.88). As the covariate is a survey estimate, it is 
characterized by sampling variability that could increases the variance of the final 
estimates. In the HB approach this further source of uncertainty can be simply 

taken into account modelling the iX  as random, being   ˆ,i i iN VX X X  , 

with  iV X  calculated according to Istat (2003). 

4. The small area model based estimates 
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The approximate posterior distributions of the parameters of the proposed 
models and of the vector iθ  are obtained using Monte Carlo integration via the 

Gibbs sampling algorithm. In particular we used the MCMC software WINBUGS 
(Spiegelhalter et al., 1995). We run three parallel chains with 25,000 runs each, 
with starting point drawn from an over-dispersed distribution. The convergence of 
the Gibbs sampler is monitored by visual inspection of chains plots and of 
autocorrelation diagrams and by means of the Gelman and Rubin statistic 
(Gelman and Rubin, 1992). Although all models show fast convergence according 
to these monitoring tools, we discard the first 5,000 iteration from each chain. In 
multivariate models the quite strong autocorrelation of chains is reduced by 
thinning the chain (1 every 3 values are considered for posterior summaries). To 
check the adequacy of the specified models via posterior predictive checks, we 
consider the following discrepancy measure (Datta et al., 1999): 

   2
1

( )
1

ˆ ˆ, ,
m

i kk ik ik
i

d   



 θ θ Ψ  

The fit of the model result to be adequate on average for all the three models, 
the posterior predictive checks ranging between 0.20 and 0.68, with the most 
suitable values for MM2. 

The posterior means  ˆ| ,HB
i i i iEθ θ θ Ψ  are taken as estimators of area 

parameters and the posterior variance  ˆ| ,i i iV θ θ Ψ  as uncertainty measures. 

5. The Bayes estimators performance 

5.1. The gain in efficiency 

Let îkt  and îks  be the estimates obtained from two different estimators, t 

and s, referred to the i-th area and the k-th parameter (k=PCI, RPT, ARPR1 
ARPR2, G), being compared (t,s=D, UM, MM1, MM2). As measure of the 
improvement precision we propose the percent reduction of the Coefficient of 

Variation realized by the îkt  versus the îks , evaluated on average on areas 

( , /k t sACVr ): 

,
, /

,

100 100k t
k t s

k s

ACV
ACVr

ACV
   

where  , ,1

1 ˆm

k t ik ti
ACV CV

m



   and    ,

,
,

ˆ
ˆ

ˆ
ik t

ik t
ik t

MSE
CV





  (similarly for s 

estimator).  
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Table 3 contains the results concerning , /k t sACVr  for the five parameters 

being estimated. 

Table 3. Average Coefficient of Variation reduction (ACVr)  

 PCI RPT ARPR1 ARPR2 G 

UM/D 20.2 22.8 40.9 16.1 23.5 

MM1/D 41.2 39.9 47.4 48.5 40.1 

MM2/D 38.5 40.0 45.2 34.4 37.0 

MM1/UM 26.3 22.3 11.0 38.7 21.7 

MM2/UM 23.0 22.3 7.4 21.8 17.7 

As expected, all the model based estimators lead to a substantive gain in 
efficiency with respect to the direct one (D), the ACVr ranging from a minimum 
of 16.1% to a maximum of 48.5%. What is more interesting, multivariate model 
based estimators perform always better than the univariate one leading to a 
relevant further reduction of the coefficient of variation (from 7.4% to 38.7%).  

We note that reduction of the coefficient of variation achieved by the 
multivariate models is noticeable in particular for the two indicators whose direct 
estimates show the greatest variability (ARPR1 and ARPR2). This result is 
probably due to the large correlation (Table 2) that estimates of both ARPR1 and 
ARPR2 show with those poverty indicators having a lower level of sampling 
variability (a.e. RPT and G). More in detail the use of multivariate models is very 
advantageous for ARPR1 estimates. In this case, in fact, due to the low predictive 
power of the covariate, the univariate model leads to a limited coefficient of 
variation reduction (ACVr=16.1%). Finally, the two multivariate model based 
estimates (MM1 and MM2) show comparable performances for all indicators 
except for ARPR2, where MM1 is slightly better. 

In summary, multivariate models seem preferable than the univariate one on 
the whole and it is interesting to note that the consideration of direct estimates 
showing a low variability (as PCI and RPT) can be very helpful in a multivariate 
context. In fact these estimates can “give strength” to the estimates less reliable by 
means of their sampling correlation. 

5.2. The evaluation of the shrinkage 

As anticipated in the introduction, model based estimators such EBLUPs and 
Bayes estimators tend to “shrink” estimates towards the synthetic component, 
introducing bias. The loss of between-area variation of model-based estimates 
with respect to the true variance of underlying population parameters is known as 
over-shrinkage. In particular, as Ghosh (1992) pointed out, posterior means of 
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Hierarchical Bayes models over-shrinks estimates toward the prior expectation. 
On the other hand, direct estimates tend to show a larger variance than those of 
population parameters. With the purpose to select those model based estimators 
realizing the best compromise between gain in efficiency and capability to limit 

the shrinkage, at first we compare the model based estimator t, îkt  (t=UM, MM1, 

MM2), with the direct ones, îkD , calculated according to the methodology 

described in section 2. The comparison is carried out for k-th parameter on 
average on areas using ,k tASHR  an indicator based on the relative absolute 

difference between direct and model based estimate, that provides an evaluation 
of the shrinkage connected with the last estimator: 

, ,1

1 m

k t ik ti
ASHR SHR

m 
   

where ,

ˆ ˆ
100

ˆ
ikt ikD

ik t

ikD

SHR
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


 . 

To evaluate the impact of the model based small area estimators on the 
variance between areas, we propose to use the following indicator of Variance 
Reduction (VARr) based on the Ratio of the variance referred to the small area 
model based estimates h, and the same variance calculated on direct estimates D: 
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.
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 


  (similarly for the D estimates), being .
ˆ

kt  

the average over areas. 

Values of the average shrinkage indicators (ASHR) and of the Variance 
Reduction (VARr) are reported in the Table 4.  

 

 

Table 4. Average shrinkage (ASHR) and Variance Reduction (VARr) of the model 
based estimates respect to direct ones 

  PCI RPT ARPR1 ARPR2 G 

ASHR 

UM 2.2 2.1 13.5 9.4 4.6 

MM1 6.9 6.8 19.8 28.6 8.3 

MM2 4.3 4.3 15.2 17.0 6.4 
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VARr 

UM 6.5 8.1 58.6 23.1 32.9 

MM1 52.1 45.3 92.7 76.7 74.8 

MM2 36.1 29.8 82.6 43.4 64.8 

The higher the ASHR are, the more relevant is the shrinkage and then the 
bias connected to the model based estimates. In other words, thinking to the small 
area estimator as a composite estimator, that is a linear combination between a 
direct and a synthetic estimator, higher values for ASHR imply an higher weight 
given to the synthetic component. At first we note that on average for all the 
poverty indicators, MM1 leads to the greatest shrinkage, followed by MM2 and 
UM, being the former more flexible than MM1 and the latter more close to direct 
estimates. The difference between direct and model based estimates results more 
relevant in the case of the two poverty rates, ARPR1 and ARPR2: ASHR’s values 
respectively ranges from 13.5% (UM) to 19.8% (MM1), and from 9.4% (UM) to 
28.6% (MM1). The difference with the direct estimates appears much less 
important for the other parameters, where ASHR does not overcome 10%. 

As far as the reduction of the variability between-areas is concerned we note 
that, as expected, estimates obtained from UM, MM1 and MM2 show always a 
reduction of the variance between areas respect to the direct one. In particular 
MM1 produce the greatest variance reduction for the estimates of all the 
considered parameters, the VARr  ranging from 45.3% to 92.7%.  

In summary, the results obtained show that small area estimator based on 
MM2 realizes the best compromise between the gain in efficiency and the control 
of shrinkage. However, even for MM2 estimates the reduction of the variance 
between areas remains substantive. Considering that, we decide to tempt to 
improve the performance of the MM2 estimator affording the partially solved 
problems of the over-shrinkage by means of constrained estimators. 

6. The multivariate constrained Bayes estimators 

In dealing with the over-shrinkage we need to consider that our aim is to 
obtain a picture of a multidimensional phenomenon. In other words, beside the 
aim to obtain reliable estimates of each of the five parameters considered, we 
wish that variance between areas and also covariances between parameters would 
close as much as possible to those referred to the distribution of parameters.  

To control shrinkage, Bayes estimators can be modified by making the 
empirical distribution function of the Bayes estimates close to the empirical 
distribution function of the unknown parameters. In this context, Ghosh (1992) 
proposed, under general assumptions, the “constrained Bayes estimators” 
obtained by matching the first two moments from the histogram of estimates with 
the corresponding moments from the posterior histogram of m normal means. 
Since we are estimating a multivariate parameter we adopt the multivariate Bayes 
constraining procedure that Ghosh and Maiti (1999) proposed by extending the 
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univariate one. Let    1 ,....,B B
me x e x  the vector of the Bayes estimates based on 

data x under any quadratic loss. Note that  B
ie x  represents the vector of the 

MM2 estimates for the i-th NUTS2. Let us write    | B
i iE θ x e x , i=1,…, m 

for simplicity and let 
1

1 m

i
im 

 θ θ . We get that: 
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The objective is to find 1,..., mt t  which minimize   
1

m
T

i i i i
i

E


 
  

 
 θ t θ t x  

subject to the following two constraints: 
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The multivariate constrained Bayes estimator derived from this procedure is: 
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with the following associated measure of uncertainty matrix: 
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To evaluate the behaviour of the constrained estimates in comparative terms 
respect to the unconstrained MM2 estimates, we consider ratios already used in 
sect. 5.1 and 5.2. In Table 5, values of ASHR, of VARr and of ACVr referred to the 
multivariate constrained model based estimates (MM2C) respect to the direct ones 
are reported. 

Table 5. Average Shrinkage (ASHR), Variance reduction (VARr) and Average 
Coefficient of Variation reduction (ACVr) of the constraint model based 
estimates (MM2C) respect to direct ones (D) 

 PCI RPT ARPR1 ARPR2 G 
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ASHR 4.1 4.4 11.5 16.0 5.8 

VARr 32.8 27.3 63.6 39.4 53.2 

ACVr 35.2 34.9 38.1 32.3 33.0 

The average shrinkage indicator (ASHR) referred to the constrained 
estimates (Table 5) shows values comparable to those observed for unconstrained 
MM2 estimates (Table 4). Looking at each poverty indicator, we note that 
ARPR1 estimates are influenced by the constraints more that others indicators, the 
shrinkage realized by MM2C being less heavy than that one carried out by MM2 
(about 11% for the constrained and 15% for the unconstrained).  

As expected, looking at the variance reduction we note that, in general, it is 
slightly lower than that realized by the MM2 estimates. Even in this case for 
ARPR1 a more marked influence of the constraining can be observed, being VARr 
equal to 63.6% for MM2C and 82.5% for MM2 estimates. The results singled out 
for each region (Fig. 1) confirm that constrained and unconstrained estimators 
have very similar behaviour, except for ARPR1, which show a not negligible 
difference between them for most of the regions. 

Regarding the gain in efficiency, from the comparison of values on average 
reported in Table 3 (MM2/D row) with those reported in Table 5 we can note that, 
in general, the constrained estimates produce a reduction of the coefficient of 
variation (ACVr) slightly lower than that connected to MM2. Again this 
difference is more marked for ARPR1, being the ACVr connected to MM2 equal 
to 45% and that realized by MM2C equal to 38%. Considering regional values 
(Fig. 2), both model based estimates realize a marked coefficient of variation 
reduction respect to the D estimator in almost all regions. Moreover MM2C 
performs worse than MM2 for some regions. For completeness also the 
coefficient of variation of the standard Fay-Herriot model (UM) is reported in 
Fig.2. 

This different behaviour of ARPR1 is likely due to the weak predictive 

power that the covariate has on it ( 2 0.36R  ) and to the very low variability 
between areas of direct estimates, giving both these features major power to the 
constraint. On the other hand the constraining has a limited impact on estimates 
where the covariate is a good predictor. 
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Figure 1. NUTS2 regional estimates 
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Figure 2. Coefficient of variation for NUTS2 regions  
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Finally, even if the MM2C estimates show a minor reduction of the 
coefficient of variation respect to MM2, it realizes the best compromise between 
gain in efficiency respect to the direct estimator and the need to limit the 
shrinkage respect to the standard Fay-Herriot model. Hence, we judge that it 
represent the best solution to obtain the NUTS2 estimates of the five poverty 
indicators considered. Results show that the estimation strategy adopted allows us 
to improve considerably the estimates reliability, assuming the coefficient of 
variation of the estimates acceptable values for almost all regions. 

7. Concluding remark and further development 

In this work we dealt with the problem of estimating a set of financial 
poverty indicators by means of Hierarchical Bayes estimators derived from a 
multivariate normal model. The results are encouraging, since the multivariate 
model adopted allow for a large gain in efficiency when compared to univariate 
Fay-Herriot estimators. Moreover, we note that the consideration of direct 
estimates showing a low variability (as PCI and RPT) can be very helpful in a 
multivariate context. In fact these estimates can give strength to the estimates less 
reliable by means of the sampling correlation between estimates.  

As expected, estimates derived from the multivariate model adopted show 
more shrinkage than those obtained from the Fay-Herriot one. As we need to 
obtain suitable estimates for the analysis of regional disparities, we dealt also with 
the problem of over-shrinkage. In particular we implemented a multivariate 
constraint on the first two moments of the ensemble of HB estimates following to 
a methodology proposed by Ghosh and Maiti (1998). The impact of constraining 
varies across parameters and seems to be larger where the covariate used in the 
model has weaker predictive power. 

Compared with the standard Fay-Herriot model, multivariate constrained 
Bayes estimators realize a very good compromise between the gain in efficiency 
and the need to limit the shrinkage.  

By the way many problems are left to be further investigated. At first, the 
behaviour of the so called “triple goal estimators” (Shen and Louis, 1998) or of 
the “simultaneous estimators” proposed by Zhang (2003), could be evaluated as 
alternative solutions to deal with over-shrinkage. Moreover, as the ECHP is a 
panel survey, the suggested estimator could be modified to take advantage also of 
the repetition of the observations on the same areas for successive waves which 
may eventually lead to a further increment of the reliability of the small area 
estimates. 

Regarding the estimated parameters, in this work we focused on some 
Laeken indicators which seemed to us able to provide a first picture of the 
characteristics of income distribution and of poverty’s diffusion in the regions of 
our country. This picture could be widened by considering other financial poverty 
indicators, maybe giving to the multivariate model more power in improving 
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reliability estimates. At the end, the strategy proposed could be extended to all the 
European regions. 
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