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Abstract

Wake-sleep (W-S) states are affected by thermoregulation. In particular, REM sleep (REMS) is reduced in homeotherms under
a thermal load, due to an impairment of hypothalamic regulation of body temperature. The aim of this work was to assess
whether osmoregulation, which is regulated at a hypothalamic level, but, unlike thermoregulation, is maintained across the
different W-S states, could influence W-S occurrence. Sprague-Dawley rats, kept at an ambient temperature of 24uC and
under a 12 h:12 h light-dark cycle, were exposed to a prolonged osmotic challenge of three days of water deprivation (WD)
and two days of recovery in which free access to water was restored. Two sets of parameters were determined in order to
assess: i) the maintenance of osmotic homeostasis (water and food consumption; changes in body weight and fluid
composition); ii) the effects of the osmotic challenge on behavioral states (hypothalamic temperature (Thy), motor activity,
and W-S states). The first set of parameters changed in WD as expected and control levels were restored on the second day
of recovery, with the exception of urinary Ca++ that almost disappeared in WD, and increased to a high level in recovery. As
far as the second set is concerned, WD was characterized by the maintenance of the daily oscillation of Thy and by a
decrease in activity during the dark periods. Changes in W-S states were small and mainly confined to the dark period: i)
REMS slightly decreased at the end of WD and increased in recovery; ii) non-REM sleep (NREMS) increased in both WD and
recovery, but EEG delta power, a sign of NREMS intensity, decreased in WD and increased in recovery. Our data suggest that
osmoregulation interferes with the regulation of W-S states to a much lesser extent than thermoregulation.
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Introduction

Physiological regulation is known to be different during rapid

eye movement sleep (REMS) when compared to non rapid eye

movement sleep (NREMS) [1]. In particular, during NREMS a

stable autonomic outflow is observed in the presence of a fully

operant homeostatic control of physiological variables [1–4]. In

contrast, during REMS a high variability of the autonomic

outflow, which leads to large irregularities in arterial blood

pressure, heart rate, and respiratory rhythm, is concomitant with

an impairment of thermoregulation [1–4]. This impairment has

been considered to be a visible consequence of a change in

hypothalamic integrative activity, disabling, during REMS, the

autonomic feedbacks sustaining body homeostasis [1]. According-

ly, Wake-Sleep (W-S) states change when a tonic maintenance of

the hypothalamic regulation is needed, as it occurs during the

exposure to a low ambient temperature (Ta). In these conditions,

Wake increases, NREMS is variably affected and REMS is always

reduced or even suppressed in proportion to the Ta levels

[2,4,5,6].

However, the recent finding from our laboratory that, following

a central osmotic stimulation, the release of the antidiuretic

hormone arginine vasopressin (AVP) was kept at the same levels in

the different wake-sleep (W-S) states, indicates that hypothalamic

osmoregulation is not impaired during REMS [7]. This suggests

that the change in hypothalamic integrative activity in this sleep

stage should concern structures related to thermoregulation, rather

than the whole hypothalamus as previously hypothesized [1].

Since clarification regarding the issue of specificity of the

impairment in physiological regulation during REMS may be

relevant for the understanding of this sleep state, we sought to test

the observed independence of osmoregulation from autonomic

changes in sleep. To this end, REMS occurrence and overall W-S

regulation were assessed in rats during exposure to a three-day

water deprivation (WD) protocol. This condition is known to

constitute an osmotic challenge leading to the progressive

engagement of the whole set of mechanisms maintaining body

fluid homeostasis [8,9]. Moreover, since a REMS rebound was

observed during the recovery (R) period following cold exposure

[5,6,10,11,12,13], W-S assessment was continued for two days

after water was once again made freely available. Basically, two

sets of parameters were assessed: i) those concerning the

maintenance of osmotic homeostasis (water and food consump-
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tion; changes in body weight and fluid composition); ii) those

concerning the effects of the osmotic challenge on behavioral states

(hypothalamic temperature, motor activity, and W-S states).

To our knowledge no systematic W-S studies have been carried

out so far during a prolonged osmotic challenge. However, some

past observations showed that disturbances in body fluid

metabolism such as WD [14] or the infusion of AVP in humans

[15] decreased the time spent in REMS, while the central

administration of AVP increased Wake in rats [16].

The results of the present study showed that in spite of a strong

activation of the osmoregulatory mechanism, REMS occurrence

was only mildly depressed during WD. In contrast, NREMS

increased, but it was characterized by a reduction in the power

density of the delta band (DPW) of the EEG (0.75-4.0 Hz), which

is considered to be the major index of intensity of this sleep stage

[17]. These changes were mirrored by a decrease in Wake. Wake-

sleep modifications mainly concerned the dark period of the light-

dark (LD) cycle.

Materials and Methods

Animals and experimental protocol
Seventy-one adult male Sprague-Dawley rats (Charles River,

weight: 290–310 g) were used. Animals were housed in normal

laboratory conditions: free access to food and water, Ta

24.060.5uC, 12-hour:12-hour LD cycle (L: 09:00–21:00; 100 lux

at cage level). The experiments were carried out according to the

European Union Directive (86/609/EEC) and were under the

supervision of the Central Veterinary Service of the University of

Bologna and the National Health Authority.

The experimental protocol consisted in at least one day of

baseline (BL), three days of WD and two days of R in which water

was made available again. All other ambient conditions were kept

constant. Changes of experimental phases were coincident with L

onset.

Determination of the parameters concerning the
maintenance of osmotic homeostasis

i) Consumption of food and water, changes in body

weight. Nine rats underwent the experimental protocol in a

metabolic cage (Tecniplast) situated in a thermoregulated and

sound-attenuated room. The water bottle and food box were

placed on top of two plexiglas tubes (functioning as reservoirs for

the collection of wasted food and water), which, in turn, were

positioned on top of two precision balances (Sartorius LP820) in

order to provide continuous weighing of food and water, thus

accurately measuring consumption. Food was powdered to avoid

hoarding. Data from both balances were sent every 20 s to a PC,

where they were stored for off-line analysis. Animals were weighed

at L onset.

ii) Collection of blood, cerebrospinal fluid and urine;

determination of osmolality and electrolyte concentration

in collected fluids. At the end of each of the different 24-h

periods, fluids were collected, between 09.00–11.00, from 54

animals randomly selected from different groups which were kept

in the described experimental conditions. After determining the

volume, a sample of urine was stored at –80uC. Animals were

anaesthetized (diazepam, Valium Roche, 5 mg/kg intramuscular;

ketamine-HCl, Ketalar, Parke-Davis, 100 mg/kg intraperitoneal)

to collect: i) blood from heart (4 ml in Li-heparine coated tubes,

APTACA); ii) CSF from the cisterna magna (200 ml), according to

Waynforth [18]. Hematocrit was determined by tube (Brand)

centrifugation (30006g for 15 min at 4uC). Plasma and CSF

samples were stored at 280uC. Osmolality was measured, in

undiluted samples, by means of a vapour-pressure osmometer

(Delcon), while Na+, K+ and Ca++ concentrations were determined

by means of an acetylene flame atomic-adsorption spectropho-

tometer (Solaar) in samples which were appropriately diluted with

water acidified with HCl 1 M. For Ca++ determination samples

were diluted with a 10 mM LaCl3-50 mM HCl solution [19].

Determination of the parameters concerning the effects
of the osmotic challenge on behavioral states

i) Recording of electroencephalogram, hypothalamic

temperature and motor activity. While under deep general

anaesthesia (diazepam, Valium Roche, 5 mg/kg intramuscular;

ketamine-HCl, Ketalar, Parke-Davis, 100 mg/kg intraperitoneal),

eight animals were implanted epidurally with two stainless-steel

electrodes for frontal-parietal EEG recording. Furthermore, a

thermistor mounted inside the tip of a stainless-steel needle (21G)

was positioned above the left anterior hypothalamus to measure

hypothalamic temperature (Thy). Since it has been shown that

rectal and hypothalamic temperature follow the same time course

in rats bearing cranial electrodes [20], we took changes in Thy as a

good index of changes in core temperature. Plugs to connect EEG

electrodes and the thermistor to the recording apparatus were

embedded in acrylic dental resin (Res-Pal) anchored to the skull by

small epidural stainless-steel screws implanted at the outer limit of

the surgical field. Motor activity (MA) was monitored by means of

a passive infrared detector (Siemens, PID11, Munich, FRG)

placed on top of the recording cage.

Animals were allowed to recover from surgery for at least one

week, while adapting to the recording apparatus in individual

Plexiglas cages, kept in a thermoregulated and sound-attenuated

box. At the end of R, they underwent the experimental conditions

described above. Two days were used for the BL recording.

Recordings were continuous throughout the experiment, with the

exception of a 09:00 to 09:15 interval during which bedding, food

and water were changed.

Data were handled by a user software (QuickBASIC, Microsoft,

CA, USA) developed in our laboratory. The EEG signal was

amplified (amplification factor: approximately 7000), filtered

(high-pass filter: 240 dB at 0.35 Hz; low-pass filter: 26 dB at

60.0 Hz) and, after analog-digital conversion (sampling rate:

128 Hz), was stored on a personal computer (486/100 DX-4).

The EEG signal was subjected to online fast Fourier transform,

and EEG power values were obtained for 4-s epochs in the delta

(DPW: 0.75–4.0 Hz), theta (TPW: 5.5–9.0 Hz) and sigma (SPW

11–16 Hz) bands. Thy signal was amplified (1uC/1V) before AD

conversion (sampling rate: 8 Hz). MA signal was amplified and

integrated before analog-digital conversion (sampling rate: 8 Hz)

in order to make the output proportional to the amplitude and

duration of movement (MA intensity). This system detected most

of the movements related to the normal behavior of the rat, such

as exploring, grooming, feeding and small movements during

muscle twitching or brief awakenings in either NREMS or REMS.

The methods for the determination of the W-S stages and their

parameters have been described previously [5]. Briefly, the

analysis comprised two steps. The first consisted in visually scoring

REMS episodes for the definition of the following parameters:

total time amount, number and duration of episodes, duration of

interval between episodes. The time length for the minimal

duration of a REMS episode, as well as of a REMS interval

between episodes, was fixed at 8 seconds [10,11]. In the rat,

REMS intervals have a bimodal distribution and the two interval

populations are separated by a 3 min duration class [10,11]. On

this basis, two types of REMS were identified: single REMS,

consisting of episodes preceded and followed by long REM sleep
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intervals (.3 min) and sequential REMS, consisting of episodes

separated by short REM sleep intervals (#3 min) and occurring in

clusters. In the rat, the rate of occurrence of sequential REMS

episodes constitutes the main factor of change for the amount of

REMS [10,11]. The second step consisted in the recognition of

Wake and NREMS episodes by means of an automatic procedure

developed and validated in our laboratory [5].

Statistical analysis
A repeated-measures ANOVA was performed for: i) food and

water consumption; ii) the time spent in the different W-S stages;

iii) the number and duration of episodes; iv) Thy levels; v) power

densities for EEG spectra. A one-way ANOVA was performed for:

i) weight of animals; ii) hematocrit; iii) diuresis; iv) osmolality and

electrolyte concentration values. A number of pre-planned non-

orthogonal comparisons were made by means of the modified test,

associated with the ‘‘sequential’’ Bonferroni [21] correction of the

significance level [22]. These were performed for: i) differences

between values of each treatment day (WD and R) and average BL

values; ii) differences between L and D values.

Results

Maintenance of osmotic homeostasis parameters
(consumption of food and water, body weight and body
fluids composition)

The levels of food and water intake during the experiment are

shown in Figure 1. Both intakes were significantly larger during

the D period than during the L period in BL (P,0.05). During

WD, a progressive decrease in food intake was observed (L period:

WD2 vs. BL, P,0.01; WD3 vs. BL, P,0.01; D period: WD1 vs.

BL, P,0.01; WD2 vs. BL, P,0.01; WD3 vs. BL, P,0.01),

although the usual L-D rhythm was maintained (P,0.05, for the

three WD days). A rebound of both food and water intake was

observed in R1 and R2 during the L period (R1 vs. BL, P,0.01;

R2 vs. BL, P,0.01; for both), but not during the D period. In

particular, during R1 a decrease in food intake was observed

during the D period when compared to BL (P,0.01), leading to an

attenuation of the normal L-D rhythm, while a significant reversal

(P,0.01) of the normal L-D rhythm was observed for water intake.

A progressive decrease of body weight was observed during WD

(indicated as means 6 S.E.M; BL, 30264 g; WD1, 27464 g;

WD2, 25863 g; WD3, 24463 g; P,0.01, for each WD day vs.

BL), which was promptly recovered during R1 (R1, 29264 g; R2,

29964 g).

Changes in diuresis and urinary parameters across the

experiment are shown in Table 1. During WD diuresis was

progressively reduced to about 13% of normal BL levels (WD1 vs.

BL, P,0.05; both WD2 and WD3 vs. BL, P,0.01). These changes

were associated with an increase in urine osmolality, which

reached statistical significance when compared to BL during both

WD2 and WD3 (P,0.01). Also, large changes in urine electrolytes

were observed during either WD or the R period when compared

to BL: i) Na+ levels increased in WD1 (P,0.05) and WD2

(P,0.01) and decreased in R1 (P,0.01); ii) K+ levels increased in

WD2 (P,0.01) and WD3 (P,0.01) and decreased in R1 (P,0.01);

iii) Ca++ almost disappeared during WD2 and WD3, while its

levels significantly increased during R2 (P,0.01).

As shown in Table 2, hematocrit, plasma osmolality and CSF

osmolality progressively increased during WD compared to BL

levels. However, while hematocrit was significantly higher during

the whole WD period (P,0.01, for each of the three WD days vs.

BL), the increase in osmolality was statistically significant only in

WD2 (P,0.05) and WD3 (P,0.01) for CSF and in WD3 (P,0.01)

for plasma. All parameters quickly returned to BL levels during

R1. No statistically significant variations in individual electrolytes

were observed in either plasma or CSF.

Effects of the osmotic challenge on behavioral
parameters (motor activity, hypothalamic temperature,
wake-sleep stages, EEG power)

The time course of MA and Thy during the experiment is

shown in Figure 2 with a 12-h resolution. A clear daily oscillation

was observed for both MA and Thy. During WD, MA but not

Thy levels progressively decreased when compared to BL in the D

period (P,0.01, for each of the three WD days vs. BL, for both

variables). During the 1st day of R, a large increase in both MA

and Thy levels was observed during the L period (P,0.01, vs. BL,

for both variables). This was mainly due to an enhancement in

exploratory, drinking, and feeding behavior in the 4-h period

which immediately followed the re-establishment of the access to

water. Both MA and Thy decreased during the following D period

when compared to BL levels (P,0.01, for both variables) leading

to a dampening of the normal L-D rhythm. During R2, both MA

and Thy levels returned to BL levels during the L period, but

remained at a lower level when compared to BL (P,0.01, for both

variables) during the following D period.

The time spent in different W-S states across the experiment is

shown with either a 24-h or a 12-h resolution in Table 3. During

the three days of WD a progressive decrease in the 24-h amount of

Figure 1. Water and food intake. Water (ml) and food (g) intake in
rats (n = 9) under normal laboratory conditions (one day of baseline, BL),
during a three-day water deprivation protocol (WD1, WD2, WD3), and in
the two days of recovery (R1, R2) which followed the reestablishment of
access to water. Values (means 6 S.E.M.) for the 12-h Light (L, white
bars) and the 12-h Dark (D, black bars) periods are shown. Statistically
significant comparisons are shown: treatment vs. BL (*, P,0.05;
{, P,0.01); D vs. L (1, P,0.05).
doi:10.1371/journal.pone.0046116.g001
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Wake was observed (P,0.01 vs. BL, for each WD day) which was

paralleled by an increase in the time spent in NREMS (P,0.01 vs.

BL, for each WD day). Both effects were limited to the D period

(P,0.01 vs. BL, for each WD day, for both), while no significant

changes were observed during the L period. A slight progressive

decrease in the time spent in REMS was also observed, which was

significant only during WD3 when compared to BL (P,0.01).

Sequential REMS, but not single REMS, was significantly affected

during WD3 (P,0.01, vs. BL).

As noted above, the 1st day of R was characterized by a

rebound of ingestion behavior which affected wake-sleep occur-

rence. This is why behavioral parameters of R1 are analyzed in

Figure 3 with a higher resolution (2-h) than in Table 3. The mean

values of MA, Thy and Wake show a significant increase above

control values that starts at the onset of the L period, the time of

change in experimental protocol, and show a decline back to

control values in the next 8 h. This pattern seems to affect these

parameters during the following D period, since they follow the

same time course as that observed in controls, but at significantly

lower values. The overall NREM-REM sleep pattern is opposite to

that of Wake, but it shows two significant peculiarities: i) a rebound

of NREMS delta activity in the L period; ii) an increase of

sequential REMS in the D period, which explains both the

disappearance of REMS circadian rhythm in R1 and the shape of

the time course of the REMS/Total Sleep Time (TST) ratio.

The 12 h resolution used in the analysis of W-S states reported

in Table 3 for R2, shows that the overall pattern of change of W-S

states observed in R1 in the D period is basically conserved in R2:

a decrease in Wake, paralleled by an increase in NREMS (P,0.01

vs. BL, for both) and a large increase in the amount of sequential

REMS (P,0.05 vs. BL).

The average number and duration of Wake and sleep episodes

across the experiment are shown in Table 4. During WD, the

number of both Wake and NREMS episodes was unaffected

during the L period but progressively increased during the D

period (P,0.01, vs. BL for each WD day, for both states), leading

to the disappearance of the normal L-D rhythm. The concomitant

decrease in the duration of the Wake episodes which was observed

Table 1. Diuresis and urinary parameters.

BL WD1 WD2 WD3 R1 R2

Diuresis
(ml/24 h)

12.461.1 (9) 8.860.6 (9)* 2.660.4 (9){ 1.660.2 (9){ 11.561.7 (9) 13.661.1 (9)

Osmolality
(mmol/Kg H2O)

18116143 (9) 22696149 (8) 37666162 (9){ 43226237 (9){ 17666226 (9) 18646153 (9)

Sodium
(mmol/L)

219.5615.5 (9) 296.2616.4 (8)* 324.0618.2 (9){ 265.4623.0 (9) 56.2610.5 (9){ 225.6616.2 (9)

Potassium (mmol/L) 361.4618.5 (9) 400.4614.0 (8) 455.7616.9 (9){ 425.1612.2 (9)* 279.0624.7 (9){ 335.0616.2 (9)

Calcium
(mmol/L)

0.20160.065 (8) 0.08660.038 (7) 0.01860.003 (8) 0.02660.005 (8) 0.40760.090 (8) 0.84160.172 (8){

Daily diuresis, urine osmolality, and Na+, K+ and Ca++ urinary concentration in rats under normal laboratory conditions (one day of baseline, BL), during a three-day water
deprivation protocol (WD1, WD2, WD3), and in the two days of recovery (R1, R2) which followed the reestablishment of the access to water. Values are expressed as
means 6 S.E.M. Number of cases are indicated between brackets. Statistically significant post-hoc comparisons vs. BL, are shown: *, P,0.05; {, P,0.01.
doi:10.1371/journal.pone.0046116.t001

Table 2. Blood, plasma and cerebrospinal fluid parameters.

BL WD1 WD2 WD3 R1 R2

Blood

Hematocrit (%) 43.460.5 (10) 47.060.9 (10){ 52.860.8 (9){ 55.460.8 (10){ 44.660.7 (8) 44.860.6 (7)

Plasma

Osmolality
(mmol/Kg H2O)

29365 (10) 30162 (10) 30365 (8) 31063 (10){ 29164 (7) 29363 (8)

Sodium (mmol/L) 155.662.4 (10) 152.962.4 (10) 157.362.9 (8) 157.863.1 (10) 149.364.9 (7) 155.962.8 (8)

Potassium (mmol/L) 4.660.1 (10) 4.360.3 (10) 4.460.2 (8) 4.360.2 (11) 4.660.1 (7) 4.860.1 (8)

Calcium (mmol/L) 1.8960.12 (10) 2.0360.08 (10) 2.0160.15 (8) 1.9260.07 (10) 1.8160.13 (7) 1.7860.12 (8)

Cerebrospinal fluid

Osmolality
(mmol/Kg H2O)

29766 (6) 30562 (8) 31163 (9)* 31962 (7){ 30063 (7) 30161 (6)

Sodium (mmol/L) 161.3610.8 (7) 174.764.3 (6) 173.063.1 (8) 177.064.2 (7) 165.063.1 (6) 169.262.0 (6)

Potassium (mmol/L) 4.960.7 (8) 4.060.3 (8) 4.060.4 (7) 4.760.9 (8) 5.260.9 (6) 5.360.7 (6)

Calcium (mmol/L) 0.9860.07 (7) 1.0760.05 (6) 1.0560.08 (6) 1.0360.07 (6) 0.9760.04 (6) 1.0360.04 (5)

Hematocrit, plasma omolality, and Na+, K+ and Ca++ concentrations in plasma and cerebrospinal fluid in rats under normal laboratory conditions (one day of baseline,
BL), during a three-day water deprivation protocol (WD1, WD2, WD3), and in the two days of recovery (R1, R2) which followed the reestablishment of the access to
water. Samples were collected at the end of each of the indicated 24-h periods, between 09.00–11.00. Values are expressed as means 6 S.E.M. Number of cases are
indicated between brackets. Statistically significant post-hoc comparisons vs. BL, are shown: *, P,0.05; {, P,0.01.
doi:10.1371/journal.pone.0046116.t002

Waking and Sleeping in Water Deprivation

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e46116



during the D period (P,0.01, vs. BL, for each WD day) was large

enough to lead to the decrease in the 12-h amount of Wake

previously described. On the contrary, the duration of NREMS

episodes, which was only slightly reduced compared to BL, was

enough to allow an increase in time spent in NREMS to occur. No

substantial and consistent changes in the number and duration of

either single or sequential REMS episodes were observed during

WD.

During the first 12-h of R, a large increase in the duration

(P,0.01, vs. BL) and a slight decrease in the number (P,0.01, vs.

BL) of Wake episodes led to the increase in the 12-h amount of

Wake previously described. This effect was paralleled by a

decrease in the number of NREMS episodes (P,0.01, vs. BL).

During the following D period, the duration of Wake episodes

decreased (P,0.01, vs. BL) while that of NREMS episodes

increased (P,0.05, vs. BL), leading to an increase in the 12-h

amount of NREMS. This pattern was also observed during the D

period of R2. For both Wake and NREMS, the normal L-D

rhythm in the number of episodes disappeared during R1 but not

during R2. The large increase in the number of sequential REMS

episodes which was observed during the D period of both R1 and

R2 (P,0.01, vs. BL) abolished the normal L-D rhythm of this

parameter and led to the increase in the 12-h amount of REMS

previously described. The number and duration of single REMS

episodes were reciprocally affected during the L period of R1

(P,0.01, vs. BL, for both parameters), but this change did not

affect the 12-h amount of REMS.

Average DPW during NREMS and TPW during either Wake

or REMS are shown in Table 5 with a 12-h resolution and in

Figure 3 with a 2-h resolution. Both NREMS-DPW and Wake-

TPW were depressed by the WD procedure.

As shown in Table 5, a statistically significant decrease

compared to BL was observed for NREMS-DPW during both

the L (P,0.01, for both WD2 and WD3) and the D (P,0.01, for

each WD day) period and for Wake-TPW during the D period

(P,0.01, for both WD2 and WD3), while a significant L and D

rhythm of Wake-TPW appeared during the three days of WD

(P,0.05, for each WD day). In contrast, no significant changes in

Figure 2. Motor activity and hypothalamic temperature. Motor
activity (MA; bars referring to the left axis) and hypothalamic
temperature (Thy, uC; dots referring to the right axis) in rats (n = 8)
under normal laboratory conditions (average of two days of baseline,
BL), during a three-day water deprivation protocol (WD1, WD2, WD3),
and in the two days of recovery (R1, R2) which followed the
reestablishment of access to water. Values (means 6 S.E.M.) for the
12-h Light (L, white symbols) and the 12-h Dark (D, black symbols)
periods are shown. Statistically significant comparisons are shown:
treatment vs. BL (*, P,0.05; {, P,0.01); D vs. L (1, P,0.05).
doi:10.1371/journal.pone.0046116.g002

Table 3. Time spent in different Wake-Sleep states.

BL WD1 WD2 WD3 R1 R2

24 h

Wake 51.660.7 47.261.0 { 46.661.1 { 45.860.9 { 54.361.6 * 47.861.3 {

NREMS 41.160.6 45.761.0 { 46.661.1 { 48.261.0 { 36.661.5 { 43.961.2 {

REMS 7.360.3 7.160.2 6.860.3 5.960.3 { 9.160.3 { 8.360.3 *

Single REMS 4.160.2 4.060.3 3.860.4 3.860.3 3.560.4 3.660.3

Sequential REMS 3.360.3 3.160.3 3.060.4 2.260.3 { 5.560.4 { 4.760.3 {

12 h

Wake L 27.160.6 25.861.5 23.961.1 26.861.5 46.962.4 { 30.261.7

D 75.261.1 1 67.761.1 {1 68.461.1 {1 64.061.8 {1 61.562.5 {1 64.661.7 {1

NREMS L 62.461.0 63.661.8 64.661.4 63.261.4 44.362.1 { 60.061.4

D 20.660.9 1 28.760.8 {1 29.461.0 {1 33.961.6 {1 29.361.9 {1 28.561.7 {1

REMS L 10.660.6 10.660.6 11.660.7 10.060.7 8.860.7 9.860.6

D 4.260.5 1 3.760.6 1 2.260.2 1 2.060.4 1 9.260.9 { 6.960.6 *1

Single REMS L 5.860.5 6.160.5 6.260.7 6.360.7 4.260.5 4.760.6

D 2.460.3 1 2.060.4 1 1.460.3 1 1.360.3 1 2.960.4 2.660.3 1

Sequential
REMS

L 4.760.4 4.560.6 5.360.8 3.760.5 4.760.6 5.160.6

D 1.860.3 1 1.660.3 1 0.860.1 1 0.860.2 1 6.360.7 { 4.360.4 {

Time spent in the different Wake-Sleep states (Wake; NREMS, non-rapid eye movement sleep; REMS, rapid eye movement sleep) in rats (n = 8) under normal laboratory
conditions (average of two days of baseline, BL), during a three-day water deprivation protocol (WD1, WD2, WD3), and in the two days of recovery (R1, R2) which
followed the reestablishment of the access to water. Values (means 6 S.E.M.) for the whole 24-h period or for the 12-h Light (L) and the 12-h Dark (D) periods are shown
and expressed as the percent fraction of the 24-h or the 12-h period. Statistically significant comparisons are shown: treatment vs. BL (*, P,0.05; {, P,0.01); D vs. L
(1, P,0.05).
doi:10.1371/journal.pone.0046116.t003
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Figure 3. Comparison of the time course of changes in behavioral parameters on the first day of recovery with comparison to the
baseline. Values (means 6 S.E.M.) of different parameters are shown for each 2 h intervals of the L (09.00–21.00) and D (21.00–09.00) periods of the
recovery (R1, filled circles) and base line (BL, empty circles): MA, motor activity; Thy, hypothalamic temperature. Values concerning sleep stages
(Wake, NREM sleep (NREMS), REM sleep in the form of single (single REMS) and sequential (sequential REMS) episodes), the ratio of REMS to total
sleep, levels of power density in the delta (0.75–4.0 Hz; band of the EEG during NREMS (NREMS-Delta)) are expressed as the percent fraction of each
of the respective 2 h interval. Statistically significant comparisons are shown: treatment vs. BL (*, P,0.05).
doi:10.1371/journal.pone.0046116.g003
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REMS-TPW were observed during the WD protocol. During the

R period, NREMS-DPW largely increased during the L period in

R1 (P,0.01, vs. BL) and significantly decreased during the L

period in R2 (P,0.01, vs. BL). This decrease led to the

disappearance of the normal L-D rhythm. Both Wake-TPW and

REMS-TPW significantly increased during the L period of R1

compared to BL (P,0.05, for Wake-TPW; P,0.01, for REMS-

TPW). This increase led to the appearance of a significant L and D

rhythm for Wake-TPW (P,0.05), but not for REMS-TPW, due to

the maintenance of high levels of this parameter during the D

period.

The analysis of the power density time course in the three EEG

bands with a 2-h resolution (Figure 4) showed that the peak of the

NREMS-DPW, which occurs daily in the early L period,

Table 4. Number and duration of episodes of the different Wake-Sleep states.

BL WD1 WD2 WD3 R1 R2

Wake

Light No. 363.8611.0 343.4610.9 368.8618.3 393.5619.4 243.0617.1 { 323.1616.2

Dur. 3261 3362 2861 2963 8569 { 4164

Dark No. 220.8610.9 1 322.3612.8 { 380.4622.5 { 444.0631.6 { 231.3616.9 231.4615.9 1

Dur. 153611 1 9065 {1 7965 {1 6566 {1 120614 {1 122610 {1

NREMS

Light No. 363.6610.9 342.3611.0 368.1618.4 393.3619.5 242.1617.1 { 322.8616.2

Dur. 7363 7864 7465 6864 7765 7966

Dark No. 220.0610.8 1 321.8612.9 { 380.4622.3 { 443.5631.6 { 231.1616.8 231.1615.8 1

Dur. 4162 1 3961 1 3462 1 3463 1 5562 *1 5463 *1

Single REMS

Light No. 26.661.3 28.462.8 29.163.4 31.562.4 15.161.2 { 22.562.1

Dur. 9367 9368 9368 8367 115610 * 8667

Dark No. 12.061.6 1 10.462.1 1 6.361.1 1 6.961.6 1 13.461.2 12.361.6 1

Dur. 8863 8664 9466 92612 9368 9567

Sequential REMS

Light No. 30.562.5 31.063.0 35.364.2 24.562.9 28.163.7 32.864.9

Dur. 6764 6065 6265 6464 7266 6765

Dark No. 10.761.6 1 9.461.7 1 3.961.0 1 4.161.1 1 37.164.5 { 24.662.1 {

Dur. 7662 7664 100612 {1 7168 7364 7462

Number (No.) and duration (Dur., s) of episodes of the different Wake-Sleep states (Wake; NREMS, non-rapid eye movement sleep; REMS, rapid eye movement sleep) in
rats (n = 8) under normal laboratory conditions (average of two days of baseline, BL), during a three-day water deprivation protocol (WD1, WD2, WD3), and in the two
days of recovery (R1, R2) which followed the reestablishment of the access to water. Values (means 6 S.E.M.) for the 12-h Light (L) and the 12-h Dark (D) periods are
shown. Statistically significant comparisons are shown: treatment vs. BL (*, P,0.05; {, P,0.01); D vs. L (1, P,0.05).
doi:10.1371/journal.pone.0046116.t004

Table 5. Power density in the different band of the EEG during the different Wake-Sleep states.

BL WD1 WD2 WD3 R1 R2

NREMS-DPW

L 102.460.5 101.261.4 84.562.5 { 78.162.2 { 145.365.4 { 91.464.6 *

D 93.161.4 1 76.163.1 {1 64.363.0 {1 58.963.2 {1 93.764.8 1 94.964.9

Wake-TPW

L 102.161.1 106.963.4 99.363.4 94.863.8 111.963.8 * 99.865.3

D 99.260.5 95.262.6 1 88.463.1 {1 82.963.0 {1 99.764.5 1 96.364.2

REMS-TPW

L 99.660.2 101.861.8 103.663.2 105.463.2 112.164.4 { 98.664.5

D 101.160.5 97.363.1 99.063.4 99.562.3 107.264.9 102.864.8

Relative levels of power density in the delta (0.75–4.0 Hz; DPW) band of the EEG during non-rapid eye movement sleep (NREMS) and in the theta (5.5–9.0 Hz, TPW) band
of the EEG during either Wake or rapid eye movement sleep (REMS) in rats (n = 8) under normal laboratory conditions (average of two days of baseline, BL), during a
three-day water deprivation protocol (WD1, WD2, WD3), and in the two days of recovery (R1, R2) which followed the reestablishment of the access to water. Values
(means 6 S.E.M.) for the 12-h Light (L) and the 12-h Dark (D) periods are shown and expressed as the percent of the mean 24-h level of the BL. Statistically significant
comparisons are shown: treatment vs. BL (*, P,0.05; {, P,0.01); D vs. L (1, P,0.05).
doi:10.1371/journal.pone.0046116.t005
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progressively decreased during the WD protocol. The peak was

sharp during R1 but strongly depressed during R2. A sharp

increase in the daily pattern for Wake-TPW appeared during the

2-h period immediately after the start of the WD procedure,

followed by an apparently linear depression. This was not the case

for REMS-TPW. Both Wake-TPW and REMS-TPW peaked

within four hours after water was again made freely available, and

progressively decreased during R1. The average build-up of

NREMS-DPW during consolidated NREMS episodes (i.e. lasting

more than 2 min) occurring during the L period is shown in

Figure 5 for BL and for the two experimental days in which the

average NREMS-DPW was maximally depressed (WD3) or

enhanced (R1). The NREMS-DPW build-up appeared to be

largely depressed during WD3 and enhanced during R1.

Discussion

The results show that changes in the parameters of osmotic

homeostasis and behavioral states follow different time and

intensity pathways in WD and recovery. For this reason, the

discussion will follow the experimental protocol and, in view of the

main working hypothesis of an independence of sleep and osmolal

regulations, changes concerning the cumulative duration and

structure of W-S stages will be treated separately.

Water deprivation
Changes in osmotic homeostasis were characterized by a large

reduction in diuresis compared to BL values, by an overall stability

of Thy and by changes in composition of the following body fluids:

i) plasma: a significant increase in hematocrit (since the 1st day),

and osmolality (on the 3rd day); ii) CSF: a significant increase in

osmolality (on the 2nd and 3rd day); iii) urine: a relevant increase in

osmolality, Na+/K+ concentration and an unexpected decrease in

Ca++ concentration. Regarding the absolute excretion values

(mmol/24 h), K+ and Na+ excretion decreased broadly in parallel,

while Ca++ followed a much steeper downward slope. Taken

together, these results show that in WD cation homeostasis in

extracellular fluid is well preserved. Since we did not observe the

sodium diuresis reported by others [23], it is likely that a stable

cation concentration is achieved by a shift of intracellular water to

the extracellular compartment. As far as Ca++ is concerned, it

would appear that this mechanism is integrated by changes in

either solubility, mediated by bone surface proteins [24,25], or

excretion threshold at kidney level [26].

Beside the wake-sleep cycle, behavioral parameters encompass

ingestion and MA. Water deprivation is characterized by: i) a

Figure 4. Power density in the different bands of the EEG
during the different Wake–Sleep states. Relative power density in
the delta (0.75–4.0 Hz; DPW) band of the EEG during non-rapid eye
movement sleep (NREMS) and in the theta (5.5–9.0 Hz, TPW) band of
the EEG during either Wake or rapid eye movement sleep (REMS) in rats
(n = 8) under normal laboratory conditions (average of two days of
baseline, BL), during a three-day water deprivation protocol (WD1, WD2,
WD3), and in the two days of recovery (R1, R2) which followed the
reestablishment of access to water. Values (means 6 S.E.M.) are shown
with a 2-h resolution and expressed as the percentage of the mean 24-h
level of the BL. The 12 h:12 h Light (L, white bars) – Dark (D, black bars)
rhythmicity is shown.
doi:10.1371/journal.pone.0046116.g004

Figure 5. Build-up of delta power during consolidated non-
rapid eye movement sleep episodes. Build-up of power density in
the delta (0.75–4.0 Hz) band of the EEG during consolidated non-rapid
eye movement sleep (NREMS) episodes (i.e. lasting more than 2 min)
occurring in rats (n = 8) under normal laboratory conditions (average of
two days of baseline, BL), during the third day of a water deprivation
protocol (WD3) and the first day of recovery (R1) which followed the
reestablishment of access to water. Values (means 6 S.E.M.) are
expressed as the percentage of the mean 24-h level of the BL.
doi:10.1371/journal.pone.0046116.g005
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progressively large reduction in food intake (dehydration-induced

anorexia) [27] which starts in the D period of the LD cycle on the

1st day and then proportionally extends to both L and D periods

on the 2nd and 3rd day; ii) a consistent reduction in MA in the D

period of the LD cycle.; iii) a reorganization of the amount of W-S

stages in the D period of the LD cycle, characterized since the

1st day by an increase in NREMS and a parallel decrease in Wake

and a non-significant decrease in REMS.

Recovery from water deprivation
Diuresis was restored to the BL values while hypothalamic

temperature significantly decreased below the BL in the D period

of the LD cycle. The osmolality and cation content of plasma and

CSF were restored to BL values. However, this stability

corresponded to a significantly lower absolute urinary excretion

of K+ and Na+ on the 1st day, while BL values were re-attained

only on the 2nd recovery day. In the same time period, Ca++

excretion went from a two-fold to an almost five-fold increase.

Although a restoration of BL values was shown to be in

progress, most behavioral parameters remained significantly

different from their corresponding BL levels in the D period of

both R days. In particular: i) MA remained lower than the BL; ii)

the amount of Wake and NREMS remained respectively lower

and higher than the BL. Two exceptions to this pattern are worth

noting: i) in the L hours of the 1st day of recovery, the time spent

drinking significantly increased the amount of Wake and reduced

the amount of NREMS; ii) the amount of REMS increased in the

D period of both R days. Thus, the common pattern of behavioral

results consisted of changes in both WD and R mainly in the D

period of the LD cycle.

Changes in the cumulative duration and structure of
sleep stages

The results show an opposite pattern of change concerning the

amount of sleep: the amount of NREMS increased during both

WD and R, while REMS showed only a slight decrease in WD,

and increased during R. The changes in the structure of sleep

stages appear to be more subtle than those seen in the cumulative

duration.

As far as NREMS is concerned, we observed a sharp contrast

between its time course and the findings from EEG analysis. In

fact, DPW, the hallmark of NREMS ‘‘intensity’’ in mammals [17],

decreased during the WD period in both L and D hours, although

it maintained its BL diurnal pattern. In the L hours of the 1st day

of recovery, the amount of NREMS was reduced by the time spent

drinking, but DPW strongly increased in accordance with a

‘‘classical’’ recovery pattern following deprivation. This suggests

that an accumulation of the need for slow-wave activity may follow

not only the absence of NREMS, but also a selective absence of

slow waves during NREMS [17]. Two lines of observations

suggest that the dissociation between temporal and low EEG-

frequency features of NREMS are not related to W-S processes.

Firstly, the analysis of DPW accumulation in NREMS episodes

lasting more than 2 min (consolidated episodes) suggests that the

observed decrease in WD is not due to sleep fragmentation. In

contrast to this, a significant decrease in DPW during NREMS

caused by sleep fragmentation has been detected in rats exposed to

a very low Ta [5]. Secondly, in WD the pattern of change in DPW

in NREMS is concomitant with a constancy of TPW in Wake in

the L period, or with its decrease during the D period. This is in

contrast with the observation that, in the rat, sleep deprivation

increases TPW in waking [12,28]. Thus, it may be hypothesized

that these changes may rather depend on dehydration-rehydration

processes. Bearing this in mind, the fact that CSF concentration of

principal cations did not significantly change in either WD or R

rules out the possibility that these processes may induce a diffused

alteration of cell excitability. This interpretation is further

supported by the finding that theta power during REMS remains

stable. The fact that the increase in the cumulative duration of

NREMS is almost exactly paralleled by a reduction in Wake

suggests that EEG changes in NREMS may be due to a differential

influence of dehydration-rehydration processes on brain arousal

systems [29].

The mild depression of REMS during WD reached statistical

significance on the 3rd day of this condition, because of the

summing up of a reduction affecting both the L and D periods of

the LD cycle. This result is consistent with recent observations

from our lab showing that the responsiveness of hypothalamic

structures to an acute osmotic challenge is not impaired during

REMS [7]. Accordingly, it confirms that the impairment of

thermoregulation observed during REMS [1] is not explicable on

the basis of a broad impairment of hypothalamic integrative

activity.

The reduction in the amount of REMS during WD concerned

sequential episodes, that is, those mainly responsible for REMS

modulation in the rat [5,10,11,30,31,32,33]. Accordingly, the

small REMS rebound observed in R was due to an increase in the

same kind of REMS episodes.

Solid experimental evidence shows that the homeostatic

regulation of body fluids and temperature share regulatory

networks at the hypothalamic and brainstem level

[34,35,36,37,38]. The fact that during REMS osmoregulation is

not impaired [7] while thermoregulation is [1], implies that the

occurrence of a REMS episode is related to a functional

dissociation between the hypothalamic control of thermoregula-

tion and that of osmoregulation. Thus, it may be hypothesized that

the sustained activity of the osmoregulatory network during WD

may reduce the rate of occurrence of such a dissociation. This

would more likely depress the occurrence of sequential REMS

episodes since they are, by definition, separated by short intervals.

In the same line of reasoning, the increase in sequential episodes

during R suggests that this functional impairment has been rapidly

reverted.

As shown by the higher resolution analysis employed for the

1st day of recovery, the initial part of R was affected by the

intervention of behavioral regulation of osmotic homeostasis,

prompted by the reintroduction of free access to water. The

efficacy of this regulatory behavior is shown by the restoration of

normal diuresis, which was concomitant with an exceedingly high

consumption of food and water in the L hours. Coherently with

this regulatory behavior, values of MA, Thy and wake increased

immediately to a maximum, decreased to control values in the

next few hours, and further decreased below these levels in the D

hours. This pattern of activity appeared to influence parameters

concerning the amount of sleep in the L hours, which were

characterized by values below baseline. In the D hours, the

amount of NREMS and REMS followed a separate time course: i)

NREMS returned to the same levels as those observed during the

D hours of the previous WD; ii) REMS increased above these

levels, as clearly underlined by the time course of the ratio of

REMS to total sleep. The total rebound of REMS during the D

hours of R was slightly larger than that expected from the previous

loss [6]. A possible explanation of this result may be conveyed by

the observation that, in the rat, an administration of food limited

only to the L hours of the LD cycle caused an increase in REMS in

the D hours [39,40]. It may be noted that, in our experimental set,

the passage from WD to water availability coincided with the onset
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of the L period of the LD cycle and that the dehydration anorexia

was ended by the concomitant resumption of water and food.

On the 2nd day of R, the overall course of these sleep changes

was repeated, while that concerning the ingestion parameters

moved toward baseline levels, almost restoring the usual L-D

pattern. Although water deprivation may be considered a stressful

condition, the findings concerning wake-sleep show that it neither

increases the amount of arousal nor decreases the amount of sleep.

Regarding this, it has been observed that the increase in plasmatic

corticosterone concentration in WD is not driven by ACTH, but

by circulating AVP [41,42]. In line with these findings, in the

compensatory drinking that follows water deprivation, it is the

drop of AVP that quickly reduces corticosterone levels. Thus, it

would appear that the principal peripheral effector of stress is

regulated according to the specific homeostatic challenge repre-

sented by the maintenance of osmolality, rather than by the

general intervention of the hypothalamic pituitary adrenal axis

through CRH-ACTH.

Conclusions
In normal laboratory conditions, the regulatory intervention of

behavior is usually restricted, but waking and sleeping, which

represent a basic set of behavioral states, are easily displayed. An

exposure to low Ta, comparable for duration to the WD period

used in this experiment, would have induced a relevant reduction

in the occurrence of REMS, as a behavioral thermoregulatory

response. Our data suggest that a tight osmolal homeostasis allows

for a normal occurrence of the thermal unresponsiveness of

preoptic hypothalamic structures which constitutes the pre-

requisite to enter REMS. This may be particularly relevant for

animals of small size which are exposed to quick changes in body

temperature and have a limited amount of body water. Finally,

since it is well known that the physiological control of body fluids

evolved before that of body temperature, it may be hypothesized

that REMS is closely related to homeothermia and metabolism.
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