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2Dipartimento di Matematica, Università di Bologna
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Supplementary Material

This appendix is used to explain the technical specifications and computational details for both the data analysis
and elaboration (first section) and the theoretical mathematical part on statistical mechanics (second section).

Data Analysis and Elaboration

To investigate the functional dependence of the quantifiers on γ, we first tested the time series of the parameters
involved. Starting from the raw data, we consider the average values of each quantifier Q and of the migrant’s density
γ in the two databases as a function of the quarters t. The result is shown in Supplementary Fig. S1a. The newborns
with mixed parents display a very regular linear increase over time. The mixed marriages behave similarly but have
an added seasonal periodicity as expected from cultural behavior. The two labor quantifiers exhibit a more complex
behavior over time. The two lower panels of Supplementary Fig. S1a show how the density of immigration increases
over time in the two databases. Using those functions γ(t) and inverting them in t(γ), we can plot each quantifier
Q(t) in terms of γ, thereby obtaining Q(t(γ)) represented in the four panels of Supplementary Fig. S1b.

As we can see, apart from a vague functional dependence on the newborns, all of the other quantifiers display erratic
behavior and escape a functional law. It is evident that the time fluctuations through which these graphs are obtained
contain spurious external effects. To explain better this point a parallel with thermodynamics is very enlightening:
the derivation of the law that relates magnetization and temperature from time series would be extremely difficult
in a condition in which energy is pumped into a ferromagnet from a random source. In fact we should first derive
the laws of magnetization with time and temperature with time. Then we should eliminate the time variable from
those data. Large fluctuation would make the data useless. Moreover when those fluctuations seem to be absent (the
newborns case), the two processes of marginalization over time and inversion yield a very poor output. The bottom
line is that the time series approach is not the suitable method for obtaining the functional dependence we are looking
for since it loses relevant information and propagates spurious external effects.

To fully use the rich information of the two databases and extract from them the functional dependence of the
quantifiers in terms of γ, we first proceed by identifying the empirical probability distribution ensemble for each
dataset. We do so by merging into a unique catalogue the data entries in each database, regardless of their coordinates
in space and time, and ordering them by increasing values of γ. The observed time windows cover a time scale much
larger than the typical time scales involved in the dynamics of the jobs market or marriages/newborns that we focused
on. Analysis of their density versus γ (Supplementary Fig. S2) shows that, for both datasets, only about one percent
of the data are found for γ ≥ 0.4. To efficiently model the macroscopic behavior of the integration quantifiers with
robust statistics, we limit our study below that threshold. We also notice that data density decreases for small γ.
The reason for this is that our observation window started when the migration phenomena was already running and
the density of migrants in Spain was larger than zero. The immigrant densities appear to have tails with power law
distribution. For the marriages and newborn dataset, as highlighted in the inset, we find for γ ≥ 0.2 the law µ(γ) ∼ γδ
with δ = −3.241.

Supplementary Figure S3 shows the raw data clouds for each quantifier. An apparent anomaly is the presence in the
lower left panel of horizontal lines where the data agglomerate. A further analysis shows that their values are due to
the fractions with small denominators, that is, municipalities where the total number of marriages within the observed
quarter does not exceed the few units. The explanation of this anomaly is found in the strong cyclical behavior due
to seasonal preferences about the appropriate time for marriage in Spain (see also Supplementary Fig. S1). People
in Spain prefer to marry in the summer rather than in the winter, which is unsurprising. Aggregating the data from
quarters to years would wash away the anomaly. Nevertheless, as we explain below, it turns out that roughening the
data in this way is not necessary, and it is possible to keep the dataset as it is, and hence preserve its richness.
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Since we are interested in the quantifier’s averages as functions of γ and since all quantifiers are ratios, there are two
possible ways of computing the averages. For a given bin of γ one can compute 1) the statistical average of the ratios,
or 2) the ratio between the statistical average of numerators and the statistical average of the denominators. The
first is the usual mean of the ratios and the second is their global mediant. As will be explained later the difference
in the results obtained from the two distinct procedures is in the range of 0.1 to 0.2 percent (see Supplementary Fig.
S4) and they can consequently be considered as effectively equivalent.

We then proceed by grouping the data into bins over γ in which the averages can be evaluated. We found that 15
to 20 bins optimizes the job market dataset, while 35 to 40 optimizes the dataset on marriages and newborns. For
the binning criteria, we tested the method of constant information and that of constant bin width. The advantage of
the first criterion is a constant robustness quality across all bins. Clearly, with this approach, the width of the bin
will vary over γ (their width increases at high values of γ due to the data density decrease reported in Supplementary
Fig. S2). This can be avoided if we instead use constant bin width. However, with this approach the tradeoff is
that as γ increases, the amount of data inside each bin may diminish (in particular for γ ≥ 0.4). As we confined our
analysis to γmax = 0.4 for robustness requirements, the two criteria produce essentially the same results as one can
see in Supplementary Fig. S4.

Figure 3 (upper panels) in the main text shows the outcome of the average criteria and coarse graining procedure
for Jp and Jt. The dot’s plots are made of 17 bins. On each bin the dot represents the average value of 200 data. On
each figure the black curve is the free fit, that is, the curve of type cF γ(1 − γ) best fitting the experimental points.
Their goodness of fit, reported in the relative captions, is estimated as R2

Jp(γ)
∼ 0.985 and R2

Jt(γ)
∼ 0.963.

Figure 3 (lower panels) in the main text shows the results for Mm and Bm. In this case, the plots of the dots are
made of 38 bins and each of them comes from 700 points. In this case, the free fit has a much lower goodness of fit:
R2
Mm(γ) ∼ 0.855 and R2

Bm(γ) ∼ 0.789. In particular, the data show an anomalously high growth rate for small γ and

a low one for large γ. For this reason we tested another family of curves, whose genesis we aim to explain through
statistical mechanics in the next sections, and ultimately account for interactions among persons. Remarkably, all of
these curves scale as cI

√
γ(1− γ)θ(γ−γc) where θ is the step function. The agreement of the fit with the experimental

data is clearly shown by the values R2
Mm(γ) ∼ 0.992 and R2

Bm(γ) ∼ 0.984. In the above formula, one may note the

classical exponent one half typical of theories that account for imitative interaction. The presence (or lack) of a
critical value γc is determined by the underlying social network. It is known that in ferromagnetic theories network
dilution eventually decreases γc to zero, without affecting the critical exponent for a large class of social topologies
[33][35][36][37][38][39][40][41][42]. Accordingly, we found empirical values γc ∼ 10−3 as reported in the caption.

For each quantifier Q of Figure 3 the single dot, representing the average within the bin, can be obtained using
two averaging process (mean and mediant) and two kind of binning criteria for γ (bins with constant information and
with constant width). In Supplementary Fig. S4 we test the robustness of our findings against these possible choices.
Therefore, for each quantifier Q in the γ-bin we compute QA, the mean value using binning with constant information,
QB the mean value using binning with constant width, QC the mediant with constant information binning and QD
the mediant with constant width binning. In Supplementary Fig. S4 we represent the relative errors (|Qi −Qj |/Qj ,
i 6= j i, j ∈ {A,B,C,D} ) and absolute errors (|Qi−Qj |, i 6= j i, j ∈ {A,B,C,D}) as a function of γ made by comparing
in couples all this possible choices for mixed marriages and newborns from mixed couples. Note that the relative
errors are expected to increase at high values of γ, while in that region they are reduced with respect to those for
smaller γ by at least one order of magnitude in all observables. The apparent increase of the relative error sizes at
small γ is due instead to a ratio between small numbers and is a simple and harmless consequence of numerical noise
as confirmed by the behaviors of their absolute values.

For completeness we also analyse the quantifier fluctuations from the averages, whose results are shown in Sup-
plementary Fig. S5. To obtain those distributions, we proceed as follows. Let us focus on a concrete example, e.g.
the permanent jobs reported in the main text in Fig. 1 (green plot) and the corresponding quantifier’s fluctuations
shown in Supplementary Fig. S5 (green plot). We take each dot in the first picture (representing the average of Jp
within its corresponding ∆Γ bin) to be the center of the (green) distribution reported in Supplementary Fig. S5. Of
course, within the chosen ∆Γ bin of Fig. 1, not all the data values contributing to obtain the average will be exactly
the value of the mean (represented by the green spot), but some one will be smaller (and fall on the right in the
corresponding panel of Supplementary Fig. S5) and some other will be bigger (so to fall on the left). Summing on all
the deviations from the corresponding means of each spot in the same (green) plot of Fig. 1, when all the points have
been investigated, the green histogram of Supplementary Fig. S5 is then finished and we move to another quantifier.
Still in Supplementary Fig. S5, beyond the reported bare results, the latter are also fitted with standard distribution
laws as Gaussian, Logistic, Gumbel, and Cauchy (the goodness of fits are reported in the captions). The rescaled dis-
tribution for Mm(γ) is slightly asymmetric to the right: the Gumbel distribution (compared with Logistic and Gauss
distribution) gives the best fit. The rescaled distribution for Jp(γ), Jt(γ) and Bm(γ) is more symmetric: in these
cases the Logistic distribution (compared with Cauchy and Gauss distribution) yields the best fit. In the insets the
normal probability plots for the rescaled quantifiers show that the tails of the sample distributions are non-Gaussian.
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Statistical Mechanics Methodology

This section is devoted to Methods, in particular to fill the gap between the empirical laws and the theoretical
apparatus of statistical mechanics, especially devoted to the readers who are closer to the hard sciences. Our aim is
the introduction of a mathematical model based on individual choices, with an internal structure (microscopic theory)
whose emergent social behavior (macroscopic theory) reproduces all the observed quantifiers. The model reduces to
the standard discrete choice theory [24] when peer-to-peer interaction is negligible and to its interacting version when
imitation is instead the dominating factor.

To introduce the statistical mechanics model, we assign to each person their own tendency to marry versus remaining
single. In addition, each couple (i, j) has their own likelihood to marry or not. Similarly, each person has an individual
tendency to have children, and each couple too. All of these phenomena are then described by individual random
variables and couple random variables.

The two observables about marriages and children are of course different: for marriages, the monogamy law only
allows each individual to belong to a single couple. Newborn couplings instead may not only have multiplicity but
individual may have children with different partners regardless of being married or not.

All of these rules, from the mathematical point of view, turn into topological constraints in the configurational
space like the hard-core interaction of monogamy, or probabilistic constraints such as the concentration of children
per couple around small integers. The rule structure can be described as follows: given a set of points 1, ..., N , a
configuration of marriages M is a set of links among the N points with the property that no points belong to more
than one link. We indicate the unpaired individuals (singles) by SM and the paired ones (married couples) by CM . In
principle, one should account for possible different numbers between the two genders; however, such refinements are
small corrections of the main theory due to the heterogeneous origin of migrants, which balances polarized incomes
from countries with eradicated cultural constraints. We call the set of marriage configurationsM. We want to describe
a system in which we assign to each configuration a statistical weight and a partition function built on individual
random variables as well as on couple random variables. Calling si the weight of the person i in the single state and
ci,j that of the couple (i, j) in the married state (both the c’s and the s’s are positive real numbers), the partition
function (grancanonical) of the system is given by

Z(M) =
∑
M∈M

∏
(i,j)∈CM

εi,jci,j
∏
i∈SM

si , (1)

where the numbers εi,j ∈ {0, 1} are the acquaintance matrix elements of the population, i.e. they specify the reciprocal
knowledge among two individuals. It may be worth stressing that since no topological insights were available within
our data we lack specific information on εi,j . For this reason we carried our analysis with the diluted mean-field
approach. While a fully connected mean-field approach would set a critical value Γc > 0, the assumption of an (over-
percolated) underlying topology (e.g. a random graph a’ la Erdos-Renyi [35] or a small world a’ la Strogats-Watts
[33]), implies a rescaling of the critical value with the size N [39][42][48], hence Γc → 0, in full agreement with our
experimental findings.
Similarly a configuration of filiations F is a set of links among the N points with the property that for a given couple
(i, j) (not necessarily married) the number of children (links) is distributed according to (say) a Poisson distribution
ρ of given average λ. The choice of the Poisson distribution is the most reasonable, but our conclusions are robust,
pathological cases apart. We indicate individuals without children by UF (undescended) and the couples with children
by PF (parents). We call the set of filiations F . Calling ui the weight of the person i in the undescended state and
pi,j that of the child (i, j) in the parental state (both the u’s and the p’s are positive real numbers) the partition
function of the system is then given by

Z(F) =
∑
F∈F

ρ(F )
∏

(i,j)∈PF

εi,jpi,j
∏
i∈UF

ui . (2)

The random variables (c, s, p, u) are taken to be constant on mean field models like the one we treat explicitly in this
work. Calling KM the total number of links in the configuration M and defining the frequency as νM = KM/(N/2),
the expected value of the marriage frequency can be computed as

PM = Av

∑
M∈M νM

∏
(i,j)∈CM

εi,jci,j
∏
i∈SM

si∑
M∈M

∏
(i,j)∈CM

εi,jci,j
∏
i∈SM

si
, (3)

where the average operation Av is computed on the acquaintance matrix ensemble. Similarly for the newborn problem,
calling KF the total number of links in the configuration F and defining the fraction νF = KF /(Nλ/2), its expected
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value is

PF = Av

∑
F∈F νF ρ(F )

∏
(i,j)∈PF

εi,jpi,j
∏
i∈UF

ui∑
F∈F ρ(F )

∏
(i,j)∈PF

εi,jpi,j
∏
i∈UF

ui
. (4)

For each population, the previous probability measure provides an average value of the two observables.
We now turn to the theory of bi-populated systems where si and ui take two values each, depending only on the
individual being on Imm or Nat and the couple variables (ci,j and pi,j) take only three values for the three cases
(Imm, Imm), (Nat, Imm) and (Nat,Nat). We may include an imitative (J ≥ 0) interaction between the two
populations with the introduction of a suitable mean-field Hamiltonian [35][36][30][31]

H(M) = −JM
∑

i∈Nat,j∈Imm
εi,jσiσj , (5)

where

σi =

{
+1 if i belongs to a mixed marriage

−1 otherwise ,
(6)

and a similar definition for H(F ):

H(F ) = −JF
∑

i∈Nat,j∈Imm
εi,jτiτj , (7)

where

τi =

{
+1 if i has a child within a mixed couple

−1 otherwise .
(8)

Note that σ’s and τ ’s configurations are uniquely determined by monomer-dimer configurations. We point out that
the case where imitation and anti-imitation coexist [6] leads to a different scenario (see [19] for a case study). The
two complete partition functions are then:

Z(M) =
∑
M∈M

e−H(M)
∏

(i,j)∈CM

εi,jci,j
∏
i∈SM

si , (9)

Z(F) =
∑
F∈F

e−H(F )ρ(F )
∏

(i,j)∈PF

εi,jpi,j
∏
i∈UF

ui . (10)

We point out that the introduction of an exponential Hamiltonian deformation of the monomer-dimer model is a
working hypothesis to be tested against experimental data and it has the same significance of the logit distribution
assumption in the original McFadden discrete choice theory. For a discussion about its paramount justification in
terms of Entropy variational principles see [11] and references therein.

Calling MM the number of mixed marriages in the configuration M , and defining the frequency of mixed marriages
fM = MM/KM , we have that its expected value, that is, the probability of mixed marriages is

P
(Nat,Imm)
M = Av

∑
M∈M fMe

−H(M) ∏
(i,j)∈CM

εi,jci,j
∏
i∈SM

si∑
M∈M e−H(M)

∏
(i,j)∈CM

εi,jci,j
∏
i∈SM

si
(11)

and analogously the probability of mixed children

P
(Nat,Imm)
F = Av

∑
F∈F fF e

−H(F )ρ(F )
∏

(i,j)∈PF
εi,jpi,j

∏
i∈UF

ui∑
F∈F e

−H(F )ρ(F )
∏

(i,j)∈PF
εi,jpi,j

∏
i∈UF

ui
(12)

is given in terms of frequency of children from mixed couples fF = MF /KF where MF is the number of children from
mixed couples in the configuration F . Although an exact solution for the general model introduced in this section
is not yet available, one can still obtain results for a wide variety of cases that include the mono-populated and
bi-populated mean field limits [19][30][31]. The latter shows two regimes according to the ratio of J (the coupling JM
and JF tuning the strength of the imitative behavior encoded in the Hamiltonians (14) and (16), hereafter called J for
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simplicity) and the monomer-dimer pressure p = lnZ/N . Given the lack of phase transitions in the Monomer-Dimer
model (see [32, 44] for a rigorous proof of the non-random mean-field case and [45] for the random case), we can focus
on the extreme regimes: the imitative regime J � p in which the interaction J dominates on the Monomer-Dimer
interaction (hard core or Poisson), and the free regime J � p where the Monomer-Dimer interaction dominates on
the imitative one. The structural difference between them is the presence of some divergence of the derivative of the
P ’s in formulas (11) and (12)

∂

∂γ
P (γ) . (13)

In the free regime one finds for the P ’s a γ dependence of the type

P (γ) = cF γ(1− γ) , (14)

where the constant cF depends only on the a priori probabilities of the Monomer-Dimer interaction. The expression
can also be obtained from purely probabilistic (or combinatorial) reasoning and always displays a finite derivative in
the origin.

In the imitation regime, on the other hand, the interactions among agents encoded in the Hamiltonians favor
the imitative behavior, while the Monomer-Dimer interaction term, accounted for by the adjacency matrix of the
reciprocal relation, plays the role of a phase-selecting perturbation (the + phase of the Hamiltonians) similar to a
small magnetic field in spin models. The diluted mean-field Hamiltonian we introduced has a size proportional to
γ(1 − γ), and for various adjacency matrices εi,j defining diluted topologies (i.e., random graphs, small worlds, etc.
[38][35][42][46]), the model predicts a zero (or very small) critical γc and a functional behavior of the type:

P = cI [γ(1− γ)]
1
2 , (15)

where the constant cI , as much as the cF in the free case, depends only on the a priori probabilities of the Monomer-
Dimer interaction. The mechanism underlying such behavior is depicted, as far as the (social) network is over-
percolated [47], and the interactions among agents are only imitative, by the mean-field ferromagnet with the critical
exponent one half. Its relevance in social sciences has been clearly advocated by Durlauf [13]. Mathematically the
critical value of γ turns out to be very close to zero as a consequence of dilution [35], [42], [46], [48]. Due to the large
ensemble of data we analyzed, we can invoke the law of large numbers [20], which allows us to compare experimental
frequencies reported in the first part of the paper, with probabilities obtained through the statistical mechanics
method. The theoretical models illustrated reach the precise functional behavior of equation (15) in the limit of
infinitely many particles (thermodynamic limit).
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FIG. 1: Panel (a): time series representing the quantifiers Q (mixed marriages Mm, newborns from mixed parents Bm,
permanent jobs Jp, temporary jobs Jt) and migrant’s densities γ versus year quarters t in the two databases. Each point in
the plot is the average value of Q in the quarter t. Panel (b): quantifiers Q versus γ obtained from time series of panel (a), i.
e. Q(t(γ)), where t(γ) is the inverse of γ(t) (two lower panels of (a))

.
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FIG. 2: Density of the marriage and newborn dataset (circles) and of the job market dataset (crosses) as a function of γ. In
the inset the marriage and newborn data density is fitted, for γ ≥ 0.2, with the power-law behavior (in log-log scale) where
µ(γ) ∝ γδ, δ = −3.241± 0.024.
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FIG. 3: Raw data versus γ. Green points represent the fraction of permanent job positions held by migrants in a municipality
where a percentage γ of migrants is present (apart from restrictions outlined in the introduction, the whole of Spain is sampled
over the entire analyzed timeframe); similarly orange points account for temporary jobs. Further, blue points represent the
fraction of mixed marriages, while red ones mirror the newborns from mixed parents. One may note that data in the left panel
seem to lie along horizontal lines displaced according to 1/n, with n ∈ N due to seasonal preferences in weddings. See the
discussion within the paper.
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FIG. 4: Upper panel: Relative errors |Qi − Qj |/Qj , i 6= j i, j ∈ {A,B,C,D} (blue lines) and absolute errors |Qi − Qj |, i 6= j
i, j ∈ {A,B,C,D} (green lines) as a function of γ for Q = Mm(γ). Lower panel: Relative errors |Qi − Qj |/Qj , i 6= j i, j ∈
{A,B,C,D} (red lines) and absolute errors |Qi − Qj |, i 6= j i, j ∈ {A,B,C,D} (green lines) as a function of γ for Q = Bm(γ).
QA denotes the mean value using binning with constant information, QB the mean value using binning with constant width,
QC the mediant with constant information binning and QD the mediant with constant width binning. For both panels the
continuous lines refer to i = B, j = D and the dash-dotted lines to i = A, j = C and represent the errors made using the mean
approach with respect to the mediant one with constant step binning and with constant information binning, respectively. The
dotted lines (i = D, j = C) and the dashed lines (i = B, j = A) represent the errors made using the constant step binning with
respect to the constant information, with the mean approach and with the mediant approach, respectively.
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FIG. 5: Left upper panel: rescaled distribution of Jp(γ). Fit with standard distribution laws are reported: Cauchy distribution
R2 = 0.951, Logistic distribution R2 = 0.994 and Gaussian distribution R2 = 0.986. Right upper panel: rescaled distribution
of Jt(γ). Fit with standard distribution laws are reported: Cauchy distribution R2 = 0.956, Logistic distribution R2 = 0.996
and Gaussian distribution R2 = 0.984. Left lower panel: rescaled distribution of Mm(γ). Fit with standard distribution
laws are reported: Gumbel distribution R2 = 0.979, Logistic distribution R2 = 0.956 and Gaussian distribution R2 = 0.941.
Right lower panel: rescaled distribution of Bm(γ). Fit with standard distribution laws are reported: Cauchy distribution
R2 = 0.958, Logistic distribution R2 = 0.994 and Gaussian distribution R2 = 0.988. For all panels the inset represents the
normal probability plot.


