
Hindawi Publishing Corporation
International Journal of Rotating Machinery
Volume 2011, Article ID 143523, 9 pages
doi:10.1155/2011/143523

Research Article

Model Reduction of the Flexible Rotating Crankshaft of
a Motorcycle Engine Cranktrain

Stefano Ricci, Marco Troncossi, and Alessandro Rivola

DIEM, Department of Mechanical Engineering, University of Bologna, via Fontanelle Street 40, 47121 Forl̀ı, Italy

Correspondence should be addressed to Alessandro Rivola, alessandro.rivola@unibo.it

Received 15 September 2010; Revised 26 February 2011; Accepted 21 March 2011

Academic Editor: Jerzy Sawicki

Copyright © 2011 Stefano Ricci et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper addresses the development of an elastodynamic model of a motorcycle engine cranktrain aimed at accurately evaluating
the interactions between the crankshaft and the engine block, thus allowing an improved structural design. A rigid multibody
model is first implemented and simulated; only kinematic joints are involved at this stage, leading to a statically determinate
assembly of the mechanism. Such a modelling approach prevents the loads at certain interface locations to be evaluated;
furthermore, high-frequency dynamic effects cannot be predicted. These drawbacks can be removed by introducing bushing-
like elements and/or modelling component flexibility. In this paper, this latter aspect is the objective of the investigation; in
particular, a finite element model of the crankshaft is implemented as a replacement for the corresponding rigid member. The
well-established Craig-Bampton model reduction technique is used to represent the elastodynamic behaviour of the component
with a limited number of coordinates. The mode selection procedure is emphasized here: a measure of modal dynamic importance,
namely the effective interface mass fraction, is used to rank fixed-interface normal modes based upon their contribution
to loads at the substructure interface; choosing the modal base according to such ranking leads to a minimal yet accurate
representation.

1. Introduction

Modern powertrain design is facing increasingly strict req-
uirements in terms of emissions, fuel consumption, noise,
and vibration levels. In recent years, this trend is extending
towards the motorcycle industry, in which competitive
design focused on achieving a high power-to-weight ratio
calls for optimized engine components. This in turn requires
the adoption of a multidisciplinary approach early in the
conception phase, and the use of advanced simulation tools
which might help the analyst in gaining a deeper insight into
the physical phenomena associated with the engine oper-
ation. Concerning powertrain dynamics, modern analysis
techniques involve the use of multibody simulation tools,
which allow an accurate prediction of the operational loads
acting on the engine components, leading to an optimal
structural design.

Several approaches are described in literature dealing
with multibody modelling of internal combustion (i.c.)

engine powertrains. Some papers deal with the construction
of fully coupled cranktrain models through the use of com-
mercial multibody dynamics codes, which provide a general
modelling platform for mechanical systems, see, for example,
[1, 2]; the equations of motion are in this case implicitly
synthesized by the software kernel, and solved by means of
some standard integration scheme. As an alternative, some
studies describe the development of specialized modelling
codes, see [3, 4]; the system equations of motion are retrieved
analytically, converted to computational code, and solved
numerically.

In this work, the former approach has been followed,
the model being developed by means of ADAMS multibody
simulation software; this package offers standard perfor-
mance in terms of results’ accuracy versus simulation time,
also allowing for integration with other simulation tools,
for example, finite element codes, and a straightforward
procedure in defining customized subroutines. These aspects
play an important role in the perspective of developing an
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integrated, multidisciplinary i.c. engine simulation platform,
which is the ultimate goal of the research framework this
work is part of.

In the context of multibody modelling, the definition of
a system made up of rigid links connected to each other
via kinematic joints typically represents the first step in the
process; in fact, commercial multibody software platforms
offer both CAD interfaces and joint libraries, permitting the
analyst to set up a basic dynamic model with little time
and effort. Clearly, this modelling approach is affected by
some important limitations: first of all, the adoption of rigid
bodies in combination with kinematic joints prevents some
interface loads to be evaluated whenever the mechanism
under study exhibits some static indeterminacy; further-
more, any structural dynamic effect, which might contribute
significantly to the actual loads, is evidently lost. These
shortcomings can be eliminated by embracing a refined
modelling methodology, based upon the introduction of
nonideal joints at interface locations, for example, bushings,
and the inclusion of component flexibility. The latter, in
particular, is a necessary task if one wants to capture dynamic
effects which arise in high-speed applications, and is the
main concern of this paper.

In flexible multibody dynamics, the floating frame of
reference formulation is the most widely used method to
account for component flexibility [5]; according to such
approach, the motion of each flexible body is subdivided
into a reference motion, which can be described according
to rigid multibody formalism, and a deformation. The finite
element method is used to describe such a deformation;
since small displacements and rotations are assumed to
occur about the floating frame, linear methods borrowed
from structural dynamics can be exploited, such as modal
superposition techniques. These techniques are used to
reduce the number of coordinates required to describe the
component deformation; this is accomplished by means of
some coordinate transformation, which normally involves
the definition of proper component mode shapes. Several
component mode synthesis methods have been proposed in
the past [6–9], the Craig-Bampton approach being the most
popular amongst the multibody dynamics community. The
coordinate transformation matrix is built up in this case
starting from the computation of constraint modes and fixed-
interface normal modes; proper selection of the latter is a
nontrivial task, and several papers exist on the subject, see,
for example, [10]. In this work, the selection procedure is
carried out in accordance with a modal ordering scheme
based on the effective interface mass measure of dynamic
importance [11, 12], which ranks modes based upon their
contribution to loads at component interface.

This paper discusses the first steps in the development
of a multibody model of a Ducati L-twin, four-stroke
engine cranktrain. The ultimate purpose of such model is
the accurate prediction of the loads acting on the main
components in the system, with special regard to the engine
block; this will eventually enable a refined structural design,
resulting in a weight reduction combined with improved
overall performances. After a brief description of the system
under study (Section 2), the modelling process will be
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Figure 1: Drawing and functional schematic of the cranktrain
under study.

reviewed; in Section 3, a rigid multibody model is presented,
and inherent limitations are highlighted; Section 4 depicts
the flexible multibody implementation, mainly focusing
on the adopted methodology. Some concluding remarks
and future research directions are eventually given in
Section 5.

2. System Description

As mentioned, this study deals with the cranktrain of a
motorcycle i.c. engine. Figure 1 shows a schematic of the
mechanism. The main component in the system is a single
throw crankshaft supported by four main journals, three
of which equipped with ball bearings (the two central ones
and the external main bearing 1), the other one being
hydrodynamically lubricated (external main bearing 2). The
shaft carries a flywheel, and the two pinions 1 and 2 that
transmit power to the valvetrain and the clutch, respectively.
Two connecting rods, arranged in a 90◦ V configuration,
act on the crankpin through hydrodynamically lubricated
journal bearings; wrist pins connect the two pistons (not
visible in Figure 1) to the respective conrods. The overall
mass of the crankshaft equipped with the flywheel and
the two pinions is 7.56 kg whereas the conrods and the
pistons weight, respectively, 0.32 kg and 0.50 kg each. The
crankshaft length is about 300 mm whereas other dimensions
are manufacturer’s confidential data and cannot be reported.
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Figure 2: Multibody model of the cranktrain implemented in
ADAMS.

3. Rigid Multibody Modelling

The first step in the modelling process was the definition
of a multirigid-body model of the system. Starting from
3D CAD models of the components, these were imported
into the multibody environment and assembled by means
of kinematic joints (Figure 2). Great care was taken here
to build a single degree-of-freedom (DOF) system: joints
and joint primitives were arranged with such purpose,
preventing the software to automatically detect, and remove,
any redundant constraints.

Model inputs are the combustion forces acting on both
pistons, resulting from an experimental test campaign, and
the external torques acting on pinions 1 and 2; the former
was estimated by the manufacturer by means of some
analytic model of the valvetrain while the latter was obtained
by simply enforcing periodic speed oscillations over the
engine cycle.

Estimates of the loads acting on both the connecting
rod and the crankshaft were retrieved as a result of this
first dynamic model; comparable results might be obtained
by means of analytic models (as those currently used in
the design phase by the manufacturer) based on classic
formulations, see, for example, [13].

The described model shows some evident limitations.
Firstly, loads at two out of four main bearing locations
cannot be evaluated, since static indeterminacy of the assem-
bly cannot be treated with a purely kinematic approach:
only the central main bearings were thus introduced in
the model, neglecting the constraints associated with the
external bearings. Secondly, the elastodynamic effects, which
might have a major impact on the estimated loads, provided
the high rotational speed of the engine (10000 rpm), are
completely neglected.

These drawbacks can be removed by introducing non-
ideal joints at the four main bearing locations, and by
modelling component flexibility. Both procedures concur
towards the definition of a more realistic model, which

Figure 3: FE model of the crankshaft with 3D elements (the dark
elements represent the balancing pads).

should be capable of predicting the interactions between the
crankshaft and the engine block with improved accuracy.
Only the latter has been considered thus far, and will be
presented in the next section.

4. Flexible Multibody Modelling

The development of a flexible multibody model usually
requires a preprocessing stage in which a finite element (FE)
model of the designated component is produced. Whenever
the FE discretization results in a large model order (as in
the case of the crankshaft FE model represented in Figure 3),
which is often the case when dealing with solid meshes,
some reduction procedure is needed to reduce the number of
coordinates required to describe component flexibility; this
can then be accounted for in nonlinear dynamic simulations
at acceptable computational cost. The assumption here is
that the deformation of the flexible body keeps small with
respect to a body local reference frame, which in turn
undergoes large, nonlinear motion relative to an inertial
global reference frame; linear elastic theory is used to
describe such deformation, which is approximated as a linear
combination of a number of shape vectors:

u = Tv, (1)

where u is a vector of physical coordinates, that is, transla-
tions (and rotations, if any) of the FE nodes, T is a matrix
holding the shape vectors as columns, and v is a vector of
generalized coordinates. Usually, the dynamic behaviour of
the FE component in a certain frequency range of interest
can be captured using a much smaller number of generalized
coordinates compared with the original number of physical
coordinates: there lies the model reduction.

Several model reduction methods were proposed in the
past [6–8] which rely on a coordinate transformation as the
one defined by (1); they basically differ from each other in the
selection of the mode set used to build the transformation
matrix T, which can include normal modes, constraint
modes, and attachment modes. A comprehensive overview of
those techniques, which are referred to as component mode
synthesis (CMS) or substructuring techniques, can be found
in [9].

4.1. Craig-Bampton Model Reduction. In this study, the
Craig-Bampton (CB) approach has been used and will be
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briefly reviewed here. The equilibrium equation for the free-
free, undamped structure holds:

Mü + Ku = f , (2)

where M and K are the FE mass and stiffness matrices,
respectively, and f is the external force vector. The physical
DOFs are partitioned into two complementary sets, the
interface DOFs (subscript a, “active”) and the interior DOFs
(subscript o, “omitted”):

⎡
⎣Maa Mao

Moa Moo

⎤
⎦
{

üa
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where it has been assumed that external loads, that is,
external forces/torques, are applied only at the interface
DOFs; clearly, this requires a proper a-set definition. The
following coordinate transformation is then introduced:

{
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}
, (4)

in which Ψ is a matrix of shapes obtained considering the
lower partition of the static portion of (3) and solving for
the o-set displacements

uo = −K−1
oo Koaua = Ψua, (5)

whereas Φ is a matrix of shape vectors satisfying the o-set
eigenproblem

KooΦ = MooΦΩ. (6)

The first Na columns of the transformation matrix in (4)
represent the static deformation shapes of the component
when subjected to unit displacements at each of the a-set
DOFs, the other being restrained; these are termed constraint
modes in the literature. The last No columns are fixed-
interface normal modes, that is, eigenvectors, representing the
dynamics of the substructure interior relative to the interface;
the corresponding eigenvalues are collected in the diagonal
matrix Ω. As one might notice, the generalized coordinate
vector comprises both physical displacements, ua, and modal
displacements, q; the fact that interface DOFs are retained
in the reduced representation greatly facilitates component
coupling, this being probably a major reason for the success
of the CB method.

Introducing the transformation in (4) into (3), and
premultiplying by the transpose of the transformation
matrix, the CB substructure representation is obtained:
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where the fixed-interface modes have been normalized with
respect to the o-set mass matrix. In (7), the following
positions hold:

Ms = Maa + MaoΨ + ΨTMoa + ΨTMooΨ,

Ks = Kaa + KaoΨ,
(8)

P = −ΦT(MooΨ + Moa), (9)

Ms and Ks being the statically reduced mass and stiffness
matrices, respectively. The matrix P is a modal participation
factor matrix, containing the multiplication factors for the
acceleration inputs at the interface DOFs governing the
response of the fixed interface modal coordinates:

q̈ + Ωq = Püa. (10)

A modal selection problem arises at this point. Clearly,
the two most important aspects of such a problem are model
order and model accuracy: an optimal reduction would
result in the minimal set of component modes which ensures
acceptable accuracy in the simulation results. Concerning
the CB mode set, the definition of the constraint modes
directly comes from the coordinate partitioning process,
which in turn is dependent upon the choice of interface
DOFs; usually, these are selected based upon the knowledge
of constraint and applied load locations. On the other hand,
the choice of fixed-interface normal modes to retain in the
reduced representation is somewhat arbitrary. In this work,
the normal mode selection is carried out in accordance with a
modal ordering scheme based on the effective interface mass
(EIM) measure of dynamic importance, which constitutes
a generalization of the effective mass concept that has been
traditionally used by structural dynamicists to assess the
completeness of a reduced mode set. The EIM approach was
introduced by Kammer and Triller [11, 12] already in the mid
nineties, with main goals being pure structural dynamics and
control-structure interaction applications; here, the authors
propose a possible extension towards multibody dynamics,
which is the main novelty character of this paper.

4.2. Normal Modes Selection Procedure. The EIM measure
was developed by considering (10), from which the time-
domain response of the ith fixed-interface mode to the a-set
inputs can be computed as:

qi =
∫ t

0
Piüa(τ)ω−1

i sin[ωi(t − τ)]dτ, (11)

ωi being the mode eigenfrequency. Denoting the convolution
integral as Vi, the previous can be expressed in a more
compact form:

qi = ω−1
i PiVi (12)

from which the corresponding modal acceleration results:

q̈i = ω−1
i PiV̈i. (13)

Once again considering (7), its upper partition holds:

Msüa + Ksua = fa + fq, (14)

in which the product PTq̈ has been designated as fq,
representing the portion of the load at the interface due to
the response of the fixed interface modes. Using (13), this
can be expressed as

fq = PTq̈ =
No∑

i=1

PT
i q̈i =

No∑

i=1

ω−1
i PT

i PiV̈i =
No∑

i=1

ω−1
i MiV̈i. (15)
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The norm of the matrix Mi thus gives a relative measure of
the contribution of the ith fixed interface mode to the loads
at the interface; summing all the contributions produces the
so-called reduced interior mass (RIM) matrix:

M =
No∑

i=1

Mi =
No∑

i=1

PT
i Pi = PTP. (16)

Substituting (9) into (16) and bearing in mind that, as
mentioned, normal modes are mass normalized, give after
some simple manipulation:

M = MaoΨ + ΨTMoa + ΨTMooΨ + MaoM−1
oo Moa. (17)

It is worth noting that such expression can be computed
based solely upon the partitioned FE mass and stiffness
matrices, and is thus totally independent of any eigenvalue
solution. By using some appropriate matrix norm, for
example, the trace norm, it can be used as an absolute
reference with respect to which the dynamic importance of
each mode shape can be computed. The EIM value of the ith
fixed interface mode is then introduced:

Ei = tr
(

Mi
)

tr
(

M
) . (18)

By using an analogous expression, a measure of dynamic
completeness of a reduced representation in which Nk

normal modes are retained is given by the EIM cumulative
sum:

Ẽk =
tr
(

M̃k

)

tr
(

M
) , (19)

where M̃k is obtained by simply extending the summation in
(16) to the k-set modes.

A threshold value can be specified for the expression in
(19) to set a required level of dynamic completeness for the
reduced model. This implicitly defines how many normal
modes, and possibly which ones, should be retained in order
to achieve the target value, thus completing the CB mode set
selection procedure.

It should be noted that though Ẽk represents a cumulative
sum of the k-set EIM values, it can be computed indepen-
dently from the specific criterion used for modal selection,
and can thus be used as a general modal completeness
indicator whether the EIM approach is adopted or not.

4.3. Orthonormalization of the CB Mode Set. It is worth
recalling that the CB mode set obtained by the raw union
of the Na constraint modes and the Nk selected normal
modes is not suitable for direct use in a multibody system
simulation [14]. For the implementation in a multibody
code, an orthonormalization of the CB mode set is generally
applied (by solving a further eigenvector problem) thus
leading to an orthogonal basis whose modal coordinates
are no more directly split into the physical displacements
related to the constraint modes and the modal displacements
associated with the normal modes. The resulting N = Na +

Nk orthogonal modes (hereinafter, called orthogonal reduced
solution) are not eigenvectors of the original system, but they
are the eigenvectors of the Craig-Bampton representation
of the system. Their physical description is difficult, but,
according to the authors’ experience, it can be observed that,
in general, the first elastic modes and their corresponding
natural frequencies are basically identical to the mode shapes
and natural frequencies of the original system analyzed in
free-free boundary conditions.

4.4. Application to Crankshaft Modelling. An FE model of the
crankshaft was produced first by means of the commercial
software PATRAN. The CAD geometry was simplified by
removing all those features that do not contribute signifi-
cantly to the dynamic behaviour of the component, in order
to simplify the meshing phase and to limit the total number
of elements (Figure 3). Solid elements TET10 were used for
the shaft whereas the two pinions and the flywheel were
modelled as point elements (MASS2, with properly defined
inertial properties retrieved from an accurate CAD model)
connected to the mesh nodes by means of rigid spiders
(RBE2, not represented in Figure 3).

The discussed model reduction and modal selection
methodologies were implemented as following:

(i) interface nodes with 6 DOFs each were defined
where the loads transmitted to the crankshaft are
applied, that is, at the four main bearings and the two
crankpin journals, as well as at clamping locations
of the two pinions, for a total number of Na = 48
interface DOFs;

(ii) a CB solution including 80 normal modes was
computed trough NASTRAN FE solver;

(iii) the RIM matrix was computed starting from com-
ponent FE matrices, by implementing an ad hoc
NASTRAN DMAP alter;

(iv) the EIM values were computed in MATLAB start-
ing from CB and RIM matrices exported from
NASTRAN in the previous steps. Slightly different
expressions with respect to those in (18) and (19)
were used in order to properly weight translational
and rotational DOFs; for further details, see [11].

Figure 4 shows EIM values for the computed 80 normal
modes (those having an EIM value above 0.001 are high-
lighted): as one might have expected, in this case the low
frequency modes give a major contribution to forces at the
substructure interface, exhibiting high values of Ei. However,
clearly there can be some high-frequency mode contributing
as much as some lower-frequency one (see, e.g., modes 20
and 54, showing similar EIM values).

Figure 5 shows the EIM cumulative sum Ẽk as a function
of the number of retained normal modes, Nk, for modal
ordering schemes based upon increasing eigenfrequency and
decreasing EIM value, respectively. Curves are very close
in this case, both approaching quite quickly the maximum
value of 1 (corresponding to the unreduced case Nk =
No). Of course, for any given number of retained modes,
the line related to the modal selection scheme based upon
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eigenfrequency lies below, or equals, the one related to the
EIM-based approach: it is evident that the mode set chosen
based upon EIM values constitutes the minimal set providing
any specified dynamic completeness expressed in terms of
EIM cumulative sum.

In this study, the target normal mode set was defined
as the one holding at least 90% of dynamic completeness
(Ẽk ≥ 0.9), corresponding to 18 normal modes; in this
particular case, the selected normal mode set results are
independent of the chosen modal ordering scheme, since
the 18 lowest frequency eigenmodes are also those exhibiting
the highest EIM values, see Figure 4. The mode selection
procedure could then be easily implemented by using
NASTRAN standard functions to produce the CB solution.

4.5. Nonlinear Dynamic Simulations. At this point, the rigid
crankshaft within the multibody model was replaced by its
corresponding flexible component. Some multibody models
were developed following both the proposed EIM-based
procedure and the standard practice consisting of truncating
the modal basis of a refined model at a certain cutoff
frequency, defined as a multiple of the maximum frequency
of interest. In the latter case, the EIM cumulative sum

cannot be computed since truncation acts directly onto the
orthogonal mode set. Five models are presented in this
study:

(i) Model A: 80 normal modes are retained in the
crankshaft CB solution corresponding to an EIM
cumulative sum ẼkA = 0.98.

(ii) Model B: following the discussed mode selection
procedure, only 18 crankshaft normal modes are
retained to provide an EIM cumulative sum ẼkB =
0.90.

(iii) Model C: obtained truncating the orthogonal
reduced solution of the crankshaft in Model A at the
frequency of 10 kHz.

(iv) Model D: the same as Model C but with a cut
frequency chosen at 20 kHz.

(v) Model E: the same as Model C but with a cut
frequency chosen at 30 kHz.

Model A was considered as reference in this study, due to
the high dynamic completeness. The reaction forces acting
on the four main bearings and those acting on the conrods
were calculated by means of dynamic simulations of the
described models. An assessment concerning model accuracy
was then performed, taking Model A as a reference. Relative
deviations were, therefore, evaluated for Models B÷E with
respect to Model A over an averaged engine cycle (i.e., two
crankshaft full revolutions). In each case, these errors were
normalized based upon the peak load value as estimated for
Model A, in order to assign a lower importance to deviations
occurring at low levels. As an example, Figure 6(a) shows the
force magnitude on the central main bearing 2 as evaluated
for the aforementioned models; the load value is normal-
ized for data confidentiality. Figure 6(b) shows the relative
percentage deviations exhibited from Models B, C, D, and
E, respectively. Concerning this specific result, it is evident
that Model B performs much better than Models C, D, and
E. In particular, due to its capability of capturing higher-
frequency dynamic effects, it is able to replicate with extreme
accuracy the load trend estimated by the reference model
whereas Models C, D, and E exhibit significant deviations.
Moreover, the peak load value is perfectly captured by Model
B (error of 0.03%) and significantly underestimated by the
other three models (errors of 15.8%, 8.6%, and 7.6% for
Models C, D, and E, respectively). Similar results hold for the
loads acting at other interface locations as well. In particular,
for the external main bearing 2 (Figure 7), Model D and E
globally overestimate the load values while Model C provides
results that can be hardly related to the reference ones; on the
other hand, Model B proves to be very accurate. It is worth
mentioning that both the peak load values and the load
trends (strictly related to the frequency content) are essential
input data for a proper design of components subjected to
dynamic loads (due to fatigue and durability issues).

The RMS value of the relative percentage deviations was
then taken as a simple and effective metrics to measure the
result accuracy of the simplified Models B÷E with respect
to the reference Model A. Table 1 reports the values of these
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Figure 6: (a) Central main bearing 2 normalized force magnitude;
(b) relative percentage deviations of Models B, C, D, and E,
respectively.

parameters as computed for Models B÷E concerning the
reaction forces at the crankshaft main bearings and those
transmitted by the conrods (for instance, values on the
second row are related to Figure 6(b)). It is evident that
Model B outperforms Models C, D, and E, resulting in all
cases extremely close to Model A. It should be noted that,
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Figure 7: (a) External main bearing 2 normalized force magnitude;
(b) relative percentage deviations of Models B, C, D, and E,
respectively.

for all the models, the largest errors are those related to loads
acting on the external main bearings, which likely present a
greater sensitivity to high-frequency dynamic effects than the
other interface locations.

It is worth mentioning that the computational cost of
Model A is much higher with respect to the other models
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Table 1: RMS values of the relative percentage deviations with
respect to Model A.

RMS [%]

Model
B

Model
C

Model
D

Model
E

Central Main Bearing 1 0.1 5.0 4.1 4.1

Central Main Bearing 2 0.1 18.1 6.4 6.2

External Main Bearing 1 0.6 31.5 41.6 34.3

External Main Bearing 2 0.6 519.0 85.0 57.9

Conrod 1 big end 0.1 3.9 3.9 3.9

Conrod 2 big end 0.1 3.9 3.9 3.9

Conrod 1 small end 0.1 2.1 2.1 2.1

Conrod 2 small end 0.1 2.1 2.1 2.1

simulated here, the reason for that being the large modal
basis associated with the crankshaft it incorporates. Such
a model, which acts as a reference here due to its nature,
might then be too expensive for a practical use in the design
process, where the requirement of optimized component
design paralleled with the need of meeting tight deadline
calls for efficient simulation models. Within the context of
structural dynamics and multibody system simulation, it
is a common practice to reach this degree of efficiency by
truncating the modal basis of the components of interest
according to an arbitrary cutoff frequency; this approach was
used to obtain the crankshaft models included in Models
C, D, and E, which differ from each other solely by the
definition of such arbitrary parameter. The aim in putting
those three models into operation was here to stress the fact
that the choice of this parameter heavily affects the accuracy
of the results, which represents another major requirement
a simulation model should satisfy. Therefore, a good dose of
experience is required to choose a proper cutoff frequency,
allowing the analyst to be confident in the results of his
simulations; this might not always be the case, especially for
components and/or systems the analyst might not be familiar
with. Furthermore, no direct indication of effectiveness is
provided by such an approach, so the analyst has to rely
entirely on his engineering judgment skills. Alternatively, one
could develop a number of models having increasing cutoff
frequency, in order to determine an “asymptotic trend” of the
results so as to define the most appropriate model (Models C,
D, and E were developed in this perspective).

The EIM-based approach, adopted here to define the
crankshaft reduced solution in Model B, allows overcoming
these drawbacks: relying on a quantitative assessment of
the dynamic completeness of a reduced representation of
the flexible body at issue, it directly provides an indication
of effectiveness, referring in particular to the capability
in predicting accurate interface loads. Furthermore, the
adoption of such a technique complies with the requirement
of model efficiency: computational costs are reasonable when
compared to those associated with the reference model, and
the possible need for the analyst in defining multiple models
for accuracy assessment (something which might remind

our “refinement” from Model C through D through E) is
removed.

5. Conclusions

The development of a flexible multibody model of a
motorcycle engine cranktrain has been presented. A rigid-
body model was firstly implemented, providing quite similar
results as those obtained using some analytical approach
by the manufacturer. The main limitations of such model
have been discussed, which require the adoption of a refined
modelling approach. In particular, the inclusion of a flexible
model of the crankshaft has been reviewed in this paper,
with an emphasis on the model reduction methodology.
A procedure based on EIM values has been employed
to select the normal mode set used to construct a CB
reduced representation of the component: such a systematic
approach, which relies upon the definition of a measure
of dynamic completeness of the reduced model, leads to
improved load prediction and optimal simulation times, as
demonstrated by the comparison with a refined model taken
as reference. In fact, in this case some simplified models,
employed to assess the degree of accuracy of different model
reduction approaches, were compared with a model having
a large modal basis, whose results were considered as the
reliable reference. It should be pointed out, however, that
some validation would also be needed for such reference
model, this representing a best practice for every modelling
activity; this is outside the scope of the present paper and will
be the objective of future investigations.

Further developments involve the integration of bearing
models into the multibody system, and the implementation
of flexible models for the connecting rods and, mainly, for
the engine block; in this case, the described model reduction
and modal selection procedures might lead to significant
benefits in terms of result accuracy versus computational
cost. Nonlinear dynamic simulations of the resulting model
will ultimately allow a more accurate constraint reaction
prediction, which will constitute the basis for the subsequent
stress evaluation and design optimization process.
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