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The aimof thiswork is to analyze the stress and the strain fields in the brake calipermounts of frontmotorbike suspensions produced
by the braking action. First of all, some formulae useful to evaluate the maximum braking force in function of the vehicle features
(e.g., total mass, centre of gravity position, tyre dimension, and brake disk diameter) have been developed. A mathematical model
useful to calculate the axial, the bending, and the torque stresses on the braking calipermounts has been then defined.Themodel has
been developed by comparing the theoretical results with those obtained by some numerical analyses, based on the finite element
method. An ad hoc test equipment has been, finally, designed and manufactured in order to define and analyze experimentally the
strength of different types of brake caliper mounts and, at the same time, to verify the proposed model.

1. Introduction

The brake caliper mounts installed in front motorbike sus-
pensions, basically, can be divided into two categories based
on the layout of the caliper fastening screws: (i) standard
traditional caliper mounts mainly used on low and medium
powered motorbikes and (ii) radial caliper mounts used in
high powered motorbikes which have been installed at axle
brackets (terminal parts of suspensions) in the early 2000s.
Figure 1 shows both types described above. As shown in
Figure 1(c), in radial caliper mounts the fastening screws are
aligned along the disk radius; this structural solution has the
advantage to be stiffer than the traditional one and allows
using brake discs with a different diameter by simply adding
or removing some spacers between the mounts and the
caliper. Finally, in radial mounts screws are mainly stressed
by axial loads instead of tangential ones.
Since it is really difficult to relate the loads to the

actual stresses acting on the front motorbike components
by applying analytical methods, producers usually force fork
manufacturers to perform a significant number of tests on
those elements important for the user safety. For example,
tests on joints between axle brackets and wheel pins have
been extensively analysed in [1] as well as those between
steering plates (forks) and legs (stanchions) produced by the

braking phase [2]. The main results of the aforementioned
papers are to provide some analyticmodels useful to calculate
the stress and the strain on those components without
performing any type of experiment. Furthermore, the initial
force generated by the screws is essential in order to lock the
joint through friction and to avoid any dangerous failure. For
this reason some specific tests have been performed in order
to relate the torque moment and the initial force generated
on these types of coupling [3–5]. In the previous papers,
the importance of friction coefficient definition is pointed
out because the friction value may strongly influence the
stress field of components. This paper aims at defining a
model useful to predict the stress and strain produced in the
caliper mounts. Motorbike producers normally provide the
test specification and procedure regarding the brake caliper
mounts: the test consists in applying a positive and negative
static force on the mounts appropriately constrained. Usually
this kind of tests represents the final validation of the product
necessary to be performed before starting the production
phase. Due to the complexity of these components, their final
tests are, actually, the only method to validate the design
activity. Two examples of test methods are shown in Figure 2.
In the first one (left picture of Figure 2), the whole fork
is fixed in its fully compressed position (namely, with its
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Figure 1: Type of brake caliper mounts: (a) and (b) traditional mounts and (c) radial mounts.
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Figure 2: Example of two different test methods.

maximum diving) arranged on a horizontal axis and with a
stated external force directly applied to the wheel; the whole
braking components (caliper, disc, and pads) are installed on
the fork in order to contrast the external force.Themaximum
diving position of the fork is applied to limit the maximum
bending moment acting on the stanchions at the fixed-end
support and to simulate the compression occurring when
braking forces are applied. The second method (right picture
of Figure 2) implies that a stated external force is applied
to a plate, which is equivalent to the caliper disc system. In
fact, this plate is connected to the mounts via bolts and also
has a hole where the wheel pin is placed; such wheel pin
must be constrained to both ends. Both types of tests have
advantages and disadvantages. The first one definitely gives
a better representation of the real behaviour of the structure
but it is more complex in terms of test preparation: not only
the fork but also the whole fore carriage must be available
(wheel, disc, brake caliper, and braking system). This is not
always possible. Moreover, in order to keep the fork fully
compressed, without any additional external horizontal load,
the internal springs of the sliders must be removed. The
second example is easier to set up, but it requires the correct
calculation of the external force to be applied to the plate.
In conclusion, as shown in Figure 2, the braking force can

be applied to the wheel or directly to the ideal contact point
between the disc and the pads after properly determining the
magnitude and the direction of such force.

2. Methods and Results Achieved

2.1. Braking Force. As a general rule, the estimation of forces
involved is obtained by considering the hardest braking
condition, namely, the capsizing limit in a rectilinear motion
[2, 6–8], where the load on the front wheel has the highest
value whereas the load on the rear wheel decreases till zero
when the rear axle starts rising from ground. With reference
to Figure 3, the value of force 𝐹𝑅 can be obtained based
on the dimensions of motorbikes by simply imposing the
equilibrium equation (1) as

𝐹𝑅 ⋅ ℎ = 𝑀 ⋅ 𝑔 ⋅ (𝑝 − 𝑏) 󳨐⇒ 𝐹𝑅 = 𝑀 ⋅ 𝑔 ⋅
(𝑝 − 𝑏)

ℎ
. (1)

The lower this force, the easier to reach the capsizing
condition which is favoured by a lower total mass and by the
high and forward position of the barycentre. Deceleration 𝑑,
expressed with 𝑔 units (9.806m/s2), which corresponds to
imminent capsizing, is equal to the ratio between (𝑝 − 𝑏) and
ℎ and only depends on the barycentre position. However, the
maximum theoretic deceleration force (𝐹𝑅 = −𝑀 ⋅ 𝑑) must
be compared with the tire/asphalt adhesion limit: according
to the Coulomb friction law, the force tangential to the wheel
𝐹𝑅 equals the product between normal force 𝑥 ⋅𝑔 and friction
coefficient 𝜇 (2). Typical values of the friction coefficient



Advances in Mechanical Engineering 3

FR

p

b

h

l

𝛼

M·g

M·g

M·d

Motorbike wheel base

Distance between the barycentre and the rear wheel 
axle 

Tire/asphalt friction coefficient

Inclination angle of fork 

Distance between wheel pin and trapezoid

Average disc radius

Wheel rolling radius

p (mm)

b (mm)

h (mm)

M (kg)

𝜇

𝛼 (∘)

l (mm)

RD (mm)

RR (mm)

Total mass (vehicle + pilot)

Barycentre height (vehicle + pilot)

Figure 3: Motorbike dimensions used for calculation.

between the tire and the asphalt are included in the range
[0.4–0.8] as

𝐹𝑅 = 𝑀 ⋅ 𝑔 ⋅ 𝜇. (2)

Therefore, the ratio between (𝑝 − 𝑏) and ℎ can be considered
as the minimum value of the friction coefficient required in
order to reach the vehicle turnover condition.

Analysing the forces acting on the front suspension and
induced by braking phase, the equilibrium must be, firstly,
imposed on the wheel under the action of 𝐹𝑅 and 𝐹𝐷. In
fact, with reference to Figure 4, rotation equilibrium can be
imposed around the wheel pin obtaining the value of force
𝐹𝐷, which acts on the average disc radius 𝑅𝐷, on the ideal
contact point with the pads (3) as

𝐹𝑅 ⋅ 𝑅𝑅 = 𝐹𝐷 ⋅ 𝑅𝐷 󳨐⇒ 𝐹𝐷 = 𝐹𝑅 ⋅
𝑅𝑅
𝑅𝐷

. (3)

All forces, which act on the fork stanchions and generate the
maximum bending moment on the ideal fixed-end support
caused by the presence of forks and of the motorbike chassis
are schematically represented on the diagram of Figure 5. In
fact, by knowing the total mass𝑀 of the vehicle and the pilot,
the braking force applied to the wheel 𝐹𝑅 (1), (2), and the
braking force applied to the disc 𝐹𝐷 (3), these forces can be
referred to the wheel pin and they can be halved, as the pin
is connected with the two legs. In the case of a fork with a
single brake caliper, in addition to these forces we also have
the whole 𝐹𝐷 force, which is shared between the disc and
the mounts. This force is applied to the average radius 𝑅𝐷
perpendicularly to the connection with the wheel pin. As
shown in Figure 5, by fixing the disc radius, the position of
the brake caliper affects the value of the bending moment
on the fixed-end support: this value depends on the angular
coordinate 𝜑 theoretically included in the range [0−−𝜋]. The
component perpendicular to fork 𝐹𝐷 𝑌 and the parallel one
𝐹𝐷 𝑋 depend on cos(𝜑) and on sin(𝜑), respectively.

FR
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Figure 4: Equilibrium around the wheel pin between forces 𝐹𝑅 and
𝐹𝐷.

2.2. Stresses on Brake CaliperMounts. After having calculated
the forces acting on the fork during the braking phase, and
particularly the force 𝐹𝐷 which acts on the brake caliper
mounts, the stress and strain field can be calculated and
studied. In order to exactly determine the stresses involved,
a simplified mount model was initially taken into considera-
tion, namely, one without the presence of fillets and stiffening
ribs, which locally alters the distribution of stresses. The
original and the simplified geometries are shown in Figure 6,
whereas the nomenclature required to describe the stress state
is shown in Figure 7.The total braking force𝐹𝐷, inclined with
respect to the axis stanchion, was split into two components
𝐹𝐷 𝑋 and 𝐹𝐷 𝑌, which are parallel to the coordinate system.
Therefore, the actual stresses, with reference to Figure 7, can
be separated into (i) the normal compressive stress induced
by 𝐹𝐷 𝑌, (ii) the flexure acting in plane 𝑋-𝑌 due to the
application of 𝐹𝐷 𝑋, at a distance 𝑦 from the average plane
of the mounts, (iii) the flexure acting in plane 𝑌-𝑍 due to
the application of 𝐹𝐷 𝑌, at a distance 𝑧 from the average plane
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Figure 5: Diagram of the forces acting on the single-disc front suspension induced by braking.
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Figure 6: Original caliper mounts and simplified model used for the calculation.

l1

y

z

Y

x
Y

Z

Z

Z

X

X

FD X

FD

FD X

FD X

FD Y

FD Y

FD Y

l2

i

1

2

𝜑

h1 h2

b1 b2

Figure 7: Simplified caliper mounts and nomenclature used for the calculation model.



Advances in Mechanical Engineering 5

l1
l1

l2 l2

y

FD X

FY

FY

FD X 1 FD X 2

i i

Figure 8: Structural diagram used for studying the deflection in the plane 𝑋-𝑌 of the mounts.

of the mounts, and finally (iv) the torsion in plane 𝑋-𝑍 due
to the application of 𝐹𝐷 𝑋 at a distance 𝑧 from the average
plane of themounts.The difficulties in defining the structural
operation and calculation diagram of the stress state are
mainly due to the shape of the components (De Saint Venant
hypotheses are no longer valid) and to the hyperstaticity of
the connection (external load must be subdivided depending
on the stiffness). Due to these difficulties, the four types
of stresses described above have been studied separately
using the superposition effect. Moreover, in order to obtain a
reliable calculationmodel, more than 700 numerical analyses
based on the finite element method (FEM) were carried out
in linear elastic field, in order to compare them with the
theoretic results obtained by using the theoretic diagrams
and formulae of De Saint Venant hypotheses. The force
components 𝐹𝐷 𝑋 and 𝐹𝐷 𝑌 have been applied to the holes
of both mounts via the remote force command provided in
Ansys R11 (software used for FEM analyses) with respect
to the coordinates 𝑥, 𝑦, and 𝑧 of the application point of
the force shown in Figure 7. Since both mounts are actually
connected with each other via the brake caliper, which may
be considered as a rigid element that causes the connection
hyperstaticity, it was decided to use a stiff behaviour for the
connection of the remote force.

Starting from a normal compressive stress, the fraction of
𝐹𝐷 𝑌 acting on mount 1 and on mount 2 have been obtained
using the diagram of a beam on two supports: compressive
stresses are obtained from (4). The compression on both
mounts, which does not depend on coordinate𝑦, is uniformly
distributed over the section of the mounts and its value is
always quite low as

𝜎1 = −
𝐹𝐷 𝑌 ⋅ 𝑥

𝑖 ⋅ ℎ1 ⋅ 𝑏1
,

𝜎2 = −
𝐹𝐷 𝑌 ⋅ (𝑖 − 𝑥)

𝑖 ⋅ ℎ2 ⋅ 𝑏2
.

(4)

The study of flexure due to 𝐹𝐷 𝑋 acting on plane𝑋-𝑌 is based
on the structural diagram proposed in Figure 8: total force
𝐹𝐷 𝑋 is divided onmount 1 (𝐹𝐷 𝑋 1) and onmount 2 (𝐹𝐷 𝑋 2),
based on the flexure stiffness of both mounts (𝐾𝑖 𝑍󸀠 = 𝐸𝑖 ⋅

𝐼𝑖-𝑍󸀠/𝑙𝑖 being 𝐸 the Young’s Modulus, 𝐼𝑍󸀠 the moment of
inertia calculated with respect to barycentre axis 𝑍󸀠 and 𝑙 the
length) that are working in parallel as a mechanical stiffness
system.

This simple calculation can be applied if both mounts
are equally high: in the case of different heights, 𝐹𝐷 𝑋 must
be moved to the application point of the lower mount
(height 𝑙2) and then calculated depending on the stiffness and
introducing the moment of transport via the action of two
equal and opposite forces 𝐹𝑌, which induce a compression on
the longer mount and a traction on the shorter one. The full
calculation of the stresses on both mounts is defined by (5).
The maximum stresses generated by deflection in plane 𝑋-𝑌
are given by (6) as follows:

𝐹𝐷 𝑋 1 = 𝐹𝐷 𝑋 ⋅
𝐾1 𝑍󸀠

𝐾1 𝑍󸀠 + 𝐾2 𝑍󸀠
;

𝐹𝐷 𝑋 2 = 𝐹𝐷 𝑋 ⋅
𝐾2 𝑍󸀠

𝐾1 𝑍󸀠 + 𝐾2 𝑍󸀠
;

𝐾𝑖 𝑍󸀠 =
𝐸𝑖 ⋅ 𝐼𝑖 𝑍󸀠

𝑙𝑖

𝐹𝑌 = 𝐹𝐷 𝑋 ⋅
𝑦

𝑖

(5)

𝜎1 = ±
𝐹𝐷 𝑋 1 ⋅ 𝑙2 ⋅ 6

ℎ2
1
⋅ 𝑏1

− 𝐹𝐷 𝑋 ⋅
𝑦/𝑖

ℎ1 ⋅ 𝑏1

𝜎2 = ±
𝐹𝐷 𝑋 2 ⋅ 𝑙2 ⋅ 6

ℎ2
2
⋅ 𝑏2

+ 𝐹𝐷 𝑋 ⋅

𝑦

𝑖
ℎ2 ⋅ 𝑏2

.

(6)

Analysing the deflection induced by 𝐹𝐷 𝑌 and acting in the
plane 𝑌-𝑍 of the mounts, the distribution of force on both
mounts is the first element to be considered. The force and,
consequently, the bending moment can still be subdivided
depending on the bending stiffness. However, the traditional
calculation of load distribution, based on parallel mechanical
stiffness [9] previously used for flexure in plane 𝑋-𝑌, is
no longer valid. In fact, the ratio between the forces acting
on both elements (𝐹𝐷 𝑌 1/𝐹𝐷 𝑌 2) is not equal to the ratio
between the bending stiffness (𝐾1 𝑋󸀠/𝐾2 𝑋󸀠) compared with
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Figure 10: Buckling phenomenon on a rectangular beam section subjected to torsion and numerical analysis of the deflection acting on plane
𝑌-𝑍 of the mounts.

the barycentre axis 𝑋󸀠 of the elements but is proportional
to that ratio as shown by numerical analyses whose results
are reported in Figure 9. Thus it is necessary to introduce
a linear relation that links the ratio of forces to the ratio
of stiffness. Making a system with the linear relation shown
in Figure 9 and with the equilibrium condition stating that
𝐹𝐷 𝑌 1+𝐹𝐷 𝑌 2 = 𝐹𝐷 𝑌, it is possible to calculate the load acting
on the longer mount and that acting on the shorter one. Of
course, if both mounts have the same stiffness (𝐾1 𝑋󸀠/𝐾2 𝑋󸀠 =
1) the force would be equally distributed on both of them. In
this case the maximum stress is calculated by (7) as follows:

𝜎1 = ±
𝐹𝐷 𝑌 1 ⋅ 𝑧 ⋅ 6

ℎ1 ⋅ 𝑏
2
1

;

𝐹𝐷 𝑌 1 =
𝐹𝐷 𝑌 ⋅ [0.81 ⋅ 𝐾1 𝑋󸀠/𝐾2 𝑋󸀠 + 0.19]

[1 + 0.81 ⋅ 𝐾1 𝑋󸀠/𝐾2 𝑋󸀠]
;

𝐾𝑖 𝑋󸀠 =
𝐸𝑖 ⋅ 𝐼𝑖 𝑋󸀠

𝑙𝑖

𝜎2 = ±
𝐹𝐷 𝑌 2 ⋅ 𝑍 ⋅ 6

ℎ2 ⋅ 𝑏
2
2

; 𝐹𝐷 𝑌 2 = 𝐹𝐷 𝑌 − 𝐹𝐷 𝑌 1.

(7)

Therefore, the magnitude of the bending moments in plane
𝑌-𝑍 due to 𝐹𝐷 𝑌 located at distance 𝑧 from the average plane
of the mounts is 𝐹𝐷 𝑌 1 ⋅ 𝑧 and 𝐹𝐷 𝑌 2 ⋅ 𝑧, for mount 1 and
2, respectively. If the mounts have a different length, the
bending moments generate deflection displacements on the
two different ends, which are rigidly connected to each other
by the brake caliper. This involves the presence of a secondary
torsion applied in order to keep the external surfaces of
mounts aligned on the same plane. The magnitude of the
present torsion component is basically proportional to the
difference in height of the two mounts. Moreover, the torsion
on components having a rectangular section produces the
deformation (buckling) of the sections so that they do not
remain flat and smooth after the rotation but will tend to
buckle as shown on the left of Figure 10. The presence of the
stanchion at the base of the mount prevents the buckling
[10] but generates a normal stress on the mounts. This
buckling phenomenon is the reason because stresses, which
should be theoretically constant on the sides of the mounts
in absence of torsion, are not constant (right of Figure 10).
Furthermore, the coupling produced between mechanical
components, whatever the production process, generates
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Figure 11: Diagrams useful for 𝜏max calculation in the case of mounts with the same height or with different heights.

a stress concentration factor [11–13]. The is stress value
calculated via (7) is obtained in the middle of the side where
the buckling of the section is permitted, whereas higher and
lower values are obtained at the ends (the avoided and the
stress concentration factor generate stresses with the same
magnitude having equal and opposite direction compared
with the bending directions): the trend of stresses along the
side face is therefore linear. In order to take into account
this linear distribution coefficient, 𝛼 (8) was introduced,
which allows correcting the stresses calculated via (7). The 𝛼
coefficient is expressed depending on the difference in height
of the mounts Δ𝑙 = 𝑙1 − 𝑙2 (in the case of equal heights,
𝛼 = 0 since there is no secondary torsion) and it has been
determined by performing about 50 numerical analyses as

𝛼 = −3 ⋅ 10−5 ⋅ Δ𝑙2 + 0.0032 ⋅ Δ𝑙

𝜎1,2 min = 𝜎1,2 ⋅ (1 − 𝛼)

𝜎1,2 max = 𝜎1,2 ⋅ (1 + 𝛼) .

(8)

Comments and investigations which bring to (8) justify the
nonconstant trend of stresses on the side of the mounts,
even if the variation introduced by coefficient 𝛼 is moderate
considering the common differences in height (maximum
±10% compared with the medium value).

The last stress acting on the mounts is the torsion acting
on the plane𝑋-𝑍due to the application of𝐹𝐷 𝑋 at a distance 𝑧
from the average plane of the mounts. The calculation of the

stresses produced by the present torsion brings to the highest
discrepancies if calculated via theoretical De Saint Venant
formulae and models mainly caused by the rectangular
section and by the hyperstaticity of the connection applied
to a short (stocky) beam. The numerical analyses have shown
that the maximum tangential stress always occurs on the
shorter mount (the stiffer one), on the longer side and located
at the corner due to the avoided buckling. FEM analyses
have been performed for different values of ℎ1,2, of 𝑏1,2, of
the distance 𝑖 between the centres of the mounts and of the
heights of the mounts. The nondimensional ratios have been
kept as follows: ℎ/𝑏 = [1; 2], 𝑖/ℎ = [1; 3], and 𝑙1/𝑙2 = [1; 3].
The ranges of the basic parameters have been chosen based
on the most frequent dimension of caliper mounts produced
by motorbike companies.The analysis of the results produced
by the torsion effect led to the expression of the maximum
torque stress 𝜏max as a function of the applied moment, of
the section properties, and of the distance between centres
of the mounts, as indicated in (9). In this equation, the
value of dimensionless coefficient 𝜂, which is the correction
factor used in beams with a rectangular section subjected
to torsional moment [9], depends on the distance between
centres of mounts 𝑖 and on parameter 𝑑. The parameter 𝑑 can
be expressed as a function of the difference in height of the
mounts and can be determined once the angular coefficient
of lines represented, for instance, by (9) for a given value
of ratio 𝑙1/𝑙2, are known. The first diagram of Figure 11 shows
an example of such lines obtained in the case of equal length,
whereas all values 𝑑 obtained for different heights are shown
in the second diagram.
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The parameter 𝑑, necessary to calculate 𝜏max, has been
defined for each of the 7 different values of ratio 𝑙1/𝑙2, through
various combinations of about 50 geometries as follows:

𝜏max =
𝑀𝑡

𝜂 ⋅ ℎ2 ⋅ 𝑏
2
2

=
𝑀𝑡

(𝑖/𝑑) ⋅ ℎ2 ⋅ 𝑏
2
2

. (9)

Finally, by applying the principle of effect superposition, the
maximum stress is obtained on the farthest corner of the
shorter mount, with respect to the application point of the
load, by summing all the contributions given by (4), (6), (8),
and (9). The contributions of (4), (6), and (8) must be, of
course, algebraically summed since they are normal stresses,
whereas the contribution of (9), being a tangential stress,
must be combined with the result of the previous sum in
order to obtain the ideal stress, for example, according to Von
Mises.

An example of the application of the proposed calculation
method is shown in Table 1. The values refer to a geometry
currently produced. Figure 12 contains the load and con-
straints scheme and the equivalent stress according to Von
Mises criterion, obtained by the FEManalyses.Themaximum
stress calculated by applying the present model in the point
highlighted in Figure 12, namely, on mount 2 (the shorter
one), where the positive stresses induced by bending on the
two planes have the same direction (positive) and only the
normal stress has opposite direction (negative), is equal to
121MPa. The stress resulting from the simulation is equal to
127MPa; therefore, the error obtained is equal to 5%.

2.3. Experimental Test Equipment. The proposed model is
able to effectively estimate the maximum stress acting on
the caliper mounts and produced by the braking force, with
errors always lower than 15% compared with the values
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Figure 14: Picture of experimental tests and numerical simulations performed on standard brake caliper mounts.

Figure 15: Picture of experimental tests and numerical simulations performed on radial caliper mounts.

provided by the numerical analysis. In order to validate the
theoretical model and to carry out some experimental tests
according to the test specifications, a standard experimental
equipment, shown in Figure 13, has been specifically designed
and manufactured by the authors in order to test different
caliper mounts with one or both stanchions installed. The
central plate, installed in the actual position in order to
limit the bending moment on the fixed-end support, is
directly connected to the load cell of the standing press,
which supplies the force 𝐹𝑅 as indicated in Figure 4. The
brake caliper mounts are connected via their own bolts, as
shown in Figure 13, to an intermediate plate which is, itself,
connected to the main plate via a spacer and two pins located
at the ideal contact points between the disc and the pads,
in order to simulate the transmission of force 𝐹𝐷. Both the
traditional and the radial mounts have been tested. Some
strain gauges have been applied to them in order to obtain
the local deformation and consequently the stress value. The
numerical (FEM) analyses performed on the same structure
as shown in Figure 14 returned results, which are perfectly
aligned with the value measured by the strain gauges. In
Figures 13, 14, and 15 some images are collected concerning
the numerical and experimental analysis.

3. Conclusions

The present work analysed the forces, the stresses, and
the deformations acting on brake caliper mounts of front
motorbike suspensions and induced while motorbike is

braking in a rectilinear motion at the vehicle’s capsizing
limit. Firstly, a useful theoretical model has been studied
and proposed in order to evaluate the maximum braking
force to be imposed to the caliper mounts based on the
vehicle’s characteristics (total mass, barycentre position, tire,
and brake disc size). Some calculation formulae have been
also defined and verified after having executed over 700
numerical (FEM) analyses made on the simplified sketch of
themounts, in order to overcome the problems of calculation
related to the hyperstaticity of constraints and to the shape
and geometry of components. Finally, standard equipment
useful to carry out experimental tests on the brake caliper
mounts has been specifically designed and manufactured by
the authors.This kind of equipment can be easily and quickly
used to perform tests that involve only the parts of suspension
(stanchion or axle bracket) that are linked to the caliper
mounts.The experimental tests were also used to validate the
proposed theoretical model, which produces errors always
lower than 15%.

Conflict of Interests

In the present paper, some structural analyses have been
performed using the FEAmodeller Ansys R11 software, which
is regularly licensed to the University of Bologna. The use
of Ansys R11 software must be regarded as an authorized
academic use; therefore, the authors (Dario Croccolo, Massi-
miliano De Agostinis, Giorgio Olmi, and Alessio Tizzanini)
declare that they have no conflict of interests with the ANSYS



10 Advances in Mechanical Engineering

Table 1: Example of the application of the proposed calculation
method and comparison with FEM results.

𝐹𝑅 (N) 1,962
𝑅𝑅 (mm) 330
𝑅𝐷 (mm) 120
𝐹𝐷 (N) 5,396
𝜑 (deg) 75
𝐹𝐷 𝑌 (N) 1,396
𝐹𝐷 𝑋 (N) 5,212
𝑥 (mm) 30
𝑦 (mm) 30
𝑧 (mm) 30
𝐸 (MPa) 71,000
𝑙1 (mm) 39.41
ℎ1 (mm) 35.85
𝑏1 (mm) 13.11
𝑙2 (mm) 20.74
ℎ2 (mm) 24.22
𝑏2 (mm) 13.45
𝑖 (mm) 55.31
𝐾1 𝑍󸀠 (Nmm) 90,686,124
𝐾2 𝑍󸀠 (Nmm) 54,514,628
𝐾1 𝑋󸀠 (Nmm) 12,127,406
𝐾2 𝑋󸀠 (Nmm) 16,811,611
Normal stress (4)

𝜎1 (MPa) −1.6
𝜎2 (MPa) −2.0

Bending moment 𝑋𝑌 (6)
𝐹𝐷 𝑋 1 (N) 3,255
𝐹𝐷 𝑋 2 (N) 1,957
𝐹𝑌 (N) 2,827
𝜎1 est (MPa) −30,1
𝜎1 int (MPa) 18.0
𝜎2 int (MPa) −22.2
𝜎2 est (MPa) 39.5

Bending moment 𝑌𝑍 (8)
𝐹𝐷 𝑌 1 (N) 609
𝐹𝐷 𝑌 2 (N) 787
Δ𝑙 (mm) 18.67
𝛼 0.05
𝜎1 est (MPa) 16,9
𝜎1 int (MPa) 18.7
𝜎2 int (MPa) 30.7
𝜎2 est (MPa) 33.9

Torque moment 𝑋𝑍 (9)
𝑙1/𝑙2 1.90
𝑑 (mm) 87.25
𝜂 0.63
𝑀𝑡 (Nmm) 156,350
𝜏max 2 (MPa) 56.3

Table 1: Continued.

Total stresses on the mounts
𝜎max 2 (MPa) 71.5
𝜏max 2 (MPa) 56.3
𝜎EQ V.M. 2 (MPa) 120.9
𝜎EQ V.M. FEM 2 (MPa) 126.6
𝜀 (%) 5

Inc. or any financial gain related to the publication of this
paper.
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