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An original neural mass model of a cortical region has been used to investigate the origin of EEG rhythms. The model consists of
four interconnected neural populations: pyramidal cells, excitatory interneurons and inhibitory interneurons with slow and fast
synaptic kinetics, GABAA, slow and GABAA,fast respectively. A new aspect, not present in previous versions, consists in the inclusion
of a self-loop among GABAA,fast interneurons. The connectivity parameters among neural populations have been changed in order
to reproduce different EEG rhythms. Moreover, two cortical regions have been connected by using different typologies of long
range connections. Results show that the model of a single cortical region is able to simulate the occurrence of multiple power
spectral density (PSD) peaks; in particular the new inhibitory loop seems to have a critical role in the activation in gamma (γ)
band, in agreement with experimental studies. Moreover the effect of different kinds of connections between two regions has been
investigated, suggesting that long range connections toward GABAA,fast interneurons have a major impact than connections toward
pyramidal cells. The model can be of value to gain a deeper insight into mechanisms involved in the generation of γ rhythms and
to provide better understanding of cortical EEG spectra.

1. Introduction

Neuronal activity in the γ band has been proposed as a
physiological indicator of perceptual and higher cognitive
processes in the brain, including arousal and attention
[1], binding of stimulus features and perception of objects
[2], consciousness, and language [3]. Generally, γ rhythms
are found in EEG spectra together with other rhythms,
such as locally generated activity in the beta (β) band or
thalamocortical activity in the alpha (α) band.

In this context, mathematical models can be of the
greatest value to gain a deeper insight into the mechanisms
involved in the generation of γ rhythms and to provide better
understanding of cortical EEG spectra. Models in fact can
mimic electrical activity of groups of neurons, taking into
account different patterns of connectivity, and simulate brain
electrical activity in regions of interest.

In recent years many authors used neural mass models
to study the generation of EEG rhythms. In these models the
dynamics of entire cortical regions is generally represented
with a few state variables, which mimic the interaction

among excitatory and inhibitory populations, arranged in a
feedback loop. In particular, neural mass-models of cortical
columns, particularly useful to simulate some aspects of EEG
signals, were developed by Lopes da Silva et al. [4] and by
Freeman [5] in the late seventies, and subsequently improved
and extended by Jansen and Rit [6] and Wendling et al.
[7].

An intrinsic limitation of these models, however, consists
in the way γ rhythms can be generated. Basically, one can
obtain a γ rhythm as a consequence of the interaction
between pyramidal neurons and fast inhibitory interneurons,
provided that small values are used for the synaptic time con-
stants [8]. Conversely, some recent works, both experimental
and computational [9, 10], suggest that γ rhythms can be
generated by a chain of fast inhibitory interneurons, even
without the participation of other types of neurons. A further
limitation of previous mass models consists in the difficulty
to obtain multiple rhythms within the same cortical region,
especially in the β and γ bands. To this end, in previous works
at least two regions with different synaptic kinetics have been
used to obtain the presence of two peaks in PSD [11].
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The present work was devised, within the framework of
neural mass models, to overcome the previous limitations.
In particular two main objectives have been pursued: (i)
to enrich the model of a single cortical region with a new
feedback loop, through which fast inhibitory interneurons
can produce a γ rhythm per se (i.e., without the participation
of the other neural populations), and (ii) to demonstrate that
the modified model can easily produce EEGs PSD of a single
cortical region characterized by several peaks (i.e., several
activities in different bands), using a very parsimonious
description of connectivity weights.

The model is first presented in a synthetic form. Then,
the role of connectivity between populations of excitatory
and inhibitory interneurons internal to the cortical region is
studied, with particular attention to the role of GABAA,fast

interneurons in the generation of γ activity. Subsequently,
the effect of connectivity between two cortical regions is
simulated. The discussion underlines the main virtues and
limitations of the proposed model and points out the main
aspects for future research.

2. Material and Methods

2.1. Model of a Single Cortical Region. The model of a
cortical region presented here is a modified version of
the model proposed by Wendling et al. [7]. It consists
of four neural populations which communicate via exci-
tatory and inhibitory synapses: pyramidal cells, excitatory
interneurons, inhibitory interneurons with slow synaptic
kinetics (GABAA,slow), and inhibitory interneurons with
faster synaptic kinetics (GABAA,fast). In the following, a
quantity which belongs to a neural population will be
denoted with the subscripts p (pyramidal), e (excitatory
interneuron), s (slow inhibitory interneuron), and f (fast
inhibitory interneuron). Each neural population receives an
average postsynaptic membrane potential from the other
populations and converts the average membrane potential
into an average density of spikes fired by the neurons. Three
different kinds of synapses are used to describe the synaptic
effect of excitatory neurons (both pyramidal cells and
excitatory interneurons), of slow inhibitory interneurons and
of fast inhibitory interneurons. Each synapse is simulated by
an average gain (Ge,Gs,Gf for the excitatory, slow inhibitory
and fast inhibitory synapses, resp.) and a time constant (in
the model, the reciprocal of these time constants is denoted
as ωe,ωs, and ωf , resp.). The average numbers of synaptic
contacts among neural populations are represented by eight
variables (Cij). The inputs to the model (up(t) and u f (t))
excite pyramidal neurons and fast inhibitory interneurons,
respectively, and represent all exogenous contributions, both
excitation coming from external sources and the density of
action potentials coming from other regions. Inputs to the
other two populations have only a scanty effect on model
dynamics, and hence have been neglected. The output of
the model is represented by the membrane potential of
pyramidal cells. Compared with the model described in our
previous work [8], the new model exhibits two changes
(see Figure 1): (i) fast inhibitory interneurons may receive

an external input (say u f (t)) from pyramidal neurons of
other regions; (ii) fast inhibitory interneurons exhibit a
negative self-loop; that is, they not only inhibit pyramidal
neurons (as in previous model) but also inhibit themselves.
This idea agrees with the observation that basket cells
in the hippocampus and cortex are highly interconnected
and a chain of fast inhibitory interneurons can induce γ
activity per se (i.e., even without the participation of other
neural populations) thanks to its internal self-inhibitory
connections [9].

2.2. Model of Connectivity among Regions. In order to study
how the cortical regions interact, we then considered a model
composed of two cortical regions which are interconnected
through long-range excitatory connections. In the following
the superscript k will be used to denote a presynaptic
region and the superscript h to denote the target (post-
synaptic) region. To simulate connectivity, we assumed that
the average spike density of pyramidal neurons in the pre-
synaptic region (zkp) affects the target region via a weight

factor, Whk
j (where j = p or f , depending on whether

the synapse targets to pyramidal neurons or fast inhibitory
interneurons), and a time delay, T (assumed equal for all
synapses). This is achieved by modifying the input quantities
uhp(t) and/or uhf (t) as follows:

uhj (t) = nhj (t) +Whk
j z

k
p(t − T), (1)

where nj(t) represents a Gaussian white noise (in the present
work: mean value mj = 0 and variance σ2

j = 5).

3. Results

3.1. Sensitivity Analysis on a Single Cortical Region. The
simulations performed in a previous paper [8] demonstrate
that a model of a single cortical region, stimulated with
input white noise to pyramidal cells (up(t)), produces just
a unimodal spectrum (i.e., a spectrum with a single well
defined peak) whose position primarily depends on the
synaptic kinetics (i.e., ωe,ωs,ωf ) parameters. In order to
obtain multiple rhythms in the spectrum, this model needs
the contribution of other rhythmic external sources that
induce their activity on it.

The most interesting feature presented here is the ability
of generating more than one oscillatory rhythm within a
single region. Figure 2 shows the membrane potential and
the corresponding PSD obtained with the model of a single
cortical region simulated with the basal parameters reported
in Table 1. It is worth noting that this model produces
a bimodal spectrum, with two intrinsic and well-defined
peaks, oscillating, respectively, in β and γ ranges. Differently
from previous works [7, 8], in these simulations we used
a value for the time constant of GABAA,fast interneurons of
17 milliseconds, in better agreement with [9].

Figure 3 shows the role of the GABAA,fast loop in
the generation of a second rhythm in the γ band. Each
panel shows how the output of the model, in terms of
PSD, changes by incrementing the connection Cp f from
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Figure 1: Model layout: four neural populations (pyramidal cells, excitatory interneurons, GABAA,slow inhibitory interneurons, and
GABAA,fast inhibitory interneurons) which communicate via excitatory and inhibitory synapses. Worth noting is the presence of a new
feedback loop with gain Cf f .

GABAA,fast interneurons toward pyramidal cells. With the
values reported in Table 1, but setting the value of Cp f to
0, the region exhibits a single rhythm around 5 Hz (first
panel). Using small values of Cp f (0.8C and 1.3C) the
region exhibits a single rhythm around 30 Hz (second and
third panels, resp.). As Cp f increases (from 1.5C to 6C;
seeFigure 3 caption) the region exhibits two different well-
evident rhythms, one in the β band and one in the γ band
(fourth to ninth panels).

Figure 4 shows the results of a sensitivity analysis
performed on the parameters of the model describing the
loops among neural populations. The aim of this analysis is
to identify the loops that are essential in order to obtain γ
rhythms. In order to do this analysis five crucial connections
are cut one at a time. The first panel shows the PSD of the
region when all the connections among the neural popula-
tions are active (parameters as in Table 1). When connections
from pyramidal cells toward excitatory interneurons or from
GABAA,slow interneurons toward pyramidal cells are set to 0

(second and third panels), the two rhythms persist. In the
fourth panel the connection from pyramidal cells toward
GABAA,fast interneurons is set to 0. Even if two rhythms are
not clearly distinguishable, the power band is still fairly broad
(0–40 Hz). It is worth noting that the two rhythms collapse in
a single one if the connections from GABAA,slow interneurons
toward GABAA,fast interneurons or from GABAA,fast interneu-
rons toward themselves are cut (last two panels) suggesting
a crucial role for these connections in the generation of a
bimodal spectrum, composed of β and γ rhythms. It is worth
noting that, in the absence of the loop among fast inhibitory
interneurons (Cf f = 0), the model, with the assigned time
constants, produces a rhythm in the alpha band.

3.2. Connectivity between Two Cortical Regions. Figure 5
shows the behaviour of a model composed of two intercon-
nected regions. The first line of panels shows the PSD of
the two regions when they are not connected to each other.
Parameter Cp f is set to 4C in the first region, whereas Cp f
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Figure 2: Output of the model of a single cortical region in terms of membrane potential (a) and PSD (b), simulated with the basal
parameters reported in Table 1.
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Figure 3: PSD of a single region obtained by varying the connection from GABAA,fast interneurons to pyramidal cells (parameter Cp f ). The
values of Cp f are 0C, 0.8C, 1.3C, 1.5C, 2C, 3C, 4C, 5C, and 6C.
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Figure 4: PSD of a single cortical region setting off some connections among neural populations. The first panel represents the output of
the whole model with parameters as in Table 1. The other five panels represent the power spectra, respectively, when Cep = 0,Csp = 0,Cf p =
0,Cf s = 0, and Cf f = 0.

Table 1: Model basal parameters.

C = 135 Csp = 0.4C Cf s = 0.2C Ge = 5.17 mV ωe = 75s−1

Cep = 0.4C Cps = 0.5C Cp f = 4C Gs = 4.45 mV ωs = 30 s−1

Cpe = 0.4C Cf p = 0.4C Cf f = 0.2C Gf = 57.1 mV ωf = 60 s−1

is set to 0.8C in the second one. All other parameters have
the same values as in Table 1. In this way, the first region
exhibits two rhythms, and the second only one rhythm but
at a different frequency. The second region can be forced to
exhibit the same two rhythms as the first by introducing a
connection toward GABAA,fast interneurons (second line). A
different spectrum, with a wide activity at high frequencies,
is obtained if connectivity is directed toward pyramidal
neurons (third line). A small connectivity from the second
region towards GABAA,fast cells of the first one makes the first
region exhibit three simultaneous rhythms: the two intrinsic
rhythms and a third acquired external rhythm (fourth line).

4. Discussion

In this work we used a neural mass model to study the
presence of multiple rhythms in the EEG. The model
presented here is modified compared with that used in
our previous papers [8, 12]. The modifications aim at
accentuating the role of the GABAA,fast interneurons in the
generation of rhythms in the γ band and obtaining a complex
spectrum within a single cortical region. In order to study

these aspects, we modified the model by adding a new input
to the GABAA,fast interneurons, and we introduced a feedback
loop from the GABAA,fast interneurons toward themselves
(parameter Cf f ).

A sensitivity analysis on model parameters representing
the internal connectivity among the four neural popula-
tions (see Figures 3 and 4) shows that strong short-range
connections between GABAA,fast interneurons and pyramidal
cells and between GABAA,fast interneurons and GABAA,slow

interneurons are fundamental for the generation of multiple
rhythms in the EEG, and, above all, for the presence of
a peak in the γ band. These results together confirm the
findings, obtained in previous studies [9], that networks of
fast inhibitory interneurons may be responsible for gamma
activity in the brain. Another important result is represented
by the use of more biologically plausible values for the time
constants. In particular, the simulations performed with the
modified model show that, contrarily to previous works
[7, 8], one does not need to use very small values (a few ms)
for the time constant of GABAA,fast interneurons but more
physiolgical values (13–20 ms) are able to induce oscillations
at high frequency [9]. Another remarkable result is that,
changing connections weights between populations, the
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Figure 5: PSD of two regions (first region in the first column and second region in the second column) communicating by different
connectivity patterns. The connectivity patterns are represented in the third column; the arrow indicates connectivity toward pyramidal
cells; the square indicates connectivity toward GABAA,fast interneurons. The first region is simulated using the parameters reported in Table 1,
while the second region is obtained by modifying only Cp f (Cp f = 0.08C).

rhythmic activity in the model can be easily moved between
the alpha, beta, and gamma bands. This is a plausible
physiological mechanism, since connectivity strength may be
rapidly adjusted in vivo by synaptic plasticity. Hence, one
does not need to hypothesize a less justifiable modulation
of synaptic time constants to mimic the variety of rhythms
encountered in vivo during motor and cognitive tasks.

Finally, we studied the effect of the long range connec-
tions between two neural regions (see Figure 5). The simula-
tions show that, using identical connection strengths (second
and third line), the effect on the PSD is completely different,
depending on the target population (GABAA,fast interneurons
or pyramidal cells). This original result emphasizes the
predominant role of GABAA,fast interneurons compared to
pyramidal cells not only in generating multiple rhythms but
also in rhythm transmission from one region to another.

An important possible application of the present model
consists in the estimation of effective connectivity between
ROIs, starting from real EEG or MEG data. Actually, connec-
tivity in the neurophysiological literature is commonly esti-
mated using signal-based approaches (i.e., empirical black-
box models). A major advantage in the use of interpretative
models, instead of black-box models, lies in the physiological

meaning of estimated parameters. Each parameter in an
interpretative model possesses a clear physiological meaning
and summarizes a specific mechanism involved in rhythm
generation. Furthermore, interpretative models may permit
a fusion between different techniques (e.g., EEG/MEG data
and metabolic neuroimaging (fMRI or PET) data), since they
allow different quantities (electrical and metabolic) to be
simulated. Finally, the present model includes nonlinearitites
(in particular sigmoidal relationships to describe neuron
response) which are known to play a pivotal role in neural
signal generation. By contrast, signal-based approaches
generally assume the existence on linear relationships among
signals.

An actual problem in the use of neural mass models
to estimate effective connectivity may be found in the
excessive number of estimated parameters, especially when a
large number of populations are simultaneously interacting.
Estimation of many parameters may demand excessive com-
putational resources and, above all, may lead to the problem
of “overfitting” (i.e., good reproducibility of data but with
little or none prediction capacity). Two considerations,
however, may be followed to limit the number of estimated
parameters in a neural mass model. First, not all the
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parameters in an ROI require estimation, but only a subset
of them. In particular, we have shown that estimation of a
single parameter for each region (Cp f ) may allow different
rhythms to be produced and controlled quite finely. Second,
parameters may be constrained by a priori knowledge (e.g.,
neuroanatomical data can be used to limit attention only to
a few connectivity parameters, and knowledge on synaptic
dynamic can be used to provide physiological values for
time constants). Nevertheless, the problem of connectivity
estimation using neural mass models is still at an initial stage
and requires further theoretical and computational active
research.

In conclusion, the results underline the performance of
the model in the generation of multiple rhythms by using a
simple connectivity circuit and may open new perspectives
for the study of complex neural oscillations induced by the
connection and synchronization among cortical regions. To
our knowledge this is a first attempt to use a single neural
mass model to reproduce a complex spectrum and investi-
gate the role of fast inhibitory interneurons systematically. In
perspective the model could be used as a simulator of the
activity in brain regions involved in different cognitive tasks,
and for testing the consequences of different connectivity
patterns on EEG.

Appendix

The final model displayed in Figure 1 corresponds to the
following set of differential equations:

Pyramidal neurons are

dyp(t)

dt
= xp(t),

dxp(t)

dt
= Geωezp(t)− 2ωexp(t)− ω2

e yp(t),

zp(t) = 2e0

1 + e−rvp
− e0,

vp(t) = Cpe ye(t)− Cps ys(t)− Cp f y f (t).

(A.1)

Excitatory interneurons are

dye(t)
dt

= xe(t),

dxe(t)
dt

= Geωe

(
ze(t) +

up(t)

Cpe

)
− 2ωexe(t)− ω2

e ye(t),

ze(t) = 2e0

1 + e−rve
− e0,

ve(t) = Cep yp(t).
(A.2)

Slow inhibitory interneurons are

dys(t)
dt

= xs(t),

dxs(t)
dt

= Gsωszs(t)− 2ωsxs(t)− ω2
s ys(t),

zs(t) = 2e0

1 + e−rvs
− e0,

vs(t) = Csp yp(t).

(A.3)

Fast inhibitory interneurons are

dy f (t)

dt
= x f (t),

dx f (t)

dt
= Gf ω f z f (t)− 2ωf x f (t)− ω2

f y f (t),

dyl(t)
dt

= xl(t),

dxl(t)
dt

= Geωeu f (t)− 2ωexl(t)− ω2
e yl(t),

z f (t) = 2e0

1 + e−rv f
− e0,

v f (t) = Cf p yp(t)− Cf s ys(t)− Cf f y f (t) + yl(t),
(A.4)

where the sigmoid saturation is e0 = 2.5 s−1 and the sigmoid
steepness is r = 0.56 mV−1. It is worth noting that we used a
sigmoidal function centered in zero, which corresponds to
the assumption that neurons normally work in the linear
region.
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