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This paper examines the implications of unhedgeable fundamental risk, combined with agents’ 
heterogeneous preferences and wealth allocations, on dynamic asset pricing and portfolio choice. 
We solve in closed form a continuous-time general equilibrium model in which unhedgeable 
fundamental risk affects aggregate consumption dynamics, rendering the market incomplete. 
Several long-lived agents with heterogeneous risk-aversion and time-preference make consumption 
and investment decisions, trading risky assets and borrowing from and lending to each other. We 
find that a representative agent does not exist. Agents trade assets dynamically. Their consumption 
rates depend on the history of unhedgeable shocks. Consumption volatility is higher for agents 
with preferences and wealth allocations deviating more from the average. Unhedgeable risk 
reduces the equilibrium interest rate only through agents’ heterogeneity and proportionally to 
the cross-sectional variance of agents’ preferences and allocations.

1. Introduction

Not all risks can be perfectly shared among market participants: the cost and effort required for sharing may exceed its benefits, 
imperfect information may hinder certain insurance contracts, and credit constraints may limit market access (Geanakoplos, 1990). At 
the same time, economic agents that differ in preferences and endowments also differ in their consumption and investment responses 
to unhedgeable fundamental risks. Does the diversity of agents’ responses mitigate or exacerbate the effects of market incompleteness?

We examine this question in a general equilibrium model of an exchange economy in which several agents, differing in both their 
risk aversion and time preference, borrow from or lend to each other, and trade stocks that pay dividends whose growth rates have 
small stochastic fluctuations. The market is dynamically incomplete, as stocks offer imperfect hedges for shocks to growth.
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Market completeness, which allows agents to plan for any contingency by trading with each other, has been the prevalent hy-
pothesis in the general equilibrium literature. This idealized assumption guarantees the Pareto optimality of the equilibrium and 
the existence of a representative agent – central features to equilibrium models since Lucas Jr. (1978). Much of the asset pricing 
scholarship on incomplete markets has focused on agent-specific unhedgeable shocks, such as labor-income risk (e.g., Duffie et al. 
(1994), Heaton and Lucas (1996), Christensen et al. (2012), Weston and Žitković (2020)). But when all agents are exposed to the 
same shocks, such as unhedgeable macroeconomic fluctuations, little is known.3 We aim at filling this gap.

This is the first paper to solve in closed-form a general-equilibrium model of a continuous-time exchange economy with unhedge-
able fundamental risk and heterogeneous preferences. We use explicit formulas to examine in detail how different agents respond to 
the absence of markets for certain risks, and how their choices affect the dynamics of asset prices and interest rates.

We show that unhedgeable risk is crucial in shaping agents’ consumption decisions. In fact, each agent’s consumption rate depends 
on the history of unhedgeable shocks, hence is not Markov in current market prices alone. Market incompleteness induces dynamic 
trading, even in the absence of labor income, because agents constantly update their risk-sharing in response to unhedgeable shocks, 
thereby partially insuring each other. The equilibrium interest rate is reduced in proportion to the dispersion of agents’ preferences 
and capital distribution, thereby violating the representative agent paradigm.

We consider an exchange economy with several agents, who differ in both capital endowments and preferences: each agent owns a 
personal share of market wealth, and has an individual idiosyncratic risk aversion and impatience rate. Market wealth consists in the 
ownership of stocks, which pay a continuous stream of dividends that are consumed immediately. Agents can trade such risky assets 
and lend to or borrow from each other. Asset prices, the interest rate, and agents’ consumption-investment strategies are determined 
in equilibrium. The market is dynamically incomplete, as stocks offer imperfect hedges for the factors driving the dividend process. By 
introducing the notion of second-order equilibrium, we identify phenomena whose magnitude is proportional to unhedgeable shocks 
and their variance, and obtain closed-form expressions for stock prices, interest rates, as well as consumption and trading policies.

Our analysis studies the incomplete economy as a perturbation of a baseline market, in which dividends’ expected growth is 
constant. This benchmark economy is complete and leads to constant interest rate and Sharpe ratio. A no-trade result holds in 
equilibrium, as agents own a constant number of shares of stocks, determined exclusively by their risk aversion relative to the 
representative agent, and individual consumption is affine in dividends and calendar time.

With unhedgeable risk, agents’ behavior significantly departs from the benchmark, as individual preferences and capital allocations 
elicit different reactions to unhedgeable shocks. Agents would hold a financial instrument to share the risk from these shocks, were 
an additional risky asset that completes the market available for trading. Since the market is incomplete, agents mimic such an 
unattainable position by trading the safe asset instead. As unhedgeable shocks accumulate and safe holdings deviate from their 
target, agents consume the interest rate proceeds from excess lending to reduce their tracking error. Hence, consumption depends on 
the deviation of the agents’ safe holdings from their target and therefore on the whole history of unhedgeable shocks. Agents with 
atypical preferences and initial wealth allocation have a stronger demand for risk-sharing of fundamental shocks, face higher tracking 
error volatility and therefore higher consumption uncertainty.

Similarly, dynamic trading appears in equilibrium from the agents’ imperfect intertemporal hedging of common shocks. Agents 
dynamically trade the stock in order to finance a consumption stream that is as close as possible to the one that would be optimal 
in the same market completed with an additional risky asset. Hence, each agent trades according to personal preferences and their 
departure from the average, both in impatience and wealth, as measured by the same quantity that regulates consumption.

As consumption depends on the whole history of unhedgeable shocks, so does each agent’s marginal utility. Hence, the dispersion 
of agents’ preferences and their wealth distribution becomes a determinant of both the interest rate and stock prices. The additional 
consumption volatility stemming from unhedgeable shocks reduces the interest rate through the precautionary-saving channel, in 
proportion to the cross-sectional variance of agents’ preferences and wealth allocations. In particular, unhedgeable risk does not 
reduce the interest rate in an economy with homogeneous agents. The effect on the interest rate in turn propagates to stock prices, 
which increase if agents are heterogeneous because future cash flows become more valuable.

Consumption policies also reveal a new higher-order effect: because each agent requires compensation for the consumption vari-
ance stemming from growth shocks, but in equilibrium aggregate consumption equals dividends, agents who take above-average 
consumption risk are rewarded with higher expected consumption, while others are penalized. As such risk is borne mainly by those 
agents that depart the most from the average, either in preferences or in wealth allocations, it is precisely these atypical agents who 
benefit from heterogeneity with increased consumption, while typical agents are the ones who bear the costs.

The results in this paper are obtained by assuming that unhedgeable risk is small, thereby defining second-order equilibria as 
sets of interest rates, prices, and policies such that each agent’s utility is maximized up to the second order. The methodological 
advantage of this approach is to lead to explicit expressions for incomplete-market equilibria, which are rather scarce in the literature. 
The assumption of small unhedgeable fluctuations is also substantively relevant, as in reality market participants routinely devise 
securities that foster risk-sharing, which leaves those unhedgeable shocks that do not justify the introduction of additional contracts, 
in view of market frictions.

Understanding incomplete-market equilibria is a difficult enterprise, which has stimulated the development of several theoretical 
and computational approaches. Kubler and Schmedders (2003) and Kubler and Schmedders (2005) develop computational algorithms 

3 Anderson and Raimondo (2008) note that “with dynamic incompleteness, essentially nothing is known”. Weston and Žitković (2020) identify the investigation of 
such markets as “one of the most interesting and important topics of future research in this area. Unfortunately, the formidable mathematical difficulties present in 
virtually all such problems leave them outside the scope of the techniques available to us today.”
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to numerically approximate market equilibria. Their method relies on the notion of 𝜀-equilibrium, which requires that the errors in 
Euler equations are small, while insisting on the conditions that market clearing and budget constraints hold exactly. We also impose 
such conditions, but define second-order equilibria as those that achieve optimality up to an error of the second order for all the 
agents in the economy. This paper develops a small-noise approach to obtain closed-form asymptotics. In addition, it compares such 
asymptotic formulas with a numerical solution of the equilibrium and verifies their accuracy.

Our methodology is conceptually close to the perturbation literature for stochastic control problems initiated by Fleming (1971). 
Few papers have applied perturbation methods to general equilibrium models: Judd and Guu (2001) expand a one-period equilib-
rium model adding small noise to a deterministic market, Kim et al. (2008) and Mertens and Judd (2018) implement second-order 
expansions to numerically solve discrete DSGE models, Kogan and Uppal (2001) perturb the risk aversion parameters around the 
logarithmic utility case to analyze the implication of preference heterogeneity. We expand around a tractable complete benchmark 
by adding small unhedgeable noise to the model and find a second-order equilibrium for the ensuing incomplete market.

To obtain explicit formulas, we assume that agents have exponential utilities (i.e., CARA preferences) and that dividends are 
conditionally Gaussian. Notwithstanding their limitations, exponential utilities are commonly adopted in the incomplete-market 
equilibrium literature, as the absence of a representative agent makes other utility functions intractable.4

The rest of this paper is organized as follows: section 2 introduces the incomplete model and discusses the baseline model. Section 3
defines in detail the notion of second-order equilibrium, states its explicit form, and interprets its implications for consumption, 
investment, and asset prices. Section 4 discusses the model’s asset pricing implications. Section 5 compares the market equilibrium 
from the closed-form expression with the one obtained numerically. Section 6 concludes the paper. Proofs are in the appendix.

2. The model

The economy consists of 𝑛 agents maximizing their respective lifetime utility from consumption. The 𝑖-th agent has absolute 
risk-aversion 𝛼𝑖 and time-preference rate 𝛽𝑖, hence seeks to maximize

𝐸

⎡⎢⎢⎣
∞ 

∫
0 
𝑒−𝛽𝑖𝑠𝑈𝑖(𝑐𝑖𝑠)𝑑𝑠

⎤⎥⎥⎦ (2.1)

where 𝑈𝑖(𝑐) =
𝑒−𝛼𝑖𝑐

−𝛼𝑖
and 𝑐𝑖

𝑠
denotes the 𝑖-th agent’s consumption rate at time 𝑠. Agents finance their consumption by borrowing from 

and lending to each other at an endogenously determined safe rate, and by trading an asset that pays at time 𝑡 a dividend flow 𝐷𝑡
that follows the dynamics

𝑑𝐷𝑡 = 𝜇𝑡𝑑𝑡+ 𝜎𝐷𝑑𝑊 𝐷
𝑡
,

𝑑𝜇𝑡 = 𝑎(𝜇𝐷 − 𝜇𝑡)𝑑𝑡+ 𝜎𝜇𝑑𝑊
𝜇

𝑡
,

where 𝑊𝐷 and 𝑊 𝜇 are independent Brownian motions representing shocks to dividends and to fundamentals, respectively, and 
𝜎𝐷, 𝑎 > 0. Such dividend dynamics are common in equilibrium models with stochastic fundamentals, such as Scheinkman and Xiong 
(2003), Dumas et al. (2009), Cujean and Hasler (2017). For notational convenience, we consider a single unhedgeable risk source. 
(The main findings in the multivariate case are discussed in Section 4.2.)

Denoting by 𝑋𝑖
𝑡

and 𝜃𝑖
𝑡

respectively the wealth and the number of shares held by the 𝑖-th agent at time 𝑡, the agent’s budget 
equation is

𝑑𝑋𝑖
𝑡
= 𝜃𝑖

𝑡
(𝑑𝑃𝑡 +𝐷𝑡𝑑𝑡) + 𝑟𝑡(𝑋𝑡 − 𝜃𝑖𝑡𝑃𝑡)𝑑𝑡− 𝑐

𝑖
𝑡
𝑑𝑡, 𝑋𝑖

0 = 𝑥𝑖,

where 𝑟𝑡 and 𝑃𝑡 are respectively the safe rate and the asset price at time 𝑡, endogenously determined in equilibrium, while 𝑥𝑖 denotes 
the initial wealth endowment of the 𝑖-th agent. Because the perishable dividend must be consumed immediately, the risky asset is 
available in unit net supply, and the (locally) safe asset is in zero net supply, the market-clearing conditions require that

𝑛 ∑
𝑖=1 

𝜃𝑖
𝑡
= 1, 

𝑛 ∑
𝑖=1 

(𝑋𝑖
𝑡
− 𝜃𝑖

𝑡
𝑃𝑡) = 0, 

𝑛 ∑
𝑖=1 

𝑐𝑖
𝑡
=𝐷𝑡 a.s. for all 𝑡 > 0. (2.2)

Note that the first two conditions imply that 
∑𝑛

𝑖=1𝑋
𝑖
𝑡
= 𝑃𝑡 and, in particular, that 

∑𝑛

𝑖=1 𝑥𝑖 = 𝑃0. Hence, the initial endowments (𝑥𝑖)𝑛𝑖=1
are invariant to scaling, in that replacing them with (𝑘𝑥𝑖)𝑛𝑖=1 leads to the same setting, up to a change in numeraire. Put differently, 
only the relative endowments 𝑥𝑖∕

∑𝑛

𝑖=1 𝑥𝑖 have economic significance, while their sum 
∑𝑛

𝑖=1 𝑥𝑖 merely scales the asset price 𝑃0.
In this market the only tradeable risky asset (the stock) is insufficient for hedging both the dividend and the fundamental shocks. 

As a result, the market is no longer complete, hence the equilibrium is not necessarily Pareto efficient, and a representative agent 

4 To study the impact of uninsurable income risk on asset prices, Calvet (2001) assumes investors with identical exponential utility; Christensen et al. (2012) and 
Christensen and Larsen (2014) assume heterogeneous CARA preferences in incomplete-markets models. Angeletos and Calvet (2006) assume CARA preferences in 
an incomplete production economy. Gromb and Vayanos (2002) assume CARA utilities in a model with market segmentation and financial constraints. Vayanos and 
Woolley (2013) adopt CARA preferences in a model with investment funds and flow costs.
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may not exist. In addition, because not all contingent claims are tradeable, the marginal utilities of different agents do not have to 
be proportional to each other, complicating the search for the equilibrium further.

We study the incomplete model as a perturbation of a baseline case, in which the dividend’s growth rate is constant. One expects, 
by continuity, that when the volatility of the fundamental state 𝜎𝜇 is small, an equilibrium should exist and resemble a perturbation 
of such baseline equilibrium. Thus, consider an expansion of the volatility 𝜎𝜇 around 0, setting 𝜇𝑡 ∶= 𝜇𝐷 + 𝜀𝜎𝑧𝑧𝑡, where 𝜎𝑧 ∶=

𝜎𝜇

𝜀 
and 𝑧𝑡 ∶=

𝜇𝑡−𝜇𝐷
𝜀𝜎𝑧

. With this notation, the dividend dynamics is

𝑑𝐷𝑡 = (𝜇𝐷 + 𝜀𝜎𝑧𝑧𝑡)𝑑𝑡+ 𝜎𝐷𝑑𝑊 𝐷
𝑡
,

𝑑𝑧𝑡 = −𝑎𝑧𝑡𝑑𝑡+ 𝑑𝑊
𝜇

𝑡
.

For 𝜀 = 0, the model is complete. The next subsection discusses the equilibrium for this baseline case, while the remainder of the 
paper studies the incomplete-market equilibrium for 𝜀 > 0.

2.1. The baseline case

In the baseline case, i.e., when 𝜀 = 0, the dividend process dynamics is

𝑑𝐷𝑡 = 𝜇𝐷𝑑𝑡+ 𝜎𝐷𝑑𝑊 𝐷
𝑡
.

The next theorem characterizes the baseline equilibrium. Denote aggregate risk-aversion by �̄� = 1∕
∑𝑛

𝑖=1
1 
𝛼𝑖

and aggregate time-

preference by 𝛽 =
∑𝑛

𝑖=1
�̄�

𝛼𝑖
𝛽𝑖.

Theorem 2.1. Assume 𝛽 + �̄�𝜇𝐷 − �̄�2

2 𝜎
2
𝐷
> 0. The pair (𝑟,𝑃𝑡) defined by

𝑟 = 𝛽 + �̄�𝜇𝐷 − �̄�2

2 
𝜎2
𝐷
, 𝑃𝑡 =

𝐷𝑡

𝑟 
+
𝜇𝐷 − �̄�𝜎2

𝐷

𝑟2
(2.3)

is a market equilibrium, and the agents’ optimal policies are

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
, (2.4)

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝐷𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡− 1

𝑟 

)
+ 𝑟

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
. (2.5)

The unique stochastic discount factor is 𝑀𝑡 = exp{−𝛽𝑡− �̄�(𝐷𝑡 −𝐷0)}.

The equilibrium in this baseline model has the following properties, which form the starting point of the discussion in the full-
fledged model in the next section.

2.1.1. Equilibrium interest rate and stock price

The interest rate in (2.3) is constant and is the sum of the three familiar components of time-preference (𝛽), growth (�̄�𝜇𝐷), and 
precautionary savings (−�̄�2𝜎2

𝐷
∕2). The stock price is an affine function of the current dividend and equals the present value of future 

dividends 𝐸𝑡[∫ ∞
𝑡
𝑒−𝑟(𝑠−𝑡)𝐷𝑠𝑑𝑠] =𝐷𝑡∕𝑟 + 𝜇𝐷∕𝑟2 minus a risk discount �̄�𝜎2

𝐷
∕𝑟2 required by agents to hold an asset that pays variable 

dividends.
Equilibrium prices, summarized by 𝑟 and 𝑃𝑡, depend on agents’ preferences only through the aggregate risk-aversion �̄� and time-

preference 𝛽. Thus, the market is equivalent to a model in which all wealth is held by a single representative agent with the aggregate 
preferences parameters.

The equilibrium is Markov, in that both market prices 𝑟,𝑃𝑡 and the optimal consumption and investment policies depend only on 
the variable 𝐷𝑡 that describes the state of the market. Put differently, the state 𝐷𝑡 (along with calendar time 𝑡) is a sufficient statistic 
for all agents to make their optimal decisions.

2.1.2. Consumption and investment policies

Asset holdings are constant and inversely proportional to each agent’s own risk-aversion, which means that no trade takes place 
among agents over time.

The consumption rate of each agent is the sum of: (i) the dividend �̄�
𝛼𝑖
𝐷𝑡 on the shares held, (ii) the interest on wealth in excess 

of the stock holdings 𝑟
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
, and (iii) a time-dependent component 𝛽−𝛽𝑖

𝛼𝑖

(
𝑡− 1

𝑟 
)

that describes how agents with different 
time-preference exchange consumption streams over time: agents with above-average impatience (𝛽𝑖 > 𝛽) consume more in earlier 
periods (𝑡 < 1∕𝑟), while more patient agents defer additional consumption to later periods (𝑡 > 1∕𝑟). Note that such exchanges are 
settled through the money market, that is by lending and borrowing at the constant interest rate 𝑟.
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Remark 2.2. An important feature of this equilibrium is that all agents coexist indefinitely, in that the economic weight of none of 
them vanishes over time, as detailed in Corollary 4.5. This result is in contrast to models based on isoelastic investors (cf. Kogan et al. 
(2006); Yan (2008); Cvitanić et al. (2012); Guasoni and Wong (2020)), in which one agent (typically the least risk averse, the most 
patient, or a combination thereof) eventually overtakes all others.

3. Incomplete-market equilibrium

Because the goal of this section is to define a second-order equilibrium, a strategy is in fact represented as a family of strategies, 
defined for 𝜀 small enough. A second-order equilibrium consists of asymptotic expansions for the asset price, the interest rate, and 
consumption-investment strategies, for which the market-clearing and self-financing conditions hold exactly, while optimality holds 
at the second-order.

It is essential to include effects proportional to the variance of the unhedgeable shock to understand its asset pricing implications, 
as the precautionary savings effect depends on the second moment. To understand the impact of moments of higher order, the 
definition can be adjusted to higher order, at the expense of obtaining more cumbersome expressions for the equilibrium.

Definition 3.1. A second-order equilibrium is a family {𝑟𝑡(𝜀), 𝑃𝑡(𝜀), (𝑐𝑖𝑡 (𝜀))1≤𝑖≤𝑛, (�̂�𝑖𝑡(𝜀))1≤𝑖≤𝑛}𝜀∈[0,�̄�) such that (henceforth, unless am-
biguity arises, the dependence on 𝜀 is omitted):

(i) 𝑃𝑡(𝜀)0≤𝜀≤�̄� is a continuous semimartingale and 𝑟𝑡(𝜀)0≤𝜀≤�̄� an adapted, integrable process;
(ii) {𝑐𝑖

𝑡
, �̂�𝑖
𝑡
}0≤𝜀≤�̄� satisfies the admissibility conditions in Definition C.1 for all 1 ≤ 𝑖 ≤ 𝑛;

(iii) For every 𝜀, the market clearing conditions hold:

𝑛 ∑
𝑖=1 

�̂�𝑖
𝑡
= 1, 

𝑛 ∑
𝑖=1 

(𝑋𝑖
𝑡
− �̂�𝑖

𝑡
𝑃𝑡) = 0, 

𝑛 ∑
𝑖=1 

𝑐𝑖
𝑡
=𝐷𝑡;

(iv) For every agent 𝑖, the family of strategies {𝑐𝑖
𝑡
, �̂�𝑖
𝑡
}0≤𝜀≤�̄� is second-order optimal in 𝜀, i.e.,

𝐸

⎡⎢⎢⎣
∞ 

∫
0 

1 
−𝛼𝑖

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 𝑑𝑡

⎤⎥⎥⎦ ≥ sup 
(𝑐𝑡,𝜃𝑡)∈

𝐸

⎡⎢⎢⎣
∞ 

∫
0 

1 
−𝛼𝑖

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐𝑡 𝑑𝑡
⎤⎥⎥⎦+ 𝑜(𝜀2).

3.1. Homogeneous time-preference

The description of the second-order equilibrium is technically simpler when agents have the same time-preference, i.e., 𝛽𝑖 = 𝛽 for 
all 1 ≤ 𝑖 ≤ 𝑛, leaving heterogeneity in risk aversions 𝛼𝑖 and initial endowments 𝑥𝑖. Most of the effects of incompleteness are already 
visible with homogeneous time-preference, motivating the initial exposition in this setting. The next subsection describes the general 
case with time-preference heterogeneity and how it affects the model’s implications.

Theorem 3.2. Assume �̄� ∶= 𝛽 + �̄�𝜇𝐷 − �̄�2

2 𝜎
2
𝐷
> 0. The interest rate 𝑟𝑡, price 𝑃𝑡, consumption 𝑐𝑖

𝑡
and investment �̂�𝑖

𝑡
strategies yield a second-

order equilibrium. Define5:

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 −
𝜀2

2 
𝐻(𝑥), (3.1)

𝑃𝑡 =𝐷𝑡�̃�𝑡 + (𝜇𝐷 − �̄�𝜎2
𝐷
)�̃�𝑡 + 𝜀

1 
�̄�(𝑎+ �̄�)

𝜎𝑧𝑧𝑡 − 𝜀2
2�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
, (3.2)

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
+ 𝜀2�̂�𝑖,2

𝑡
, (3.3)

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝐷𝑡 +

1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+ 𝜀2 1 

𝛼𝑖�̄�

(
1
2
(𝑚𝑖,1)2 + 1

2
𝐻(𝑥) −

�̄�𝜎𝑧

𝑎+ �̄�
𝑚𝑖,1

)
(3.4)

− 𝜀 
𝛼𝑖
𝑚𝑖,1𝑊 𝜇

𝑡
− 𝜀2

𝛼𝑖

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠ , (3.5)

log𝑀𝑖
𝑡
= −𝛽𝑡− �̄�(𝐷𝑡 −𝐷0) + 𝜀𝑚𝑖,1𝑊

𝜇

𝑡
+ 𝜀2

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠ , (3.6)

where

5 Observe that 𝐻(𝑥) depends on the entire vector of all endowments 𝑥= (𝑥1,… , 𝑥𝑛).
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𝑚𝑖,1 = −𝛼𝑖
�̄�𝜎𝑧

𝑎+ �̄�
�̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
, 𝐻(𝑥) =

(
�̄�𝜎𝑧�̄�

𝑎+ �̄�

)2 𝑛 ∑
𝑗=1 

�̄�𝛼𝑗

(
𝑥𝑗− �̄�

𝛼𝑗
𝑃0

)2
= 

𝑛 ∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1)2, (3.7)

𝐶𝑖
𝑡
= 1
�̄�
− 𝜀

�̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡 + 𝜀2

[ �̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
+ 𝐻(𝑥)

2�̄�2
−

�̄�𝜎𝑧

�̄�2(𝑎+ �̄�)
𝑚𝑖,1

]
, �̃�𝑡 =

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝐶
𝑗

𝑡
,

�̃�𝑡 =
1 
�̄�2

− 𝜀
(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡 +

𝜀2

�̄�2

[ �̄�2𝜎2
𝑧

(𝑎+ �̄�)(2𝑎+ �̄�)

(
1
�̄�
+ 2𝑎

2 + 6𝑎�̄�+ 3�̄�2
(𝑎+ �̄�)(2𝑎+ �̄�) 

(
𝑧2
𝑡
+ 1
�̄�

))
+ 1
�̄�
𝐻(𝑥)

]
,

�̂�
𝑖,2
𝑡

= −
𝜎𝑧

𝜎2
𝐷

�̄�

𝛼𝑖

𝑚𝑖,1

(𝑎+ �̄�)

(
𝐷𝑡 +

𝑎+ 2�̄�
�̄�(𝑎+ �̄�)

(𝜇𝐷 − �̄�𝜎2
𝐷
) − 1 

�̄�

)
,

𝑙
𝑖,2
𝑡

= −𝛼𝑖�̄�𝜎2𝐷�̂�
𝑖,2
𝑡

− 1
2
(𝑚𝑖,1)2 + 1

2
𝐻(𝑥), (3.8)

𝑚
𝑖,2
𝑡

= −�̄�𝜎𝑧𝑚𝑖,1
[

�̄�

(2𝑎+ �̄�)(𝑎+ �̄�)
𝑧𝑡 −

1 
𝑎+ �̄�

(𝑊 𝜇

𝑡
+ 𝑧0)

]
, 𝑛

𝑖,2
𝑡

= −𝛼𝑖𝜎𝐷�̂�
𝑖,2
𝑡
. (3.9)

The above result highlights several features, differences, and analogies with the baseline setting in the previous section. Because 
the unit of account in the model is the single consumption good, to render the model complete it would be necessary to add real 
(i.e., inflation indexed) long-term bonds to the menu of tradeable assets. The rationale for excluding such bonds is twofold: First, 
real bonds with indefinite maturities are available only in limited, inelastic supply and are issued by governments, while the model 
would require such bonds to be collectively issued by some agents and bought by others in perfectly elastic amounts.6 Second, real 
bonds, indexed by some aggregate consumer price index, would be of limited use to hedge the consumption basket of an individual 
consumer: in this sense, the absence of long-term bonds in the model mitigates the simplification of assuming a single consumption 
good. The crucial model feature is that some risks are unhedgeable, and the exclusion of long-term bond achieves this goal while also 
preserving tractability.7

Theorem F.1 in the Appendix identifies the equilibrium in an economy that allows the trading of long-term bonds. The discussion 
below uses this complete benchmark to explain the effects of market incompleteness.

3.1.1. Wealth distribution and market equilibrium

In view of the second term in equation (3.2), the interest rate is stochastic. Equilibrium asset prices depend on the distribution of 
agents’ wealth even if their time-preferences and risk-aversions are identical because interest-rate risk is unhedgeable. To understand 
how wealth distribution affects asset prices, consider first the complete market where long-term bonds are traded (Theorem F.1 in 
the Appendix computes the equilibrium in this setting).

In this economy, agents hedge interest-rate risk by holding long-term bonds. Exponential-utility preferences imply that each agent 
holds a constant number of shares. Assuming homogeneous time-preference, any excess wealth 𝑥𝑖 −

�̄�

𝛼𝑖
is held in long-term bonds 

because such bonds allow to make a consumption plan that is insensitive to interest-rate shocks, unlike money-market holdings. 
A stochastic interest rate is crucial for this consideration: when interest rates are deterministic, long-term bonds are redundant and 
are indeed replicable through the money market.

In the incomplete market, agents use stocks and the money market as imperfect substitute for long-term bonds. Unable to hedge 
interest-rate shocks, agents face increased risk, prompting additional precautionary savings and driving the interest rate lower. Sig-
nificant wealth inequality leads to increased lending and borrowing among agents, increasing aggregate exposure to interest-rate 
risk and amplifying precautionary savings. Vice versa, less inequality leads to more autarchic holdings, lower interest-rate exposure, 
hence a higher interest rate. The interest rate is maximum in absolute equality, which results in absolute autarchy.

The following subsections discuss the precise mechanism through which wealth dispersion and interest rate risk increase con-

sumption volatility in the incomplete market, explaining the interest-rate gap 𝜀
2

2 𝐻(𝑥) in (3.1) from the complete equilibrium of 
Theorem F.1.

3.1.2. Consumption policy

At order 𝜀, the consumption policy includes both the first two terms in (3.4), which do not depend on time-varying dividend 
growth and coincide with the optimal consumption (2.5) in the baseline model, and the novel first term in (3.5), which reflects the 
combined effect of random growth and market incompleteness.

To understand this novel component, it is useful to compare it to the consumption in (F.6) that would be optimal in a hypothetical 
complete market where the consol bond 𝐶𝑡 is traded, that is the bond that pays a constant coupon flow equal to 1. Assuming 
homogeneous time-preference, the consumption policy (3.4)-(3.5) in the incomplete market differs from that in the complete one at 
order 𝜀 by the stochastic term

6 By elastic, we mean an amount that can be adjusted instantly and without frictions, even in response to economic shocks.
7 An alternative approach would be to include both stocks and long-term bonds as tradeable assets, while achieving market incompleteness through additional 

shocks and multiple consumption goods. Such a model would be significantly less tractable and would not necessarily yield additional insights.
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− 𝜀 
𝛼𝑖
𝑚𝑖,1𝑊 𝜇

𝑡
= 𝜀

�̄�𝜎𝑧

𝑎+ �̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝑊

𝜇

𝑡
.

In such a complete model, the consumption stream (F.6) is financed by fixed amounts of stocks and consol bonds, i.e., by the 
wealth process �̄�

𝛼𝑖
𝑃
𝑐𝑜𝑚𝑝

𝑡
+ 1 

𝐶
𝑐𝑜𝑚𝑝

0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃
𝑐𝑜𝑚𝑝

0

)
𝐶
𝑐𝑜𝑚𝑝

𝑡
, where 𝑃 𝑐𝑜𝑚𝑝

𝑡
and 𝐶𝑐𝑜𝑚𝑝

𝑡
denote the equilibrium prices in the complete model 

of the stock and consol bond, respectively. However, in the incomplete market under consideration these long-term bonds are not 
traded, as the only securities are the dividend-paying asset and the short-term bond with rate 𝑟𝑡 .

Now, denote by 𝑄𝑖
𝑡
∶= 1 

𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝐶𝑖
𝑡

the subjective value of the bond component of the wealth process above. This quantity is 
subjective because it is based on the marginal values of the consol bonds for the 𝑖-th agent, which are not market prices, but rather 
the hypothetical prices that would make the 𝑖-th agent indifferent to trading small amounts of these securities.

Even though holding the position 𝑄𝑖
𝑡

is not possible in the incomplete market, because long-term bonds are not traded, the 𝑖-th 
agent can mimic this position with an appropriate investment in the safe asset. In fact,

𝑋𝑖
𝑡
− �̂�𝑖𝑃𝑡 =𝑄𝑖𝑡 −

𝑡 

∫
0 

𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑠
𝑑𝑠 

𝑑𝑊 𝜇
𝑠
+𝑂(𝜀2).

In other words, the agent’s position in the safe asset is the closest to 𝑄𝑖
𝑡

attainable in the incomplete market. Since the first-order 
dynamics of 𝑄𝑖

𝑡
is

𝑑𝑄𝑖
𝑡
= (… )𝑑𝑡+ 𝜀𝑚

𝑖,1

𝛼𝑖�̄�
𝑑𝑊

𝜇

𝑡
,

we obtain 𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑡
𝑑𝑡 = 𝜀𝑚

𝑖,1
𝑡

𝛼𝑖 �̄�
+𝑂(𝜀2).

In order for the safe position to track 𝑄𝑖
𝑡

over time, the 𝑖-th agent has to consume the interest-rate proceeds on excess lending, 
that is

𝑐𝑖
𝑡
= 𝑐𝑖,𝑐𝑜𝑚𝑝

𝑡
− �̄�

𝑡 

∫
0 

𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑠
𝑑𝑠 

𝑑𝑊 𝜇
𝑠
+𝑂(𝜀2),

where 𝑐𝑖,𝑐𝑜𝑚𝑝
𝑡

is the optimal consumption in the complete market. Agents adjust their consumption to mimic, albeit imperfectly, 
the position in long-term bonds they would hold in the complete economy. The noisy tracking error in the replication leads to the 
additional stochastic term in the consumption policy.

Agents with an initial wealth endowment equal to their natural stock position (𝑥𝑖 =
�̄�

𝛼𝑖
𝑃0) would have zero demand for long-

term bonds, even if they were available. Hence, as there is no bond position to mimic with the safe asset, they do not adjust their 
consumption. Instead, agents with high initial endowment (𝑥𝑖 >

�̄�

𝛼𝑖
𝑃0) are natural lenders. An unexpected increase in dividend growth 

(𝑑𝑊 𝜇

𝑡
> 0) leads to a higher interest rate, lower indifference prices for long-term bonds, hence to lower 𝑄𝑖

𝑡
for lenders. Hence, lenders 

– who receive higher interest income – respond by increasing current consumption to reduce the deviation of their safe position from 
𝑄𝑖
𝑡
.

Agents with atypical initial wealth endowments (𝑥𝑖 ≪
�̄�

𝛼𝑖
𝑃0 or 𝑥𝑖 ≫

�̄�

𝛼𝑖
𝑃0) hold a larger position, either positive or negative, in 

the safe asset and therefore their deviation from their desired bond position 𝑄𝑖
𝑡

is larger after an unexpected shock 𝑑𝑊 𝜇

𝑡
. Since the 

deviation size affects the extent of the adjustment in consumption, atypical agents face more consumption uncertainty relative to 
average agents.

3.1.3. Dynamic trading

The second-order equilibrium implies dynamic trading:

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
− 𝜀2

𝜎𝑧

𝜎2
𝐷

�̄�

𝛼𝑖

𝑚𝑖,1

(𝑎+ �̄�)

(
𝐷𝑡 +

𝑎+ 2�̄�
�̄�(𝑎+ �̄�)

(𝜇𝐷 − �̄�𝜎2
𝐷
) − 1 

�̄�

)
.

To understand the trading motive, consider some of the mechanisms identified in the literature. In the overlapping generations model 
of Vayanos (1998) and Vayanos and Vila (1999), trading is a life-cycle phenomenon, as young agents buy securities and sell them in 
their old age. The infinitely-lived agents in this paper are clearly not susceptible to such motive.

In the models of Heaton and Lucas (1996), Lo et al. (2004), Christensen et al. (2012), Herdegen and Muhle-Karbe (2018), and 
Buss and Dumas (2019), dynamic trading arises from a response to fluctuations in agents’ personal labor incomes. This motive also 
does not apply to the present setting, in which labor incomes are absent.

Instead, in this market agents trade for the purpose of consumption smoothing by sharing dividend-growth risk. Note that trading 
originates from the deviation of the initial endowment 𝑥𝑖 from the first-order autarchy level �̄�

𝛼𝑖
𝑃0: that is, any agent with 𝑥𝑖 =

�̄�

𝛼𝑖
𝑃0

does not trade.
Different agents respond in opposite ways to dividend growth shocks, depending on their wealth. (The aggregate response is null, 

as the asset’s supply is fixed.) A positive dividend growth shock forecasts higher future dividends, thereby eliciting two countervailing 
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effects: The income effect encourages natural borrowers (𝑥𝑖 <
�̄�

𝛼𝑖
𝑃0) to consume today some of the expected future dividends, hence 

to sell. The substitution effect, which prevails for natural lenders, focuses instead on the increased attractiveness of the security, hence 
encouraging to buy.

To link dynamic trading with hedging, consider again the subjective value 𝑄𝑖
𝑡

of the 𝑖-th agent’s desired position in consol bonds 

(if they were available). Recall that 𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑡
𝑑𝑡 = 𝜀𝑚

𝑖,1
𝑡

𝛼𝑖�̄�
+𝑂(𝜀2), which, combined with 𝑑⟨𝑃 ⟩𝑡 = 𝜎2

𝐷

�̄�2
+𝑂(𝜀), yields

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
+
𝑑⟨𝑄𝑖,𝑃 ⟩𝑡
𝑑⟨𝑃 ⟩𝑡 +𝑂(𝜀3). (3.10)

This expression sheds light on agents’ motive for trading: the 𝑖-th agent aims to mimic as closely as possible the shocks to the subjective

wealth process that would replicate the optimal consumption stream in a complete-market.
The dynamic trading component in �̂�𝑖

𝑡
is the projection of the desired position in long-term bonds 𝑄𝑖

𝑡
on the space of positions 

attainable by exclusively trading the stock, therefore it depends on the covariation between 𝑃𝑡 and 𝑄𝑖
𝑡

and is proportional to the 
variance of the unhedgeable shock, implying that it is of order 𝜀2.

Note also that agents are trading despite sharing the same prior beliefs and the same information, ostensibly in contrast to classical 
no-trade results (Milgrom and Stokey, 1982) and to the dynamic no-trade theorems of Constantinides and Duffie (1996) and Judd 
et al. (2003a). Constantinides and Duffie (1996) consider an equilibrium model in which agents have idiosyncratic shocks to labor 
income but homogeneous preferences, and find that agents do not trade in equilibrium because hedging demand is null. In a model 
with heterogeneous risk aversion and a dividend driven by a Markov chain dynamics, Judd et al. (2003a) show that agents’ holdings of 
long-lived securities remain constant over time, unperturbed by the flow of information. Unlike Constantinides and Duffie (1996), in 
the present model agents do hedge by exchanging their respective exposures to growth shocks because they have different preferences 
for both time and risk. Unlike Judd et al. (2003a), who complete their market through a set of short-lived hedging instruments, the 
present market is incomplete because agents face two sources of randomness 𝑊 𝐷 and 𝑊 𝜇 but can trade only one risky asset, hence 
are unable to perfectly hedge shocks to the growth rate 𝜇.

The key trading motive is thus hedging, and in the model hedging requires trading because available securities are insufficient to 
set up contingent plans through a static position. Such a trading motive is not in contrast with extant no-trade theorems, in which 
new information does not generate trading in view of agents’ agreement on the value of securities. Here agents willingly trade while 
agreeing on securities’ values by providing each other with actuarially fair insurance, and each of them has different insurance needs 
that are dictated by individual preferences.

3.1.4. The heterogeneity premium

The quantities 𝑙𝑖,2, 𝑚𝑖,2 and 𝑛𝑖,2 in equation (3.5) contain second-order effects on consumption. As dynamic trading implies that the 
number of shares changes over time, the contribution of dividends to consumption changes accordingly, as attested by the last term 
(reported in (3.9)), in which the dividend shock 𝑑𝑊 𝐷

𝑡
is precisely proportional to the number of shares �̂�𝑖

𝑡
held at time 𝑡. Dynamic 

trading also accounts for the first term in (3.8), while the remaining terms

𝜀2

2𝛼𝑖

(
(𝑚𝑖,1)2 −

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1)2

)
𝑡 (3.11)

reflect the effect of heterogeneity on consumption sharing.
Heterogeneity leads atypical agents (large (𝑚𝑖,1)2) to consume more than typical ones (small (𝑚𝑖,1)2), a phenomenon that can be 

understood as the reward for respective consumption risk. Indeed, recall that the 𝑖-th agent’s first-order consumption exposure to state 
shocks 𝑊 𝜇

𝑡
is −𝜀𝑚𝑖,1∕𝛼𝑖, which contributes an additional consumption variance of 𝜀2((𝑚𝑖,1)2∕𝛼2

𝑖
)𝑡. In equilibrium, such consumption 

variance elicits the reward in (3.11), so that the aggregate reward is null (in equilibrium aggregate consumption must equal dividends) 
while each agent receives an incremental reward proportional to the consumption variance accepted. As atypical agents take most of 
this risk, they also receive most of its rewards.

3.1.5. Interest rates

In a complete economy with additional risky assets, equation (3.1) implies an interest rate that reverts around the mean �̄� prevailing 
in the baseline. In particular, as the state 𝑧𝑡 (or, equivalently, 𝜇𝑡 = 𝜇𝐷+𝜀𝜎𝑧𝑧𝑡) follows an Ornstein-Uhlenbeck process, the equilibrium 
implies that the endogenous interest rate 𝑟𝑡 follows a Vasicek model, in which short-rate volatility is proportional to the aggregate 
risk aversion �̄� and the volatility of the expected growth of dividends 𝜀𝜎𝑧, as in the single-agent model by Goldstein and Zapatero 
(1996). Note also that the interest rate is procyclical because it increases with dividend growth.

In the complete equilibrium, agents’ preferences appear only through the aggregate risk aversion �̄� and time-preference 𝛽, which 
implies that the market is indistinguishable from another one populated with a single representative agent with these preferences. 
Put differently, the actual dispersion of (𝛼𝑖)𝑛𝑖=1 and (𝛽𝑖)𝑛𝑖=1 is irrelevant, insofar as it leads to the same �̄� and 𝛽.

The incomplete-market equilibrium uncovers the impact of such dispersion. The interest rate (3.1) is reduced by 𝐻(𝑥) =
𝜀2

2 
∑𝑛

𝑗=1
�̄�

𝛼𝑗
(𝑚𝑗,1)2, where 𝑚𝑗,1 (defined in (3.7)) captures the combined sensitivity of consumption to both preferences and initial 

endowments. The key to understanding such reduction lies in the term of order 𝜀 in (3.5), which reflects the response of consump-
tion to growth-rate shocks. The individual precautionary savings component is proportional to the quadratic variation 𝑑⟨𝑐𝑗⟩𝑡 and 
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the consumption response to growth shocks is proportional to 𝑚𝑗,1. Each agent contributes to the equilibrium interest rate with the 
respective weight �̄�∕𝛼𝑗 , resulting in the aggregate correction 𝜀

2

2 
∑𝑛

𝑗=1
�̄�

𝛼𝑗
(𝑚𝑗,1)2.

As 𝑚𝑗,1 measures the 𝑗-th agent’s overall deviation from autarchy, the quantity 
∑𝑛

𝑗=1
�̄�

𝛼𝑗
(𝑚𝑗,1)2 reflects the heterogeneity of agents 

in endowments. The interest rate decrease is proportional to
𝑛 ∑
𝑖=1 

𝛼𝑖

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)2
, (3.12)

hence to the variance of the deviations of initial endowments from their autarchic values, weighted according to risk aversions. 
Ceteris paribus, an increase in dispersion of endowments depresses the interest rate by increasing aggregate precautionary savings 
against growth shocks. Because each agent’s precautionary savings effect is proportional to the square deviation of the endowment 
from autarchy, it follows that the aggregate precautionary savings effect is proportional to the variance of autarchy deviation across 
agents.

The precautionary savings effect due to common unhedgeable risk is more subtle than the one elicited by uninsurable labor income. 
In the model by Christensen et al. (2012), agents receive a partially unhedgeable income stream and the volatility of the unhedgeable 
idiosyncratic shocks to the 𝑗-th agent’s income is (1 − 𝜌𝑗 )𝜎𝑌𝑗 . The interest rate is then reduced by the risk-aversion weighted average 
of unhedgeable income variances 12 �̄�

2∑
𝑖

𝛼𝑖

�̄�
(1− 𝜌𝑖)2𝜎2𝑌𝑖 . Crucially, such a reduction occurs even if agents are homogeneous, therefore 

it is ascribed to their individual shocks, not to the heterogeneity of their preferences.
Instead, in the present model with common unhedgeable risk, it is agents’ heterogeneity that drives the demand for the non-

tradeable asset, increasing consumption volatility and consequently reducing the interest rate. If agents are homogeneous, there is no 
demand for sharing unhedgeable risk, hence there is no additional consumption uncertainty, and the volatility of the unhedgeable 
shock does not reduce the interest rate.

3.1.6. Equilibrium prices

Recall that in this market agents can only (i) trade the stock and (ii) borrow and lend at the endogenous safe rate. In particular, 
they cannot trade other fixed-income securities such as consol bonds. Thus, each agent has a different shadow price for such securities, 
determined by their individual marginal utility. In particular, the shadow price of the consol bond equals

𝐶𝑖
𝑡
= 1
�̄�
− 𝜀

�̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡 + 𝜀2

[ �̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
+ 𝐻(𝑥)

2�̄�2
−

�̄�𝜎𝑧

�̄�2(𝑎+ �̄�)
𝑚𝑖,1

]
.

The first two terms imply that the consol’s shadow price reverts around its baseline value of 1∕�̄�, with the proportionally higher 
volatility 𝜀𝜎𝑧�̄�∕(𝑟(𝑟+ 𝑎)), which reflects the combined effects of scaling (1∕�̄�), risk aversion (�̄�), and mean-reverting dividend shocks 
(1∕(𝑎+ �̄�)). As bond prices move in the opposite direction as interest rates, bond prices are thus counter-cyclical.

The 𝜀2-correction to the consol bond is divided into three parts: the first term, which is also present in the complete economy in 
Theorem F.1, can be understood as a convexity effect, as it implies that the shadow price of the consol is convex in the state 𝑧𝑡 and 
hence in the interest rate in (3.1), which is affine in the state 𝑧𝑡 . The second term captures the effect of overall agents’ heterogeneity 
– it vanishes with autarchic holdings, in particular with a single agent. The third and last term is agent-specific, and reveals the 
individual marginal utility from the consol’s cash flow. The shadow price is higher for lenders (𝑥𝑖 >

�̄�

𝛼𝑖
𝑃0) because shocks in 𝑧𝑡 have 

an asymmetric effect on lenders and borrowers. A positive shock to 𝑧𝑡 increases the dividend growth rate, benefiting all agents, but 
also raises the interest rate, benefiting only lenders. Thus, the same shock to 𝑧𝑡 has a larger impact on a lender, who is therefore 
willing to pay more to hedge it.

Note that idiosyncratic corrections do not affect the prices of traded assets. Denote by 𝐿𝑖
𝑡

each agent’s shadow price for the linear 
bond, that is the bond that pays at time 𝑡 a coupon flow equal to 𝑡. The stock price in (3.2) is

𝑃𝑡 =𝐷𝑡�̃�𝑡 + (𝜇𝐷 − �̄�𝜎2
𝐷
)�̃�𝑡 + 𝜀

1 
�̄�(𝑎+ �̄�)

𝜎𝑧𝑧𝑡 − 𝜀2
2�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
,

and depends on �̃�𝑡 and �̃�𝑡, which are the averages of the shadow prices of the consol and linear bond in the cross-section of agents, 
with the same weights �̄�∕𝛼𝑖 as in the interest rate correction. Importantly, in these averages agents’ dependence enters only through 
the cross-sectional variance 𝐻(𝑥), which also reflects heterogeneity in the interest-rate. By contrast, the components of the shadow 
prices that are linear in 𝑚𝑖,1 cancel out in the averages and therefore do not affect the stock price.

The stock price in (3.2) includes four terms: The first one (𝐷𝑡�̃�𝑡) equals the current dividend multiplied by the average consol 
bond, hence reflects the change in the present value of a permanent cash flow equal to the current dividend. The second term 
(𝜇𝐷 − �̄�𝜎2

𝐷
)�̃�𝑡 is the risk-adjusted long-term growth-rate of the dividend, multiplied by the average linear bond, and represents the 

change in the present value of the linear increase in cash flow above the current dividend. Together, they capture the present value 
of future dividends at present interest rates.

The third and fourth terms reflect the cyclical corrections due to fluctuations in dividend growth. The linear term 𝜀 1 
�̄�(𝑎+�̄�)𝜎𝑧𝑧𝑡

entails that, at the first order, stock prices increase as dividend growth increases. The fourth term captures second-order effects, 
which include a constant and a quadratic component, leading to two implications. First, the equilibrium prices’ response to dividend 
growth is asymmetric: the increase in prices for above-average growth (𝑧𝑡 > 0) is smaller than the decrease for below-average growth 
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(𝑧𝑡 < 0) of the same magnitude. Second, the effect of dividend-growth variability 𝜎𝑧 is negative on average. This effect does not 
follow from risk-aversion per se, but from exponential utility’s positive intertemporal hedging demand, hence aversion to investment-
opportunity variability. Thus, stock prices differ from the present value of their future dividends due to both the constant discount 
for risk �̄�𝜎2

𝐷
�̃�𝑡 and the time-varying hedging premium 𝜀2 2�̄�𝜎2𝑧

�̄�(𝑎+�̄�)(2𝑎+�̄�)

(
𝑧2
𝑡
+ 1

�̄�

)
.

The next proposition examines the stock price’s dynamics and sheds light on the relation between risk and return:

Proposition 3.3. The stock price satisfies

𝑑𝑃𝑡 = (𝑃𝑡𝑟𝑡 + �̄�𝜎2𝐷�̃�𝑡 −𝐷𝑡)𝑑𝑡+ �̃�𝑡𝜎𝐷𝑑𝑊
𝐷
𝑡

+ 𝜎𝑃 ,𝜇(𝑧𝑡,𝐷𝑡)𝑑𝑊
𝜇

𝑡
, (3.13)

where

𝜎𝑃 ,𝜇(𝑧𝑡,𝐷𝑡) =𝐷𝑡

(
−𝜀

�̄�𝜎𝑧

�̄�(𝑎+ �̄�)
+ 𝜀2

2�̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧𝑡

)

+ (𝜇𝐷 − �̄�𝜎2
𝐷
)

(
−𝜀

(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
+ 𝜀2

�̄�2𝜎2
𝑧
(2𝑎2 + 6𝑎𝑟+ 3𝑟2)

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)2
2𝑧𝑡

)

+ 𝜀 1 
�̄�(𝑎+ �̄�)

𝜎𝑧 − 𝜀2
4�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧𝑡.

At order 𝜀, volatility is proportional to8

𝜎𝐷

(
1 − 𝜀

�̄�𝜎𝑧

𝑎+ �̄�
𝑧𝑡

)
and therefore is counter-cyclical: it is higher in bad times (𝑧𝑡 < 0) and lower in good times (𝑧𝑡 > 0). This phenomenon can be 
understood as a discount-rate effect: stock prices reflect the present value of future dividends, which becomes more sensitive to 
changes in the interest rate when rates are lower (similar to how a bond’s duration increases as interest rates decline). Thus, a 
procyclical interest rate leads to countercyclical volatility.

The stock price dynamics in (3.13) reveals which source of risk is rewarded – and which one is not. Indeed, the excess return is 
�̄�𝜎2

𝐷
�̃�𝑡, which means that the only component of stock-price shocks that is rewarded is the present value of future dividends – and only 

in relation to dividend risk. In particular, state shocks 𝑑𝑊 𝜇

𝑡
do not carry a reward in equilibrium, despite affecting the consumption 

of agents, who could use exposure to such shocks for hedging. Crucially, the effect of state risk on aggregate consumption is null: 
aggregate demand for hedging positive and negative shocks are exactly the same and offset each other, resulting in actuarially fair 
risk-sharing in equilibrium. Note also that the volatility of the excess return follows that of the consol bond’s average shadow price 
�̃�𝑡.

Because state shocks are the same as interest-rate shocks (in view of (3.1)), it follows that interest-rate risk is also unrewarded in 
equilibrium. Although long-term bonds are not tradeable, interest-rate risk is in fact present in stocks.

3.1.7. Non-Markovian equilibrium

As noted earlier, asset prices are affected by the distribution of wealth, as captured by the coefficient 𝐻(𝑥) = �̄�

(
�̄�𝜎𝑧�̄�

𝑎+�̄�

)2
× ∑𝑛

𝑗=1 𝛼𝑗

(
𝑥𝑗 −

�̄�

𝛼𝑗
𝑃0

)2
. In the second-order equilibrium outlined in Theorem 3.2, equilibrium prices are expressed in terms of the 

initial rather than current wealth distribution. Once the initial wealth distribution is fixed, the interest rate 𝑟𝑡 and stock price 𝑃𝑡 at 
second order are determined exclusively by the state variables (𝑡,𝐷𝑡, 𝑧𝑡). However, Proposition 3.4 reveals that when considering the 
market equilibrium at a higher order, asset prices no longer depend solely on the initial wealth distribution and the state variables 
(𝑡,𝐷𝑡, 𝑧𝑡). Additional state variables must be introduced, indicating that the wealth distribution at time 𝑡 cannot be fully inferred from 
the initial wealth distribution and the variables (𝑡,𝐷𝑡, 𝑧𝑡) alone.

Proposition 3.4. At the third order, the equilibrium interest rate is

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 −
𝜀2

2 
𝐻(𝑥) − 𝜀3

𝜎𝑧

𝑎+ �̄�

(
�̄�

2𝑎+ �̄�
𝑧𝑡 − 𝑧0 −𝑊

𝜇

𝑡

)
𝐻(𝑥) + 𝑜(𝜀3).

In particular, it does not depend on the natural state variables (𝑡,𝐷𝑡, 𝑧𝑡) alone, but also on 𝑊 𝜇

𝑡
.

The dynamics of the interest rate becomes Markovian if one introduces tradeable long-term real bonds, which are not spanned by 
the assets in the model above (the stock and the money-market). However, such additional securities would also make the market 

8 Note that 
√
�̃�2
𝑡
𝜎2
𝐷
+ 𝜎𝑃 ,𝜇(𝑧𝑡,𝐷𝑡)2 = 𝜎𝐷

(
1 − 𝜀 �̄�𝜎𝑧

𝑎+�̄�
𝑧𝑡

)
+ 𝑜(𝜀).
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complete, thereby forfeiting heterogeneity, dynamic trading in stocks, and all the other implications of incompleteness (cf. Theo-
rem F.1). Put differently, non-Markovianity appears to be part and parcel of an incomplete dynamic equilibrium, even starting from 
a dividend dynamics defined by a simple Markov process.

Path-dependence also arises in the consumption component in (3.5), which is not a function of 𝐷𝑡 and 𝑧𝑡. Intuitively, this con-
sumption term represents the tracking error in mimicking a long-term bond position with the safe asset, and hence depends on the 
whole history of unhedgeable shocks 𝑑𝑊 𝜇

𝑡
: a sequence of positive shocks in dividend growth results in a wider deviation from the 

desired bond position and therefore in higher consumption. Of course, and consistently with Duffie et al. (1994), the Markov property 
holds if one expands state variables to include all agents’ wealth processes. In fact, it follows from the first-order condition that

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝐷𝑡 +

1 
𝐶𝑖
𝑡

(
𝑋𝑖
𝑡
− �̄�

𝛼𝑖
𝑃𝑡

)
+ 1 
𝛼𝑖

𝐴𝑖
𝑡

𝐶𝑖
𝑡

,

where 𝐴𝑖
𝑡
∶=𝐸𝑡 ∫ ∞

𝑡
(𝑌 𝑖
𝑠
− 𝑌 𝑖

𝑡
)𝑀

𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠 and 𝑀𝑖
𝑡
= exp{−𝛽𝑡− �̄�(𝐷𝑡 −𝐷0) + 𝑌 𝑖𝑡 }.

3.2. Heterogeneous time-preference

The following theorem describes the characteristics of the second-order equilibrium in the general case of heterogeneous endow-
ments (𝑥𝑖)𝑛𝑖=1, risk-aversions (𝛼𝑖)𝑛𝑖=1, and time-preferences (𝛽𝑖)𝑛𝑖=1. With heterogeneous time-preferences, the asymptotic expansions 
need to be truncated after a long horizon 𝑇 𝜀, as detailed in Appendix C. Such truncation ensures that the welfare effect of approxi-
mation errors, which accumulate over time with heterogeneous time-preferences, remains bounded also at very long horizons.

Theorem 3.5. Assume �̄� ∶= 𝛽 + �̄�𝜇𝐷 − �̄�2

2 𝜎
2
𝐷
> 0. The interest rate 𝑟𝑡, price 𝑃𝑡, consumption 𝑐𝑖

𝑡
and investment �̂�𝑖

𝑡
strategies yield a second-

order equilibrium. For 𝑡≤ 𝑇 𝜀 ∶= −3
�̄�
log𝜀, set

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 −
𝜀2

2 

𝑛 ∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2, (3.14)

𝑃𝑡 =𝐷𝑡�̃�𝑡 + (𝜇𝐷 − �̄�𝜎2
𝐷
)�̃�𝑡 + 𝜀

1 
�̄�(𝑎+ �̄�)

𝜎𝑧𝑧𝑡 − 𝜀2
2�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
, (3.15)

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
+ 𝜀2 �̄�

2

𝜎2
𝐷

𝑝𝑚1
𝑡

𝑚
𝑖,1
𝑡

𝛼𝑖�̄�
, (3.16)

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝐷𝑡 +

1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡−

𝐿𝑖0

𝐶𝑖0

)
(3.17)

− 𝜀 
𝛼𝑖

𝑡 

∫
0 
𝑚𝑖,1
𝑠
𝑑𝑊 𝜇

𝑠
− 𝜀2

𝛼𝑖

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠+ 1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
, (3.18)

where 𝐶𝑖
𝑡

(resp. 𝐿𝑖
𝑡
), is the 𝑖-th agent’s indifference price at time 𝑡 of a consol bond that pays a constant coupon flow equal to 1 (resp. of a 

linear bond that pays at time 𝑠 ≥ 𝑡 a coupon flow equal to 𝑠), defined in closed form in (D.7) (resp. (D.8)), 𝑙𝑖,2
𝑡
,𝑚

𝑖,2
𝑡
, 𝑛
𝑖,2
𝑡
,𝐾𝑖

𝑡
are defined in 

(D.18), (D.19), (D.20), (D.11), �̃�𝑡 ∶=
∑𝑁

𝑗=1
�̄�

𝛼𝑗
𝐶
𝑗,2
𝑡

, �̃�𝑡 ∶=
∑𝑁

𝑗=1
�̄�

𝛼𝑗
(𝐿𝑗,2

𝑡
− 𝑡 ⋅𝐶𝑗,2

𝑡
), and

𝑚
𝑖,1
𝑡

= −𝛼𝑖
�̄�𝜎𝑧

𝑎+ �̄�

(
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�

)
, (3.19)

𝑝𝑚1
𝑡
= lim 
𝜀→0

1
𝜀 
𝑑⟨𝑃 ,𝑊 𝜇⟩𝑡

𝑑𝑡 
= −

𝜎𝑧

�̄�(𝑎+ �̄�)

(
𝐷𝑡�̄� +

(𝑎+ 2�̄�)�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
) − �̄�(𝑎+ �̄�)

�̄�(𝑎+ �̄�) 

)
. (3.20)

In addition, the discounted marginal utility 𝑀𝑖
𝑡

of the 𝑖-th agent satisfies

log𝑀𝑖
𝑡
= −𝛽𝑡− �̄�(𝐷𝑡 −𝐷0) + 𝜀

𝑡 

∫
0 
𝑚𝑖,1
𝑠
𝑑𝑊 𝜇

𝑠
+ 𝜀2

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠ . (3.21)

This statement generalizes Theorem 3.2, describing the effect of agents’ heterogeneous time-preferences on their consumption-
investment policies and on asset prices. The main differences are driven by the expression of 𝑚𝑖,1

𝑡
in (3.19), which in general combines 

an agent’s deviation of the initial endowment from autarchy with the deviation of time-preference from the average. Consequently, 
the interpretation of the effects described above is updated as follows.
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3.2.1. Consumption

The deviation of consumption from the complete market setting (where a consol bond is traded) becomes

− 𝜀 
𝛼𝑖

𝑡 

∫
0 
𝑚𝑖,1
𝑠
𝑑𝑊 𝜇

𝑠
= 𝜀

𝑡 

∫
0 

�̄�𝜎𝑧

𝑎+ �̄�

((
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�+

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+ �̄�

))
𝑑𝑊 𝜇

𝑠
.

This formula has the following meaning: agents that are more patient relative to the average (𝛽𝑖 < 𝛽) initially consume less than their 
share of dividends, lending the remainder. Thus, more patience is akin to an endowment above autarchy (𝑥𝑖 >

�̄�

𝛼𝑖
𝑃0), in that it tilts 

an agent’s behavior towards lending.
Similarly, an atypical time-preference (𝛽𝑖 ≪ 𝛽 or 𝛽𝑖 ≫ 𝛽) is observationally similar to an atypical endowment (𝑥𝑖 ≪

�̄�

𝛼𝑖
𝑃0 or 

𝑥𝑖 ≫
�̄�

𝛼𝑖
𝑃0) in generating a larger deviation from an agent’s desired bond position 𝑄𝑖

𝑡
after an unexpected shock 𝑑𝑊 𝜇

𝑡
, resulting in 

higher consumption uncertainty relative to average agents.
Finally, note that the magnitude of time-preference deviations, unlike autarchy deviations, increases over time: atypical agents 

see their exposure to unhedgeable shocks grow, even though these deviations aggregate to zero, resulting in agents with different 
time-preference insuring one another.

3.2.2. Dynamic trading

The general expression of the dynamic trading policy is:

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
+ 𝜀2

�̄�2𝜎2
𝑧

(𝑎+ �̄�)2𝜎2
𝐷

(
𝛽−𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+�̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�

)(
𝐷𝑡 +

(𝑎+2�̄�)(𝜇𝐷−�̄�𝜎2𝐷)
�̄�(𝑎+�̄�) − 1 

�̄�

)
. (3.22)

This formula shows that the deviation of the time-preference rate 𝛽𝑖 from its aggregate value 𝛽 is also a motive for trading, in 
addition to the autarchy deviation discussed above. Agents with more or less patience respond in opposite ways to dividend growth 
shocks: The income effect prevails for impatient agents (𝛽𝑖 > 𝛽), who respond to a positive dividend growth shock by increasing 
consumption and selling some of their holdings, similar to natural borrowers (𝑥𝑖 <

�̄�

𝛼𝑖
𝑃0). More patient agents are the natural buyers 

in this trade, as the substitution effect leads them to increase holdings.
Overall, the intuition is still that higher patience has qualitatively the same effect of a higher endowment. The exact quantitative 

relationship is in (3.19), which combines both effects with risk-aversion and other market parameters. Thus, the trading motive for 
agents in this market remains hedging, though the magnitude of the hedging motive is jointly determined by deviations from both 
autarchy and average time-preference.

3.2.3. Interest rates

With heterogeneous time-preference, the interest rate (3.14) is still reduced by 𝜀
2

2 
∑𝑛

𝑗=1
�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2, but the expression of 𝑚𝑗,1

𝑡
in 

(3.19) reflects the joint effect of preferences and endowments. With autarchic endowments (𝑥𝑖 =
�̄�

𝛼𝑖
𝑃0), the decrease in the interest 

rate is proportional to(
𝑡+ 1 

𝑎+ �̄�

)2 𝑛 ∑
𝑖=1 

�̄�

𝛼𝑖
(𝛽 − 𝛽𝑖)2. (3.23)

The last factor 
∑𝑛

𝑖=1
�̄�

𝛼𝑖
(𝛽−𝛽𝑖)2 is precisely the variance of the time-preference rates (𝛽𝑖)𝑛𝑖=1 in the cross-section of agents, each of them 

weighted inversely with risk aversion (recall that 
∑𝑛

𝑖=1
�̄�

𝛼𝑖
= 1). Ceteris paribus, an increase in dispersion of time-preference depresses 

the interest rate because it increases aggregate precautionary savings against growth shocks. Because each agent’s precautionary 
savings effect is proportional to the square distance of time preference from average time preference, it follows that the aggregate 
precautionary savings effect is proportional to the variance of time-preference across agents.

The first factor 
(
𝑡+ 1 

𝑎+�̄�

)2
reveals how temporal dependence in the interest rate emerges from time-preference heterogeneity 

among agents. In contrast to the homogeneous case, where interest rates follow a time-homogeneous Vasicek process, heterogeneity in 
agent patience generates a Hull-White extension of the Vasicek model characterized by negative, time-dependent drift. The intuition 
is that heterogeneity in time-preference induces growing imbalances in borrowing and lending: over time, patient agents become 
increasingly rich and eager to lend, while impatient agents increasingly poor and hesitant to borrow. As a result, the equilibrium 
interest rate declines.

The time-preference and autarchy-deviation effects can either offset or reinforce each other in (3.19), depending on their joint 
distribution. For example, if natural lenders are more patient than borrowers, the savings imbalance is stronger, hence the combined 
effect higher. Vice versa, if natural lenders are less patient, then the effects offset each other.

3.2.4. Equilibrium prices

Asset pricing implications are similar to the homogeneous time-preference case, with the difference that heterogeneity has a 
time-varying effect. For example, the shadow price of the consol bond equals

Journal of Economic Theory 224 (2025) 105978 

12 



P. Guasoni and M.H. Weber 

𝐶𝑖
𝑡
= 1
�̄�
− 𝜀 �̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡

+ 𝜀2
⎡⎢⎢⎣

�̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
− �̄�

𝜎𝑧

𝑎 

∞ 

∫
𝑡 

𝑎𝑒−𝑟(𝑢−𝑡)

𝑟(𝑎+ 𝑟) 
𝑚𝑖,1
𝑢
𝑑𝑢,

⎤⎥⎥⎦
Here, the effect of heterogeneity is captured by the term 

∑𝑁

𝑗=1
�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
(respectively, 

∑𝑁

𝑗=1
�̄�

𝛼𝑗
𝑀

𝑗,𝐿

𝑡
for the linear bond), which aggre-

gates over time the discounted correction 
∑𝑛

𝑗=1
�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2 of the instantaneous interest-rate. As with homogeneous time-preference, 

the components of the shadow prices that are linear in 𝑚𝑖,1 cancel out in the average, and therefore do not affect prices. Thus, the 
impact of heterogeneity on the stock price in (3.15) is driven only by its discounting implications through �̃�𝑡 and �̃�𝑡.

3.2.5. Relation to idiosyncratic income risk models

In the present model, market incompleteness arises from unhedgeable shocks to the dividend’s growth rate, whereas the most 
commonly studied type of incompleteness in the literature stems from idiosyncratic income risk. Christensen et al. (2012) derive 
closed-form expressions for the market equilibrium with CARA agents and Gaussian dynamics. This shared combination of prefer-
ences and market dynamics enables a clear comparison between the two models: both types of incompleteness lead to more volatile 
consumption and lower interest rates through the precautionary-savings channel. However, their implications for asset prices and the 
required mathematical methods differ substantially.

The idiosyncratic endowment shocks in Christensen et al. (2012) do not affect dividends’ dynamics, but change agents’ demand 
for stocks for endowment hedging, thereby affecting their equilibrium expected return but leaving the covariance matrix of returns 
proportional to the covariance matrix of dividends. In addition, the resulting equilibrium interest rate is deterministic, hence stock 
prices do not fluctuate through the discount-rate channel. Thus, shocks to individual endowments that are uncorrelated with dividends 
remain unhedgeable in the equilibrium and are not priced.

In contrast, the present model links shocks to dividends’ growth rate with the dynamics of dividends themselves, resulting in 
a stochastic interest rate. This stochastic rate influences stock prices, turning them into hedging instruments against interest rate 
shocks. (In Proposition 3.3, both 𝑊 𝐷 and 𝑊 𝜇 drive the stock return.) In the equilibrium, dividend risk and interest-rate risk cannot 
be disentangled and are priced in relation to agents’ heterogeneity in preferences and wealth.

These differences have significant conceptual and technical implications. Idiosyncratic income risk leads to the separation be-
tween individual agents’ optimization and equilibrium identification. With asset prices independent of endogenous variables, optimal 
investment and consumption strategies are Markovian and amenable to stochastic control methods. On the other hand, in our model, 
equilibrium quantities are not Markovian in exogenous state variables alone, rendering control methods infeasible, and requiring 
duality techniques instead to identify the equilibrium.

4. Asset pricing implications

This section examines the asset pricing implications of our model. We first analyze how return predictability varies with the 
investment horizon, then study the cross-section of expected returns and correlations in an economy with multiple assets.

4.1. Price predictability

The empirical literature documents that the predictability of stock prices increases with the horizon: while short-term returns are 
virtually unpredictable, long-term returns are significantly correlated with the price-dividend ratio (see Cochrane (2008) for a recent 
discussion).

Indeed, the equilibrium shows that fluctuations in dividend growth generate predictability in expected excess returns: in contrast 
to the baseline case, in which the risk-premium merely depends on the horizon, here it also depends on the state variable 𝑧𝑡 . Such 
predictability is negligible at short horizons, but significant at longer horizons. First, define by 𝐸𝑠,𝑡𝑃 the expected present value of 
the cash flow from time 𝑠 to time 𝑡 above the current price (i.e., including both dividends and the final price):

𝐸𝑠,𝑡𝑃 ∶=𝐸
⎡⎢⎢⎣𝑃𝑡𝑒− ∫ 𝑡

𝑠
𝑟𝑢𝑑𝑢 +

𝑡 

∫
𝑠 
𝐷𝑢𝑒

− ∫ 𝑢
𝑠
𝑟𝑙𝑑𝑙𝑑𝑢

||||𝑠
⎤⎥⎥⎦− 𝑃𝑠. (4.1)

In other words, the expected total return from 𝑠 to 𝑡 is 𝐸𝑠,𝑡𝑃∕𝑃𝑠 and is predictable if and only if 𝐸𝑠,𝑡𝑃 is predictable. Likewise, define 
the (hypothetical) expected excess cash flow on a consol bond as 𝐸𝑠,𝑡𝐶 = 𝐸[𝐶𝑡𝑒− ∫ 𝑡

𝑠
𝑟𝑢𝑑𝑢 + ∫ 𝑡

𝑠
1𝑒− ∫ 𝑢

𝑠
𝑟𝑙𝑑𝑙𝑑𝑢|𝑠] − 𝐶𝑠. The following 

proposition obtains 𝐸𝑠,𝑡𝑃 and 𝐸𝑠,𝑡𝐶 at order 𝜀:

Proposition 4.1. Let 𝑃𝑡 and 𝑟𝑡 be as in Theorem 3.5. Then

𝐸𝑠,𝑡𝑃 =
�̄�𝜎2

𝐷

�̄�2
(1 − 𝑒−�̄�(𝑡−𝑠)) + 𝜀

�̄�2𝜎2
𝐷
𝜎𝑧𝑧𝑠

𝑎�̄�2(𝑎+ �̄�)2
(
𝑒−�̄�(𝑡−𝑠)(𝑎+ �̄�)2 − 𝑒−(𝑎+�̄�)(𝑡−𝑠)�̄�2 − 𝑎2 − 2𝑎�̄�

)
+ 𝑜(𝜀), (4.2)

𝐸𝑠,𝑡𝐶 = 𝑜(𝜀). (4.3)
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To understand how predictability increases with the horizon, it is useful to consider the first-order expansion of (4.2) for 𝛿 = 𝑡− 𝑠
small, which is

𝐸𝑠,𝑠+𝛿𝑃 =
�̄�𝜎2

𝐷

�̄�

(
1 − �̄�

𝑎+ �̄�
𝜀𝜎𝑧𝑧𝑠

)
𝛿 + 𝑜(𝜀) + 𝑜(𝛿). (4.4)

Vice versa, for a long horizon (𝛿 =∞), this quantity is

𝐸𝑠,∞𝑃 =
�̄�𝜎2

𝐷

�̄�2

(
1 − �̄�(𝑎+ 2�̄�)

(𝑎+ �̄�)2
𝜀𝜎𝑧𝑧𝑠

)
+ 𝑜(𝜀). (4.5)

Compare now the sensitivity of (4.4) and (4.5) with respect to a change in the state 𝑧𝑠:

𝜕𝐸𝑠,𝑠+𝛿𝑃

𝜕𝑧𝑠
= (−𝛿)𝜀𝜎𝑧

�̄�2𝜎2
𝐷

�̄�(𝑎+ �̄�)
𝜕𝐸𝑠,∞𝑃

𝜕𝑧𝑠
=
(
− 𝑎+ 2�̄�
�̄�(𝑎+ �̄�)

)
𝜀𝜎𝑧

�̄�2𝜎2
𝐷

�̄�(𝑎+ �̄�)
(4.6)

and note that the factor outside parentheses is common to both sensitivities. These expressions indicate that a positive shock in the 
state 𝑧𝑠 reduces both short- and long-term expected excess returns, due to a discounting effect (future cash flows are more heavily 
discounted). However, the impact on the short-term expected excess cash flows is proportional to the horizon 𝛿, hence negligible as 
𝛿 vanishes. Vice versa, the long-term effect is large: in the typical case of �̄� small, 𝑎+2�̄�

�̄�(𝑎+�̄�) ∼
1
�̄�
, which means that the long-term impact 

is approximately 1
�̄�

larger than the one-year impact.
Price predictability in the model is specific to stocks, and not a general feature of all asset prices. Indeed, (4.3) confirms that 

the hypothetical price of the consol bond has no predictability at the first order, and in fact no excess return. Put differently, the 
time-varying expected excess returns of stocks do not mimic those of bonds, as the latter are zero.

Finally, even if shocks to dividends and the growth rate are correlated, return predictability remains negligible at short horizons. 
Proposition 4.2 below computes the expected total stock return under correlation 𝜌 between the Brownian motions 𝑊𝐷 and 𝑊 𝜇

(affecting dividends and their growth rate).

Proposition 4.2. Assume 𝑊𝐷 and 𝑊 𝜇 have correlation 𝜌, and let 𝑃𝜌,𝑡 be the stock price in equilibrium. Then

𝐸𝑠,𝑡𝑃𝜌,𝑡 =𝐸𝑠,𝑡𝑃0,𝑡

+ 𝜌𝜀
𝜎𝐷𝜎𝑧�̄�

2

�̄�2(𝑎+ �̄�)

(
𝜇𝐷𝑒

−�̄�(𝑡−𝑠)(𝑡 − 𝑠) − (1 − 𝑒−�̄�(𝑡−𝑠))
(
𝐷𝑠− 1 

�̄�

)
− 𝑎(2𝑎 + 3�̄�)

�̄�(𝑎 + ̄𝑟) 
(1 − 𝑒−�̄�(𝑡−𝑠))(𝜇𝐷− ̄𝛼𝜎2

𝐷
) 
)
+ 𝑜(𝜀),

𝐸𝑠,𝑡𝐶𝜌,𝑡 = −𝜀�̄�2𝜎𝐷𝜎𝑧
1 

�̄�2(𝑎+ �̄�)
𝜌(1 − 𝑒−�̄�(𝑡−𝑠)) + 𝑜(𝜀),

where 𝑃0,𝑡 is the equilibrium stock price for 𝜌= 0.

Note that for 𝛿 = 𝑡− 𝑠 small,

𝐸𝑠,𝑠+𝛿𝑃𝜌 =𝐸𝑠,𝑠+𝛿𝑃0 + 𝜌𝜀
𝜎𝐷𝜎𝑧�̄�

2

�̄�2(𝑎+ �̄�)

(
𝜇𝐷 − �̄�

(
𝐷𝑠 −

1 
�̄�

)
− 𝑎(2𝑎+ 3�̄�)

𝑎+ �̄�
(𝜇𝐷 − �̄�𝜎2

𝐷
)
)
𝛿 + 𝑜(𝜀) + 𝑜(𝛿).

Instead, for a long horizon (𝛿 =∞), the expected total return is

𝐸𝑠,∞𝑃𝜌 =𝐸𝑠,∞𝑃0 + 𝜌𝜀
𝜎𝐷𝜎𝑧�̄�

2

�̄�2(𝑎+ �̄�)

(
−𝐷𝑠 +

1 
�̄�
− 𝑎(2𝑎+ 3�̄�)

�̄�(𝑎+ �̄�) 
(𝜇𝐷 − �̄�𝜎2

𝐷
)
)
+ 𝑜(𝜀).

With positive correlation 𝜌 > 0 between dividends’ and state variable’ shocks, a positive dividend shock corresponds to a positive 
shock to the state 𝑧𝑡, leading again to lower expected excess returns at both short and long horizons. While this effect is negligible in 
the short term (𝛿 ≈ 0), it becomes substantial at longer horizons.

4.2. Cross-sectional implications

The results in the previous section extend to a market with multiple assets, and such an extension is useful to understand the 
cross-sectional asset pricing implications of the model. Assume that the market includes 𝑘 stocks, each of them available in unit 
supply. The dynamics of the 𝑘-dimensional dividend process is

𝑑𝐷𝑡 = (𝜇𝐷𝜇𝐷𝜇𝐷 +𝜀𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑧𝑧𝑡)𝑑𝑡+𝜎𝐷𝜎𝐷𝜎𝐷 𝑑𝑊 𝐷
𝑡
,

𝑑 𝑧𝑧𝑧𝑡 = −𝐴𝑧𝑧𝑧𝑡 𝑑𝑡+ 𝑑𝑊
𝜇

𝑡
,

where 𝑊𝐷 and 𝑊 𝜇 are 𝑘-dimensional independent Brownian motions, 𝜇𝐷𝜇𝐷𝜇𝐷 is a 𝑘-vector, and 𝜎𝐷𝜎𝐷𝜎𝐷,𝜎𝑧𝜎𝑧𝜎𝑧,𝐴 are nonsingular 𝑘×𝑘 matrices.
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4.2.1. Baseline case

For 𝜀 = 0, the dynamics of the dividend process reduce to

𝑑𝐷𝑡 =𝜇𝐷𝜇𝐷𝜇𝐷 𝑑𝑡+𝜎𝐷𝜎𝐷𝜎𝐷𝑑𝑊 𝐷
𝑡
.

Henceforth, the column vector 𝜎𝑗
𝐷

denotes the transpose of the 𝑗-th row of 𝜎𝐷𝜎𝐷𝜎𝐷, 𝜇𝑗
𝐷

the 𝑗-th element of 𝜇𝐷𝜇𝐷𝜇𝐷 and 𝟏 the column vector 
with all components equal to one.

Theorem 4.3. Assume 𝛽 + �̄�𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷 −1
2 �̄�

2𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏 > 0. The pair (𝑟, (𝑃 𝑖⋅ )
𝑘
𝑖=1) defined by

𝑟 = 𝛽 + �̄�𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷 −1
2
�̄�2𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏, 𝑃

𝑗

𝑡
=
𝐷
𝑗

𝑡

𝑟 
+
𝜇
𝑗

𝐷
− �̄�𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎

𝑗

𝐷

𝑟2

is a market equilibrium, and the agents’ optimal policies are

𝜃𝑖
𝑡
= �̄�

𝛼𝑖
𝟏,

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝟏⊤𝐷𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡− 1

𝑟 

)
+ 𝑟

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝟏⊤𝑃0

)
.

The corresponding stochastic discount factor is 𝑀𝑡 = exp{−𝛽𝑡− �̄�𝟏⊤(𝐷𝑡 −𝐷0)}.

This result, which mirrors its scalar counterpart, Theorem 2.1, yields the following long-term version of the capital asset pricing 
model (CAPM): the expected price change in an asset 𝑖 is proportional to its market beta, defined as the covariance of the asset’s price 
change with the market’s, divided by the variance of the market’s price change.

Corollary 4.4. Define 𝑆𝑖
𝑡

as the expected present value of future dividends and by 𝑅𝑖
𝑡

the expected present value of gains (on [𝑡,∞]):

𝑆𝑖
𝑡
∶=𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 
𝑒−𝑟(𝑠−𝑡)𝐷𝑖

𝑠
𝑑𝑠

⎤⎥⎥⎦ =
𝐷𝑖
𝑡

𝑟 
+
𝜇𝑖
𝐷

𝑟2
, 𝑅𝑖

𝑡
∶= 𝑆𝑖

𝑡
− 𝑃 𝑖

𝑡
= 1 
𝑟2
�̄�(𝜎𝑖

𝐷
)⊤𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏. (4.7)

Denote also the total market price as 𝑃𝑚
𝑡
=
∑𝑛

𝑖=1 𝑃
𝑖
𝑡
, the expected total market gains as 𝑅𝑚

𝑡
∶=

∑𝑛

𝑖=1(𝑆
𝑖
𝑡
− 𝑃 𝑖

𝑡
), and the market beta of the 

𝑖-th asset as

𝐵𝑒𝑡𝑎𝑖 ∶=
𝑑⟨𝑃 𝑖,𝑃 𝑚⟩𝑡
𝑑⟨𝑃𝑚⟩𝑡 =

(𝜎𝑖
𝐷
)⊤𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏

𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏 
. (4.8)

Then asset prices satisfy the following version of the Capital Asset Pricing Model:

𝑅𝑖
𝑡
= 𝐵𝑒𝑡𝑎𝑖𝑅𝑚𝑡 . (4.9)

The next result examines the long-term composition of market’s wealth and agents’ portfolios. No agent vanishes, and neither 
does any agent’s stock exposure.

Corollary 4.5. In the long run (as 𝑡→∞):

(i) The share of total wealth 𝑋𝑖
𝑡

𝑘 ∑
𝑗=1

𝑃
𝑗
𝑡

owned by the 𝑖-th agent converges a.s. to �̄�
𝛼𝑖
+ 𝛽−𝛽𝑖

𝛼𝑖𝟏⊤ 𝜇𝐷𝜇𝐷𝜇𝐷
.

(ii) The share 𝜃
𝑖,𝑗
𝑡
𝑃
𝑗
𝑡

𝑋𝑖
𝑡

of 𝑖-th agent’s wealth in the 𝑗-th asset converges a.s. to 
𝜇
𝑗

𝐷

𝛽−𝛽𝑖
�̄�

+𝟏⊤ 𝜇𝐷𝜇𝐷𝜇𝐷
.

In the long run, agents’ shares of wealth revert to asymptotic values that are determined by their preferences and are independent 
of the initial conditions. Specifically, the “natural” share of wealth of the 𝑖-th agent is the sum of the relative risk tolerance �̄�∕𝛼𝑖 and 
the excess patience 𝛽 − 𝛽𝑖, scaled by growth (𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷) and risk-aversion (𝛼𝑖).

In the long run, also the portfolio weight of the 𝑖-th agent in the 𝑗-th asset converges to a constant, similar to partial-equilibrium 
portfolio choice with isoelastic utility (Merton, 1969), and in contrast to models with exponential utility and exogenous safe rate, in 
which the number of shares is constant, while the portfolio weights decline to zero. The endogenous safe rate in the model adjusts 
to make aggregate savings null, thereby keeping the number of shares constant for all agents while letting their portfolio weight 
converge.
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The asymptotic portfolio weight of each agent in the 𝑗-th asset is 𝜋𝑗
𝑖
= ( 𝛽−𝛽𝑖

�̄�𝜇
𝑗

𝐷

+ 𝟏⊤ 𝜇𝐷𝜇𝐷𝜇𝐷
𝜇
𝑗

𝐷

)−1, which reduces to 𝜇𝑗
𝐷
∕𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷 for an agent 

with average time-preference 𝛽 , meaning that each asset is held in proportion to the growth rate of its dividend. For more patient 
agents (𝛽𝑖 < 𝛽), portfolio weights are lower and closer to each other than their relative dividend growth rates, and vice versa.

4.2.2. General case

The intertemporal capital asset pricing model of Merton (1973) links the presence of state variables to multifactor asset pricing 
in a partial equilibrium setting, thereby raising the natural question of whether such a link arises in the present general equilibrium 
setting.

Similar arguments to the previous section lead to the following result

Theorem 4.6. Expected cash flows 𝑅𝑖 and market cash flows 𝑅𝑚, defined as in Corollary 4.4, are

𝑅𝑖
𝑡
=
⎛⎜⎜⎝ �̄��̄�2 − 𝜀�̄�2𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

⎛⎜⎜⎝ 1 
�̄�2
𝐼 −

∞ 

∫
0 
𝑠𝑒−(�̄�𝐼+𝐴)𝑠𝑑𝑠

⎞⎟⎟⎠𝐴−1 𝑧𝑧𝑧𝑡

⎞⎟⎟⎠ 𝑒𝑖𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏+ 𝑜(𝜀),
𝑅𝑚
𝑡
=
⎛⎜⎜⎝ �̄��̄�2 − 𝜀�̄�2𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

⎛⎜⎜⎝ 1 
�̄�2
𝐼 −

∞ 

∫
0 
𝑠𝑒−(�̄�𝐼+𝐴)𝑠𝑑𝑠

⎞⎟⎟⎠𝐴−1 𝑧𝑧𝑧𝑡

⎞⎟⎟⎠𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏+ 𝑜(𝜀),
and the market beta of the 𝑖-th asset is 𝐵𝑒𝑡𝑎𝑖 =

(𝜎𝑖
𝐷
)⊤𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏

𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏 + 𝑜(𝜀). Therefore the CAPM holds at the first order, in that 𝑅𝑖
𝑡
=𝐵𝑒𝑡𝑎𝑖𝑅𝑚𝑡 + 𝑜(𝜀).

This result demonstrates that, when dividend shocks and growth shocks are uncorrelated, then the CAPM holds at first order. 
The next result shows that correlation between these shocks can lead to first-order deviations from the CAPM, and explains the 
determinants of such deviations. The central theoretical question is to understand the relation between the resulting pricing formulas 
and multifactor models such as Fama and French (1993) and its numerous variants.

To ease notation, and because the resulting formulas are already complex, the result is derived in the case of a scalar state 𝑧𝑡 , that 
is in the model

𝑑𝐷𝑡 = (𝜇𝐷𝜇𝐷𝜇𝐷 +𝜀𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡)𝑑𝑡+𝜎𝐷𝜎𝐷𝜎𝐷 𝑑𝑊 𝐷
𝑡
,

𝑑𝑧𝑡 = −𝑎𝑧𝑡𝑑𝑡+𝜌𝜌𝜌𝑑𝑊 𝐷
𝑡

+
√
1 − |𝜌𝜌𝜌 |2𝑑�̃� 𝜇

𝑡
,

where �̃� 𝜇 is a Brownian motion independent of the 𝑘-dimensional Brownian motion 𝑊𝐷 , and 𝜌𝜌𝜌∈ℝ𝑘.
In this setting, the asset pricing result is as follows:

Theorem 4.7. Asset cash flows 𝑅𝑖 and the market cash flows 𝑅𝑚, defined as in Corollary 4.4, are

𝑅𝑖
𝑡
= �̄�

�̄�2

(
1 − 𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

𝑎+ 2�̄�
(𝑎+ �̄�)2

𝑧𝑡

)
(𝜎𝑖
𝐷
𝜎𝐷𝜎𝐷𝜎𝐷

𝑇 1)+(
−�̄�(𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝐷𝑖

𝑡
+ 𝜎𝑖

𝑧
− 2𝑎+ 3�̄�
�̄�(𝑎+ �̄�)

�̄�(𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)(𝜇𝑖𝐷 − �̄�𝜎𝑖
𝐷
𝜎𝐷𝜎𝐷𝜎𝐷

𝑇 1)
)

𝜀�̄�

�̄�2(𝑎+ �̄�)
(𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌) + 𝑜(𝜀),

𝑅𝑚
𝑡
= �̄�

�̄�2

(
1 − 𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

𝑎+ 2�̄�
(𝑎+ �̄�)2

𝑧𝑡

)
(𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)+(

−�̄�𝟏𝑇𝐷𝑡 + 1 − 2𝑎+ 3�̄�
�̄�(𝑎+ �̄�)

(𝟏𝑇 𝜇𝐷𝜇𝐷𝜇𝐷 −�̄�𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)
)
(𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)

𝜀�̄�

�̄�2(𝑎+ �̄�)
(𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌) + 𝑜(𝜀),

and therefore

𝑅𝑖 =𝐵𝑒𝑡𝑎𝑖𝑅𝑚 (4.10)

+
𝜀�̄�(𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌)
�̄�2(𝑎+ �̄�) 

(𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)
(
−�̄�

(
𝐷𝑖
𝑡
−𝐵𝑒𝑡𝑎𝑖(𝟏𝑇𝐷𝑡)

)
+

(
𝜎𝑖
𝑧

𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
−𝐵𝑒𝑡𝑎𝑖

)
− 2𝑎+ 3�̄�
�̄�(𝑎+ �̄�)

�̄�
(
𝜇𝑖
𝐷
−𝐵𝑒𝑡𝑎𝑖(𝟏𝑇 𝜇𝐷𝜇𝐷𝜇𝐷)

))
(4.11)

+ 𝑜(𝜀).

This result shows that, in the presence of correlation, the CAPM relation 𝑅𝑖 = 𝐵𝑒𝑡𝑎𝑖𝑅𝑚 does not hold at first order, in view of 
the additional terms in (4.11), which reflect the extent to which an asset’s characteristics deviate from their aggregate counterparts, 
relative to the asset’s market beta: (i) the last term in (4.11) is proportional to 𝜇𝑖

𝐷
∕(𝟏𝑇 𝜇𝐷𝜇𝐷𝜇𝐷) −𝐵𝑒𝑡𝑎𝑖, the amount by which the growth 

in the 𝑖-th asset, relative to aggregate growth, exceeds the asset’s own beta 𝐵𝑒𝑡𝑎𝑖 ; (ii) the second term is proportional to 𝜎𝑖𝑧

𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
−𝐵𝑒𝑡𝑎𝑖, 

the amount by which the 𝑖-th asset’s relative sensitivity exceeds 𝐵𝑒𝑡𝑎𝑖; (iii) the first term is proportional to 𝐷𝑖
𝑡

𝟏𝑇 𝐷𝑡
−𝐵𝑒𝑡𝑎𝑖, the deviation 
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of the dividend share of 𝑖-th asset from the asset’s beta. Note that this term is stochastic, unlike the others, as it depends on the asset’s 
dividend share 𝐷𝑖

𝑡
∕𝟏𝑇𝐷𝑡. Thus, all dividend shares are necessary to explain the cross-section of asset returns, which excludes the 

possibility of a low-dimensional factor structure (that is, a fixed number of factors but an arbitrary number of assets 𝑛).
More broadly, when the dividend-state correlation 𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌 and the market sensitivity 𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 are concordant (i.e., either both positive 

or both negative), the term 𝐷𝑖
𝑡

𝟏𝑇 𝐷𝑡
− 𝐵𝑒𝑡𝑎𝑖 generates a “size” effect (Banz, 1981), whereby assets whose dividends (hence prices) are 

abnormally low command a higher return, and vice versa. In this model, such an effect is not a pricing anomaly, but an integral part 
of the equilibrium. Likewise, the last two terms in (4.11) correspond to nonzero “alphas” in the regression of asset’s excess returns on 
the market’s return, and convey information on the relative growth rates of different assets. Again in the case of concordant 𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌
and 𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧, the term 𝜇𝑖

𝐷
−𝐵𝑒𝑡𝑎𝑖(𝟏𝑇 𝜇𝐷𝜇𝐷𝜇𝐷) mimics a “value” effect, in that an asset whose relative growth rate 𝜇𝑖

𝐷
∕𝟏𝑇 𝜇𝐷𝜇𝐷𝜇𝐷 is lower than 

its beta is linked to a higher expected return than predicted by the CAPM. Unlike the “size” effect, which in this model varies with 
the dividend share, the “value” effect is fixed for each asset.

4.2.3. Price comovements

This subsection examines the dynamics of stock prices, in particular on the extent to which their volatility and correlations depart 
from their respective dividends (Shiller et al., 1981).

Proposition 4.8 below extends Proposition 3.3 to the multiple-asset setting, demonstrating that the excess return �̄�𝜎𝑃 ,𝐷(𝐷𝑡, 𝑧𝑡)𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏
is proportional to the volatility component 𝜎𝑃 ,𝐷(𝐷𝑡, 𝑧𝑡) driven by the multivariate Brownian motion 𝑊 𝐷 . The volatility matrix 
𝜎𝑃 ,𝐷(𝐷𝑡, 𝑧𝑡) includes a term proportional to the dividends’ volatility matrix 𝜎𝐷𝜎𝐷𝜎𝐷 and, if state-dividends correlations 𝜌𝜌𝜌 are nonzero, 
a contribution from shocks to 𝑧𝑡, due to both discounting and dividend growth. Note that the excess return is time-varying and 
counter-cyclical, as it increases when consumption growth decreases (𝑧𝑡 < 0).

Proposition 4.8. Define Σ𝐷Σ𝐷Σ𝐷 ∶= 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 . At the first order, stock prices have the dynamics

𝑑𝑃𝑡 = (𝑃𝑡𝑟𝑡 −𝐷𝑡 + �̄�𝜎𝑃 ,𝐷(𝐷𝑡, 𝑧𝑡)𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏)𝑑𝑡+ 𝜎𝑃 ,𝐷(𝐷𝑡, 𝑧𝑡)𝑑𝑊 𝐷
𝑡

+ 𝜎𝑃 ,𝜇(𝐷𝑡)𝑑�̃�
𝜇

𝑡
,

where

𝜎𝑃 ,𝐷(𝐷𝑡, 𝑧𝑡) ∶=�̃�𝑡 𝜎𝐷𝜎𝐷𝜎𝐷 −𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
1 

�̄�(𝑎+ �̄�)
𝐷𝑡 𝜌𝜌𝜌

𝑇

+ 𝜀 1 
�̄�(𝑎+ �̄�)

[
𝜎𝑧𝜎𝑧𝜎𝑧−�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
+ 1 
𝑎+ �̄�

)
(𝜇𝐷𝜇𝐷𝜇𝐷 −�̄�Σ𝐷Σ𝐷Σ𝐷 𝟏)

]
𝜌𝜌𝜌𝑇 ,

𝜎𝑃 ,𝜇(𝐷𝑡) ∶= − 𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
1 

�̄�(𝑎+ �̄�)
𝐷𝑡

√
1 − |𝜌𝜌𝜌 |2

+ 𝜀 1 
�̄�(𝑎+ �̄�)

[
𝜎𝑧𝜎𝑧𝜎𝑧−�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
+ 1 
𝑎+ �̄�

)
(𝜇𝐷𝜇𝐷𝜇𝐷 −�̄�Σ𝐷Σ𝐷Σ𝐷 𝟏)

]√
1 − |𝜌𝜌𝜌 |2,

�̃�𝑡 ∶=
1
�̄�
− 𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

1 
�̄�(𝑎+ �̄�)

𝑧𝑡 + �̄�𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
1 

�̄�2(𝑎+ �̄�)
𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌 .

Corollary 4.9 below computes the covariances and correlations of assets’ returns. The covariation matrix (4.13) equals the baseline 
1 
�̄�2
Σ𝐷Σ𝐷Σ𝐷 , which reflects covariance among dividends, plus first-order terms that either increase or decrease from the baseline. The 

covariation is also counter-cyclical – higher in bad times (𝑧𝑡 < 0) than in good times (𝑧𝑡 > 0) – due to discounting: interest rates are 
lower when dividend growth is lower, thereby amplifying the impact of dividend shocks on stock prices.

Corollary 4.9. Define 𝜌𝑖,𝑗 =
𝑑⟨𝑃 𝑖,𝑃 𝑗 ⟩𝑡∕𝑑𝑡 √

𝑑⟨𝑃 𝑖,𝑃 𝑖⟩𝑡∕𝑑𝑡√𝑑⟨𝑃 𝑗 ,𝑃 𝑗 ⟩𝑡∕𝑑𝑡 and

w𝑡 ∶= −�̄�(𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝐷𝑡 − �̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
(1
�̄�
+ 1 
𝑎+ �̄�

)
(𝜇𝐷𝜇𝐷𝜇𝐷 −�̄�Σ𝐷Σ𝐷Σ𝐷 𝟏) +𝜎𝑧𝜎𝑧𝜎𝑧, 𝐴𝑡 ∶= 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌w

𝑇
𝑡
+ w𝑡 𝜌𝜌𝜌

𝑇 𝜎𝐷𝜎𝐷𝜎𝐷
𝑇 . (4.12)

The covariation matrix of stock prices is

𝑑⟨𝑃 ,𝑃 ⟩𝑡
𝑑𝑡 

= 1 
�̄�2

Σ𝐷Σ𝐷Σ𝐷 +2𝜀 �̄�

�̄�2(𝑎+ �̄�)
𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(
�̄�

�̄�
𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌−𝑧𝑡

)
Σ𝐷Σ𝐷Σ𝐷 + 𝜀 

�̄�2(𝑎+ �̄�)
𝐴𝑡 + 𝑜(𝜀), (4.13)

and the correlation between the 𝑖-th and 𝑗-th assets is9

𝜌𝑖,𝑗 =
Σ𝑖𝑗
𝐷√

Σ𝑖𝑖
𝐷
Σ𝑗𝑗
𝐷

+ 𝜀 1 √
Σ𝑖𝑖
𝐷
Σ𝑗𝑗
𝐷

1 
𝑎+ �̄�

⋅

(
𝐴
𝑖𝑗

𝑡
−

Σ𝑖𝑗
𝐷

Σ𝑖𝑖
𝐷

𝐴𝑖𝑖
𝑡

2 
−

Σ𝑖𝑗
𝐷

Σ𝑗𝑗
𝐷

𝐴
𝑗𝑗

𝑡

2 

)
+ 𝑜(𝜀), (4.14)

where Σℎ𝑘
𝐷

(resp., 𝐴ℎ𝑘
𝑡

) is the (ℎ,𝑘)-th element of the matrix Σ𝐷Σ𝐷Σ𝐷 (resp., 𝐴𝑡).

9 While the exact correlation 𝜌𝑖,𝑗 lies within the range [−1,1], in Corollary 4.9 and Proposition 4.10 we compute asymptotic approximations of 𝜌𝑖,𝑗 that may fall 
outside this range when 𝜀 is not sufficiently small.
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Empirical work that documents time-varying departures of the correlations in assets’ returns from the correlations in their cash 
flows includes Longin and Solnik (1995) and Erb et al. (1994). In particular, cross-assets correlations tend to rise during economic 
downturns. Dumas et al. (2003) explore why international stock market correlations are higher than those between countries’ eco-
nomic fundamentals. In a model with two Lucas trees, Cochrane et al. (2008) show that assets can be correlated even when their 
underlying dividend processes are not. In a habit-formation and heterogeneous risk-preferences setting, Ehling and Heyerdahl-Larsen 
(2017) show how correlations arise endogenously through investors’ portfolio rebalancing decisions, with both volatilities and cor-
relations increasing in bad times.

An important difference between covariances in (4.13) and correlations in (4.14) is that the latter do not depend on 𝑧𝑡 at the first 
order because the effects of a shock in 𝑧𝑡 on covariances and variances offset each other. Yet, the correlations of returns depart from 
those of dividends, with differences driven by the state-dividend correlations 𝜌𝜌𝜌.

Equation (4.14) shows that the returns of two stock prices may be correlated even if their dividends’ shocks are uncorrelated 
(Σ𝑖𝑗 = 0). Indeed, their correlation is

𝜀
1 

𝑎+ �̄�
(𝑤𝑖,𝑡𝜌𝑧,𝑗 +𝑤𝑗,𝑡𝜌𝑧,𝑖)∕

√
Σ𝑖𝑖
𝐷
Σ𝑗𝑗
𝐷
,

where w𝑡 is defined in (4.12). If 𝜌𝑧,𝑗 > 0, a positive shock to 𝐷𝑗 tends to increase 𝑧𝑡, which has a dual effect on the price of the 
𝑖-th stock, decreasing its value through a higher interest rate (the first two terms of 𝑤𝑗,𝑡 in (4.12)), but increasing its value through 
a higher dividends’ growth rate (the third term of 𝑤𝑗,𝑡 in (4.12)). The overall effect may be either positive or negative correlation, 
depending on parameter values.

Equation (4.14) demonstrates that, at the first order in 𝜀, correlation is time-varying, as the first term of w𝑡 in (4.12) depends on 
𝐷𝑡. However, it remains unaffected by 𝑧𝑡. The next proposition examines the correlation at the second order, and in particular how 
𝑧𝑡 affects the correlation.

Proposition 4.10. Define

v𝑡 ∶=
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧) 

�̄�(𝑎+ �̄�)2(2𝑎+ �̄�)

(
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝐷𝑡 + �̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)

(2
�̄�
+ 1 
𝑎+ �̄�

+ 1 
2𝑎+ �̄�

)
(𝜇𝐷𝜇𝐷𝜇𝐷 −�̄�Σ𝐷Σ𝐷Σ𝐷 1) − 2𝑎+ 3�̄�

�̄�
𝜎𝑧𝜎𝑧𝜎𝑧

)
𝐵𝑡 ∶= 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌v

𝑇
𝑡
+ v𝑡 𝜌𝜌𝜌

𝑇 𝜎𝐷𝜎𝐷𝜎𝐷
𝑇 .

The second-order (𝜀2) term in the expansion of 𝜌𝑖,𝑗 , denoted by 𝜌(2)
𝑖,𝑗

is linear in 𝑧𝑡 and has slope

�̄�2√
Σ𝑖𝑖
𝐷
Σ𝑗𝑗
𝐷

(
𝐵
𝑖𝑗

𝑡
−

Σ𝑖𝑗
𝐷

Σ𝑖𝑖
𝐷

𝐵𝑖𝑖
𝑡

2 
−

Σ𝑖𝑗
𝐷

Σ𝑗𝑗
𝐷

𝐵
𝑗𝑗

𝑡

2 

)
, (4.15)

where Σℎ𝑘
𝐷

(resp., 𝐵ℎ𝑘
𝑡

) is the (ℎ,𝑘)-th element of the matrix Σ𝐷Σ𝐷Σ𝐷 (resp., 𝐵𝑡).

Proposition 4.10 shows that, at the second order, correlation is linear in 𝑧𝑡 : it may either increase or decrease, depending on the 
sign of the expression in the equation, and in particular on 𝜌𝜌𝜌.

5. Numerical computation of the equilibrium

This section validates the accuracy of the closed-form expressions for the incomplete-market equilibrium by comparing them with 
a numerical solution of the equilibrium, through a recursive algorithm conceptually similar to those of Judd et al. (2000), Judd et al. 
(2003b), Dumas and Lyasoff (2012). Our numerical implementation follows the steps outlined in Dumas and Lyasoff (2012).10

The economy solved numerically has two agents, Ann (𝑖 = 1) and Bob (𝑖 = 2), with identical absolute risk-aversion 𝛼 = 2�̄� and 
time-preference 𝛽 = 𝛽. (Recall that if two agents have identical risk-aversion 𝛼, then �̄� = 𝛼∕2.) The two agents differ exclusively in 
their initial wealth 𝑥𝑖 . Parameter values are chosen as to reproduce the average interest rate, equity returns, price-dividend ratio, and 
aggregate consumption growth rate in Beeler and Campbell (2012, Yearly data in Table 2). Setting 𝜎𝑧 = 1 and 𝑧0 = 0, the parameters 
�̄�, 𝛽, 𝐷0, 𝜇𝐷 , 𝜎𝐷 , 𝜀, and 𝑎 are calibrated so that the interest rate, its standard deviation and autocorrelation, the equity premium, 
equity volatility, and price-dividend ratio in the equilibrium model coincide with their respective historical values, while minimizing 
the difference between historical aggregate consumption growth rate and the model value.11

10 The code used to obtain the results in the paper is available at https://github.com/marko-hans-weber/General-Equilibrium-with-Unhedgeable-Fundamentals.
11 Specifically, first-order equilibrium quantities are aligned with the historical values in Table 1. The interest rate, its standard deviation and mean reversion, i.e., 
𝑟0 , �̄�√

2𝑎
𝜎𝑧𝜀 and 𝑒−𝑎 , match the values 𝐸[𝑟𝑓 ], 𝜎(𝑟𝑓 ) and 𝐴𝐶1(𝑟𝑓 ), respectively. The equity premium and equity volatility, i.e., �̄�𝜎

2
𝐷
�̃�0

𝑃0
and 1 

𝑃0

√
𝜎2
𝐷
�̃�2
0 + 𝜎𝑃 ,𝜇(𝑧0 ,𝐷0)2

(where 𝜎𝑃 ,𝜇(𝑧0 ,𝐷0) is defined in (3.13)) match 𝐸[𝑟𝑒] and 𝜎(𝑟𝑒). Since Beeler and Campbell (2012) consider the log price-dividend ratio, 𝑃0
𝐷0

is matched to 𝑒𝐸[𝑝−𝑑]+ 𝜎(𝑝−𝑑)2

2 . 
Finally, the distance between the model’s aggregate consumption growth rate, i.e., 𝜇𝐷

𝐷0
, and 𝐸[Δ𝑐] is minimized.
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Table 1
The left side of the table presents the moments for interest rates, equity premia, and 
aggregate consumption growth rates that are used for model calibration, based on 
Table 2 in Beeler and Campbell (2012). The right side of the table lists the calibrated 
model parameters.

Moment Data Model 
𝐸[𝑟𝑓 ] 0.56% 0.56% 
𝜎(𝑟𝑓 ) 2.89% 2.89% 
𝐴𝐶1(𝑟𝑓 ) 0.65 0.65 
𝐸[𝑟𝑒] 5.47% 5.47% 
𝜎(𝑟𝑒) 20.17% 20.17% 
𝐸[𝑝− 𝑑] 3.36 3.36 
𝐸[Δ𝑐] 1.93% 0.52% 

Parameter Calibrated Value 
�̄� 1.6561 
𝛽 0.0035 
𝐷0 4.5509 
𝜇𝐷 0.0235 
𝜎𝐷 0.1638 
𝜀 0.0162 
𝑎 0.4308 

5.1. Numerical procedure

The subsection summarizes the main steps of the numerical scheme to compute the equilibrium. Mathematical details are in 
Appendix G.

1. First, approximate the dynamics of the processes 𝐷𝑡 and 𝑧𝑡 on the finite time interval [0, 𝑇 ] with a two-dimensional recombining 
binomial tree. Let 𝐷∗

𝑡
and 𝑧∗

𝑡
be the processes with discrete dynamics[

𝐷∗
𝑡+Δ𝑡
𝑧∗
𝑡+Δ𝑡

]
=
[
𝐷∗
𝑡
+ 𝜇𝐷Δ𝑡
𝑧∗
𝑡

]
+ 𝜉𝑡 ⋅

√
Δ𝑡, 

[
𝐷∗

0
𝑧∗0

]
=
[
𝐷0
𝑧0

]
,

where 𝜉𝑡 is a random variable (independent of 𝐷∗
𝑡

and 𝑧∗
𝑡
) taking the four possible values 

[
±𝜎𝐷
±1

]
. The four corresponding transition 

probabilities are chosen so that for a small time step Δ𝑡 the processes 𝐷∗
𝑡

and 𝑧∗
𝑡

approximate the joint distribution of 𝐷𝑡 and 𝑧𝑡.
2. Note that the model is not Markovian in the exogenous state variables 𝐷∗

𝑡
and 𝑧∗

𝑡
alone, therefore Ann’s consumption share 

𝑐1
𝑡

𝐷∗
𝑡

is chosen as endogenous state variable (cf. Dumas and Lyasoff (2012)).12 Let Ξ be a grid of values covering the interval 
(0,1) representing Ann’s consumption share. For each terminal node of the binomial tree, initialize the stock price 𝑃𝑇 (𝜔) and 
Ann’s wealth 𝑋1

𝑇
(𝜔) – as functions of Ann’s consumption share 𝜔 ∈ (0,1) – equal to their values in the complete equilibrium in 

Theorem F.1.
3. Fix a (non-terminal) node of the binomial tree (𝐷∗

𝑡
, 𝑧∗
𝑡
) and a value 𝜔 ∈ Ξ, representing Ann’s consumption share at the chosen 

node, and let 𝜂 index the four subsequent nodes in the tree. Assume that 𝑃𝑡+Δ𝑡,𝜂(⋅) and 𝑋1
𝑡+Δ𝑡,𝜂(⋅), i.e., the stock price and Ann’s 

wealth in the subsequent nodes, are known. Solve a system of six equations in the six variables {𝑐1
𝑡+Δ𝑡,𝜂}𝜂 , 𝜃

1
𝑡

and 𝜃𝑟𝑓,1
𝑡

, i.e., Ann’s 
optimal consumption rates at time 𝑡+Δ𝑡 in the four subsequent nodes, Ann’s optimal stock holdings at time 𝑡, and the dollar value 
(at the next time step) of Ann’s optimal position in the safe asset at time 𝑡. The corresponding quantities for Bob follow from the 
market clearing conditions. 
The system of equations comprises Ann’s budget constraints at time 𝑡+Δ𝑡 for each subsequent node 𝜂 and the pricing constraints 
on the two financial assets, i.e., agents must agree on the stock price and the interest rate at time 𝑡 (see equations (G.1), (G.2) and 
(G.3) in the Appendix). 
The solution of the system of equations yields Ann’s marginal utility and the values 𝑃𝑡(𝜔) and 𝑋1

𝑡
(𝜔). The stock price and Ann’s 

wealth are computed for each 𝜔 ∈ Ξ. These values are then interpolated to obtain the functions 𝑃𝑡(⋅) and 𝑋1
𝑡
(⋅) on the interval 

(0,1). The system of equations is solved by backwards iteration, starting from the nodes at time 𝑇 −Δ𝑡 and finishing with the root 
node at time 0.

4. The last iteration of the recursive procedure yields the function 𝑋1
0 (⋅). Let �̄� be the solution to the equation 𝑋1

0 (𝜔) = 𝑥𝑖, where 
𝑥𝑖 is Ann’s initial wealth. Ann’s optimal consumption rate at time 0 is then 𝑐10 = �̄� ⋅𝐷0. From Ann’s marginal utility, equilibrium 
asset prices at time 0 follow.

Once the above quantities are computed by backward recursion, optimal consumption rates and trading strategies at each time 
𝑡 are obtained by forward propagation, as follows. Recall that, for each node at time 𝑡 of the binomial tree and for each 𝜔 ∈ Ξ, the 
numerical scheme yields a solution to a system of equations that determines the consumption rate 𝑐𝑡+Δ𝑡,𝜂 (𝜔) at a subsequent node of 
the tree. These values are then interpolated over 𝜔 to obtain a function 𝑐𝑡+Δ𝑡,𝜂(⋅) over (0,1).

Consider a path through the binomial tree, represented by the sequence of nodes {𝜂𝑡}𝑇𝑡=0, starting from the root node 𝜂0. Using the 
value �̄� computed in the final step of the backward recursion, the optimal consumption rate at node 𝜂1 is obtained as 𝑐Δ𝑡,𝜂1 (�̄�). Next, 

define 𝜔Δ𝑡,𝜂1 =
𝑐Δ𝑡,𝜂1 (�̄�)
𝐷∗
Δ𝑡,𝜂1

, where 𝐷∗
Δ𝑡,𝜂1

is the dividend at node 𝜂1. Using these quantities, one can calculate the optimal consumption 

12 In the continuous-time model, dividends can become negative. With the chosen parameter values, dividends remain always positive within the horizon considered.
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Fig. 1. Interest rate (left) and Ann’s stock holding (right) computed numerically (marked) and from the closed-form expressions (solid) in the second-order equilibrium.

Fig. 2. Interest rate (vertical) computed numerically (marked) against step-size Δ𝑡 (horizontal), compared with the closed-form expression (solid) in the second-order 
equilibrium.

rate at the subsequent node 𝑐2Δ𝑡,𝜂2 (𝜔Δ𝑡,𝜂1 ), and so on. Note that the consumption rate at any node depends on the path taken to reach 
that node, a point that is made clear in Fig. 3 in the next section.

5.2. Numerical equilibrium

In the simple economy considered, the two agents Ann and Bob have identical preferences and differ only in their initial wealth (the 
parameters are in Table 1). Such difference, combined with the absence of tradeable long-term bonds, renders the market incomplete. 
In a complete market model, asset prices would be independent of wealth distribution across agents. Additionally, since agents have 
constant absolute risk aversion, each agent would hold a fixed number of shares.

Fig. 1 displays the equilibrium interest rate and Ann’s optimal stock holding, as functions of Ann’s initial share of aggregate 
wealth. With unhedgeable risk, the initial wealth distribution across agents affects the market equilibrium. As discussed in Section 3, 
an unequal wealth distribution increases the volatility of each agent’s consumption rate, leading to higher precautionary savings and 
a lower interest rate.

The left panel of Fig. 1 shows that the interest rate is highest when both agents hold an equal share of wealth, as predicted by the 
closed-form expression and closely reproduced in the numerical solution of the equilibrium.

The right panel of Fig. 1 demonstrates that – unlike the complete market model – wealthier agents hold more stocks, as agents use 
available assets to mimic their desired positions in long-term bonds, which are unavailable. As a result, wealthier agents hold more 
stocks, despite having the same constant absolute risk aversion.

The results in both panels, obtained with a time step of Δ𝑡 = 0.1, are virtually indistinguishable from the closed-form second-order 
expansion. Note that, even in this simple economy with just two agents and one risky asset, the numerical scheme used to produce 
Fig. 1 is computationally very demanding, requiring the solution of 104,005 systems of equations.

Fig. 2 displays the interest rate when Ann holds 80% of aggregate initial wealth, using various time step sizes. As the number of 
time steps increases, the numerical solution approximates the closed-form solution obtained in a continuous-time setting.
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Fig. 3. Numerical consumption (vertical, left) and its relative difference (vertical, right) against first-order closed-form expansions (horizontal). 

As established in Theorem 3.2, the optimal consumption rate does not depend only on the current values of the exogenous state 
variables 𝐷𝑡 and 𝑧𝑡 alone, but on their entire path. In the two-dimensional recombining binomial tree with Δ𝑡 = 0.1, consider the 
node at time 𝑡 = 1 that corresponds to five up-movements and five down-movements in both 𝐷∗

𝑡
and 𝑧∗

𝑡
. In other words, 𝐷∗

1 =𝐷
∗
0 +𝜇𝐷

and 𝑧∗1 = 𝑧
∗
0 . There are 

(10
5 
)2

= 63,504 possible paths leading to this node.

For each path, compute the consumption rate using both the asymptotic closed-form expression and the numerical method.13 Each 
dot in the left panel of Fig. 3 represents Ann’s optimal consumption rate for a different path leading to the same node (𝐷∗

1 , 𝑧
∗
1), with 

the numerical consumption rate in the vertical axis, and the first-order closed-form expression for the same path on the horizontal 
axis.

The proximity of the dots to the solid identity line indicates that the first-order explicit expression for the consumption rate closely 
matches the numerically computed rate. The dashed line represents the consumption rate for 𝜀 = 0, which is constant, as it depends 
exclusively on the exogenous state variables at the node and not on the path taken to reach it. The right panel of Fig. 3 displays 
the percentage difference between the asymptotic consumption rate and the numerically computed rate. In all cases, the relative 
difference between the two consumption rates is below 0.1%.

6. Conclusion

This paper studies general equilibrium in an exchange economy with market incompleteness and heterogeneous agents, who 
trade a stock paying a stochastic dividend stream, lending to and borrowing from each other at some (locally) safe rate. Dividends’ 
fundamentals are subject to unhedgeable shocks, rendering the market incomplete. For small fundamental noise, we find closed-form 
expressions for asset prices and consumption-investment decisions. Consumption policies are determined by the history of fundamen-
tal shocks (rather than current prices alone), the dispersion of agents’ preferences affects asset prices and hence no representative 
agent exists, consumption volatility due to market incompleteness depresses the interest rate, agents dynamically trade stocks to par-
tially hedge their exposure to fundamental shocks, and those who bear higher consumption volatility are compensated with additional 
expected consumption.

The novel methodology in this paper applies perturbation methods to general incomplete equilibrium by focusing on expansions 
around a tractable complete model, for which an explicit equilibrium is available. The present approach allows to adapt duality 
arguments to the incomplete setting and does not require the existence of an exact incomplete-market equilibrium – an important 
question beyond the scope of this paper. While the paper focuses on effects proportional to the size of the unhedgeable shocks and 
their variance, expansions of higher order can be readily obtained in principle, but the resulting expressions are likely to be more 
computationally cumbersome and less economically relevant.

Exponential utilities are instrumental in obtaining a model in which several rational agents coexist in the long run. No rational-
expectations equilibrium is known to satisfy this property with power utilities, as only one agent survives in the long run (Yan, 2008; 
Cvitanić et al., 2012). Furthermore, exponential utilities yield all equilibrium quantities in closed form, for an arbitrary number of 
agents.

13 Specifically, for each path, at every time step one computes Δ𝑊 𝜇 = 𝑧𝑡+Δ𝑡 − 𝑧𝑡 + 𝑎𝑧𝑡Δ𝑡. This quantity yields 𝑊 𝜇

1 for each path, whence the consumption rate from 
the first-order closed-form solution in Theorem 3.2.
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In contrast, closed-form solutions are unavailable for heterogeneous agents with CRRA preferences, even in complete markets. Such 
intractability arises because, if agents have CRRA preferences with different risk aversion, the representative agent’s utility is not in the 
CRRA family. Except in semi-explicit cases, such as two agents, one with twice the risk aversion as the other (Wang, 1996), in general 
the equilibrium can only be characterized through infinite sums (Bhamra and Uppal, 2014). In summary, the absence of a tractable 
complete-market benchmark with heterogeneous agents and CRRA preferences is the major obstacle to studying incompleteness in 
this setting.
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Appendix A. Baseline equilibrium

Definition A.1. Let 𝑃𝑡 be a continuous semimartingale and 𝑟𝑡 an adapted, integrable process. The pair {𝑐𝑡, 𝜃𝑡}0≤𝑡<∞ is an admissible 
strategy if

(i) (𝑐𝑡, 𝜃𝑡) is a pair of adapted processes, adapted to the filtration generated by 𝑊 𝐷 .
(ii) There exists 𝛿 > 0 such that for any 𝑇 the process 𝜃𝑡 is (2 + 𝛿)-integrable on [0, 𝑇 ] × Ω.

(iii) The process 𝑐𝑡 is bounded from below in that, for some polynomials 𝑞1, 𝑞2,

𝑐𝑡 ≥ 𝑞1(𝑡,𝐷𝑡) +
𝑡 

∫
0 
𝑞2(𝑠,𝐷𝑠)𝑑𝑊 𝐷

𝑠
.

(iv) The budget equation

𝑑𝑋𝑡 = 𝜃𝑡(𝑑𝑃 +𝐷𝑡𝑑𝑡) + 𝑟𝑡(𝑋𝑡 − 𝜃𝑡𝑃𝑡)𝑑𝑡− 𝑐𝑡𝑑𝑡, 𝑋0 = 𝑥𝑖,

has a strong solution 𝑋𝑡 that is (i) (2 + 𝛿)-integrable on [0, 𝑇 ] × Ω for some 𝛿 > 0 and any 𝑇 , and (ii) bounded from below in 
that, for some polynomials 𝑝1, 𝑝2,

𝑋𝑡 ≥ 𝑝1(𝑡,𝐷𝑡) +
𝑡 

∫
0 
𝑝2(𝑠,𝐷𝑠)𝑑𝑊 𝐷

𝑠
.

 denotes the set of admissible strategies.

Lemma A.2. Let 𝑃𝑡 and 𝑟 be as in Theorem 2.1, and let 𝑀𝑡 = exp{−𝛽𝑡− �̄�(𝐷𝑡 −𝐷0)}. Define 𝐶0 ∶=𝐸
[∫ ∞

0 𝑀𝑡𝑑𝑡
]
, 𝐿0 ∶=𝐸

[∫ ∞
0 𝑡𝑀𝑡𝑑𝑡

]
. 

Then, for any admissible strategy (𝑐𝑡, 𝜃𝑡),

1 
−𝛼𝑖

𝐸

⎡⎢⎢⎣
∞ 

∫
0 
𝑒−𝛽𝑖𝑠𝑈𝑖(𝑐𝑠)𝑑𝑠

⎤⎥⎥⎦ ≤ −
𝐶0
𝛼𝑖

exp

{
−𝐸

[∫ ∞
0 𝑀𝑡 log𝑀𝑡𝑑𝑡

]
− 𝛽𝑖𝐿0 − 𝑥𝑖𝛼𝑖

𝐶0

}
.

Proof of Lemma A.2. First, note that 𝐸
[∫ ∞

0 𝑀𝑡𝑐𝑡𝑑𝑡
] ≤ 𝑥𝑖. Indeed, applying Itô’s Lemma to the process 𝑀𝑡𝑋𝑡, it follows that

𝑥𝑖 =𝑀𝑇𝑋𝑇 −
𝜎𝐷

𝑟 

𝑇

∫
0 
𝑀𝑡𝜃𝑡𝑑𝑊

𝐷
𝑡

+ �̄�𝜎𝐷

𝑇

∫
0 
𝑀𝑡𝑋𝑡𝑑𝑊

𝐷
𝑡

+

𝑇

∫
0 
𝑀𝑡𝑐𝑡𝑑𝑡,

where 𝑋0 = 𝑥𝑖. From Hölder’s inequality, 𝐸 ∫ 𝑇0 |𝑀𝑡𝜃𝑡|2𝑑𝑡 ≤ 𝐶1𝐸 ∫ 𝑇0 |𝜃𝑡|2+𝛿𝑑𝑡 < +∞, where 𝛿 is chosen as in the admissibility condi-

tion for 𝜃𝑡. Hence, ∫ 𝑇0 𝑀𝑡𝜃𝑡𝑑𝑊
𝐷
𝑡

is a true (i.e., not merely local) martingale. Similarly, ∫ 𝑇0 𝑀𝑡𝑋𝑡𝑑𝑊
𝐷
𝑡

is a true martingale. It follows 
that 𝑥𝑖 = lim inf𝑇→∞𝐸[𝑀𝑇𝑋𝑇 ] + lim inf𝑇→∞𝐸[∫ 𝑇0 𝑀𝑡𝑐𝑡𝑑𝑡]. In view of the lower bound on 𝑋𝑇 ,
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lim inf
𝑇→∞ 𝐸[𝑀𝑇𝑋𝑇 ] ≥ lim inf

𝑇→∞ 𝐸[𝑀𝑇 (𝑝1(𝑇 ,𝐷𝑇 ) +

𝑇

∫
0 
𝑝2(𝑠,𝐷𝑠)𝑑𝑊 𝐷

𝑠
)] = 0.

The lower bound on 𝑐𝑡 implies that 𝑀𝑡𝑐𝑡 is bounded from below by an integrable process. Hence, by Fatou’s lemma, 
lim inf𝑇→∞𝐸[∫ 𝑇0 𝑀𝑡𝑐𝑡𝑑𝑡] ≥𝐸[∫ ∞

0 𝑀𝑡𝑐𝑡𝑑𝑡], whence 𝐸
[∫ ∞

0 𝑀𝑡𝑐𝑡𝑑𝑡
] ≤ 𝑥𝑖.

As 𝐸
[∫ ∞

0 𝑀𝑡𝑐𝑡𝑑𝑡
] ≤ 𝑥𝑖, for every 𝑦 > 0

𝐸

⎡⎢⎢⎣
∞ 

∫
0 

1 
−𝛼𝑖

𝑒−𝛽𝑖𝑠−𝛼𝑖𝑐𝑠𝑑𝑠
⎤⎥⎥⎦ ≤𝐸

⎡⎢⎢⎣
∞ 

∫
0 

1 
−𝛼𝑖

𝑒−𝛽𝑖𝑠−𝛼𝑖𝑐𝑠𝑑𝑠
⎤⎥⎥⎦− 𝑦

⎛⎜⎜⎝𝐸
⎡⎢⎢⎣

∞ 

∫
0 
𝑀𝑡𝑐𝑡𝑑𝑡

⎤⎥⎥⎦− 𝑥𝑖
⎞⎟⎟⎠

≤ − 1 
𝛼𝑖

⎛⎜⎜⎝(𝑦− 𝑦 log𝑦)𝐶0 − 𝑦𝐸
⎡⎢⎢⎣

∞ 

∫
0 
𝑀𝑡 log𝑀𝑡𝑑𝑡

⎤⎥⎥⎦− 𝑦𝛽𝑖𝐿0 − 𝑦𝑥𝑖𝛼𝑖
⎞⎟⎟⎠ ,

where the second inequality is obtained by maximizing over 𝑐𝑡. Minimizing the last expression over 𝑦 leads to the thesis. □

Proof of Theorem 2.1. With the notation from Lemma A.2, note that 𝐶0 = 𝐸
[∫ ∞

0 𝑀𝑡𝑑𝑡
]
= 1

𝑟 and 𝐿0 = 𝐸
[∫ ∞

0 𝑡𝑀𝑡𝑑𝑡
]
= 1 

𝑟2
, and 

therefore

𝐸

⎡⎢⎢⎣
𝑡 

∫
0 
𝑀𝑡 log𝑀𝑡𝑑𝑡

⎤⎥⎥⎦ =𝐸
⎡⎢⎢⎣

𝑡 

∫
0 
𝑀𝑡(−𝛽𝑡− �̄�(𝐷𝑡 −𝐷0))𝑑𝑡

⎤⎥⎥⎦ = −𝛽𝐿0 − �̄�𝑃0 + �̄�𝐷0𝐶0.

By Lemma A.2, the expected utility of agent 𝑖 is dominated by

−
𝐶0
𝛼𝑖

exp

{
−𝐸

[∫ ∞
0 𝑀𝑡 log𝑀𝑡𝑑𝑡

]
− 𝛽𝑖𝐿0 − 𝑥𝑖𝛼𝑖

𝐶0

}

= 1 
−𝑟𝛼𝑖

exp
{
−𝛼𝑖

(
−
𝛽 − 𝛽𝑖
𝑟𝛼𝑖

+ �̄�

𝛼𝑖
𝐷0 + 𝑟

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

))}
,

which is the expected utility attained by the consumption plan 𝑐𝑖
𝑡
.

To see that the consumption plan 𝑐𝑖
𝑡

is financed by the trading strategy �̂�𝑖
𝑡
, note that 𝑋𝑖

𝑡
= 𝑥𝑖 +

�̄�

𝛼𝑖

𝐷𝑡−𝐷0
𝑟 + 𝑡

(
𝛽−𝛽𝑖
𝑟𝛼𝑖

)
satisfies the 

budget equation 𝑑𝑋𝑖
𝑡
= �̂�𝑖

𝑡
(𝑑𝑃𝑡 + 𝐷𝑡𝑑𝑡) + 𝑟(𝑋𝑖

𝑡
− �̂�𝑖

𝑡
)𝑑𝑡 − 𝑐𝑖

𝑡
𝑑𝑡. Finally, the market clearing conditions are satisfied, as 

∑𝑛

𝑖=1 �̂�
𝑖
𝑡
= 1, ∑𝑛

𝑖=1𝑋
𝑖
𝑡
− �̂�𝑖

𝑡
𝑃𝑡 = 0, and 

∑𝑛

𝑖=1 𝑐
𝑖
𝑡
=𝐷𝑡.

Recall that in a market with only the safe asset, with interest rate 𝑟, agent 𝑖’s utility is 𝑒
−𝑟𝜉𝑖 𝛼𝑖+

𝑟−𝛽𝑖
𝑟 

−𝑟𝛼𝑖
, where 𝜉𝑖 is the agent’s initial 

endowment. The certainty equivalent in the statement follows by calculating the expected utility of 𝑐𝑖
𝑡

explicitly and solving the 

equation 𝐸
[∫ ∞

0 𝑒−𝛽𝑖𝑠𝑈𝑖(𝑐𝑖𝑠)𝑑𝑠
]
= 𝑒

−𝑟𝜉𝑖𝛼𝑖+
𝑟−𝛽𝑖
𝑟 

−𝑟𝛼𝑖
. □

Recall that a stochastic discount factor is a nonzero stochastic process 𝑀𝑡 such that the price of both the safe and the risk assets 
multiplied by 𝑀𝑡 are martingales and that in a complete model the stochastic discount factor is unique. The stochastic discount factor 
corresponding to the equilibrium in Theorem 2.1 is 𝑀𝑡 = exp{−𝛽𝑡− �̄�(𝐷𝑡 −𝐷0)}.

Appendix B. Deriving the incomplete-market equilibrium

To find an equilibrium in the incomplete market setting, the main idea is to identify the marginal utilities of all agents so that 
two conditions hold: (i) all agents must agree on the interest rate and the asset price, and (ii) the consumption plan of each agent 
must be replicable by saving or borrowing at the safe rate and trading in the asset. A priori, these are necessary conditions that any 
equilibrium needs to satisfy. As it is now shown, they are also sufficient to obtain a unique expansion of the equilibrium in closed 
form, under the assumption that marginal utilities and prices follow diffusion processes.

Let 𝑀𝑖
𝑡

be the rescaled marginal utility of consumption of agent 𝑖 in equilibrium:

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 = 𝑦𝑖𝑀𝑖

𝑡
, (B.1)

where 𝑐𝑖
𝑡

is the agent’s consumption in equilibrium and 𝑦𝑖 is the constant such that 𝑀𝑖
0 = 1.

As the unique stochastic discount factor (SDF) for 𝜀 = 0 is 𝑀𝑡 = 𝑒−𝛽𝑡−�̄�(𝐷𝑡−𝐷0), it is natural to rewrite 𝑀𝑖
𝑡

as a perturbation from 
this reference. Therefore, set 𝑀𝑖

𝑡
= 𝑒−𝛽𝑡−�̄�(𝐷𝑡−𝐷0)+𝑌 𝑖𝑡 , where lim𝜀↓0 𝑌

𝑖
𝑡
= 0 and 𝑑𝑌 𝑖

𝑡
= 𝑙𝑖

𝑡
𝑑𝑡+𝑚𝑖

𝑡
𝑑𝑊

𝜇

𝑡
+ 𝑛𝑖

𝑡
𝑑𝑊 𝐷

𝑡
, and rewrite (B.1) as

1 
𝛼𝑖

(
−𝛽𝑡− �̄�(𝐷𝑡 −𝐷0) + 𝑌 𝑖𝑡

)
= −

𝛽𝑖

𝛼𝑖
𝑡− 𝑐𝑖

𝑡
− 1 
𝛼𝑖

log𝑦𝑖. (B.2)

Journal of Economic Theory 224 (2025) 105978 

23 



P. Guasoni and M.H. Weber 

The first condition to identify 𝑙𝑖
𝑡
, 𝑚𝑖

𝑡
, and 𝑛𝑖

𝑡
is that in equilibrium all agents must agree on the interest rate and the asset price.

Lemma B.1. Assume 𝑌 𝑖
𝑡
= 𝜀𝑌 𝑖,1

𝑡
+ 𝑜(𝜀), where 𝑑𝑌 𝑖,1

𝑡
= 𝑙𝑖,1

𝑡
𝑑𝑡+𝑚𝑖,1

𝑡
𝑑𝑊

𝜇

𝑡
+ 𝑛𝑖,1

𝑡
𝑑𝑊 𝐷

𝑡
. Then

𝑙
𝑖,1
𝑡

= 𝑛𝑖,1
𝑡

= 0.

Proof. Summing (B.2) over 𝑖, and recalling that 
∑𝑛

𝑖=1 𝑐
𝑖
𝑡
=𝐷𝑡, it follows that

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑌 𝑖
𝑡
= −

𝑛 ∑
𝑖=1 

1 
𝛼𝑖

log𝑦𝑖 −𝐷0.

Hence, in particular, 
∑𝑛

𝑖=1
1 
𝛼𝑖
𝑌 𝑖
𝑡

is constant, which in turn implies that

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑙𝑖
𝑡
=

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑚𝑖
𝑡
=

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑛𝑖
𝑡
= 0.

Note that each agent’s marginal utility 𝑀𝑖 needs to imply the same interest rate and asset price through the equality 𝑃𝑡 =

𝐸𝑡

[
∫ ∞
𝑡
𝐷𝑠

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

]
and the condition that 𝑀𝑖

𝑡
𝑒∫ 𝑡0 𝑟𝑠𝑑𝑠 is a local martingale, whereby the interest rate is the negative growth rate 

of the stochastic discount factor. Thus, for each 𝑖,

𝑟𝑡 = 𝛽 + �̄�(𝜇𝐷 + 𝜀𝜎𝑧𝑧𝑡) −
1
2
�̄�2𝜎2

𝐷
− 𝑙𝑖

𝑡
− 1

2
(𝑚𝑖

𝑡
)2 − 1

2
(𝑛𝑖
𝑡
)2 + �̄�𝜎𝐷𝑛𝑖𝑡.

Ensuring that this expression is independent of 𝑖 at the first order requires that −𝑙𝑖,1
𝑡

+ �̄�𝜎𝐷𝑛
𝑖,1
𝑡

= 𝑔𝑡, for some process 𝑔𝑡 independent 
of 𝑖. As 0 =

∑𝑛

𝑖=1
1 
𝛼𝑖

(
−𝑙𝑖,1
𝑡

+ �̄�𝜎𝐷𝑛
𝑖,1
𝑡

)
= 𝑔𝑡

�̄�
, it follows that

−𝑙𝑖,1
𝑡

+ �̄�𝜎𝐷𝑛
𝑖,1
𝑡

= 0 for all 1 ≤ 𝑖 ≤ 𝑛.
Now, let the dynamics of the asset price 𝑃𝑡, which is the same for all agents, be

𝑑𝑃𝑡 = 𝑝𝑙𝑡𝑑𝑡+ 𝑝𝑚𝑡𝑑𝑊
𝜇

𝑡
+ 𝑝𝑛𝑡𝑑𝑊 𝐷

𝑡
,

for processes 𝑝𝑙𝑡, 𝑝𝑚𝑡, 𝑝𝑛𝑡 to be determined. Because 𝑃𝑡 =𝐸𝑡
[
∫ ∞
𝑡
𝐷𝑠

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

]
implies that 𝑃𝑡𝑀𝑖

𝑡
+ ∫ 𝑡0 𝐷𝑠𝑀𝑖

𝑠
𝑑𝑠 is a martingale, its drift 

must be null, which means that

−𝑟𝑡𝑃𝑡 + 𝑝𝑙𝑡 − 𝑝𝑛𝑡�̄�𝜎𝐷 + 𝑝𝑚𝑡𝑚𝑖𝑡 + 𝑝𝑛𝑡𝑛
𝑖
𝑡
+𝐷𝑡 = 0 for all 1 ≤ 𝑖 ≤ 𝑛.

In particular, 𝑝𝑚𝑡𝑚𝑖𝑡 + 𝑝𝑛𝑡𝑛
𝑖
𝑡

is independent of 𝑖, and in fact equals zero by the same argument used for the interest rate. Note that 

𝑃𝑡 =
𝐷𝑡

�̄�
+

𝜇𝐷−�̄�𝜎2𝐷
�̄�2

+ 𝑜(1), where �̄� = 𝛽 + �̄�𝜇𝐷 − �̄�2

2 𝜎
2
𝐷

is the interest rate in the baseline model, hence 𝑝𝑚𝑡 = 𝑜(1) and 𝑝𝑛𝑡 =
𝜎𝐷

�̄�
+ 𝑜(1). 

Therefore, 𝑝𝑚𝑡𝑚𝑖𝑡 + 𝑝𝑛𝑡𝑛
𝑖
𝑡
= 0 at the first order in 𝜀 if and only if 𝑛𝑖

𝑡
= 0 at first order in 𝜀, i.e., 𝑛𝑖,1

𝑡
= 0. □

The second condition, which identifies 𝑚𝑖,1
𝑡

, requires that the optimal consumption plan for each agent is in fact replicable through 
a dynamic trading strategy. To achieve this goal, it suffices to verify that the wealth process of each agent, defined as the expected 
present value of future planned consumption under the agent’s own marginal utility, indeed satisfies the budget equation, which is

𝑑𝑋𝑖
𝑡
= 𝜃𝑖

𝑡
(𝑑𝑃𝑡 +𝐷𝑡𝑑𝑡) + 𝑟𝑡(𝑋𝑖

𝑡
− 𝜃𝑖

𝑡
𝑃𝑡)𝑑𝑡− 𝑐𝑖𝑡𝑑𝑡. (B.3)

The first-order condition in (B.2) yields the optimal consumption as

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
(𝐷𝑡 −𝐷0) +

𝛽 − 𝛽𝑖
𝛼𝑖

𝑡− 1 
𝛼𝑖

log𝑦𝑖 −
1 
𝛼𝑖
𝑌 𝑖
𝑡
. (B.4)

Now, multiplying equation (B.4) by 𝑀𝑖
𝑡

and aggregating over time and states of nature (i.e., pricing both sides), while setting 𝐿𝑖
𝑡
=

𝐸𝑡

[
∫ ∞
𝑡
𝑠
𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

]
, 𝐶𝑖

𝑡
=𝐸𝑡

[
∫ ∞
𝑡

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

]
, and 𝐾𝑖

𝑡
=𝐸𝑡

[
∫ ∞
𝑡
𝑌 𝑖
𝑠

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

]
, it follows that

𝑋𝑖
𝑡
= �̄�

𝛼𝑖
𝑃𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

𝐿𝑖
𝑡
− �̄�

𝛼𝑖
𝐷0𝐶

𝑖
𝑡
− 1 
𝛼𝑖
(log𝑦𝑖)𝐶𝑖𝑡 −

1 
𝛼𝑖
𝐾𝑖
𝑡
.

This equality for 𝑡 = 0 determines the constants 𝑦𝑖, yielding 𝑥𝑖 =
𝛽−𝛽𝑖
𝛼𝑖
𝐿𝑖0 +

�̄�

𝛼𝑖
𝑃0 −

�̄�

𝛼𝑖
𝐷0𝐶

𝑖
0 −

1 
𝛼𝑖
(log𝑦𝑖)𝐶𝑖0 −

1 
𝛼𝑖
𝐾𝑖

0, and therefore
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𝑋𝑖
𝑡
= �̄�

𝛼𝑖
𝑃𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝐿𝑖
𝑡
−
𝐿𝑖0

𝐶𝑖0
𝐶𝑖
𝑡

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝐶𝑖
𝑡

𝐶𝑖0
− 1 
𝛼𝑖

(
𝐾𝑖
𝑡
−
𝐾𝑖

0

𝐶𝑖0
𝐶𝑖
𝑡

)
, (B.5)

whence

𝑑𝑋𝑖
𝑡
= �̄�

𝛼𝑖
𝑑𝑃𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑑𝐿𝑖

𝑡
−
𝐿𝑖0

𝐶𝑖0
𝑑𝐶𝑖

𝑡

)
+ 1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝑑𝐶𝑖

𝑡
+ 1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
𝑑𝐶𝑖

𝑡
− 1 
𝛼𝑖
𝑑𝐾𝑖

𝑡
. (B.6)

The central idea is that, for a consumption plan to be replicable, the right-hand side of (B.6) must coincide with the right-hand side of 
(B.3), and in particular the diffusion coefficients of 𝑊𝐷 and 𝑊 𝜇 must be the same. To achieve this goal, it is necessary to understand 
the dynamics of the separate components 𝐶𝑖

𝑡
,𝐿𝑖

𝑡
,𝐾𝑖

𝑡
, and 𝑃𝑡.

An explicit computation detailed in Appendix E yields

𝐶𝑖
𝑡
= 1
�̄�
− 𝜀 �̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡 + 𝑜(𝜀), (B.7)

𝐿𝑖
𝑡
= 1
�̄�
⋅ 𝑡+ 1 

�̄�2
− 𝜀

(
𝑡+ 1

�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡 + 𝑜(𝜀), (B.8)

𝑃𝑡 =𝐷𝑡 ⋅𝐶𝑖𝑡 + (𝜇𝐷 − �̄�𝜎2
𝐷
)
(

1 
�̄�2

− 𝜀
(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡

)
+ 𝜀 1 

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡 + 𝑜(𝜀), (B.9)

𝐾𝑖
𝑡
= 𝜀

�̄�
𝑌
𝑖,1
𝑡

+ 𝑜(𝜀). (B.10)

Hence, the wealth dynamics at the first order in 𝜀 is (the drift is omitted as it is inconsequential)

𝑑𝑋𝑖
𝑡
= �̄�

𝛼𝑖
𝑑𝑃𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑑𝐿𝑖

𝑡
−
𝐿𝑖0

𝐶𝑖0
𝑑𝐶𝑖

𝑡

)
+ 1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝑑𝐶𝑖

𝑡
+ 1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
𝑑𝐶𝑖

𝑡
− 1 
𝛼𝑖
𝑑𝐾𝑖

𝑡

= (… )𝑑𝑡+ �̄�

𝛼𝑖
𝑝𝑚𝑡𝑑𝑊

𝜇

𝑡
+ �̄�

𝛼𝑖
𝑝𝑛𝑡𝑑𝑊

𝐷
𝑡

−
𝛽 − 𝛽𝑖
𝛼𝑖

𝜀�̄�

(
1 

�̄�(𝑎+ �̄�)
𝑡+ 𝑎+ 2�̄�

�̄�2(𝑎+ �̄�)2
−
𝐿𝑖0

𝐶𝑖0

1 
�̄�(𝑎+ �̄�)

)
𝜎𝑧𝑑𝑊

𝜇

𝑡

− 𝜀 1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑑𝑊

𝜇

𝑡
− 𝜀 1 

𝛼𝑖�̄�
𝑚
𝑖,1
𝑡
𝑑𝑊

𝜇

𝑡
+ 𝑜(𝜀).

Setting �̂�𝑖
𝑡
= �̄�

𝛼𝑖
+ 𝜀�̂�𝑖,1

𝑡
+ 𝑜(𝜀), the diffusion component of �̂�𝑖

𝑡
⋅ 𝑑𝑃𝑡 equals the diffusion component of 𝑑𝑋𝑖

𝑡
at the first order, if

�̄�

𝛼𝑖
𝑝𝑚𝑡 + 𝜀�̂�

𝑖,1
𝑡
𝑝𝑚𝑡 =

�̄�

𝛼𝑖
𝑝𝑚𝑡 − 𝜀

𝛽 − 𝛽𝑖
𝛼𝑖

�̄�𝜎𝑧

(
1 

�̄�(𝑎+ �̄�)
𝑡+ 𝑎+ 2�̄�

�̄�2(𝑎+ �̄�)2
−
𝐿𝑖0

𝐶𝑖0

1 
�̄�(𝑎+ �̄�)

)

− 𝜀 1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝜎𝑧

1 
�̄�(𝑎+ �̄�)

− 𝜀 1 
𝛼𝑖

𝑚
𝑖,1
𝑡

�̄�
,

�̄�

𝛼𝑖
𝑝𝑛𝑡 + 𝜀�̂�

𝑖,1
𝑡
𝑝𝑛𝑡 =

�̄�

𝛼𝑖
𝑝𝑛𝑡.

The second equation immediately implies that �̂�𝑖,1
𝑡

= 0, while the first one yields

𝑚
𝑖,1
𝑡

= −(𝛽 − 𝛽𝑖)�̄�𝜎𝑧
(

1 
𝑎+ �̄�

𝑡+ 𝑎+ 2�̄�
�̄�(𝑎+ �̄�)2

)
−

(
𝑥𝑖

𝐶0
−
𝛽 − 𝛽𝑖
𝛼𝑖

𝐿𝑖0

𝐶𝑖0
− �̄�

𝛼𝑖

𝑃0
𝐶0

)
𝛼𝑖�̄�𝜎𝑧

1 
𝑎+ �̄�

= −
�̄�𝛼𝑖𝜎𝑧

𝑎+ �̄�

(
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�

)
,

thereby identifying the terms of order 𝜀 in the equilibrium. Similar calculations, detailed in Section D, yield the terms of order 𝜀2 .

Appendix C. Incomplete-market equilibrium: 𝜺-terms

To rigorously solve for the incomplete-market equilibrium, we first specify the class of consumption-investment policies available 
to the agents in the market, for a given combination of interest rate and asset prices. The next definition makes precise the notion 
that an admissible strategy should not require an infinite line of credit or unbounded positions, as to exclude doubling schemes.

Definition C.1. Let 𝑃𝑡(𝜀) be a continuous semimartingale and 𝑟𝑡(𝜀) an adapted, integrable process, for all 𝜀 ∈ (0, �̄�). A family 
{𝑐𝑡(𝜀), 𝜃𝑡(𝜀)}

𝜀∈[0,�̄�)
𝑡∈[0,∞) is an admissible strategy if

(i) For all 𝜀 ∈ (0, �̄�), (𝑐𝑡(𝜀), 𝜃𝑡(𝜀)) is a pair of processes, adapted to the filtration generated by 𝑊 𝐷 and 𝑊 𝜇 .
(ii) There exists 𝛿 > 0 independent of 𝜀 such that for any 𝜀 ∈ (0, �̄�) and any 𝑇 the process 𝜃𝑡(𝜀) is (2 + 𝛿)-integrable on [0, 𝑇 ] × Ω.
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(iii) The process 𝑐𝑡(𝜀) is bounded from below uniformly in 𝜀. That is, for some polynomial functions 𝑞1, 𝑞2, 𝑞3 independent of 𝜀,

𝑐𝑡(𝜀) ≥ 𝑞1(𝑡, 𝑧𝑡,𝐷𝑡) +
𝑡 

∫
0 
𝑞2(𝑠, 𝑧𝑠,𝐷𝑠)𝑑𝑊 𝐷

𝑠
+

𝑡 

∫
0 
𝑞3(𝑠, 𝑧𝑠,𝐷𝑠)𝑑𝑊 𝜇

𝑠
.

(iv) For every 𝜀 ∈ (0, �̄�), the budget equation

𝑑𝑋𝑡(𝜀) = 𝜃𝑡(𝜀)(𝑑𝑃𝑡(𝜀) +𝐷𝑡𝑑𝑡) + 𝑟𝑡(𝜀)(𝑋𝑡(𝜀) − 𝜃𝑡(𝜀)𝑃𝑡(𝜀))𝑑𝑡− 𝑐𝑡(𝜀)𝑑𝑡, 𝑋0(𝜀) = 𝑥𝑖,

has a strong solution 𝑋𝑡(𝜀) that is (i) (2+𝛿)-integrable on [0, 𝑇 ]×Ω for some 𝛿 > 0 independent of 𝜀 and any 𝑇 , and (ii) bounded 
from below uniformly in 𝜀, in that, for some polynomial functions 𝑝1, 𝑝2, 𝑝3 independent of 𝜀,

𝑋𝑡(𝜀) ≥ 𝑝1(𝑡, 𝑧𝑡,𝐷𝑡) +
𝑡 

∫
0 
𝑝2(𝑠, 𝑧𝑠,𝐷𝑠)𝑑𝑊 𝐷

𝑠
+

𝑡 

∫
0 
𝑝3(𝑠, 𝑧𝑠,𝐷𝑠)𝑑𝑊 𝜇

𝑠
.

 denotes the set of admissible strategies.

Next, we introduce the notion of first-order equilibrium, i.e., we require that agents optimize their expected utility up to order 𝜀.

Definition C.2. A first-order equilibrium is a family {𝑟𝑡(𝜀), 𝑃𝑡(𝜀), (𝑐𝑖𝑡 (𝜀))1≤𝑖≤𝑛, (�̂�𝑖𝑡(𝜀))1≤𝑖≤𝑛}𝜀∈[0,�̄�) such that (henceforth, unless ambi-
guity arises, the dependence on 𝜀 is omitted)

(i) 𝑃𝑡(𝜀)0≤𝜀≤�̄� is a continuous semimartingale and 𝑟𝑡(𝜀)0≤𝜀≤�̄� an adapted, integrable process;
(ii) {𝑐𝑖

𝑡
, �̂�𝑖
𝑡
}0≤𝜀≤�̄� is admissible for all 1 ≤ 𝑖 ≤ 𝑛;

(iii) For every 𝜀 the market clearing conditions hold:

𝑛 ∑
𝑖=1 

�̂�𝑖
𝑡
= 1, 

𝑛 ∑
𝑖=1 

(𝑋𝑖
𝑡
− �̂�𝑖

𝑡
𝑃𝑡) = 0, 

𝑛 ∑
𝑖=1 

𝑐𝑖
𝑡
=𝐷𝑡;

(iv) For every agent 𝑖, the family of strategies {𝑐𝑖
𝑡
, �̂�𝑖
𝑡
}0≤𝜀≤�̄� is first-order optimal in 𝜀, i.e.,

𝐸

⎡⎢⎢⎣
∞ 

∫
0 

1 
−𝛼𝑖

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 𝑑𝑡

⎤⎥⎥⎦ ≥ sup 
(𝑐𝑡,𝜃𝑡)∈

𝐸

⎡⎢⎢⎣
∞ 

∫
0 

1 
−𝛼𝑖

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐𝑡 𝑑𝑡
⎤⎥⎥⎦+ 𝑜(𝜀).

We now state a version of Theorem 3.5 restricted to the terms of order 𝜀. The derivation of the terms of order 𝜀2 is the focus of 
Section D.

Theorem C.3. A first-order equilibrium consists of the following interest rate 𝑟𝑡, price process 𝑃𝑡, consumption 𝑐𝑖
𝑡
, and asset holding �̂�𝑖

𝑡
. 

For 𝑡≤ 𝑇 𝜀 ∶= −2
�̄�
log𝜀,

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡

𝑃𝑡 =𝐷𝑡
(
1
�̄�
− 𝜀 �̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡

)
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)
(

1 
�̄�2

− 𝜀
(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡

)
+ 𝜀 1 

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡,

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
,

𝑐𝑖
𝑡
=
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡− 1

�̄�
+ 𝜀

�̄�𝜎𝑧

(𝑎+ �̄�)2
𝑧0

)
+ �̄�

𝛼𝑖
𝐷𝑡 +

(
�̄�+ 𝜀 �̄��̄�

𝑎+ �̄�
𝜎𝑧𝑧0

)(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)

+ 𝜀

𝑡 

∫
0 

(
𝛽 − 𝛽𝑖
𝛼𝑖

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄��̄�

𝑎+ �̄�
𝜎𝑧

)
𝑑𝑊 𝜇

𝑠
+ 𝜀2𝑅𝑡,

where

𝑅𝑡 ∶=

(
− 1
�̄�

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑧𝑡 ⋅ 𝑡+

1 
(𝑎+ �̄�)

(𝑧𝑡 − 𝑧0)
)
−
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
(𝑧𝑡 − 𝑧0) (C.1)
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+

𝑡 

∫
0 

(
1
�̄�

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

))
𝑑𝑊 𝜇

𝑠

)
1 

𝑎+ �̄�
�̄�2𝜎2

𝑧
𝑧𝑡.

For 𝑡 > 𝑇 𝜀,

𝑟𝑡 = �̄�, (C.2)

𝑃𝑡 =𝐷𝑡
(
1
�̄�
− 𝜀 �̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡

)
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)
(

1 
�̄�2

− 𝜀
(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡

)
(C.3)

+ 𝜀 1 
�̄�(𝑎+ �̄�)

𝜎𝑧𝑧𝑡, (C.4)

�̂�𝑖
𝑡
= �̄�

𝛼𝑖
, (C.5)

𝑐𝑖
𝑡
=
𝛽 − 𝛽𝑖
𝛼𝑖

(
(𝑡− 𝑇 𝜀) − 1

�̄�

)
+ �̄�

𝛼𝑖
𝐷𝑡 + �̄�

(
𝑋𝑖
𝑇 𝜀

− �̄�

𝛼𝑖
𝑃𝑇 𝜀

)
. (C.6)

Remark C.4. For 𝑡≤ 𝑇 𝜀, the wealth process of agent 𝑖 is

𝑋𝑖
𝑡
=
𝛽 − 𝛽𝑖
𝛼𝑖

(
1
�̄�
⋅ 𝑡− 𝜀�̄�

(
1 

�̄�(𝑎+ �̄�)
𝑡+ 1 

�̄�(𝑎+ �̄�)2

)
𝜎𝑧𝑧𝑡 + 𝜀

�̄�𝑧0

�̄�(𝑎+ �̄�)2
𝜎𝑧

)
+ �̄�

𝛼𝑖
𝑃𝑡 +

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)(
1 − 𝜀�̄� 1 

𝑎+ �̄�
𝜎𝑧(𝑧𝑡 − 𝑧0)

)
+ 𝜀

𝑡 

∫
0 

(
𝛽 − 𝛽𝑖
𝛼𝑖

1 
�̄�(𝑎+ �̄�)

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝜎𝑧

1 
𝑎+ �̄�

)
𝑑𝑊 𝜇

𝑠
.

For 𝑡 > 𝑇 𝜀,

𝑋𝑖
𝑡
=𝑋𝑇𝜀 +

�̄�

𝛼𝑖
(𝑃𝑡 − 𝑃𝑇𝜀 ) + (𝑡− 𝑇 𝜀)

(
𝛽 − 𝛽𝑖
�̄�𝛼𝑖

)
.

For 𝑡 ≤ 𝑇 𝜀, agent 𝑖’s discounted marginal utility is

log𝑀𝑖
𝑡
= −𝛽𝑡− �̄�(𝐷𝑡 −𝐷0) − 𝜀

𝑡 

∫
0 

(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

)
𝑑𝑊 𝜇

𝑠
.

For 𝑡 > 𝑇 𝜀,

log𝑀𝑖
𝑡
= −𝛽𝑡− �̄�(𝜇𝐷 ⋅ 𝑡+ 𝜎𝐷𝑊 𝐷

𝑡
).

Lemma C.5. Let 𝑀𝑖
𝑡

be the process defined in Remark C.4. Given asset price 𝑃𝑡 and interest rate 𝑟𝑡 as in Theorem C.3, for every admissible 
family {𝑐𝑡, 𝜃𝑡}0≤𝜀≤�̄� with initial wealth 𝑥, we have 𝐸

[∫ ∞
0 𝑀𝑖

𝑡
𝑐𝑡𝑑𝑡

] ≤ 𝑥+ 𝑜(𝜀).
Proof. Agent 𝑖’s marginal utility 𝑀𝑖

𝑡
has dynamics

𝑑𝑀𝑖
𝑡
=𝑀𝑖

𝑡

(
−𝑟𝑡𝑑𝑡+

1
2
𝜀2𝑓 (𝑡)2𝑑𝑡− �̄�𝜎𝐷𝑑𝑊 𝐷

𝑡
− 𝜀𝑓 (𝑡)𝑑𝑊 𝜇

𝑡

)
,

where 𝑓 (𝑡) = 1{𝑡≤𝑇 𝜀} ⋅
(
(𝛽 − 𝛽𝑖)

1 
𝑎+�̄� �̄�𝜎𝑧

(
𝑡+ 1 

𝑎+�̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+�̄�

)
. Given stock price 𝑃𝑡 and interest rate 𝑟𝑡 as in Theorem C.3

and an admissible strategy {𝑐𝑡, 𝜃𝑡}0≤𝜀≤�̄�, the corresponding wealth process 𝑋𝑡 has dynamics

𝑑𝑋𝑡 = 𝜃𝑡(𝑑𝑃𝑡 +𝐷𝑡𝑑𝑡) + 𝑟𝑡(𝑋𝑡 − 𝜃𝑡𝑃𝑡)𝑑𝑡− 𝑐𝑡𝑑𝑡.

From Itô’s lemma,

𝑑(𝑀𝑖
𝑡
𝑋𝑡) =𝑋𝑡𝑑𝑀𝑖

𝑡
+𝑀𝑖

𝑡
𝑑𝑋𝑡 + 𝑑𝑀𝑖

𝑡
𝑑𝑋𝑡

= −𝑀𝑖
𝑡
𝑐𝑡𝑑𝑡−𝑀𝑖

𝑡
𝑋𝑡�̄�𝜎𝐷𝑑𝑊

𝐷
𝑡

+𝑀𝑖
𝑡
𝜃𝑡
𝜎𝐷

�̄�
𝑑𝑊 𝐷

𝑡
+ 𝜀𝑀𝑖

𝑡
𝜃𝑡

(
− �̄� 1 

�̄�(𝑎+ �̄�)
𝜎𝑧(𝑧𝑡𝜎𝐷𝑑𝑊 𝐷

𝑡
+𝐷𝑡𝑑𝑊

𝜇

𝑡
)

−
(𝑎+ 2�̄�)�̄�(𝜇𝐷 − �̄�𝜎2

𝐷
) − �̄�(𝑎+ �̄�)

�̄�2(𝑎+ �̄�)2
𝜎𝑧𝑑𝑊

𝜇

𝑡
+ 𝜀�̄�𝜎2

𝑧
𝑧2
𝑡

1 
�̄�(𝑎+ �̄�)

(
�̄�𝐷𝑡 +

(𝑎+ 2�̄�)�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)

�̄�(𝑎+ �̄�) 
− 2

)
1{𝑡≤𝑇 𝜀}𝑑𝑡

)
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+𝑀𝑖
𝑡
𝑋𝑡

(1
2
𝜀2𝑓 (𝑡)2𝑑𝑡− 𝜀𝑓 (𝑡)𝑑𝑊 𝜇

𝑡

)
+ 𝜀2𝑀𝑖

𝑡
𝜃𝑡𝑓 (𝑡)

𝜎𝑧

�̄�(𝑎+ �̄�)

((
𝐷𝑡 +

𝜇𝐷 − �̄�𝜎2
𝐷

�̄�

)
�̄� +

�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)

(𝑎+ �̄�) 
− 1

)
𝑑𝑡.

Since, for any 𝑛 ≥ 1, 𝐸 ∫ 𝑇0 |𝑀𝑖
𝑡
|𝑛𝑑𝑡 <∞, 𝐸 ∫ 𝑇0 |𝑀𝑖

𝑡
𝑧𝑡|𝑛𝑑𝑡 <∞ and 𝐸 ∫ 𝑇0 |𝑀𝑖

𝑡
𝐷𝑡|𝑛𝑑𝑡 <∞, and 𝜃𝑡 is 2+𝛿-integrable, from Hölder’s in-

equality we get that 𝐸 ∫ 𝑇0 |𝜃𝑡𝑀𝑖
𝑡
|2𝑑𝑡 <∞, 𝐸 ∫ 𝑇0 |𝜃𝑡𝑀𝑖

𝑡
𝑧𝑡|2𝑑𝑡 <∞ and 𝐸 ∫ 𝑇0 |𝜃𝑡𝑀𝑖

𝑡
𝐷𝑡|2𝑑𝑡 <∞. Hence, ∫ 𝑇0 𝜃𝑡𝑀

𝑖
𝑡
𝑑𝑊 𝐷

𝑡
, ∫ 𝑇0 𝜃𝑡𝑀

𝑖
𝑡
𝑧𝑡𝑑𝑊

𝐷
𝑡

and ∫ 𝑇0 𝜃𝑡𝑀
𝑖
𝑡
𝐷𝑡𝑑𝑊

𝜇

𝑡
are true martingales. Similarly, also ∫ 𝑇0 𝑋𝑡𝑀

𝑖
𝑡
𝑑𝑊 𝐷

𝑡
and ∫ 𝑇0 𝑋𝑡𝑀

𝑖
𝑡
𝑓 (𝑡)𝑑𝑊 𝜇

𝑡
are true martingales. Hence,

𝐸[𝑀𝑖
𝑇
𝑋𝑇 ] = 𝑥𝑖 −𝐸

⎡⎢⎢⎣
𝑇

∫
0 
𝑀𝑖
𝑡
𝑐𝑡𝑑𝑡

⎤⎥⎥⎦+ 𝜀2
�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)
𝐸

⎡⎢⎢⎣
𝑇

∫
0 
𝑀𝑖
𝑡
𝜃𝑡

(
�̄�𝐷𝑡 +

(𝑎+ 2�̄�)�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)

�̄�(𝑎+ �̄�) 
− 2

)
𝑧2
𝑡
1{𝑡≤𝑇 𝜀}𝑑𝑡

⎤⎥⎥⎦
+ 𝜀2𝐸

⎡⎢⎢⎣
𝑇

∫
0 

(
1
2
𝑀𝑖
𝑡
𝑋𝑡𝑓 (𝑡)2 +𝑀𝑖

𝑡
𝜃𝑡𝑓 (𝑡)

𝜎𝑧

�̄�(𝑎+ �̄�)

((
𝐷𝑡 +

𝜇𝐷 − �̄�𝜎2
𝐷

�̄�

)
�̄� +

�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)

(𝑎+ �̄�) 
− 1

))
𝑑𝑡

⎤⎥⎥⎦ .
From the admissibility condition, we get that

lim 
𝑇→∞

𝐸[𝑀𝑖
𝑇
𝑋𝑇 ] ≥ lim 

𝑇→∞
𝐸

⎡⎢⎢⎣𝑀𝑖
𝑇

⎛⎜⎜⎝𝑝1(𝑇 , 𝑧𝑇 ,𝐷𝑇 ) +
𝑇

∫
0 
𝑝2(𝑠, 𝑧𝑠,𝐷𝑠)𝑑𝑊 𝐷

𝑠
+

𝑇

∫
0 
𝑝3(𝑠, 𝑧𝑠,𝐷𝑠)𝑑𝑊 𝜇

𝑠

⎞⎟⎟⎠
⎤⎥⎥⎦ = 0.

From the admissibility condition on 𝑐𝑡 we get that 𝑀𝑖
𝑡
𝑐𝑡 is bounded from below by an integrable process. Fatou’s lemma then implies 

that lim inf𝑇→∞𝐸
[∫ 𝑇0 𝑀𝑖

𝑡
𝑐𝑡𝑑𝑡

] ≥𝐸 [∫ ∞
0 𝑀𝑖

𝑡
𝑐𝑡𝑑𝑡

]
. Finally, the integrability conditions on 𝜃𝑡 and 𝑋𝑡 imply

𝜀2
�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)
𝐸

⎡⎢⎢⎢⎣
𝑇 𝜀

∫
0 
𝑀𝑖
𝑡
||𝜃𝑡|| |||||�̄�𝐷𝑡 +

(𝑎+ 2�̄�)�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)

�̄�(𝑎+ �̄�) 
− 2

|||||𝑧2𝑡 𝑑𝑡
⎤⎥⎥⎥⎦

+ 𝜀2𝐸
⎡⎢⎢⎢⎣
𝑇 𝜀

∫
0 
𝑀𝑖
𝑡

||||||12𝑋𝑡𝑓 (𝑡)2 + 𝜃𝑡𝑓 (𝑡)
𝜎𝑧

�̄�(𝑎+ �̄�)

((
𝐷𝑡 +

𝜇𝐷 − �̄�𝜎2
𝐷

�̄�

)
�̄� +

�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)

(𝑎+ �̄�) 
− 1

)||||||𝑑𝑡
⎤⎥⎥⎥⎦ = 𝑜(𝜀),

which in turn proves the thesis. □

Lemma C.6. Let 𝑀𝑖
𝑡

be the process defined in Remark C.4, and define 𝐶𝑖0 ∶=𝐸
[∫ ∞

0 𝑀𝑖
𝑡
𝑑𝑡
]
, 𝐿𝑖0 ∶=𝐸

[∫ ∞
0 𝑡𝑀𝑖

𝑡
𝑑𝑡
]
. Then, for every admissible 

consumption process 𝑐𝑡 and initial wealth 𝑥,

1 
−𝛼𝑖

𝐸

⎡⎢⎢⎣
∞ 

∫
0 
𝑒−𝛽𝑖𝑠𝑈𝑖(𝑐𝑠)𝑑𝑠

⎤⎥⎥⎦ ≤ −
𝐶𝑖0
𝛼𝑖

exp

{
−𝐸

[∫ ∞
0 𝑀𝑖

𝑡
log𝑀𝑖

𝑡
𝑑𝑡
]
− 𝛽𝑖𝐿𝑖0 − 𝑥𝛼𝑖 + 𝑜(𝜀)

𝐶𝑖0

}
.

Proof. From Lemma C.5, we get 𝐸
[∫ ∞

0 𝑀𝑖
𝑡
𝑐𝑡𝑑𝑡

] ≤ 𝑥+ 𝑜(𝜀). The remainder of the proof is identical to the proof of Lemma A.2. □

Proof of Theorem C.3. It can be verified that the consumption and stock holding strategies are admissible and satisfy the market 
clearing conditions.

Recall that

𝐷𝑡 =𝐷0 + 𝜇𝐷𝑡+ 𝜎𝐷𝑊 𝐷
𝑡

+ 𝜀
𝜎𝑧𝑧0
𝑎 

(1 − 𝑒−𝑎𝑡) + 𝜀
𝜎𝑧

𝑎 

𝑡 

∫
0 

(1 − 𝑒−𝑎(𝑡−𝑠))𝑑𝑊 𝜇
𝑠
,

𝑧𝑡 = 𝑧0𝑒−𝑎𝑡 +

𝑡 

∫
0 
𝑒−𝑎(𝑡−𝑠)𝑑𝑊 𝜇

𝑠
,

and 𝐸[𝑋𝑌 𝑒𝑍 ] = 𝑒
𝜎2
𝑍
2 

[
𝜌𝑋𝑌 𝜎𝑋𝜎𝑌 + (𝜌𝑋𝑍𝜎𝑋𝜎𝑍 )(𝜌𝑌𝑍𝜎𝑌 𝜎𝑍 )

]
, where (𝑋,𝑌 ,𝑍) is a centered Gaussian vector with variances 𝜎2

𝑋
, 𝜎2

𝑌
, 

𝜎2
𝑍

, and correlations 𝜌𝑋𝑌 , 𝜌𝑋𝑍 , 𝜌𝑌𝑍 .

Agent 𝑖’s welfare from consumption 𝑐𝑖
𝑡

is proportional to 𝐸
[∫ ∞

0 𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 𝑑𝑡

]
=𝐸

[∫ 𝑇 𝜀0 𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 𝑑𝑡

]
+𝐸

[∫ ∞
𝑇 𝜀
𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐

𝑖
𝑡 𝑑𝑡

]
. The first 

term is
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𝐸

⎡⎢⎢⎢⎣
𝑇 𝜀

∫
0 
𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐

𝑖
𝑡 𝑑𝑡

⎤⎥⎥⎥⎦ =𝐸
[ 𝑇 𝜀

∫
0 

exp
{
− 𝛽𝑖𝑡− 𝛼𝑖

(𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡− 1

�̄�
+ 𝜀

�̄�𝜎𝑧

(𝑎+ �̄�)2
𝑧0

)
+ �̄�

𝛼𝑖
𝐷𝑡

+
(
�̄�+ 𝜀 �̄��̄�

𝑎+ �̄�
𝜎𝑧𝑧0

)(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+ 𝜀

𝑡 

∫
0 

(
𝛽 − 𝛽𝑖
𝛼𝑖

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄��̄�

𝑎+ �̄�
𝜎𝑧

)
𝑑𝑊 𝜇

𝑠

+ 𝜀2
(

− 1
�̄�

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑧𝑡 ⋅ 𝑡+

1 
(𝑎+ �̄�)

(𝑧𝑡 − 𝑧0)
)
−
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
(𝑧𝑡 − 𝑧0)

+

𝑡 

∫
0 

(
1
�̄�

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

))
𝑑𝑊 𝜇

𝑠

)
1 

𝑎+ �̄�
�̄�2𝜎2

𝑧
𝑧𝑡

)}
𝑑𝑡

]

=𝐸
[ 𝑇 𝜀

∫
0 

exp
{
− �̄�𝑡− (𝛽 − 𝛽𝑖)

(
−1
�̄�
+ 𝜀

�̄�𝜎𝑧

(𝑎+ �̄�)2
𝑧0

)
− �̄�𝐷0 − 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

(1 − 𝑒−𝑎𝑡)

− 𝜀�̄�
𝜎𝑧

𝑎 

𝑡 

∫
0 

(1 − 𝑒−𝑎(𝑡−𝑠))𝑑𝑊 𝜇
𝑠
− 𝛼𝑖

(
�̄�+ 𝜀 �̄��̄�

𝑎+ �̄�
𝜎𝑧𝑧0

)(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)

− 𝜀𝛼𝑖

𝑡 

∫
0 

(
𝛽 − 𝛽𝑖
𝛼𝑖

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄��̄�

𝑎+ �̄�
𝜎𝑧

)
𝑑𝑊 𝜇

𝑠

− 𝜀2𝛼𝑖

(
− 1
�̄�

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑧𝑡 ⋅ 𝑡+

1 
(𝑎+ �̄�)

(𝑧𝑡 − 𝑧0)
)
−
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
(𝑧𝑡 − 𝑧0)

+

𝑡 

∫
0 

(
1
�̄�

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

))
𝑑𝑊 𝜇

𝑠

)
1 

𝑎+ �̄�
�̄�2𝜎2

𝑧
𝑧𝑡

}
𝑑𝑡

]

≤
∞ 

∫
0 

exp
{
− �̄�𝑡− (𝛽 − 𝛽𝑖)

(
−1
�̄�
+ 𝜀

�̄�𝜎𝑧

(𝑎+ �̄�)2
𝑧0

)
− �̄�𝐷0 − 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

(1 − 𝑒−𝑎𝑡)

− 𝛼𝑖
(
�̄�+ 𝜀 �̄��̄�

𝑎+ �̄�
𝜎𝑧𝑧0

)(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+𝐾1𝜀

2(𝑇 𝜀)3
}
𝑑𝑡

≤ 1
�̄�
exp

{𝛽 − 𝛽𝑖
�̄�

− �̄�𝐷0 − 𝛼𝑖�̄�
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)}(
1 − 𝜀(𝛽 − 𝛽𝑖)

�̄�𝜎𝑧

(𝑎+ �̄�)2
𝑧0 − 𝜀�̄�𝜎𝑧𝑧0

1 
𝑎+ �̄�

− 𝜀𝛼𝑖
�̄��̄�

𝑎+ �̄�
𝜎𝑧𝑧0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+𝐾2𝜀

2(𝑇 𝜀)3
)
.

The second term in the sum is 𝑜(𝜀):

𝐸

⎡⎢⎢⎣
∞ 

∫
𝑇 𝜀

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 𝑑𝑡

⎤⎥⎥⎦
=𝐸

⎡⎢⎢⎣
∞ 

∫
𝑇 𝜀

exp
{
−𝛽𝑖𝑡− (𝛽 − 𝛽𝑖)(𝑡− 𝑇 𝜀) − �̄�𝐷𝑡 − 𝛼𝑖�̄�

(
𝑋𝑖
𝑇 𝜀

− �̄�

𝛼𝑖
𝑃𝑇 𝜀

)
+
𝛽 − 𝛽𝑖
�̄�

}
𝑑𝑡

⎤⎥⎥⎦
=𝐸

[ ∞ 

∫
𝑇 𝜀

exp

{
− �̄�𝑡− �̄�𝐷0 +

𝛽 − 𝛽𝑖
�̄�

− 𝛼𝑖�̄�
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)

+ 𝜀𝛼𝑖�̄�

(
𝛽 − 𝛽𝑖
𝛼𝑖

(
�̄�

(
1 

�̄�(𝑎+ �̄�)
𝑇 𝜀 + 1 

�̄�(𝑎+ �̄�)2

)
𝜎𝑧𝑧𝑇 𝜀 −

�̄�𝑧0

�̄�(𝑎+ �̄�)2
𝜎𝑧

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝜎𝑧

𝑎+ �̄�
(𝑧𝑇 𝜀 − 𝑧0)
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−

𝑇 𝜀

∫
0 

(
𝛽 − 𝛽𝑖
𝛼𝑖

1 
�̄�(𝑎+ �̄�)

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝜎𝑧

1 
𝑎+ �̄�

)
𝑑𝑊 𝜇

𝑠

)}
𝑑𝑡

]

= 𝜀2𝑒−�̄�𝐷0+
𝛽−𝛽𝑖
�̄�

−𝛼𝑖�̄�
(
𝑥𝑖−

�̄�

𝛼𝑖
𝑃0

)
𝐸

[
exp

{
𝜀𝛼𝑖�̄�

(
𝛽 − 𝛽𝑖
𝛼𝑖

(
�̄�

(
1 

�̄�(𝑎+ �̄�)
𝑇 𝜀 + 1 

�̄�(𝑎+ �̄�)2

)
𝜎𝑧𝑧𝑇 𝜀 −

�̄�𝑧0

�̄�(𝑎+ �̄�)2
𝜎𝑧

)

+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝜎𝑧

𝑎+ �̄�
(𝑧𝑇 𝜀 − 𝑧0) −

𝑇 𝜀

∫
0 

(
𝛽 − 𝛽𝑖
𝛼𝑖

1 
�̄�(𝑎+ �̄�)

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝜎𝑧

1 
𝑎+ �̄�

)
𝑑𝑊 𝜇

𝑠

)}]
= 𝑜(𝜀).

Therefore,

1 
−𝛼𝑖

𝐸

⎡⎢⎢⎣
∞ 

∫
0 
𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐

𝑖
𝑡 𝑑𝑡

⎤⎥⎥⎦ ≥ 1 
−�̄�𝛼𝑖

𝑒
𝛽−𝛽𝑖
�̄�

−�̄�𝐷0−𝛼𝑖�̄�
(
𝑥𝑖−

�̄�

𝛼𝑖
𝑃0

)
×

×
(
1 − 𝜀(𝛽 − 𝛽𝑖)

�̄�𝜎𝑧

(𝑎+ �̄�)2
𝑧0 − 𝜀�̄�𝜎𝑧𝑧0

1 
𝑎+ �̄�

− 𝜀𝛼𝑖
�̄��̄�

𝑎+ �̄�
𝜎𝑧𝑧0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

))
+ 𝑜(𝜀).

Next, we compute the upper bound on welfare from Lemma C.6.

𝐶𝑖0 =𝐸
⎡⎢⎢⎣

∞ 

∫
0 
𝑀𝑖
𝑡
𝑑𝑡

⎤⎥⎥⎦ =𝐸
[ ∞ 

∫
0 

exp{−�̄�𝑡− 𝜀�̄�
𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡) − 𝜀�̄�
𝜎𝑧

𝑎 
1{𝑡≤𝑇 𝜀}

𝑡 

∫
0 

(1 − 𝑒−𝑎(𝑡−𝑠))𝑑𝑊 𝜇
𝑠

− 𝜀1{𝑡≤𝑇 𝜀}
𝑡 

∫
0 

(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

)
𝑑𝑊 𝜇

𝑠
}𝑑𝑡

]

=

∞ 

∫
0 

exp{−�̄�𝑡− 𝜀�̄�
𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡) + 1
2
𝜀21{𝑡≤𝑇 𝜀}

𝑡 

∫
0 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠))

+
(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

))2
𝑑𝑠}𝑑𝑡

=

∞ 

∫
0 
𝑒−�̄�𝑡

(
1 − 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡) + 1
2
𝜀21{𝑡≤𝑇 𝜀}

𝑡 

∫
0 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠))

+
(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

))2
𝑑𝑠

)
𝑑𝑡+ 𝑜(𝜀)

= 1
�̄�
− 𝜀�̄�𝜎𝑧𝑧0

1 
�̄�(𝑎+ �̄�)

+ 𝑜(𝜀),

and

𝐿𝑖0 =𝐸
⎡⎢⎢⎣

∞ 

∫
0 
𝑡𝑀𝑖

𝑡
𝑑𝑡

⎤⎥⎥⎦ =𝐸
[ ∞ 

∫
0 
𝑡 ⋅ exp{−�̄�𝑡− 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡) − 𝜀�̄�
𝜎𝑧

𝑎 
1{𝑡≤𝑇 𝜀}

𝑡 

∫
0 

(1 − 𝑒−𝑎(𝑡−𝑠))𝑑𝑊 𝜇
𝑠

− 𝜀1{𝑡≤𝑇 𝜀}
𝑡 

∫
0 

(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

)
𝑑𝑊 𝜇

𝑠
}𝑑𝑡

]

=

∞ 

∫
0 
𝑡 ⋅ exp{−�̄�𝑡− 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡) + 1
2
𝜀21{𝑡≤𝑇 𝜀}

𝑡 

∫
0 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠))

+
(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

))2
𝑑𝑠}𝑑𝑡

=

∞ 

∫
0 
𝑡 ⋅ 𝑒−�̄�𝑡

(
1 − 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

(1 − 𝑒−𝑎𝑡) + 1
2
𝜀2

𝑡 

∫
0 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠))

+
(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

))2
𝑑𝑠

)
𝑑𝑡+ 𝑜(𝜀)
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= 1 
�̄�2

− 𝜀�̄�
𝜎𝑧𝑧0
𝑎 

(
1 
�̄�2

− 1 
(𝑎+ �̄�)2

)
+ 𝑜(𝜀).

Moreover,

𝐸

[ ∞ 

∫
0 
𝑀𝑖
𝑡
log𝑀𝑖

𝑡
𝑑𝑡

]
=

∞ 

∫
0 

(
− 𝛽𝑡− �̄�𝜇𝐷𝑡+ �̄�2𝜎2𝐷𝑡− 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡)

+ 𝜀21{𝑡≤𝑇 𝜀}
𝑡 

∫
0 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠))

+
(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

))2
𝑑𝑠

)
× exp{−�̄�𝑡− 𝜀�̄�

𝜎𝑧𝑧0
𝑎 

1{𝑡≤𝑇 𝜀}(1 − 𝑒−𝑎𝑡) + 1
2
𝜀21{𝑡≤𝑇 𝜀}

𝑡 

∫
0 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠))

+
(
(𝛽 − 𝛽𝑖)

1 
𝑎+ �̄�

�̄�𝜎𝑧

(
𝑠+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝛼𝑖�̄�𝜎𝑧

�̄�

𝑎+ �̄�

))2
𝑑𝑠}𝑑𝑡

= − 1 
�̄�2

(
𝛽 + �̄�𝜇𝐷 − �̄�2𝜎2

𝐷

)
− 𝜀�̄�𝜎𝑧𝑧0

1 
�̄�(𝑎+ �̄�)

+ 𝜀
(
𝛽 + �̄�𝜇𝐷 − �̄�2𝜎2

𝐷

)
�̄�𝜎𝑧𝑧0

𝑎+ 2�̄�
�̄�2(𝑎+ �̄�)2

+ 𝑜(𝜀).

Hence,

−𝐸
⎡⎢⎢⎣

∞ 

∫
0 
𝑀𝑖
𝑡
log𝑀𝑖

𝑡
𝑑𝑡

⎤⎥⎥⎦− 𝛽𝑖𝐿𝑖0 − 𝑥𝑖𝛼𝑖 + 𝑜(𝜀) = 1 
�̄�2

(
𝛽 − 𝛽𝑖 + �̄�𝜇𝐷 − �̄�2𝜎2

𝐷

)
− 𝑥𝑖𝛼𝑖 + 𝜀�̄�𝜎𝑧𝑧0

1 
�̄�(𝑎+ �̄�)

− 𝜀
(
𝛽 + �̄�𝜇𝐷 − �̄�2𝜎2

𝐷

)
�̄�𝜎𝑧𝑧0

𝑎+ 2�̄�
�̄�2(𝑎+ �̄�)2

+ 𝜀𝛽𝑖�̄�
𝜎𝑧𝑧0
𝑎 

(
1 
�̄�2

− 1 
(𝑎+ �̄�)2

)
+ 𝑜(𝜀)

and

exp

{
−𝐸

[∫ ∞
0 𝑀𝑖

𝑡
log𝑀𝑖

𝑡
𝑑𝑡
]
− 𝛽𝑖𝐿𝑖0 − 𝑥𝑖𝛼𝑖 + 𝑜(𝜀)

𝐶𝑖0

}

=
𝛽 − 𝛽𝑖
�̄�

+ �̄�
𝜇𝐷 − �̄�𝜎2

𝐷

�̄�
− �̄�𝑥𝑖𝛼𝑖 + 𝜀�̄�𝜎𝑧𝑧0

1 
𝑎+ �̄�

− 𝜀
(
𝛽 − 𝛽𝑖 + �̄�𝜇𝐷 − �̄�2𝜎2

𝐷

) �̄�𝜎𝑧𝑧0

(𝑎+ �̄�)2
− 𝜀�̄�𝜎𝑧𝑧0

𝑥𝑖𝛼𝑖�̄�

𝑎+ �̄�
+ 𝑜(𝜀)

=
𝛽 − 𝛽𝑖
�̄�

− �̄�𝐷0 − 𝛼𝑖�̄�
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
− 𝜀(𝛽 − 𝛽𝑖)

�̄�𝜎𝑧𝑧0

(𝑎+ �̄�)2
− 𝜀𝛼𝑖𝜎𝑧𝑧0

�̄��̄�

𝑎+ �̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+ 𝑜(𝜀).

Finally,

−
𝐶𝑖0
𝛼𝑖

exp

{
−𝐸

[∫ ∞
0 𝑀𝑖

𝑡
log𝑀𝑖

𝑡
𝑑𝑡
]
− 𝛽𝑖𝐿𝑖0 − 𝑥𝑖𝛼𝑖 + 𝑜(𝜀)

𝐶𝑖0

}

= 1 
−�̄�𝛼𝑖

exp
{
𝛽 − 𝛽𝑖
�̄�

− �̄�𝐷0 − 𝛼𝑖�̄�
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)}
×
(
1 − 𝜀(𝛽 − 𝛽𝑖)�̄�𝜎𝑧𝑧0

1 
(𝑎+ �̄�)2

− 𝜀𝛼𝑖𝜎𝑧𝑧0
�̄��̄�

𝑎+ �̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
− 𝜀�̄�𝜎𝑧𝑧0

1 
𝑎+ �̄�

)
+ 𝑜(𝜀) □

Appendix D. Second-order equilibrium

Next, we state a complete version of Theorem 3.5.

Theorem D.1. Assume �̄� > 0. The interest rate 𝑟𝑡, price 𝑃𝑡, consumption 𝑐𝑖
𝑡

and investment �̂�𝑖
𝑡

strategies yield a second-order equilibrium. For 
𝑡 ≤ −3

�̄�
log𝜀, set

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 −
𝜀2

2 

𝑛 ∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2, (D.1)

𝑃𝑡 =𝐷𝑡�̃�𝑡 + (𝜇𝐷 − �̄�𝜎2
𝐷
)�̃�𝑡 + 𝜀

1 
�̄�(𝑎+ �̄�)

𝜎𝑧𝑧𝑡 − 𝜀2
2�̄�𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
, (D.2)
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�̂�𝑖
𝑡
= �̄�

𝛼𝑖
+ 𝜀2 �̄�

𝜎2
𝐷

𝑝𝑚1
𝑡

𝑚
𝑖,1
𝑡

𝛼𝑖
, (D.3)

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝐷𝑡 +

1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡−

𝐿𝑖0

𝐶𝑖0

)
(D.4)

+ 1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
− 𝜀 
𝛼𝑖

𝑡 

∫
0 
𝑚𝑖,1
𝑠
𝑑𝑊 𝜇

𝑠
− 𝜀2

𝛼𝑖

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠ , (D.5)

log𝑀𝑖
𝑡
= −𝛽𝑡− �̄�(𝐷𝑡 −𝐷0) + 𝜀

𝑡 

∫
0 
𝑚𝑖,1
𝑠
𝑑𝑊 𝜇

𝑠
+ 𝜀2

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠ , (D.6)

where

𝐶𝑖
𝑡
= 1
�̄�
− 𝜀 �̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡 + 𝜀2

[ �̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
− �̄�

𝜎𝑧

𝑎 

∞ 

∫
𝑡 

𝑎𝑒−𝑟(𝑢−𝑡)

𝑟(𝑎+ 𝑟) 
𝑚𝑖,1
𝑢
𝑑𝑢

]
, (D.7)

𝐿𝑖
𝑡
= 𝑡 ⋅𝐶𝑖

𝑡
+ 1 
�̄�2

− 𝜀
(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡 + 𝜀2

[ �̄�2𝜎2
𝑧

�̄�2(𝑎+ �̄�)(2𝑎+ �̄�)

(
1
�̄�
+ 2𝑎2 + 6𝑎𝑟+ 3𝑟2

(𝑎+ �̄�)(2𝑎+ �̄�) 

(
𝑧2
𝑡
+ 1
�̄�

))
(D.8)

+ 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐿

𝑡
− �̄�

𝜎𝑧

𝑎 

∞ 

∫
𝑡 

𝑎(𝑟(𝑡− 𝑢)(𝑎+ 𝑟) + 𝑎+ 2𝑟)
𝑟2(𝑎+ 𝑟)2

𝑒−𝑟(𝑡−𝑢)𝑚𝑖,1
𝑢
𝑑𝑢

]
,

𝑀
𝑖,𝐶
𝑡

=

∞ 

∫
𝑡 

𝑒−�̄�(𝑢−𝑡)

�̄�
(𝑚𝑖,1

𝑢
)2𝑑𝑢, 𝑀

𝑖,𝐿
𝑡

=

∞ 

∫
𝑡 
𝑒−�̄�(𝑢−𝑡)

1 + �̄�(𝑢− 𝑡)
�̄�2

(𝑚𝑖,1
𝑢
)2𝑑𝑢, (D.9)

�̃�𝑡 =
𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝐶
𝑗

𝑡
, �̃�𝑡 =

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝐿𝑗

𝑡
− 𝑡 ⋅𝐶𝑗

𝑡
), (D.10)

𝐾𝑖
𝑡
= 𝑌 𝑖

𝑡
𝐶𝑖
𝑡
+ 𝜀2

2 
𝑀

𝑖,𝐶
𝑡

+ 𝜀2

2 

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
− 𝜀2�̄�

𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝
𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢

⎞⎟⎟⎠𝑑𝑠, (D.11)

𝑌 𝑖
𝑡
= 𝜀

𝑡 

∫
0 
𝑚𝑖,1
𝑠
𝑑𝑊 𝜇

𝑠
+ 𝜀2

⎛⎜⎜⎝
𝑡 

∫
0 
𝑙𝑖,2
𝑠
𝑑𝑠+

𝑡 

∫
0 
𝑚𝑖,2
𝑠
𝑑𝑊 𝜇

𝑠
+

𝑡 

∫
0 
𝑛𝑖,2
𝑠
𝑑𝑊 𝐷

𝑠

⎞⎟⎟⎠ , (D.12)

and

�̂�
𝑖,2
𝑡

= �̂�𝑖
𝑡
− �̄�

𝛼𝑖
, (D.13)

𝑚
𝑖,1
𝑡

= −𝛼𝑖
�̄�𝜎𝑧

𝑎+ �̄�

(
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+ �̄�

)
+
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�

)
, (D.14)

𝑄𝑖
𝑡
= 1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝐶𝑖
𝑡
+
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝐿𝑖
𝑡
−
𝐿𝑖0

𝐶𝑖0
𝐶𝑖
𝑡

)
, (D.15)

𝑞𝑚
𝑖,1
𝑡

= lim 
𝜀→0

1
𝜀 
𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑡

𝑑𝑡 
, 𝑞𝑚

𝑖,2
𝑡

= lim 
𝜀→0

1 
𝜀2

(
𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑡

𝑑𝑡 
− 𝜀𝑞𝑚𝑖,1

𝑡

)
(D.16)

𝑝𝑚1
𝑡
= lim 
𝜀→0

1
𝜀 
𝑑⟨𝑃 ,𝑊 𝜇⟩𝑡

𝑑𝑡 
= −

𝜎𝑧

�̄�(𝑎+ �̄�)

(
𝐷𝑡�̄� +

(𝑎+ 2�̄�)�̄�(𝜇𝐷 − �̄�𝜎2
𝐷
) − �̄�(𝑎+ �̄�)

�̄�(𝑎+ �̄�) 

)
, (D.17)

𝑙
𝑖,2
𝑡

= −𝛼𝑖�̄�𝜎2𝐷�̂�
𝑖,2
𝑡

− 1
2
(𝑚𝑖,1

𝑡
)2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2, (D.18)

𝑚
𝑖,2
𝑡

= 𝛼𝑖�̄�𝑞𝑚
𝑖,2
𝑡

− �̄� ⋅ lim 
𝜀→0

1 
𝜀2
𝑑⟨𝑌 𝐶𝑖,𝑊 𝜇⟩𝑡

𝑑𝑡 
(D.19)

𝑛
𝑖,2
𝑡

= − �̄�

𝜎𝐷
𝑝𝑚1

𝑡
𝑚
𝑖,1
𝑡

= −𝜎𝐷𝛼𝑖�̂�
𝑖,2
𝑡
. (D.20)

The rigorous proof of Theorem D.1 follows the same lines as the proof of Theorem C.3. In this section we present the formal 
derivation of the second-order equilibrium.
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Similarly to the heuristic derivation of the first-order equilibrium, we obtain the second-order equilibrium by (i) imposing that 
the interest rate is the same across agents, (ii) imposing that the stock price is the same across agents, and (iii) imposing that each 
agent’s wealth satisfies the budget equation.

Recall that

𝑟𝑡 = 𝛽 + �̄�(𝜇𝐷 + 𝜀𝜎𝑧𝑧𝑡) −
1
2
�̄�2𝜎2

𝐷
− 𝑙𝑖

𝑡
− 1

2
(𝑚𝑖

𝑡
)2 − 1

2
(𝑛𝑖
𝑡
)2 + �̄�𝜎𝐷𝑛𝑖𝑡,

and 𝑙𝑖
𝑡
= 𝑙𝑖,2

𝑡
𝜀2 + 𝑜(𝜀2), 𝑚𝑖

𝑡
=𝑚𝑖,1

𝑡
𝜀+𝑚𝑖,2

𝑡
𝜀2 + 𝑜(𝜀2), and 𝑛𝑖

𝑡
= 𝑛𝑖,2

𝑡
𝜀2 + 𝑜(𝜀2).

Because in equilibrium the interest rate 𝑟𝑡 cannot depend on 𝑖, the second-order term in the expansion of 𝑟𝑡 , i.e., 𝑔𝑡 =
−𝑙𝑖,2
𝑡

− 1
2 (𝑚

𝑖,1
𝑡
)2 + �̄�𝜎𝐷𝑛

𝑖,2
𝑡

, is independent of 𝑖. Therefore, from 0 =
∑
𝑖−

1 
𝛼𝑖
𝑙
𝑖,2
𝑡

+ 1 
𝛼𝑖
�̄�𝜎𝐷𝑛

𝑖,2
𝑡

= 1 
�̄�
𝑔𝑡 +

1
2
∑
𝑖
1 
𝛼𝑖
(𝑚𝑖,1

𝑡
)2 it follows that 

𝑔𝑡 = −1
2
∑
𝑖
�̄�

𝛼𝑖
(𝑚𝑖,1

𝑡
)2 and the equilibrium interest rate is

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 −
1
2
𝜀2

∑
𝑖 
�̄�

𝛼𝑖
(𝑚𝑖,1

𝑡
)2 + 𝑜(𝜀2).

Furthermore, 𝑙𝑖,2
𝑡

and 𝑛𝑖,2
𝑡

satisfy the relation

−𝑙𝑖,2
𝑡

+ �̄�𝜎𝐷𝑛
𝑖,2
𝑡

= 1
2
(𝑚𝑖,1

𝑡
)2 − 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2.

To compute 𝑙𝑖,2
𝑡

and 𝑛𝑖,2
𝑡

, we impose that in equilibrium the stock price 𝑃𝑡 is independent of 𝑖. Recall that

−𝑟𝑡𝑃𝑡 + 𝑝𝑙𝑡 − 𝑝𝑛𝑡�̄�𝜎𝐷 + 𝑝𝑚𝑡𝑚𝑖𝑡 + 𝑝𝑛𝑡𝑛
𝑖
𝑡
+𝐷𝑡 = 0 for all 1 ≤ 𝑖 ≤ 𝑛,

where 𝑑𝑃𝑡 = 𝑝𝑙𝑡𝑑𝑡+ 𝑝𝑚𝑡𝑑𝑊
𝜇

𝑡
+ 𝑝𝑛𝑡𝑑𝑊 𝐷

𝑡
and 𝑝𝑚𝑡 = 𝜀𝑝𝑚1

𝑡
+ 𝑜(𝜀), 𝑝𝑛𝑡 =

𝜎𝐷

�̄�
+ 𝜀𝑝𝑛1

𝑡
+ 𝑜(𝜀). The second-order term of 𝑝𝑚𝑡𝑚𝑖𝑡 + 𝑝𝑛𝑡𝑛

𝑖
𝑡
, i.e., 

𝑔𝑡 = 𝑝𝑚1
𝑡
𝑚
𝑖,1
𝑡

+ 𝜎𝐷

�̄�
𝑛
𝑖,2
𝑡

, is independent of 𝑖. Dividing by 𝛼𝑖 and summing up of 𝑖 yields 𝑔𝑡 = 0. Hence, 𝑛𝑖,2
𝑡

= − �̄�

𝜎𝐷
𝑝𝑚1

𝑡
𝑚
𝑖,1
𝑡

.

The equilibrium conditions on 𝑟𝑡 and 𝑃𝑡 determine 𝑙𝑖,2
𝑡

and 𝑛2
𝑡
, as summarized in the following Remark.

Remark D.2. Define 𝑌 𝑖
𝑡
= 𝜀𝑌 𝑖,1

𝑡
+ 𝜀2𝑌 𝑖,2

𝑡
+ 𝑜(𝜀2), where 𝑑𝑌 𝑖,2

𝑡
= 𝑙𝑖,2

𝑡
𝑑𝑡+𝑚𝑖,2

𝑡
𝑑𝑊

𝜇

𝑡
+ 𝑛𝑖,2

𝑡
𝑑𝑊 𝐷

𝑡
. Then

𝑛
𝑖,2
𝑡

= − �̄�

𝜎𝐷
𝑝𝑚1

𝑡
𝑚
𝑖,1
𝑡
,

𝑙
𝑖,2
𝑡

= �̄�𝜎𝐷𝑛
𝑖,2
𝑡

− 1
2
(𝑚𝑖,1

𝑡
)2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2 = −�̄� ⋅ 𝑟 ⋅ 𝑝𝑚1

𝑡
𝑚
𝑖,1
𝑡

− 1
2
(𝑚𝑖,1

𝑡
)2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2,

where

𝑚
𝑖,1
𝑡

= −𝛼𝑖
�̄�𝜎𝑧

𝑎+ �̄�

[
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+ �̄�

)
+ �̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)]
,

𝑝𝑚1
𝑡
= 1
𝜀 
𝑑⟨𝑃 1,𝑊 𝜇⟩𝑡

𝑑𝑡 
.

To obtain 𝑚𝑖,2
𝑡

and �̂�𝑖
𝑡

we match the dynamics of wealth derived from the first-order condition with those from the budget equation.
Recall that the dynamics of the wealth process determined by the first-order condition is

𝑑𝑋𝑖
𝑡
= �̄�

𝛼𝑖
𝑑𝑃𝑡 +

𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑑𝐿𝑖

𝑡
−
𝐿𝑖0

𝐶𝑖0
𝑑𝐶𝑖

𝑡

)
+ 1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝑑𝐶𝑖

𝑡
+ 1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
𝑑𝐶𝑖

𝑡
− 1 
𝛼𝑖
𝑑𝐾𝑖

𝑡

= �̄�

𝛼𝑖
𝑑𝑃𝑡 + 𝑑𝑄𝑖𝑡 +

1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
𝑑𝐶𝑖

𝑡
− 1 
𝛼𝑖
𝑑𝐾𝑖

𝑡
,

where 𝑄𝑖
𝑡
= 𝛽−𝛽𝑖

𝛼𝑖

(
𝐿𝑖
𝑡
−

𝐿𝑖0
𝐶𝑖0
𝐶𝑖
𝑡

)
+ 1 

𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
𝐶𝑖
𝑡
. Define 𝑞𝑚𝑖

𝑡
= 𝑑⟨𝑄𝑖,𝑊 𝜇⟩𝑡

𝑑𝑡 and 𝑞𝑛𝑖
𝑡
= 𝑑⟨𝑄𝑖,𝑊 𝐷⟩𝑡

𝑑𝑡 .

From the budget equation, 𝑑𝑋𝑖
𝑡
= �̂�𝑖

𝑡
𝑑𝑃𝑡 + (...)𝑑𝑡. By matching the diffusion terms, we get

�̂�𝑖
𝑡
𝑝𝑚𝑡 =

�̄�

𝛼𝑖
𝑝𝑚𝑡 + 𝑞𝑚𝑖𝑡 +

1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
𝑐𝑚𝑖

𝑡
− 1 
𝛼𝑖
𝑘𝑚𝑖

𝑡
,

�̂�𝑖
𝑡
𝑝𝑛𝑡 =

�̄�

𝛼𝑖
𝑝𝑛𝑡 + 𝑞𝑛𝑖𝑡 +

1 
𝛼𝑖

𝐾𝑖
0

𝐶𝑖0
𝑐𝑛𝑖
𝑡
− 1 
𝛼𝑖
𝑘𝑛𝑖

𝑡
.
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At second order,

0 = 𝑞𝑚𝑖,2
𝑡

+ �̄�

𝛼𝑖
𝐾
𝑖,1
0 𝑐𝑚

𝑖,1
𝑡

− 1 
𝛼𝑖
𝑘𝑚

𝑖,2
𝑡
, (D.21)

�̂�
𝑖,2
𝑡

𝜎𝐷

�̄�
= 𝑞𝑛𝑖,2

𝑡
+ �̄�

𝛼𝑖
𝐾
𝑖,1
0 𝑐𝑛

𝑖,1
𝑡

− 1 
𝛼𝑖
𝑘𝑛

𝑖,2
𝑡
,

where 𝑞𝑚𝑖
𝑡
= 𝜀𝑞𝑚𝑖,1

𝑡
+ 𝜀2𝑞𝑚𝑖,2

𝑡
+ 𝑜(𝜀2) and 𝑞𝑛𝑖

𝑡
= 𝜀𝑞𝑛𝑖,1

𝑡
+ 𝜀2𝑞𝑛𝑖,2

𝑡
+ 𝑜(𝜀2).

To solve equations (D.21), we need to compute the second-order expansion of 𝐶𝑖
𝑡
, 𝐿𝑖

𝑡
, and 𝐾𝑖

𝑡
. The following Lemma will be used 

in the computations.

Lemma D.3. We have

𝐸𝑡

⎡⎢⎢⎣𝑒−�̄�𝜎𝐷(𝑊𝑠−𝑊𝑡)

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑢

⎤⎥⎥⎦ = −1
6
�̄�𝜎𝐷𝑒

1
2 �̄�

2𝜎2
𝐷
(𝑠−𝑡)(3𝑏0 + 2𝑎0𝑠+ 𝑎0𝑡)(𝑠− 𝑡)2,

𝐸𝑡

⎡⎢⎢⎣𝑒−�̄�𝜎𝐷(𝑊𝑠−𝑊𝑡)

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑊𝑢

⎤⎥⎥⎦ = 1
6
�̄�2𝜎2

𝐷
𝑒
1
2 �̄�

2𝜎2
𝐷
(𝑠−𝑡)(3𝑏0 + 2𝑎0𝑠+ 𝑎0𝑡)(𝑠− 𝑡)2.

Proof. Because ∫ 𝑠
𝑡
𝑢(𝑊𝑢 − 𝑊𝑡)𝑑𝑢 =

1
2 ∫ 𝑠𝑡 (𝑠2 − 𝑢2)𝑑𝑊𝑢 and ∫ 𝑠

𝑡
(𝑊𝑢 − 𝑊𝑡)𝑑𝑢 = ∫ 𝑠

𝑡
(𝑠 − 𝑢)𝑑𝑊𝑢, we get ∫ 𝑠

𝑡
(𝑎0𝑢 + 𝑏0)(𝑊𝑢 − 𝑊𝑡)𝑑𝑢 =

∫ 𝑠
𝑡

(
1
2𝑎0(𝑠

2 − 𝑢2) + 𝑏0(𝑠− 𝑢)
)
𝑑𝑊𝑢. The first equation follows. 

Define 𝑌𝑠 ∶= ∫ 𝑠
𝑡
(𝑎0𝑢 + 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑊𝑢 exp{−�̄�𝜎𝐷(𝑊𝑠 −𝑊𝑡)}, calculate its dynamics via Itô’s lemma, and solve the corresponding 

ODE for 𝐸𝑡[𝑌𝑠]. □

Lemma D.4. Assume that 𝑚𝑖,2
𝑡

is independent of 𝑊𝐷
𝑡

. The second-order expansions of 𝐶𝑖
𝑡
, 𝐿𝑖

𝑡
and 𝐾𝑖

𝑡
are

𝐶𝑖
𝑡
= 1
�̄�
− 𝜀�̄�𝜎𝑧

1 
�̄�(𝑎+ �̄�)

𝑧𝑡 + 𝜀2
(

�̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡

− �̄�
𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢

(
1 − 𝑒−𝑎(𝑠−𝑢)

)
𝑑𝑢𝑑𝑠

)
+ 𝑜(𝜀2),

𝐿𝑖
𝑡
= 𝑡 ⋅𝐶𝑖

𝑡
+ 1 
�̄�2

− 𝜀�̄�
𝜎𝑧𝑧𝑡

𝑎 

(
1 
�̄�2

− 1 
(𝑎+ �̄�)2

)
+ 𝜀2

(
�̄�2𝜎2

𝑧

�̄�3(𝑎+ �̄�)(2𝑎+ �̄�)

+ �̄�2𝜎2
𝑧

(𝑎+ �̄�)(2𝑎+ �̄�) + �̄�(2𝑎+ �̄�) + �̄�(𝑎+ �̄�)
�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)2

(
𝑧2
𝑡
+ 1
�̄�

)
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐿

𝑡

− �̄�
𝜎𝑧

𝑎 

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢𝑑𝑠

)
+ 𝑜(𝜀2),

𝐾𝑖
𝑡
= 𝑌 𝑖

𝑡
𝐶𝑖
𝑡
+ 𝜀2

2 
𝑀

𝑖,𝐶
𝑡

+ 𝜀2

2 

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
− 𝜀2�̄�

𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝
𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢

⎞⎟⎟⎠𝑑𝑠+ 𝑜(𝜀2),
where 𝑀𝑗,𝐶

𝑡
∶= ∫ ∞

𝑡
𝑒−�̄�(𝑠−𝑡) ∫ 𝑠

𝑡
(𝑚𝑗,1𝑢 )2𝑑𝑢𝑑𝑠 and 𝑀𝑗,𝐿

𝑡
∶= ∫ ∞

𝑡
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡) ∫ 𝑠

𝑡
(𝑚𝑗,1𝑢 )2𝑑𝑢𝑑𝑠.

Proof. Define 𝑎𝑖
𝑚
, 𝑏𝑖
𝑚

such that 𝑚𝑖,1
𝑡

= 𝑎𝑖
𝑚
⋅ 𝑡+ 𝑏𝑖

𝑚
.

𝐶𝑖
𝑡
≈𝐸𝑡

∞ 

∫
𝑡 

exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + 𝜀(𝑌 𝑖,1𝑠 − 𝑌 𝑖,1
𝑡

) + 𝜀2(𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

)}𝑑𝑠

≈𝐸𝑡

∞ 

∫
𝑡 

(
1 − 𝜀�̄�

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − 𝜀�̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+ 𝜀

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢
+

𝜀2

2 

⎛⎜⎜⎝−�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − �̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
2

+ 𝜀2(𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

)

)
⋅
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⋅ exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠

= 1
�̄�
− 𝜀�̄�𝜎𝑧

1 
�̄�(𝑎+ �̄�)

𝑧𝑡

+ 𝜀2𝐸𝑡

∞ 

∫
𝑡 

(
1
2

⎛⎜⎜⎝−�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − �̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
2

+ (𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

)

)
exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠.

The first term of order 𝜀2 is

1
2
𝐸𝑡

∞ 

∫
𝑡 

⎛⎜⎜⎝�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) +

𝑠 

∫
𝑡 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
2

×

× exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠

= 1
2
�̄�2𝜎2

𝑧

𝑎2

∞ 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑡))2𝑒−�̄�(𝑠−𝑡)𝑑𝑠𝑧2

𝑡
+ 1

2

∞ 

∫
𝑡 

𝑠 

∫
𝑡 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)2
𝑑𝑢𝑒−�̄�(𝑠−𝑡)𝑑𝑠

= 1
2
�̄�2𝜎2

𝑧

𝑎2

(1
�̄�
− 2 1 

𝑎+ �̄�
+ 1 

2𝑎+ �̄�

)
𝑧2
𝑡
+ 1

2

∞ 

∫
𝑡 

𝑠 

∫
𝑡 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

)2
𝑑𝑢𝑒−�̄�(𝑠−𝑡)𝑑𝑠

− �̄�
𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢𝑑𝑠+ 1

2
𝑀

𝑖,𝐶
𝑡

=
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
(𝑧2
𝑡
+ 1
�̄�
) + 1

2
𝑀

𝑖,𝐶
𝑡

− �̄�
𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢𝑑𝑠.

Next, we consider the second term of order 𝜀2, i.e., 𝐸𝑡 ∫ ∞
𝑡

(𝑌 𝑖,2𝑠 − 𝑌 𝑖,2
𝑡

) exp{−𝛽(𝑠 − 𝑡) − �̄�𝜇𝐷(𝑠 − 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠. Recall 

that 𝑛𝑖,2𝑢 = (𝐺𝐷𝑡 +𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷
𝑢

−𝑊𝐷
𝑡
) + 𝐹 )(𝑎𝑖

𝑚
𝑡+ 𝑏𝑖

𝑚
) for some constants 𝐺, 𝐹 . It follows from Lemma D.3 that

𝐸𝑡

⎡⎢⎢⎣
⎛⎜⎜⎝

𝑠 

∫
𝑡 
�̄�𝜎𝐷𝑛

𝑖,2
𝑢
𝑑𝑢+

𝑠 

∫
𝑡 
𝑛𝑖,2
𝑢
𝑑𝑊 𝐷

𝑢

⎞⎟⎟⎠ exp{−�̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}
⎤⎥⎥⎦ = 0.

Furthermore, assuming that 𝑚𝑖,2
𝑡

is independent of the Wiener process 𝑊𝐷
𝑡

, we also get that 𝐸𝑡
[(∫ 𝑠

𝑡
𝑚
𝑖,2
𝑢 𝑑𝑊

𝜇
𝑢

)
exp{−�̄�𝜎𝐷(𝑊𝐷

𝑠
− 

𝑊𝐷
𝑡
)}
]
= 0.

Therefore, from the expression for 𝑙𝑖,2
𝑡

, it follows that

𝐸𝑡

∞ 

∫
𝑡 
(𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

) exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)} =

=𝐸𝑡

∞ 

∫
𝑡 

𝑠 

∫
𝑡 

(
1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2 − 1

2
(𝑚𝑖,1

𝑢
)2
)
𝑑𝑢 exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠

= 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
− 1

2
𝑀

𝑖,𝐶
𝑡
.

Next, we compute the price of the linear consol bond 𝐿𝑖
𝑡
:

𝐿𝑖
𝑡
≈ 𝑡 ⋅𝐶𝑖

𝑡
+𝐸𝑡

∞ 

∫
𝑡 
(𝑠− 𝑡) ⋅ exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + 𝜀(𝑌 𝑖,1𝑠 − 𝑌 𝑖,1

𝑡
) + 𝜀2(𝑌 𝑖,2

𝑠
− 𝑌 𝑖,2

𝑡
)}𝑑𝑠

≈ 𝑡 ⋅𝐶𝑖
𝑡
+𝐸𝑡

∞ 

∫
𝑡 
(𝑠− 𝑡) ⋅

(
1 − 𝜀�̄�

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − 𝜀�̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+ 𝜀

𝑠 

∫
𝑡 
𝑚𝑖
𝑢
𝑑𝑊 𝜇

𝑢
+

𝜀2

2 

⎛⎜⎜⎝−�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − �̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑚𝑖
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
2

+ 𝜀2(𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

)

)
×
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× exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠

= 𝑡 ⋅𝐶𝑖
𝑡
+ 1 
�̄�2

− 𝜀�̄�
𝜎𝑧𝑧𝑡

𝑎 

(
1 
�̄�2

− 1 
(𝑎+ �̄�)2

)

+ 𝜀2𝐸𝑡

∞ 

∫
𝑡 
(𝑠− 𝑡)

(1
2

(
− �̄�

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − �̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑚𝑖
𝑢
𝑑𝑊 𝜇

𝑢

)2
+ (𝑌 𝑖,2

𝑠
− 𝑌 𝑖,2

𝑡
)
)

exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠.

The first term of order 𝜀2 is

1
2
𝐸𝑡

∞ 

∫
𝑡 
(𝑠− 𝑡)

⎛⎜⎜⎝�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) + �̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
−

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
2

×

× exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠

= 1
2
�̄�2𝜎2

𝑧

𝑎2

∞ 

∫
𝑡 
(𝑠− 𝑡)(1 − 𝑒−𝑎(𝑠−𝑡))2𝑒−�̄�(𝑠−𝑡)𝑑𝑠𝑧2

𝑡

+ 1
2

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)2
𝑑𝑢𝑑𝑠

= 1
2
�̄�2𝜎2

𝑧

𝑎2

(
1 
�̄�2

− 2 1 
(𝑎+ �̄�)2

+ 1 
(2𝑎+ �̄�)2

)
𝑧2
𝑡
−

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢𝑑𝑠

+ 1
2

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

)2
𝑑𝑢𝑑𝑠+ 1

2
𝑀

𝑖,𝐿
𝑡

= �̄�2𝜎2
𝑧

2𝑎2 + 6𝑎�̄�+ 3�̄�2

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)2
(𝑧2
𝑡
+ 1
�̄�
) +

�̄�2𝜎2
𝑧

�̄�3(𝑎+ �̄�)(2𝑎+ �̄�)
+ 1

2
𝑀

𝑖,𝐿
𝑡

− �̄�
𝜎𝑧

𝑎 

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢𝑑𝑠.

Recall that from Lemma D.3 we have 𝐸𝑡
[(∫ 𝑠

𝑡
�̄�𝜎𝐷𝑛

𝑖,2
𝑢 𝑑𝑢+ ∫ 𝑠

𝑡
𝑛
𝑖,2
𝑢 𝑑𝑊

𝐷
𝑢

)
exp{−�̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}
]
= 0. Assuming that 𝑚𝑖,2

𝑡
is in-

dependent of 𝑊𝐷 and using the expression for 𝑙𝑖,2
𝑡

, we get

𝐸𝑡

∞ 

∫
𝑡 
(𝑠− 𝑡)

( 𝑠 

∫
𝑡 
𝑙𝑖,2
𝑢
𝑑𝑢+

𝑠 

∫
𝑡 
𝑚𝑖,2
𝑢
𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑛𝑖,2
𝑢
𝑑𝑊 𝐷

𝑢

)
exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠

=𝐸𝑡

∞ 

∫
𝑡 
(𝑠− 𝑡)

𝑠 

∫
𝑡 

(1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2 − 1

2
(𝑚𝑖,1

𝑢
)2
)
𝑑𝑢 exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠

= 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐿

𝑡
− 1

2
𝑀

𝑖,𝐿
𝑡
.

Next, we compute 𝐾𝑖
𝑡
:

𝐾𝑖
𝑡
≈ 𝑌 𝑖

𝑡
𝐶𝑖
𝑡
+ 𝜀𝐸𝑡

∞ 

∫
𝑡 

⎛⎜⎜⎝
𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠ exp
⎧⎪⎨⎪⎩−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + 𝜀

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎫⎪⎬⎪⎭𝑑𝑠
+ 𝜀2𝐸𝑡

∞ 

∫
𝑡 
(𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

) exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠

= 𝑌 𝑖
𝑡
𝐶𝑖
𝑡
+ 𝜀2

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝−�̄�
𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢+

𝑠 

∫
𝑡 
(𝑚𝑖,1

𝑢
)2𝑑𝑢

⎞⎟⎟⎠𝑑𝑠
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+ 𝜀2
∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

(
−1
2
(𝑚𝑖,1

𝑢
)2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2
)
𝑑𝑢𝑑𝑠

= 𝑌 𝑖
𝑡
𝐶𝑖
𝑡
+ 𝜀2

2 
𝑀

𝑖,𝐶
𝑡

+ 𝜀2

2 

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡
− 𝜀2�̄�

𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝
𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢

⎞⎟⎟⎠𝑑𝑠. □

From Lemma D.4, it follows

𝑘𝑚
𝑖,2
𝑡

=
𝑚
𝑖,2
𝑡

�̄�
+
𝑑⟨𝑌 1𝐶𝑖,1,𝑊 𝜇⟩𝑡

𝑑𝑡 
, 𝑘𝑛

𝑖,2
𝑡

=
𝑛
𝑖,2
𝑡

�̄�
,

and 𝐾𝑖,1
0 = 0, 𝑞𝑛𝑖,2

𝑡
= 0. Hence, equation (D.21) reduces to

0 = 𝑞𝑚𝑖,2
𝑡

− 1 
𝛼𝑖

𝑚
𝑖,2
𝑡

�̄�
− 1 
𝛼𝑖

𝑑⟨𝑌 1𝐶𝑖,1,𝑊 𝜇⟩𝑡
𝑑𝑡 

,

�̂�
𝑖,2
𝑡

𝜎𝐷

�̄�
= − 1 

𝛼𝑖

𝑛
𝑖,2
𝑡

�̄�
.

From the first equation we get

𝑚
𝑖,2
𝑡

= 𝛼𝑖�̄�𝑞𝑚
𝑖,2
𝑡

− �̄�
𝑑⟨𝑌 1𝐶𝑖,1,𝑊 𝜇⟩𝑡

𝑑𝑡 
,

where all quantities can be computed explicitly from Lemma D.4. Notice that 𝑚𝑖,2
𝑡

is independent of 𝑊𝐷
𝑡

, consistently with the 
assumption made in the derivation.

The second equation yields the optimal trading strategy

�̂�
𝑖,2
𝑡

= 1 
𝛼𝑖

�̄�

𝜎2
𝐷

𝑝𝑚1
𝑡
𝑚
𝑖,1
𝑡
.

The optimal consumption process follows from the first-order condition:

𝑐𝑖
𝑡
= − 1 

𝛼𝑖
log𝑦𝑖 +

𝛽 − 𝛽𝑖
𝛼𝑖

𝑡+ �̄�

𝛼𝑖
(𝐷𝑡 −𝐷0) −

1 
𝛼𝑖
𝑌 𝑖
𝑡

= �̄�

𝛼𝑖
𝐷𝑡 +

1 
𝐶𝑖0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡−

𝐿𝑖0

𝐶𝑖0

)
− 1 
𝛼𝑖

(
𝑌 𝑖
𝑡
−
𝐾𝑖

0

𝐶𝑖0

)
.

Finally, we compute the equilibrium stock price 𝑃𝑡 at second order. The following Lemma will be needed in the computations.

Lemma D.5. We have

𝐸𝑡

⎡⎢⎢⎣(𝑊𝑠 −𝑊𝑡)

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑢 exp{−�̄�𝜎𝐷(𝑊𝑠 −𝑊𝑡)}

⎤⎥⎥⎦ =
= 1

6
(𝑠− 𝑡)2(3𝑏0 + 2𝑎0𝑠+ 𝑎0𝑡)(1 + �̄�2𝜎2𝐷(𝑠− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑠− 𝑡)

}
,

𝐸𝑡

⎡⎢⎢⎣(𝑊𝑠 −𝑊𝑡)

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑊𝑢 exp{−�̄�𝜎𝐷(𝑊𝑠 −𝑊𝑡)}

⎤⎥⎥⎦
= −1

6
�̄�𝜎𝐷(𝑠− 𝑡)2(3𝑏0 + 2𝑎0𝑠+ 𝑎0𝑡)(2 + �̄�2𝜎2𝐷(𝑠− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑠− 𝑡)

}
.

Proof. Define 𝑌𝑠 ∶= (𝑊𝑠 −𝑊𝑡) ∫ 𝑠𝑡 (𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑢 exp{−�̄�𝜎𝐷(𝑊𝑠 −𝑊𝑡)}. Applying Itô’s Lemma yields

𝐸𝑡[𝑌𝑠] =𝐸𝑡

𝑠 

∫
𝑡 
(𝑊𝑢 −𝑊𝑡)(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡) exp{−�̄�𝜎𝐷(𝑊𝑢 −𝑊𝑡)}𝑑𝑢+

1
2
�̄�2𝜎2

𝐷
𝐸𝑡

𝑠 

∫
𝑡 
𝑌𝑢𝑑𝑢

−𝐸𝑡�̄�𝜎𝐷

𝑠 

∫
𝑡 

𝑢 

∫
𝑡 
(𝑎0𝑤+ 𝑏0)(𝑊𝑤 −𝑊𝑡)𝑑𝑤 exp{−�̄�𝜎𝐷(𝑊𝑢 −𝑊𝑡)}𝑑𝑢
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=

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑢− 𝑡)(1 + �̄�2𝜎2𝐷(𝑢− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑢− 𝑡)

}
𝑑𝑢+ 1

2
�̄�2𝜎2

𝐷
𝐸𝑡

𝑠 

∫
𝑡 
𝑌𝑢𝑑𝑢

−𝐸𝑡�̄�𝜎𝐷

𝑠 

∫
𝑡 

𝑢 

∫
𝑡 

(1
2
𝑎0(𝑢2 −𝑤2) + 𝑏0(𝑢−𝑤)

)
𝑑𝑊𝑤 exp{−�̄�𝜎𝐷(𝑊𝑢 −𝑊𝑡)}𝑑𝑢

=

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑢− 𝑡)(1 + �̄�2𝜎2𝐷(𝑢− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑢− 𝑡)

}
𝑑𝑢+ 1

2
�̄�2𝜎2

𝐷
𝐸𝑡

𝑠 

∫
𝑡 
𝑌𝑢𝑑𝑢

+ �̄�2𝜎2
𝐷

𝑠 

∫
𝑡 

1
6
(𝑡− 𝑢)2

(
3𝑏0 + 𝑎0(𝑡+ 2𝑢)

)
exp

{1
2
�̄�2𝜎2

𝐷
(𝑢− 𝑡)

}
𝑑𝑢.

Hence, 𝑔(𝑠) =𝐸𝑡[𝑌𝑠] solves the ODE

𝑔′(𝑠) = (𝑠− 𝑡)
(
(𝑎0𝑠+ 𝑏0) + �̄�2𝜎2𝐷(𝑠− 𝑡)

(4
3
𝑎0𝑠+

1
6
𝑎0𝑡+

3
2
𝑏0

))
exp

{1
2
�̄�2𝜎2

𝐷
(𝑠− 𝑡)

}
+ 1

2
�̄�2𝜎2

𝐷
𝑔(𝑠).

The solution of this ODE with initial condition 𝑔(𝑡) = 0 is

𝑔(𝑠) = 1
6
(𝑠− 𝑡)2(3𝑏0 + 2𝑎0𝑠+ 𝑎0𝑡)(1 + �̄�2𝜎2𝐷(𝑠− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑠− 𝑡)

}
.

Next, define 𝑌𝑠 ∶= (𝑊𝑠 −𝑊𝑡) ∫ 𝑠𝑡 (𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)𝑑𝑊𝑢 exp{−�̄�𝜎𝐷(𝑊𝑠 −𝑊𝑡)}. Applying Itô’s Lemma yields

𝐸𝑡[𝑌𝑠] =
1
2
�̄�2𝜎2

𝐷
𝐸𝑡

𝑠 

∫
𝑡 
𝑌𝑢𝑑𝑢+𝐸𝑡

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡) exp{−�̄�𝜎𝐷(𝑊𝑢 −𝑊𝑡)}𝑑𝑢

−𝐸𝑡�̄�𝜎𝐷

𝑠 

∫
𝑡 

𝑢 

∫
𝑡 
(𝑎0𝑤+ 𝑏0)(𝑊𝑤 −𝑊𝑡)𝑑𝑊𝑤 exp{−�̄�𝜎𝐷(𝑊𝑢 −𝑊𝑡)}𝑑𝑢

−𝐸𝑡�̄�𝜎𝐷

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑊𝑢 −𝑊𝑡)2 exp{−�̄�𝜎𝐷(𝑊𝑢 −𝑊𝑡)}𝑑𝑢

= 1
2
�̄�2𝜎2

𝐷
𝐸𝑡

𝑠 

∫
𝑡 
𝑌𝑢𝑑𝑢− �̄�𝜎𝐷

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑢− 𝑡) exp

{1
2
�̄�2𝜎2

𝐷
(𝑢− 𝑡)

}
𝑑𝑢

− �̄�𝜎𝐷

𝑠 

∫
𝑡 

1
6
�̄�2𝜎2

𝐷
(3𝑏0 + 2𝑎0𝑢+ 𝑎0𝑡)(𝑢− 𝑡)2 exp

{1
2
�̄�2𝜎2

𝐷
(𝑢− 𝑡)

}
𝑑𝑢

− �̄�𝜎𝐷

𝑠 

∫
𝑡 
(𝑎0𝑢+ 𝑏0)(𝑢− 𝑡)(1 + �̄�2𝜎2𝐷(𝑢− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑢− 𝑡)

}
𝑑𝑢.

Hence, 𝑔(𝑠) =𝐸𝑡[𝑌𝑠] solves the ODE

𝑔′(𝑠) = −�̄�𝜎𝐷
(
2(𝑎0𝑠+ 𝑏0)(𝑠− 𝑡) + �̄�2𝜎2𝐷

(3
2
𝑏0 +

4
3
𝑎0𝑠+

1
6
𝑎0𝑡

)
(𝑠− 𝑡)2

)
×

exp
{1
2
�̄�2𝜎2

𝐷
(𝑠− 𝑡)

}
+ 1

2
�̄�2𝜎2

𝐷
𝑔(𝑠).

The solution of this ODE with initial condition 𝑔(𝑡) = 0 is

𝑔(𝑠) = −1
6
�̄�𝜎𝐷(𝑠− 𝑡)2(3𝑏0 + 2𝑎0𝑠+ 𝑎0𝑡)(2 + �̄�2𝜎2𝐷(𝑠− 𝑡)) exp

{1
2
�̄�2𝜎2

𝐷
(𝑠− 𝑡)

}
. □

The price of the asset is 𝑃𝑡 =𝐸𝑡 ∫ ∞
𝑡
𝐷𝑠

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠 =𝐷𝑡 ⋅𝐶𝑖𝑡 +𝐸𝑡 ∫ ∞
𝑡

(𝐷𝑠 −𝐷𝑡)
𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠. 

As derived earlier, the term of order 𝜀2 of 𝐶𝑖
𝑡

is

𝐸𝑡

∞ 

∫
𝑡 

(
1
2

⎛⎜⎜⎝−�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − �̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
2

+ (𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

)

)
×

× exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠
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=
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+ 1

2

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)2
𝑑𝑢𝑑𝑠

+𝐸𝑡

∞ 

∫
𝑡 
(𝑌 𝑖,2
𝑠

− 𝑌 𝑖,2
𝑡

) exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠

=
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

[1
2

(
�̄�
𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)2
− 1

2
(𝑚𝑖,1

𝑢
)2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2
]
𝑑𝑢𝑑𝑠

=
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

[ �̄�2𝜎2
𝑧

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2 −

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2
]
𝑑𝑢𝑑𝑠.

The second term of the asset’s price is

𝐸𝑡

∞ 

∫
𝑡 
(𝐷𝑠 −𝐷𝑡) exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + 𝜀(𝑌 𝑖,1𝑠 − 𝑌 𝑖,1

𝑡
) + 𝜀2(𝑌 𝑖,2

𝑠
− 𝑌 𝑖,2

𝑡
)}𝑑𝑠

=𝐸𝑡

∞ 

∫
𝑡 

⎛⎜⎜⎝𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
) + 𝜀

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) + 𝜀

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠×
× exp

{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
) − 𝜀

�̄�𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − 𝜀

�̄�𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢

+ 𝜀

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢
+ 𝜀2(𝑌 𝑖,2

𝑠
− 𝑌 𝑖,2

𝑡
)
}
𝑑𝑠

=𝐸𝑡

∞ 

∫
𝑡 

⎛⎜⎜⎝𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
) + 𝜀

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) + 𝜀

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠×
× exp

{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×
(
1 − 𝜀

�̄�𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡))

− 𝜀
�̄�𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+ 𝜀

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

+ 1
2
𝜀2
( �̄�𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) +

𝑠 

∫
𝑡 

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑊 𝜇

𝑢

)2
+ 𝜀2(𝑌 𝑖,2

𝑠
− 𝑌 𝑖,2

𝑡
)
)
𝑑𝑠

= (… ) + 𝜀(… ) + 𝜀2𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

[ (
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
)
×

×
(1
2

( �̄�𝜎𝑧𝑧𝑡
𝑎 

(1 − 𝑒−𝑎(𝑠−𝑡)) +

𝑠 

∫
𝑡 

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑊 𝜇

𝑢

)2
+ (𝑌 𝑖,2

𝑠
− 𝑌 𝑖,2

𝑡
)
)

+
⎛⎜⎜⎝
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) +

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠×
×
(
−
�̄�𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) −

𝑠 

∫
𝑡 

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑊 𝜇

𝑢

)]
𝑑𝑠

= (… ) + 𝜀(… ) + 𝜀2𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

[ (
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
)
×
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×
( �̄�2𝜎2

𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)2
𝑑𝑢+

𝑠 

∫
𝑡 
𝑙𝑖,2
𝑢
𝑑𝑢+

𝑠 

∫
𝑡 
𝑛𝑖,1
𝑢
𝑑𝑊 𝐷

𝑢

)

−
⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠
]
𝑑𝑠.

Recall that 𝑛𝑖,2
𝑡

= − �̄�

𝜎𝐷
𝑝𝑚1

𝑡
𝑚
𝑖,1
𝑡

and 𝑙𝑖,2
𝑡

= −�̄��̄� ⋅ 𝑝𝑚1
𝑡
𝑚
𝑖,1
𝑡

− 1
2 (𝑚

𝑖,1
𝑡
)2 + 1

2
∑𝑁

𝑗=1
�̄�

𝛼𝑗
(𝑚𝑗,1

𝑡
)2, where 𝑚𝑖,1

𝑡
= 𝑎𝑖

𝑚
𝑡+ 𝑏𝑖

𝑚
and 𝑝𝑚1

𝑡
=𝐺𝐷𝑡 +𝐹 for 

some constants 𝑎𝑖
𝑚
, 𝑏𝑖
𝑚
,𝐹 ,𝐺.

The term of order 𝜀2 in 𝐸𝑡 ∫ ∞
𝑡

(𝐷𝑠 −𝐷𝑡)𝑀𝑖
𝑠
𝑑𝑠 can be rewritten as

𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

[ (
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
)
×

×
( �̄�2𝜎2

𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢

− �̄��̄�

𝑠 

∫
𝑡 
𝑝𝑚1

𝑢
𝑚𝑖,1
𝑢
𝑑𝑢+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢− �̄�

𝜎𝐷

𝑠 

∫
𝑡 
𝑝𝑚1

𝑢
𝑚𝑖,1
𝑢
𝑑𝑊 𝐷

𝑢

)

−
⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠
]
𝑑𝑠

=𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

[ (
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
)
×

×
( �̄�2𝜎2

𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢

− �̄��̄�

𝑠 

∫
𝑡 
(𝐺(𝐷𝑢 −𝐷𝑡) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢+

1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢− �̄�

𝜎𝐷

𝑠 

∫
𝑡 
(𝐺(𝐷𝑢 −𝐷𝑡) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑊

𝐷
𝑢

)

−
⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠
]
𝑑𝑠

=𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

[ (
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
)
×

×
( �̄�2𝜎2

𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢

− �̄��̄�

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢

+ 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢− �̄�

𝜎𝐷

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑊

𝐷
𝑢

)

−
⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠
]
𝑑𝑠.
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Using Lemma D.3, this integral becomes

𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

𝜇𝐷(𝑠− 𝑡)×

×
( �̄�2𝜎2

𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢

+ 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢− �̄��̄�

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢

− �̄�

𝜎𝐷

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑊

𝐷
𝑢

)
𝑑𝑠

+𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)×

×
( �̄�2𝜎2

𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢

+ 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢− �̄��̄�

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢

− �̄�

𝜎𝐷

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) +𝐺𝜎𝐷(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑊

𝐷
𝑢

)
𝑑𝑠

−𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
×

⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠𝑑𝑠
= 𝜇𝐷

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

( �̄�2𝜎2
𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢

−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢

)
𝑑𝑠

−

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠𝑑𝑠
− �̄�𝜎2

𝐷

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

[ �̄�2𝜎2
𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢

−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢− �̄��̄�

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢

]
𝑑𝑠

− �̄�

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(1 + �̄�2𝜎2

𝐷
(𝑠− 𝑡))

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢𝑑𝑠

− 𝜎𝐷�̄�𝐺𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)×
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×
[
�̄�𝜎𝐷

𝑠 

∫
𝑡 
(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
)𝑚𝑖,1

𝑢
𝑑𝑢+

𝑠 

∫
𝑡 
(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
)𝑚𝑖,1

𝑢
𝑑𝑊 𝐷

𝑢

]
𝑑𝑠.

We can compute the last expectation using Lemma D.5:

− 𝜎𝐷�̄�𝐺𝐸𝑡

∞ 

∫
𝑡 

exp
{
− 𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
}
(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)×

×
[
�̄�𝜎𝐷

𝑠 

∫
𝑡 
(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
)𝑚𝑖,1

𝑢
𝑑𝑢+

𝑠 

∫
𝑡 
(𝑊𝐷

𝑢
−𝑊𝐷

𝑡
)𝑚𝑖,1

𝑢
𝑑𝑊 𝐷

𝑢

]
𝑑𝑠

= 1
6
�̄�𝜎2

𝐷
�̄�𝐺

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)2(3𝑏𝑖

𝑚
+ 2𝑎𝑖

𝑚
𝑠+ 𝑎𝑖

𝑚
𝑡)𝑑𝑠.

Summing up all terms, we get that the term of order 𝜀2 of the price of the asset is

𝐷𝑡

⎛⎜⎜⎝
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

[ �̄�2𝜎2
𝑧

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2 − �̄�

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2
]
𝑑𝑢𝑑𝑠

⎞⎟⎟⎠
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

( �̄�2𝜎2
𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢

−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢

)
𝑑𝑠

−

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠𝑑𝑠
− �̄�

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) + 𝐹 +𝐺𝐷𝑡)𝑚𝑖,1𝑢 𝑑𝑢𝑑𝑠

+ 1
6
�̄�𝜎2

𝐷
�̄�𝐺

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)2(3𝑏𝑖

𝑚
+ 2𝑎𝑖

𝑚
𝑠+ 𝑎𝑖

𝑚
𝑡)𝑑𝑠

=𝐷𝑡
⎛⎜⎜⎝

�̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

[ �̄�2𝜎2
𝑧

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2
]
𝑑𝑢𝑑𝑠

⎞⎟⎟⎠
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

( �̄�2𝜎2
𝑧
𝑧2
𝑡

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 + 1

2

𝑠 

∫
𝑡 

�̄�2𝜎2
𝑧

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢

−

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢

)
𝑑𝑠

−

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝
�̄�𝜎2

𝑧
𝑧2
𝑡

𝑎2
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 

𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))

(
�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢)) −𝑚𝑖,1

𝑢

)
𝑑𝑢

⎞⎟⎟⎠𝑑𝑠
− �̄�

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) + 𝐹 )𝑚𝑖,1𝑢 𝑑𝑢𝑑𝑠

+ 1
6
�̄�𝜎2

𝐷
�̄�𝐺

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)2(3𝑏𝑖

𝑚
+ 2𝑎𝑖

𝑚
𝑠+ 𝑎𝑖

𝑚
𝑡)𝑑𝑠
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An explicit calculation shows that the terms that depend on the choice of the agent 𝑖 sum up to zero:

− (𝜇𝐷 − �̄�𝜎2
𝐷
)

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

𝑠 

∫
𝑡 

�̄�𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢𝑑𝑠

+
𝜎𝑧

𝑎 

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑚𝑖,1

𝑢
𝑑𝑢𝑑𝑠− �̄�

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 
(𝐺𝜇𝐷(𝑢− 𝑡) + 𝐹 )𝑚𝑖,1𝑢 𝑑𝑢𝑑𝑠

+ 1
6
�̄�𝜎2

𝐷
�̄�𝐺

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)2(3𝑏𝑖

𝑚
+ 2𝑎𝑖

𝑚
𝑠+ 𝑎𝑖

𝑚
𝑡)𝑑𝑠 = 0.

Hence, the term of order 𝜀2 of the price of the asset 𝑃𝑡 is

𝐷𝑡

⎛⎜⎜⎝
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

𝑠 

∫
𝑡 

[ �̄�2𝜎2
𝑧

2𝑎2
(1 − 𝑒−𝑎(𝑠−𝑢))2 + 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
(𝑚𝑗,1

𝑢
)2
]
𝑑𝑢𝑑𝑠

⎞⎟⎟⎠
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)
�̄�2𝜎2

𝑧

2𝑎2

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

(
𝑧2
𝑡
(1 − 𝑒−𝑎(𝑠−𝑡))2 +

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢

)
𝑑𝑠

+ (𝜇𝐷 − �̄�𝜎2
𝐷
) 1
2

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(𝑠− 𝑡)

( 𝑁∑
𝑗=1 

�̄�

𝛼𝑗

𝑠 

∫
𝑡 
(𝑚𝑗,1

𝑢
)2𝑑𝑢

)
𝑑𝑠

−
�̄�𝜎2

𝑧

𝑎2

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

⎛⎜⎜⎝𝑧2𝑡 (1 − 𝑒−𝑎(𝑠−𝑡))2 +
𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))2𝑑𝑢

⎞⎟⎟⎠𝑑𝑠
=𝐷𝑡

( �̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧2
𝑡
+
�̄�2𝜎2

𝑧

2𝑎2

(
1 
�̄�2

− 3 
2𝑎�̄�

+ 2 
𝑎(𝑎+ �̄�)

− 1 
2𝑎(2𝑎+ �̄�)

)
+ 1

2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡

)
−
�̄�𝜎2

𝑧

𝑎2

(
𝑧2
𝑡

(1
�̄�
− 2 
𝑎+ �̄�

+ 1 
2𝑎+ �̄�

)
+ 1 
�̄�2

− 3 
2𝑎�̄�

+ 2 
𝑎(𝑎+ �̄�)

− 1 
2𝑎(2𝑎+ �̄�)

)
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)
�̄�2𝜎2

𝑧

2𝑎2

(
𝑧2
𝑡

(
1 
�̄�2

− 2 
(𝑎+ �̄�)2

+ 1 
(2𝑎+ �̄�)2

)
+ 2 
�̄�3

− 3 
2𝑎�̄�2

+ 2 
𝑎(𝑎+ �̄�)2

− 1 
2𝑎(2𝑎+ �̄�)2

)
+ (𝜇𝐷 − �̄�𝜎2

𝐷
) 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐿

𝑡

=
�̄�2𝜎2

𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
𝐷𝑡 +

1
2

(
𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐶

𝑡

)
𝐷𝑡 −

2�̄�𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
+ (𝜇𝐷 − �̄�𝜎2

𝐷
)
�̄�2𝜎2

𝑧

2𝑎2

(
𝑧2
𝑡

(
1 
�̄�2

− 2 
(𝑎+ �̄�)2

+ 1 
(2𝑎+ �̄�)2

)
+ 2 
�̄�3

− 3 
2𝑎�̄�2

+ 2 
𝑎(𝑎+ �̄�)2

− 1 
2𝑎(2𝑎+ �̄�)2

)
+ (𝜇𝐷 − �̄�𝜎2

𝐷
) 1
2

𝑁∑
𝑗=1 

�̄�

𝛼𝑗
𝑀

𝑗,𝐿

𝑡
.

Appendix E. Deriving (B.7), (B.8), (B.9), (B.10) and other proofs

Recall that the dividend process equals

𝐷𝑠 =𝐷𝑡 + 𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
) + 𝜀

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) + 𝜀

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
.

Therefore,

𝐶𝑖
𝑡
=𝐸𝑡

∞ 

∫
𝑡 

exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + (𝑌 𝑖
𝑠
− 𝑌 𝑖

𝑡
)}𝑑𝑠
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=𝐸𝑡

∞ 

∫
𝑡 

⎛⎜⎜⎝1 − 𝜀�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − 𝜀�̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+ 𝜀

𝑠 

∫
𝑡 
𝑚𝑖,1
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠ exp{−𝛽(𝑠− 𝑡)
− �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠+ 𝑜(𝜀)

= 1
�̄�
− 𝜀�̄�

𝜎𝑧

𝑎 
𝑧𝑡𝐸𝑡

∞ 

∫
𝑡 

(
1 − 𝑒−𝑎(𝑠−𝑡)

)
exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠+ 𝑜(𝜀)

= 1
�̄�
− 𝜀�̄�

𝜎𝑧

𝑎 
𝑧𝑡𝐸𝑡

∞ 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑡)) exp{−�̄�(𝑠− 𝑡)}𝑑𝑠+ 𝑜(𝜀) = 1

�̄�
− 𝜀�̄� 1 

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡 + 𝑜(𝜀).

Similarly,

𝐿𝑖
𝑡
=𝐸𝑡

∞ 

∫
𝑡 
𝑠 ⋅ exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + (𝑌 𝑖

𝑠
− 𝑌 𝑖

𝑡
)}𝑑𝑠

=𝐸𝑡

∞ 

∫
𝑡 
𝑠 ⋅

⎛⎜⎜⎝1 − 𝜀�̄�
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) − 𝜀�̄�

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+ 𝜀

𝑠 

∫
𝑡 
𝑚𝑖
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠ exp{−𝛽(𝑠− 𝑡)
− �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠+ 𝑜(𝜀)

= 1
�̄�
⋅ 𝑡+ 1 

�̄�2
− 𝜀�̄�

𝜎𝑧

𝑎 
𝑧𝑡𝐸𝑡

∞ 

∫
𝑡 
𝑠 ⋅

(
1 − 𝑒−𝑎(𝑠−𝑡)

)
exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠+ 𝑜(𝜀)

= 1
�̄�
⋅ 𝑡+ 1 

�̄�2
− 𝜀�̄�

𝜎𝑧

𝑎 
𝑧𝑡𝐸𝑡

∞ 

∫
𝑡 
𝑠 ⋅ (1 − 𝑒−𝑎(𝑠−𝑡)) exp{−�̄�(𝑠− 𝑡)}𝑑𝑠+ 𝑜(𝜀)

= 1
�̄�
⋅ 𝑡+ 1 

�̄�2
− 𝜀�̄�

(
1 

�̄�(𝑎+ �̄�)
𝑡+ 𝑎+ 2�̄�

�̄�2(𝑎+ �̄�)2

)
𝜎𝑧𝑧𝑡 + 𝑜(𝜀)

and

𝑃𝑡 =𝐸𝑡

∞ 

∫
𝑡 
𝐷𝑠 ⋅ exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + (𝑌 𝑖

𝑠
− 𝑌 𝑖

𝑡
)}𝑑𝑠

=𝐷𝑡 ⋅𝐶𝑖𝑡 +𝐸𝑡

∞ 

∫
𝑡 
(𝐷𝑠 −𝐷𝑡) ⋅ exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + (𝑌 𝑖

𝑠
− 𝑌 𝑖

𝑡
)}𝑑𝑠

=𝐷𝑡 ⋅𝐶𝑖𝑡 +𝐸𝑡

∞ 

∫
𝑡 

[
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
) + 𝜀

𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) + 𝜀

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢

− 𝜀�̄�
(
𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)
) ⎛⎜⎜⎝
𝜎𝑧𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) +

𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢
+

𝑠 

∫
𝑡 
𝑚𝑖
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠
]
⋅

⋅ exp{−𝛽(𝑠− 𝑡) − �̄�(𝜇𝐷(𝑠− 𝑡) + 𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
))}𝑑𝑠+ 𝑜(𝜀)

=𝐷𝑡 ⋅𝐶𝑖𝑡 +

∞ 

∫
𝑡 

[
(𝜇𝐷 − �̄�𝜎2

𝐷
)(𝑠− 𝑡) + 𝜀

𝜎𝑧𝑧𝑡

𝑎 
(
1 − �̄�(𝜇𝐷 − �̄�𝜎2

𝐷
)(𝑠− 𝑡)

)
(1 − 𝑒−𝑎(𝑠−𝑡))

]
𝑒−�̄�(𝑠−𝑡)𝑑𝑠+ 𝑜(𝜀)

=𝐷𝑡 ⋅𝐶𝑖𝑡 +
𝜇𝐷 − �̄�𝜎2

𝐷

�̄�2
+ 𝜀

𝜎𝑧𝑧𝑡

𝑎 

(
1
�̄�
− 1 
𝑎+ �̄�

− �̄�(𝜇𝐷 − �̄�𝜎2
𝐷
)
(

1 
�̄�2

− 1 
(𝑎+ �̄�)2

))
+ 𝑜(𝜀).

Finally,

𝐾𝑖
𝑡
=𝐸𝑡

∞ 

∫
𝑡 
(𝑌 𝑖
𝑡
+ (𝑌 𝑖

𝑠
− 𝑌 𝑖

𝑡
)) exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + (𝑌 𝑖

𝑠
− 𝑌 𝑖

𝑡
)}𝑑𝑠

= 𝑌 𝑖
𝑡
𝐶𝑖
𝑡
+𝐸𝑡

∞ 

∫
𝑡 
(𝑌 𝑖
𝑠
− 𝑌 𝑖

𝑡
) exp{−𝛽(𝑠− 𝑡) − �̄�(𝐷𝑠 −𝐷𝑡) + (𝑌 𝑖

𝑠
− 𝑌 𝑖

𝑡
)}𝑑𝑠
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= 𝜀1
�̄�
𝑌
𝑖,1
𝑡

+ 𝜀𝐸𝑡

∞ 

∫
𝑡 

⎛⎜⎜⎝
𝑠 

∫
𝑡 
𝑚𝑖
𝑢
𝑑𝑊 𝜇

𝑢

⎞⎟⎟⎠ exp{−𝛽(𝑠− 𝑡) − �̄�𝜇𝐷(𝑠− 𝑡) − �̄�𝜎𝐷(𝑊𝐷
𝑠

−𝑊𝐷
𝑡
)}𝑑𝑠+ 𝑜(𝜀)

= 𝜀1
�̄�
𝑌
𝑖,1
𝑡

+ 𝑜(𝜀).

Proof of Proposition 3.3. Follows from a direct calculation from Theorem 3.2. □

Proof of Proposition 3.4. Recall that the interest rate is the negative drift of each agent’s marginal utility of optimal consumption, 
i.e.,

𝑟𝑡 = 𝛽 + �̄�(𝜇𝐷 + 𝜀𝜎𝑧𝑧𝑡) −
1
2
�̄�2𝜎2

𝐷
− 𝑙𝑖

𝑡
− 1

2
(𝑚𝑖

𝑡
)2 − 1

2
(𝑛𝑖
𝑡
)2 + �̄�𝜎𝐷𝑛𝑖𝑡,

where 𝑙𝑖
𝑡
= 𝑙𝑖,2

𝑡
𝜀2 + 𝑙𝑖,3

𝑡
𝜀3 + 𝑜(𝜀3), 𝑚𝑖

𝑡
=𝑚𝑖,1

𝑡
𝜀+𝑚𝑖,2

𝑡
𝜀2 +𝑚𝑖,3

𝑡
𝜀3 + 𝑜(𝜀3) and 𝑛𝑖

𝑡
= 𝑛𝑖,2

𝑡
𝜀2 + 𝑛𝑖,3

𝑡
𝜀3 + 𝑜(𝜀3). 

All agents must agree on the equilibrium interest rate 𝑟𝑡 . Therefore, −𝑙𝑖
𝑡
− 1

2 (𝑚
𝑖
𝑡
)2 − 1

2 (𝑛
𝑖
𝑡
)2 + �̄�𝜎𝐷𝑛𝑖𝑡 = 𝑔𝑡, for some 𝑔𝑡 = 𝑔0𝑡 +𝑔

1
𝑡
𝜀+𝑔2

𝑡
𝜀2 +

𝑔3
𝑡
𝜀3 + 𝑜(𝜀3) independent of 𝑖. By equating the terms of order 𝜀3 and using 𝑛𝑖,1

𝑡
= 0, it follows that

−𝑙𝑖,3
𝑡

−𝑚𝑖,1
𝑡
𝑚
𝑖,2
𝑡

+ �̄�𝜎𝐷𝑛
𝑖,3
𝑡

= 𝑔3
𝑡
.

Recall that 
∑𝑛

𝑖=1
1 
𝛼𝑖
𝑙
𝑖,3
𝑡

=
∑𝑛

𝑖=1
1 
𝛼𝑖
𝑚
𝑖,3
𝑡

=
∑𝑛

𝑖=1
1 
𝛼𝑖
𝑛
𝑖,3
𝑡

= 0. Hence,

1 
�̄�
𝑔3
𝑡
=

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑔3
𝑡
= −

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑙
𝑖,3
𝑡

−
𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑚
𝑖,1
𝑡
𝑚
𝑖,2
𝑡

+ �̄�𝜎𝐷
𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑛
𝑖,3
𝑡

= −
𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑚
𝑖,1
𝑡
𝑚
𝑖,2
𝑡
.

Therefore, at the third order, the equilibrium interest rate is

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 −
1
2
𝜀2

𝑛 ∑
𝑖=1 

�̄�

𝛼𝑖
(𝑚𝑖,1

𝑡
)2 − 𝜀3

𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑚
𝑖,1
𝑡
𝑚
𝑖,2
𝑡

+ 𝑜(𝜀3).

Recall that 𝑚𝑖,2
𝑡

= 𝛼𝑖�̄�𝑞𝑚
𝑖,2
𝑡

− �̄� 𝑑⟨𝑌 𝑖,1𝐶𝑖,1 ,𝑊 𝜇⟩𝑡
𝑑𝑡 , where 𝐶𝑖,1

𝑡
= −�̄�𝜎𝑧

1 
�̄�(𝑎+�̄�)𝑧𝑡 and 𝑌 𝑖,1

𝑡
= ∫ 𝑡0 𝑚𝑖,1𝑠 𝑑𝑊 𝜇

𝑠 . Hence,

𝑑⟨𝑌 𝑖,1𝐶𝑖,1,𝑊 𝜇⟩𝑡
𝑑𝑡 

= −�̄�𝜎𝑧
1 

�̄�(𝑎+ �̄�)
(𝑌 𝑖,1
𝑡

+𝑚𝑖,1
𝑡
𝑧𝑡).

Homogeneous time-preferences (𝛽𝑖 = 𝛽 for all 𝑖) yield

𝑞𝑚
𝑖,2
𝑡

=
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)[
2�̄�

�̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)
𝑧𝑡 − �̄�2

�̄�2

�̄�2(𝑎+ �̄�)2
𝜎2
𝑧
𝑧0

]
and 𝑌 𝑖,1

𝑡
= −𝛼𝑖

�̄�𝜎𝑧

𝑎+�̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�𝑊

𝜇

𝑡
. Therefore, the term of order 𝜀3 in the equilibrium rate is

−
𝑛 ∑
𝑖=1 

1 
𝛼𝑖
𝑚
𝑖,1
𝑡
𝑚
𝑖,2
𝑡

=
𝑛 ∑
𝑖=1 

�̄�𝜎𝑧

𝑎+ �̄�

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
�̄�

(
𝛼𝑖�̄�𝑞𝑚

𝑖,2
𝑡

− �̄�
𝑑⟨𝑌 𝑖,1𝐶𝑖,1,𝑊 𝜇⟩𝑡

𝑑𝑡 

)

=
�̄�3𝜎3

𝑧

(𝑎+ �̄�)3
�̄�2

(
�̄�

2𝑎+ �̄�
𝑧𝑡 − 𝑧0 −𝑊

𝜇

𝑡

) 𝑛 ∑
𝑖=1 

𝛼𝑖

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)2
,

which proves the claim. □

Proof of Proposition 4.1. The result is a particular case of Proposition 4.2. □

Proof of Proposition 4.2. Assuming correlation 𝜌 between 𝑊𝐷 and 𝑊 𝜇 , i.e., 𝑊 𝜇

𝑡
= 𝜌𝑊 𝐷

𝑡
+
√
1 − 𝜌2�̃� 𝜇

𝑡
with 𝑊𝐷 and �̃� 𝜇 inde-

pendent, the same arguments as in Theorem C.3 lead to the stock process

𝑃𝑡 =𝐷𝑡
(
1
�̄�
+ �̄�𝜎𝐷𝜀�̄�𝜎𝑧

1 
�̄�2(𝑎+ �̄�)

𝜌− 𝜀�̄�𝜎𝑧
1 

�̄�(𝑎+ �̄�)
𝑧𝑡

)
− 𝜀�̄� 2 

�̄�2(𝑎+ �̄�)
𝜎𝐷𝜌𝜎𝑧 + 𝜀

1 
�̄�(𝑎+ �̄�)

𝜎𝑧𝑧𝑡

+
[
1 
�̄�2

− �̄�𝜎𝑧𝜀
𝑧𝑡

𝑎 
( 1 
�̄�2

− 1 
(𝑎+ �̄�)2

) + �̄�2

𝑎 
𝜀𝜎𝑧(

2 
�̄�3

− 1 
𝑎�̄�2

+ 1 
𝑎(𝑎+ �̄�)2

)𝜌𝜎𝐷
]
⋅ (𝜇𝐷 − �̄�𝜎2

𝐷
) + 𝑜(𝜀)

and interest rate 𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡 + 𝑜(𝜀). Recall that
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𝐷𝑡 =𝐷𝑠 + 𝜇𝐷(𝑡− 𝑠) + 𝜎𝐷(𝑊𝐷
𝑡

−𝑊𝐷
𝑠
) + 𝜀

𝜎𝑧𝑧𝑠

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠)) + 𝜀

𝜎𝑧

𝑎 

𝑡 

∫
𝑠 

(1 − 𝑒−𝑎(𝑡−𝑢))[𝜌𝑑𝑊 𝐷
𝑢

+
√
1 − 𝜌2𝑑�̃� 𝜇

𝑢
],

𝑧𝑡 = 𝑧𝑠𝑒−𝑎(𝑡−𝑠) +

𝑡 

∫
𝑠 
𝑒−𝑎(𝑡−𝑢)[𝜌𝑑𝑊 𝐷

𝑢
+
√
1 − 𝜌2𝑑�̃� 𝜇

𝑢
]

Therefore,

𝐸[𝑃𝑡𝑒− ∫ 𝑡
𝑠
𝑟𝑢𝑑𝑢|𝑠] = 𝑒−�̄�(𝑡−𝑠)[𝐷𝑠 + 𝜇𝐷(𝑡− 𝑠)](1

�̄�
+ �̄�𝜎𝐷𝜀�̄�𝜎𝑧

1 
�̄�2(𝑎+ �̄�)

𝜌− 𝜀�̄�𝜎𝑧
1 

�̄�(𝑎+ �̄�)
𝑧𝑠𝑒

−𝑎(𝑡−𝑠)
)

− 𝜀�̄�𝜎𝑧
1 

�̄�(𝑎+ �̄�)
𝜎𝐷𝑒

−�̄�(𝑡−𝑠)𝜌
1 − 𝑒−𝑎(𝑡−𝑠)

𝑎 
+ 𝜀𝑒−�̄�(𝑡−𝑠)

𝜎𝑧𝑧𝑠

𝑎 
(1 − 𝑒−𝑎(𝑡−𝑠)) 1

�̄�

+ 𝑒−�̄�(𝑡−𝑠)
(

− 𝜀�̄� 2 
�̄�2(𝑎+ �̄�)

𝜎𝐷𝜌𝜎𝑧 + 𝜀
1 

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑠𝑒

−𝑎(𝑡−𝑠)

+
[ 1 
�̄�2

− 𝑧𝑠𝑒−𝑎(𝑡−𝑠)�̄�𝜎𝑧𝜀
1 
𝑎
( 1 
�̄�2

− 1 
(𝑎+ �̄�)2

) + �̄�2

𝑎 
𝜀𝜎𝑧(

2 
�̄�3

− 1 
𝑎�̄�2

+ 1 
𝑎(𝑎+ �̄�)2

)𝜌𝜎𝐷
]
× (𝜇𝐷 − �̄�𝜎2

𝐷
)

)

− 𝜀�̄�𝜎𝑧

(
1
�̄�
(𝐷𝑠 + 𝜇𝐷(𝑡− 𝑠)) +

1 
�̄�2
(𝜇𝐷 − �̄�𝜎2

𝐷
)

)
𝑒−�̄�(𝑡−𝑠)

𝑧𝑠

𝑎 
(
1 − 𝑒−𝑎(𝑡−𝑠)

)
− 𝜀�̄�𝜌𝜎𝑧

1
�̄�
𝜎𝐷𝑒

−�̄�(𝑡−𝑠) 1 
𝑎

(
𝑡− 𝑠− 1 − 𝑒−𝑎(𝑡−𝑠)

𝑎 

)
and

𝐸

⎡⎢⎢⎣
𝑡 

∫
𝑠 
𝐷𝑢𝑒

− ∫ 𝑢
𝑠
𝑟𝑙𝑑𝑙𝑑𝑢|𝑠⎤⎥⎥⎦ = −𝜀𝜌�̄�𝜎𝑧

𝜎𝐷

𝑎 
[−𝑒−�̄�(𝑡−𝑠) 1

�̄�
(𝑡− 𝑠) − 𝑒−(𝑎+�̄�)(𝑡−𝑠) 1 

𝑎(𝑎+ �̄�)
+ 𝑎 
�̄�2(𝑎+ �̄�)

+ �̄�− 𝑎
𝑎�̄�2

𝑒−�̄�(𝑡−𝑠)]

+𝐷𝑠
1 − 𝑒−�̄�(𝑡−𝑠)

�̄�
+ 𝜇𝐷

1 − 𝑒−�̄�(𝑡−𝑠) − �̄�𝑒−�̄�(𝑡−𝑠)(𝑡− 𝑠)
�̄�2

+ 𝜀
𝜎𝑧𝑧𝑠

𝑎 

(
1 − 𝑒−�̄�(𝑡−𝑠)

�̄�
− 1 − 𝑒−(𝑎+�̄�)(𝑡−𝑠)

𝑎+ �̄�

)
− 𝜀

(
𝐷𝑠

1 − 𝑒−�̄�(𝑡−𝑠)
�̄�

+ 𝜇𝐷
1 − 𝑒−�̄�(𝑡−𝑠) − �̄�𝑒−�̄�(𝑡−𝑠)(𝑡− 𝑠)

�̄�2

)
�̄�

𝑎 
𝜎𝑧𝑧𝑠

+ 𝜀
(
𝐷𝑠

1 − 𝑒−(𝑎+�̄�)(𝑡−𝑠)
𝑎+ �̄�

+ 𝜇𝐷
1 − 𝑒−(𝑎+�̄�)(𝑡−𝑠) − (𝑎+ �̄�)𝑒−(𝑎+�̄�)(𝑡−𝑠)(𝑡− 𝑠)

(𝑎+ �̄�)2

)
�̄�

𝑎 
𝜎𝑧𝑧𝑠 + 𝑜(𝜀).

Combining the expressions in 𝐸[𝑃𝑡𝑒− ∫ 𝑡
𝑠
𝑟𝑢𝑑𝑢 + ∫ 𝑡

𝑠
𝐷𝑢𝑒

− ∫ 𝑢
𝑠
𝑟𝑙𝑑𝑙𝑑𝑢|𝑠] − 𝑃𝑠 yields the result. 

To find the expected total return of the consol bond, notice that 𝐶𝑡 =
1
�̄�
− 𝜀�̄�𝜎𝑧

1 
�̄�(𝑎+�̄�)𝑧𝑡 + 𝜀�̄�

2𝜎𝐷𝜎𝑧
1 

�̄�2(𝑎+�̄�)𝜌. Then

𝐸𝑠,𝑡𝐶 = −𝜀�̄�2𝜎𝐷𝜎𝑧
1 

�̄�2(𝑎+ �̄�)
𝜌(1 − 𝑒−�̄�(𝑡−𝑠)) + 𝑜(𝜀) □

Sketch of proof of Theorem 4.3. The rigorous proof follows the same lines as the proof of Theorem 2.1. Here we present the formal 
derivation of the equilibrium.

Solving the first-order condition

𝑒−𝛽𝑖𝑡−𝛼𝑖𝑐
𝑖
𝑡 = 𝑦𝑖𝑀𝑡,

for the consumption rate 𝑐𝑖
𝑡
, and aggregating across agents, it follows that

log𝑀𝑡 = −𝛽𝑡− �̄�𝟏⊤𝐷𝑡 − �̄�
𝑛 ∑
𝑖=1 

log𝑦𝑖
𝛼𝑖

,

whence, up to a multiplicative constant, 𝑀𝑡 = exp{−𝛽𝑡− �̄�𝟏⊤(𝐷𝑡 −𝐷0)} and hence

𝑐𝑖
𝑡
=
𝛽 − 𝛽𝑖
𝛼𝑖

𝑡+ �̄�

𝛼𝑖
𝟏⊤(𝐷𝑡 −𝐷0) −

log𝑦𝑖
𝛼𝑖

.

The dynamics of 𝑀𝑡 implies the equilibrium interest rate

𝑟 = 𝛽 + �̄�𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷 −1
2
�̄�2𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏.

The price of asset 𝑗 is

Journal of Economic Theory 224 (2025) 105978 

46 



P. Guasoni and M.H. Weber 

𝑃
𝑗

𝑡
=𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 
𝐷𝑗
𝑠

𝑀𝑠

𝑀𝑡

𝑑𝑠

⎤⎥⎥⎦
=𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 
(𝐷𝑗

𝑡
+ 𝜇𝑗

𝐷
(𝑠− 𝑡) + 𝜎𝑗

𝐷
(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)) exp{−𝛽(𝑠− 𝑡) − �̄�𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷(𝑠− 𝑡) − �̄�𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
)}𝑑𝑠

⎤⎥⎥⎦
=

∞ 

∫
𝑡 
(𝐷𝑗

𝑡
+ 𝜇𝑗

𝐷
(𝑠− 𝑡) − �̄�𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎

𝑗

𝐷
(𝑠− 𝑡)) exp{−𝑟(𝑠− 𝑡)}𝑑𝑠 =

𝐷
𝑗

𝑡

𝑟 
+ 1 
𝑟2
(𝜇𝑗
𝐷
− �̄�𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎

𝑗

𝐷
),

where 𝜎𝑗
𝐷

is the j-th row of 𝜎𝐷𝜎𝐷𝜎𝐷 .

Note that 𝐸𝑡
[∫ ∞
𝑡

𝑀𝑠

𝑀𝑡
𝑑𝑠

]
= 1

𝑟 and 𝐸𝑡
[∫ ∞
𝑡
𝑠
𝑀𝑠

𝑀𝑡
𝑑𝑠

]
= 𝑡 

𝑟
+ 1 

𝑟2
. Then, from the first-order condition,

𝑋𝑖
𝑡
=
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡 
𝑟
+ 1 
𝑟2

)
+ �̄�

𝛼𝑖
𝟏⊤

(
𝑃𝑡 −

𝐷0
𝑟 

)
− 1
𝑟 
log𝑦𝑖
𝛼𝑖

and 1
𝑟 
log𝑦𝑖
𝛼𝑖

= 𝛽−𝛽𝑖
𝛼𝑖

1 
𝑟2

+ �̄�

𝛼𝑖
𝟏⊤

(
𝑃0 −

𝐷0
𝑟 
)
− 𝑥𝑖. Hence,

𝑋𝑖
𝑡
= 𝑥𝑖 +

�̄�

𝛼𝑖
𝟏⊤

(
𝑃𝑡 − 𝑃0

)
+ 𝑡
𝛽 − 𝛽𝑖
𝑟𝛼𝑖

,

𝑐𝑖
𝑡
=
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡− 1

𝑟 

)
+ �̄�

𝛼𝑖
𝟏⊤𝐷𝑡 + 𝑟

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝟏⊤𝑃0

)
,

whence 𝜃𝑖
𝑡
= �̄�

𝛼𝑖
𝟏 by inspection of the first equation above. □

Proof of Corollary 4.4. It follows immediately from Theorem 4.3:

𝑅𝑖
𝑡
∶= �̄�

𝑟2
(𝜎𝑖
𝐷
)⊤𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏 = 𝐵𝑒𝑡𝑎𝑖

�̄�

𝑟2
𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏 =𝐵𝑒𝑡𝑎𝑖𝑅𝑚𝑡 . □ (E.1)

Proof of Corollary 4.5. From the proof of Theorem 4.3 we have that 𝑋𝑖
𝑡
= 𝑥𝑖 +

�̄�

𝛼𝑖
𝟏⊤

(
𝑃𝑡 − 𝑃0

)
+ 𝑡 𝛽−𝛽𝑖

𝑟𝛼𝑖
. Hence, for large 𝑡, the 

proportion of personal wealth in the 𝑗-th risky asset is

𝜃
𝑖,𝑗

𝑡
𝑃
𝑗

𝑡

𝑋𝑖
𝑡

=
�̄�

𝛼𝑖
(𝐷

𝑗
𝑡

𝑟 +
𝜇
𝑗

𝐷
−�̄�𝜎2

𝐷

𝑟2
) 

𝑥𝑖 +
�̄�

𝛼𝑖
𝟏⊤

(
𝑃𝑡 − 𝑃0

)
+ 𝑡 𝛽−𝛽𝑖

𝑟𝛼𝑖

∼
�̄�

𝛼𝑖

𝐷
𝑗
𝑡

𝑟 
�̄�

𝛼𝑖

𝟏⊤𝐷𝑡
𝑟 + 𝑡

(
𝛽−𝛽𝑖
𝑟𝛼𝑖

) ∼
𝜇
𝑗

𝐷

𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷 + 𝛽−𝛽𝑖
�̄�

,

because in the long-run 𝐷𝑡 ≈𝜇𝐷𝜇𝐷𝜇𝐷 𝑡. Similarly, the share of aggregate wealth owned by agent 𝑖 is

𝑋𝑖
𝑡

𝟏⊤𝑃𝑡
=
𝑥𝑖 +

�̄�

𝛼𝑖
𝟏⊤

(
𝑃𝑡 − 𝑃0

)
+ 𝑡 𝛽−𝛽𝑖

𝑟𝛼𝑖

𝟏⊤𝐷𝑡
𝑟 + 𝟏⊤ 𝜇𝐷𝜇𝐷𝜇𝐷 −�̄�𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏

𝑟2

∼
�̄�

𝛼𝑖

𝟏⊤𝐷𝑡
𝑟 + 𝑡

(
𝛽−𝛽𝑖
𝑟𝛼𝑖

)
𝟏⊤𝐷𝑡
𝑟 

∼ �̄�

𝛼𝑖
+

𝛽 − 𝛽𝑖
𝛼𝑖𝟏⊤𝜇𝐷𝜇𝐷𝜇𝐷

. □

Sketch of proof of Theorem 4.6. Following the same arguments as in the one-dimensional model, it follows that 𝑟𝑡 = �̄�+𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑧𝑧𝑡. 
The present value of the 𝑖-th stock is

𝑆𝑖
𝑡
=𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 
𝑒− ∫ 𝑠

𝑡
𝑟𝑢𝑑𝑢𝐷𝑖

𝑠
𝑑𝑠

⎤⎥⎥⎦
=𝐸𝑡

[ ∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)−𝜀�̄�𝟏

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 ∫ 𝑠𝑡 𝑧𝑧𝑧𝑢 𝑑𝑢(𝐷𝑖
𝑡
+ 𝜇𝑖

𝐷
(𝑠− 𝑡) + 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡

+ 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

𝑠 

∫
𝑡 
(𝐼 − 𝑒−𝐴(𝑠−𝑢))𝐴−1𝑑𝑊 𝜇

𝑢
)𝑑𝑠

]

=𝐸𝑡
[ ∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)−𝜀�̄�𝟏

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼−𝑒−𝐴(𝑠−𝑡))𝐴−1𝑧𝑡−𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 ∫ 𝑠𝑡 (𝐼−𝑒−𝐴(𝑠−𝑢))𝐴−1𝑑𝑊𝑢 (𝐷𝑖
𝑡
+ 𝜇𝑖

𝐷
(𝑠− 𝑡)
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+ 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡+𝜀𝑒𝑖
𝑇
𝜎𝑧𝜎𝑧𝜎𝑧

𝑠 

∫
𝑡 
(𝐼 − 𝑒−𝐴(𝑠−𝑢))𝐴−1𝑑𝑊 𝜇

𝑢
)𝑑𝑠

]

=

∞ 

∫
𝑡 
𝑒
−�̄�(𝑠−𝑡)−𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼−𝑒−𝐴(𝑠−𝑡))𝐴−1𝑧𝑡+

1
2 𝜀

2 �̄�2𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝐴−1 ∫ 𝑠
𝑡
(𝐼−𝑒−𝐴(𝑠−𝑢))(𝐼−𝑒−𝐴(𝑠−𝑢))𝑇 𝑑𝑢(𝐴𝑇 )−1 𝜎𝑧𝜎𝑧𝜎𝑧𝑇 1

(
𝐷𝑖
𝑡
+ 𝜇𝑖

𝐷
(𝑠− 𝑡)

+ 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡−𝜀2�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝐴−1

𝑠 

∫
𝑡 
(𝐼 − 𝑒−𝐴(𝑠−𝑢))(𝐼 − 𝑒−𝐴(𝑠−𝑢))𝑇 𝑑𝑢(𝐴𝑇 )−1𝜎𝑧𝜎𝑧𝜎𝑧𝑇 𝑒𝑖

)
𝑑𝑠

≈

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

(
𝐷𝑖
𝑡
+ 𝜇𝑖

𝐷
(𝑠− 𝑡)

)
+ 𝜀𝑒−�̄�(𝑠−𝑡)

(
𝑒𝑖
𝑇
𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡−(𝐷𝑖

𝑡
+ 𝜇𝑖

𝐷
(𝑠− 𝑡))�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1𝑧𝑡

)
𝑑𝑠

=
𝐷𝑖
𝑡

�̄�
+
𝜇𝑖
𝐷

�̄�2
+ 𝜀

(
𝑒𝑖
𝑇
𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
𝐼 − (�̄�𝐼 +𝐴)−1

)
𝐴−1 𝑧𝑧𝑧𝑡−𝐷𝑖

𝑡
�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
𝐼 − (�̄�𝐼 +𝐴)−1

)
𝐴−1𝑧𝑡

− 𝜀𝜇𝑖
𝐷
�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

⎛⎜⎜⎝ 1 
�̄�2
𝐼 −

∞ 

∫
0 
𝑠𝑒−(�̄�𝐼+𝐴)𝑠𝑑𝑠

⎞⎟⎟⎠𝐴−1𝑧𝑡

)
.

Similar computations show that the price of the consol bond is

𝐶𝑖
𝑡
≈ 1
�̄�
− 𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
𝐼 − (�̄�𝐼 +𝐴)−1

)
𝐴−1𝑧𝑡.

Also,

𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 

𝑀𝑠

𝑀𝑡

(𝐷𝑖
𝑠
−𝐷𝑖

𝑡
)𝑑𝑠

⎤⎥⎥⎦ =𝐸𝑡
[ ∞ 

∫
𝑡 
𝑒−𝛽(𝑠−𝑡)−�̄�𝟏

𝑇 (𝐷𝑠−𝐷𝑡)+(𝑌 𝜀𝑠 −𝑌
𝜀
𝑡
)(𝐷𝑖

𝑠
−𝐷𝑖

𝑡
)𝑑𝑠

]

=𝐸𝑡
[ ∞ 

∫
𝑡 
𝑒−𝛽(𝑠−𝑡)−�̄�𝟏

𝑇 𝜇𝐷(𝑠−𝑡)−𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼−𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡 −�̄�𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷
𝑠 −𝑊𝐷

𝑡
)+𝜀 ∫ 𝑠

𝑡
(… )𝑑𝑊 𝜇

𝑢 ×

× (𝜇𝑖
𝐷
(𝑠− 𝑡) + 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡+𝑒𝑖

𝑇
𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
) + 𝜀

𝑠 

∫
𝑡 
(… )𝑑𝑊 𝜇

𝑢
)𝑑𝑠

]

≈

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)−𝜀�̄�𝟏

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼−𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡
(
𝜇𝑖
𝐷
(𝑠− 𝑡) + 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡−�̄�𝑒𝑖

𝑇
𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷

𝑇 1(𝑠− 𝑡)
)
𝑑𝑠

≈

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)

((
𝜇𝑖
𝐷
(𝑠− 𝑡) − �̄�𝑒𝑖𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏(𝑠− 𝑡)

)
(1 − 𝜀�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡)

+ 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(𝐼 − 𝑒−𝐴(𝑠−𝑡))𝐴−1 𝑧𝑧𝑧𝑡

)
𝑑𝑠

= 1 
�̄�2

(
𝜇𝑖
𝐷
− �̄�𝑒𝑖𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏

)
+ 𝜀𝑒𝑖𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
𝐼 − (�̄�𝐼 +𝐴)−1

)
𝐴−1 𝑧𝑧𝑧𝑡

− 𝜀
(
𝜇𝑖
𝐷
− �̄�𝑒𝑖𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏

)
�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

⎛⎜⎜⎝ 1 
�̄�2
𝐼 −

∞ 

∫
0 
𝑠𝑒−(�̄�𝐼+𝐴)𝑠𝑑𝑠

⎞⎟⎟⎠𝐴−1 𝑧𝑧𝑧𝑡

Hence,

𝑅𝑖
𝑡
= 𝑆𝑖

𝑡
− 𝑃 𝑖

𝑡
=
⎛⎜⎜⎝ �̄��̄�2 − 𝜀�̄�2𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

⎛⎜⎜⎝ 1 
�̄�2
𝐼 −

∞ 

∫
0 
𝑠𝑒−(�̄�𝐼+𝐴)𝑠𝑑𝑠

⎞⎟⎟⎠𝐴−1 𝑧𝑧𝑧𝑡

⎞⎟⎟⎠ 𝑒𝑖𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏
𝑅𝑚
𝑡
= 𝟏𝑇 (𝑆𝑡 − 𝑃𝑡) =

⎛⎜⎜⎝ �̄��̄�2 − 𝜀�̄�2𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
⎛⎜⎜⎝ 1 
�̄�2
𝐼 −

∞ 

∫
0 
𝑠𝑒−(�̄�𝐼+𝐴)𝑠𝑑𝑠

⎞⎟⎟⎠𝐴−1 𝑧𝑧𝑧𝑡

⎞⎟⎟⎠𝟏𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏.
Therefore,
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𝑅𝑖
𝑡
=

(𝜎𝑖
𝐷
)𝑇𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏

𝟏𝑇𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 𝟏 
𝑅𝑚
𝑡
.

To compute the market beta of each asset, recall that 𝑊 𝐷 and 𝑊 𝜇 are independent Brownian motions, hence 𝑑⟨𝐷𝑖, 𝑧𝑗⟩𝑡 = 0 for any 
𝑖, 𝑗 and

𝑑⟨𝑃 𝑖,𝑃 𝑗⟩𝑡 = ( 1 
�̄�2

− 2𝜀1
�̄�
�̄�𝟏𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
𝐼 − (�̄�𝐼 +𝐴)−1

)
𝐴−1 𝑧𝑧𝑧

)
𝑒𝑖
𝑇
𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷

𝑇 𝑒𝑗𝑑𝑡+ 𝑜(𝜀).

As 𝑃𝑚 = 𝟏𝑇 𝑃 , it follows that

𝐵𝑒𝑡𝑎𝑖 ∶=
𝑑⟨𝑃 𝑖,𝑃 𝑚⟩𝑡
𝑑⟨𝑃𝑚⟩𝑡 =

(𝜎𝑖
𝐷
)⊤𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏

𝟏⊤𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷⊤𝟏 
. □

Proof of Theorem 4.7. The result follows from similar computations as in the sketch of the proof of Theorem 4.6. □

Proof of Proposition 4.8. Similar computations as in the sketch of the proof of Theorem 4.6 lead to the following expression for 
the vector of stock prices at first order:

𝑃𝑡 =𝐷𝑡
(
1
�̄�
+ �̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷 𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

1 
�̄�2(𝑎+ �̄�)

𝜌𝜌𝜌−𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
1 

�̄�(𝑎+ �̄�)
𝑧𝑡

)
− 𝜀�̄� 1 

�̄�2(𝑎+ �̄�)
[
𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌𝜎𝑧𝜎𝑧𝜎𝑧

𝑇 1 +𝜎𝑧𝜎𝑧𝜎𝑧 𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1
]
+ 𝜀 1 

�̄�(𝑎+ �̄�)
𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

+
[
1 
�̄�2

− �̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝜀
𝑧𝑡

𝑎 
( 1 
�̄�2

− 1 
(𝑎+ �̄�)2

) + �̄�2

𝑎 
𝜀1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧(

2 
�̄�3

− 1 
𝑎�̄�2

+ 1 
𝑎(𝑎+ �̄�)2

)𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1
]
×

× ( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1).

Differentiating this expression yields the dynamics of 𝑃𝑡. □

Proof of Corollary 4.9. The correlation follows explicitly from the dynamics of the stock price in Proposition 4.8. □

Proof of Proposition 4.10. The vector of stock prices is of the form

𝑃𝑡 =𝐷𝑡 ⋅ (𝑓 + 𝑔𝑧𝑡 + ℎ𝑧2𝑡 ) + (a+b𝑧𝑡 + c𝑧2
𝑡
),

for some scalars 𝑓, 𝑔,ℎ and vectors a,b,c, where 𝑔, b are of order 𝜀 and ℎ, c of order 𝜀2. Hence,

𝑑𝑃𝑡 = (… )𝑑𝑡+ (𝑓 + 𝑔𝑧𝑡 + ℎ𝑧2𝑡 )𝑑𝐷𝑡 + [𝐷𝑡 ⋅ (𝑔 + 2ℎ𝑧𝑡) + (b+2c𝑧𝑡)]𝑑𝑧𝑡,

and

𝑑⟨𝑃 ,𝑃 ⟩𝑡
𝑑𝑡 

= (𝑓 + 𝑔𝑧𝑡 + ℎ𝑧2𝑡 )
2Σ𝐷 + (𝑓 + 𝑔𝑧𝑡 + ℎ𝑧2𝑡 )𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌[𝐷𝑡 ⋅ (𝑔 + 2ℎ𝑧𝑡) + (b+2c𝑧𝑡)]𝑇

+ (𝑓 + 𝑔𝑧𝑡 + ℎ𝑧2𝑡 )[𝐷𝑡 ⋅ (𝑔 + 2ℎ𝑧𝑡) + (b+2c𝑧𝑡)]𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇

+ [𝐷𝑡 ⋅ (𝑔 + 2ℎ𝑧𝑡) + (b+2c𝑧𝑡)][𝐷𝑡 ⋅ (𝑔 + 2ℎ𝑧𝑡) + (b+2c𝑧𝑡)]𝑇 ,

where Σ𝐷 = 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 . Notice that lim𝜀↓0 𝑓 = 1
�̄�
. From

𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

⎤⎥⎥⎦ ≈𝐸𝑡
[ ∞ 

∫
𝑡 
𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 (𝐷𝑠−𝐷𝑡)+𝜀(𝑌
𝑖,1
𝑠 −𝑌 𝑖,1

𝑡
)+𝜀2(𝑌 𝑖,2𝑠 −𝑌 𝑖,2

𝑡
)𝑑𝑠

]

=𝐸𝑡
[ ∞ 

∫
𝑡 
𝑒
−𝛽(𝑠−𝑡)−�̄�1𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷

𝑠 −𝑊𝐷
𝑡
)−𝜀�̄�1𝑇( 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 (1−𝑒−𝑎(𝑠−𝑡))+ 𝜎𝑧𝜎𝑧𝜎𝑧
𝑎 ∫ 𝑠𝑡 (1−𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢 )+𝜀(𝑌 𝑖,1𝑠 −𝑌 𝑖,1
𝑡

)+𝜀2(𝑌 𝑖,2𝑠 −𝑌 𝑖,2
𝑡

)
𝑑𝑠

]

= (… ) − 𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
𝑧𝑡

𝑎 
𝐸𝑡

[ ∞ 

∫
𝑡 
𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷
𝑠 −𝑊𝐷

𝑡
)(1 − 𝑒−𝑎(𝑠−𝑡))𝑑𝑠

]

+ 1
2
𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2

𝑧2
𝑡

𝑎2
𝐸𝑡

[ ∞ 

∫
𝑡 
𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷
𝑠 −𝑊𝐷

𝑡
)(1 − 𝑒−𝑎(𝑠−𝑡))2𝑑𝑠

]
= (… ) − 𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

𝑧𝑡

𝑎 

(1
�̄�
− 1 
𝑎+ �̄�

)
+ 1

2
𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2

𝑧2
𝑡

𝑎2

(1
�̄�
− 2 1 

𝑎+ �̄�
+ 1 

2𝑎+ �̄�

)
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= (… ) − 𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
1 

�̄�(𝑎+ �̄�)
+ 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2𝑧2𝑡

1 
�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

,

it follows that 𝑔 = −𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
1 

�̄�(𝑎+�̄�) + 𝑜(𝜀
2) and ℎ = 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2

1 
�̄�(𝑎+�̄�)(2𝑎+�̄�) + 𝑜(𝜀

2). Similarly, from

𝐸𝑡

⎡⎢⎢⎣
∞ 

∫
𝑡 
(𝐷𝑠 −𝐷𝑡)

𝑀𝑖
𝑠

𝑀𝑖
𝑡

𝑑𝑠

⎤⎥⎥⎦ ≈𝐸𝑡
[ ∞ 

∫
𝑡 
(𝐷𝑠 −𝐷𝑡)𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 (𝐷𝑠−𝐷𝑡)+𝜀(𝑌
𝑖,1
𝑠 −𝑌 𝑖,1

𝑡
)+𝜀2(𝑌 𝑖,2𝑠 −𝑌 𝑖,2

𝑡
)𝑑𝑠

]

=𝐸𝑡
[ ∞ 

∫
𝑡 
(𝐷𝑠 −𝐷𝑡)𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷
𝑠 −𝑊𝐷

𝑡
)⋅

⋅ 𝑒−𝜀�̄�1
𝑇 ( 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 (1−𝑒−𝑎(𝑠−𝑡))+ 𝜎𝑧𝜎𝑧𝜎𝑧
𝑎 ∫ 𝑠𝑡 (1−𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇

𝑢 )+𝜀(𝑌 𝑖,1𝑠 −𝑌 𝑖,1
𝑡

)+𝜀2(𝑌 𝑖,2𝑠 −𝑌 𝑖,2
𝑡

)
𝑑𝑠

]
=𝐸𝑡

[ ∞ 

∫
𝑡 
( ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠− 𝑡) +𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷

𝑠
−𝑊𝐷

𝑡
) + 𝜀

𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)) + 𝜀

𝜎𝑧𝜎𝑧𝜎𝑧

𝑎 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))[𝜌𝜌𝜌𝑇 𝑑𝑊 𝐷

𝑢
+
√
1 − |𝜌𝜌𝜌 |2𝑑�̃� 𝜇

𝑢
])

𝑒−𝛽(𝑠−𝑡)−�̄�1
𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷

𝑠 −𝑊𝐷
𝑡
)𝑒−𝜀�̄�1

𝑇 ( 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))+ 𝜎𝑧𝜎𝑧𝜎𝑧

𝑎 ∫ 𝑠𝑡 (1−𝑒−𝑎(𝑠−𝑢))𝑑𝑊 𝜇
𝑢 )+𝜀(𝑌 𝑖,1𝑠 −𝑌 𝑖,1

𝑡
)+𝜀2(𝑌 𝑖,2𝑠 −𝑌 𝑖,2

𝑡
)
𝑑𝑠

]
= (… ) + 𝐸𝑡

[ ∞ 

∫
𝑡 

𝑠 

∫
𝑡 
(𝜎𝐷𝜎𝐷𝜎𝐷 +𝜀

𝜎𝑧𝜎𝑧𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝜌𝜌𝜌𝑇 )𝑑𝑊 𝐷

𝑢
𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷
𝑠 −𝑊𝐷

𝑡
)𝑒−𝜀�̄�1

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))

𝑑𝑠

]

+𝐸𝑡
[ ∞ 

∫
𝑡 
( ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠− 𝑡) + 𝜀

𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)))𝑒−𝛽(𝑠−𝑡)−�̄�1

𝑇 ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠−𝑡)−�̄�1𝑇 𝜎𝐷𝜎𝐷𝜎𝐷(𝑊𝐷
𝑠 −𝑊𝐷

𝑡
)𝑒−𝜀�̄�1

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))

𝑑𝑠

]

= (… ) − �̄�
∞ 

∫
𝑡 

𝑠 

∫
𝑡 
(𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1 + 𝜀

𝜎𝑧𝜎𝑧𝜎𝑧

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑢))𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)𝑑𝑢𝑒−�̄�(𝑠−𝑡)𝑒

−𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))

𝑑𝑠

+

∞ 

∫
𝑡 
( ̄𝜇𝐷𝜇𝐷𝜇𝐷(𝑠− 𝑡) + 𝜀

𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 
(1 − 𝑒−𝑎(𝑠−𝑡)))𝑒−�̄�(𝑠−𝑡)𝑒−𝜀�̄�1

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))

𝑑𝑠

= (… ) + ( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)𝑒−𝜀�̄�1

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))𝑑𝑠

+ 𝜀
𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 

∞ 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑡))𝑒−�̄�(𝑠−𝑡)𝑑𝑠− 𝜀2

𝑧2
𝑡

𝑎2
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝜎𝑧𝜎𝑧𝜎𝑧

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(1 − 𝑒−𝑎(𝑠−𝑡))2𝑑𝑠

+ 𝜀2�̄�2 1 
𝑎2

(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝑧𝑡 𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1𝜎𝑧𝜎𝑧𝜎𝑧

∞ 

∫
𝑡 

𝑠 

∫
𝑡 
(1 − 𝑒−𝑎(𝑠−𝑢))𝑑𝑢𝑒−�̄�(𝑠−𝑡)(1 − 𝑒−𝑎(𝑠−𝑡)))𝑑𝑠

= (… ) + ( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)

∞ 

∫
𝑡 
(𝑠− 𝑡)𝑒−�̄�(𝑠−𝑡)𝑒−𝜀�̄�1

𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
𝑧𝑡
𝑎 (1−𝑒−𝑎(𝑠−𝑡))𝑑𝑠

+ 𝜀
𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 

(1
�̄�
− 1 
𝑎+ �̄�

)
− 𝜀2

𝑧2
𝑡

𝑎2
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝜎𝑧𝜎𝑧𝜎𝑧

∞ 

∫
𝑡 
𝑒−�̄�(𝑠−𝑡)(1 − 𝑒−𝑎(𝑠−𝑡))2𝑑𝑠

+ 𝜀2�̄�2 1 
𝑎2

(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝑧𝑡 𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1𝜎𝑧𝜎𝑧𝜎𝑧
𝑎2(2𝑎+ 3�̄�) 

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)

= (… ) + ( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)
[
− 𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧

𝑧𝑡

𝑎 

(
1 
�̄�2

− 1 
(𝑎+ �̄�)2

)
+ 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2𝑧2𝑡

2𝑎2 + 6𝑎�̄�+ 3�̄�2

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)2
]

+ 𝜀
𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

𝑎 

(1
�̄�
− 1 
𝑎+ �̄�

)
− 𝜀2

𝑧2
𝑡

𝑎2
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝜎𝑧𝜎𝑧𝜎𝑧

(1
�̄�
− 2 
𝑎+ �̄�

+ 1 
2𝑎+ �̄�

)
+ 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝑧𝑡 𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1𝜎𝑧𝜎𝑧𝜎𝑧

2𝑎+ 3�̄�
�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)

= (… ) + ( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)
[
− 𝜀�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡

1 
�̄�(𝑎+ �̄�)

(1
�̄�
+ 1 
𝑎+ �̄�

)
+ 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2𝑧2𝑡

2𝑎2 + 6𝑎�̄�+ 3�̄�2

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)2
]
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+ 𝜀𝜎𝑧𝜎𝑧𝜎𝑧 𝑧𝑡
1 

�̄�(𝑎+ �̄�)
− 𝜀2𝑧2

𝑡
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝜎𝑧𝜎𝑧𝜎𝑧

2 
�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

+ 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝑧𝑡 𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1𝜎𝑧𝜎𝑧𝜎𝑧
2𝑎+ 3�̄�

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)
,

one obtains

b = −𝜀( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)�̄�1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧
1 

�̄�(𝑎+ �̄�)

(1
�̄�
+ 1 
𝑎+ �̄�

)
+ 𝜀𝜎𝑧𝜎𝑧𝜎𝑧

1 
�̄�(𝑎+ �̄�)

+ 𝜀2�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝜌𝜌𝜌𝑇 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1𝜎𝑧𝜎𝑧𝜎𝑧
2𝑎+ 3�̄�

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)
+ 𝑜(𝜀2),

c = 𝜀2( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)�̄�2(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)2
2𝑎2 + 6𝑎�̄�+ 3�̄�2

�̄�2(𝑎+ �̄�)2(2𝑎+ �̄�)2
− 𝜀2�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝜎𝑧𝜎𝑧𝜎𝑧

2 
�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

+ 𝑜(𝜀2).

Define

v𝑡 ∶=
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧) 

�̄�(𝑎+ �̄�)2(2𝑎+ �̄�)

(
�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)𝐷𝑡 + ( ̄𝜇𝐷𝜇𝐷𝜇𝐷 − �̄� 𝜎𝐷𝜎𝐷𝜎𝐷 𝜎𝐷𝜎𝐷𝜎𝐷𝑇 1)�̄�(1𝑇 𝜎𝑧𝜎𝑧𝜎𝑧)

(2
�̄�
+ 1 
𝑎+ �̄�

+ 1 
2𝑎+ �̄�

)
− 2𝑎+ 3�̄�

�̄�
𝜎𝑧𝜎𝑧𝜎𝑧

)
and

𝐵 ∶= 𝜎𝐷𝜎𝐷𝜎𝐷 𝜌𝜌𝜌v𝑇
𝑡
+ v𝑡 𝜌𝜌𝜌

𝑇 𝜎𝐷𝜎𝐷𝜎𝐷
𝑇 .

Let 𝜌𝑖,𝑗 =
𝑑⟨𝑃 𝑖,𝑃 𝑗 ⟩𝑡∕𝑑𝑡 √

𝑑⟨𝑃 𝑖,𝑃 𝑖⟩𝑡∕𝑑𝑡√𝑑⟨𝑃 𝑗 ,𝑃 𝑗 ⟩𝑡∕𝑑𝑡 and 𝜌(2)
𝑖,𝑗

its asymptotic expansion in 𝜀 at second order. An explicit computation shows that 𝜌(2)
𝑖,𝑗

is 
linear in 𝑧𝑡 with coefficient equal to

�̄�2√
Σ𝑖𝑖
𝐷
Σ𝑗𝑗
𝐷

(
𝐵𝑖𝑗 −

Σ𝑖𝑗
𝐷

Σ𝑖𝑖
𝐷

𝐵𝑖𝑖

2 
−

Σ𝑖𝑗
𝐷

Σ𝑗𝑗
𝐷

𝐵𝑗𝑗

2 

)
. □

Appendix F. Complete equilibrium

In this section describes the complete-market equilibrium (for 𝜀 > 0) in which a consol bond 𝐶𝑡 that pays a constant coupon flow 
equal to 1 is available to trade.

The proof relies on stochastic control arguments and is omitted.

Theorem F.1. Assume �̄� > 0. A second-order equilibrium for the complete market where the consol bond is tradeable consists of the following 
interest rate 𝑟𝑡, stock price 𝑃𝑡, consol bond price 𝐶𝑡, optimal consumption 𝑐𝑖

𝑡
, optimal stock holding �̂�𝑃 ,𝑖

𝑡
and optimal consol bond holding �̂�𝐶,𝑖

𝑡
:

𝑟𝑡 = �̄�+ 𝜀�̄�𝜎𝑧𝑧𝑡, (F.1)

𝑃𝑡 =𝐷𝑡 ⋅𝐶𝑡 + (𝜇𝐷 − �̄�𝜎2
𝐷
)
(
𝐿𝑡 − 𝑡 ⋅𝐶𝑡

)
+ 𝜀 1 

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡 − 𝜀2

2�̄�𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
, (F.2)

𝐶𝑡 =
1
�̄�
− 𝜀 �̄�

�̄�(𝑎+ �̄�)
𝜎𝑧𝑧𝑡 + 𝜀2

�̄�2𝜎2
𝑧

�̄�(𝑎+ �̄�)(2𝑎+ �̄�)

(
𝑧2
𝑡
+ 1
�̄�

)
, (F.3)

�̂�
𝑃 ,𝑖
𝑡

= �̄�

𝛼𝑖
, (F.4)

�̂�
𝐶,𝑖
𝑡

=
(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
1 
𝐶0

+
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡+ 1 

𝑎+ �̄�
+ 𝜀

�̄�𝜎𝑧(2𝑧𝑡 − 𝑧0)
(𝑎+ �̄�)2

+ 𝜀2
�̄�2𝜎2

𝑧
(4𝑧2

𝑡
− 𝑧20)

(𝑎+ �̄�)3
(F.5)

− 𝜀2
�̄�2𝜎2

𝑧

(
2𝑎3 + 8𝑎2�̄�+ 9𝑎�̄�2 + 3�̄�3 − 𝑎�̄�2(3�̄�+ 5𝑎)𝑧20

)
�̄�2(𝑎+ �̄�)3(2𝑎+ �̄�)2

)
,

𝑐𝑖
𝑡
= �̄�

𝛼𝑖
𝐷𝑡 +

1 
𝐶0

(
𝑥𝑖 −

�̄�

𝛼𝑖
𝑃0

)
+
𝛽 − 𝛽𝑖
𝛼𝑖

(
𝑡−

𝐿0
𝐶0

)
, (F.6)

where

𝐿𝑡 = 𝑡 ⋅𝐶𝑡 +
1 
�̄�2

− 𝜀
(1
�̄�
+ 1 
𝑎+ �̄�

) �̄�𝜎𝑧

�̄�(𝑎+ �̄�)
𝑧𝑡 + 𝜀2

�̄�2𝜎2
𝑧

�̄�2(𝑎+ �̄�)(2𝑎+ �̄�)

(
1
�̄�
+ 2𝑎2 + 6𝑎𝑟+ 3𝑟2

(𝑎+ �̄�)(2𝑎+ �̄�) 

(
𝑧2
𝑡
+ 1
�̄�

))
.

Remark F.2. Note that the interest rate in (F.1) is exact – not merely asymptotic. Since 𝑧𝑡 follows an Ornstein-Uhlenbeck process, 
the resulting interest rate follows a Vasicek model, in analogy to the equilibrium interest rate in the single-agent, complete model 
by Goldstein and Zapatero (1996), where the dividend process also exhibits mean-reverting drift. Moreover, the equilibrium stock 
holdings are also exact, with each agent holding precisely �̄�∕𝛼𝑖 shares, whereas the remaining equilibrium quantities in Theorem F.1
are asymptotic.
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Appendix G. Numerical method

This section adapts the numerical method in Dumas and Lyasoff (2012) to compute the market equilibrium in the incomplete 
model in this paper. The model assumes two agents with identical risk-aversion 𝛼 and time-preference rate 𝛽, but different initial 
wealth allocations 𝑥1 and 𝑥2.

First, set a finite time horizon 𝑇 and an equally-spaced time grid 𝑡0 = 0 < 𝑡1 <⋯ < 𝑡𝑛 = 𝑇 , where 𝑡𝑖 ∶= 𝑖 ⋅Δ𝑡 and Δ𝑡 = 𝑇

𝑛 . Applying 
the Euler scheme to the exogenous processes 𝐷𝑡 and 𝑧𝑡 yields the discrete dynamics

𝐷𝑡𝑖+1
=𝐷𝑡𝑖 +

(
𝜇𝐷 + 𝜀𝜎𝑧𝑧𝑡𝑖

)
Δ𝑡+ 𝜎𝐷Δ𝑊𝐷,

𝑧𝑡𝑖+1
= 𝑧𝑡𝑖 − 𝑎𝑧𝑡𝑖Δ𝑡+Δ𝑊 𝜇,

where 𝑖 = 0,… , 𝑛− 1. These processes are approximated with a two-dimensional recombining binomial tree: define 𝐷∗
𝑡

and 𝑧∗
𝑡

as[
𝐷∗
𝑡𝑖+1
𝑧∗
𝑡𝑖+1

]
=

[
𝐷∗
𝑡𝑖
+ 𝜇𝐷Δ𝑡
𝑧∗
𝑡𝑖

]
+ 𝜉𝑖 ⋅

√
Δ𝑡,

where {𝜉𝑖}𝑛−1𝑖=0 are independent random variables such that 𝜉𝑖 takes values 
[
𝜎𝐷
1

]
,

[
𝜎𝐷
−1

]
,

[
−𝜎𝐷
1

]
,

[
−𝜎𝐷
−1

]
with probabilities, respec-

tively, 𝑝++
𝑖

, 𝑝+−
𝑖

, 𝑝−+
𝑖

, 𝑝−−
𝑖

. These probabilities are chosen such that the first two moments of the increments of 𝐷∗
𝑡

and 𝑧∗
𝑡

match 
those of the increments of 𝐷𝑡 and 𝑧𝑡, i.e.,

𝑝++
𝑖

[
𝜎𝐷
1

]√
Δ𝑡+ 𝑝+−

𝑖

[
𝜎𝐷
−1

]√
Δ𝑡+ 𝑝−+

𝑖

[
−𝜎𝐷
1

]√
Δ𝑡+ 𝑝−−

𝑖

[
−𝜎𝐷
−1

]√
Δ𝑡 =

[
𝜀𝜎𝑧𝑧

∗
𝑡𝑖
Δ𝑡

−𝑎𝑧∗
𝑡𝑖
Δ𝑡

]
,[

𝜎2
𝐷
Δ𝑡 (𝑝++

𝑖
− 𝑝+−

𝑖
− 𝑝−+

𝑖
+ 𝑝−−

𝑖
)𝜎𝐷Δ𝑡

(𝑝++
𝑖

− 𝑝+−
𝑖

− 𝑝−+
𝑖

+ 𝑝−−
𝑖

)𝜎𝐷Δ𝑡 Δ𝑡

]
=
[
𝜎2
𝐷
Δ𝑡 0
0 Δ𝑡

]
.

Furthermore, probabilities need to sum up to 1, i.e., 𝑝++
𝑖

+ 𝑝+−
𝑖

+ 𝑝−+
𝑖

+ 𝑝−−
𝑖

= 1. Therefore,

𝑝++
𝑖

= 1
4
+ 1

4

(
𝜀𝜎𝑧

𝜎𝐷
𝑧∗
𝑡𝑖
− 𝑎𝑧∗

𝑡𝑖

)√
Δ𝑡, 𝑝+−

𝑖
= 1

4
+ 1

4

(
𝜀𝜎𝑧

𝜎𝐷
𝑧∗
𝑡𝑖
+ 𝑎𝑧∗

𝑡𝑖

)√
Δ𝑡,

𝑝−+
𝑖

= 1
4
− 1

4

(
𝜀𝜎𝑧

𝜎𝐷
𝑧∗
𝑡𝑖
+ 𝑎𝑧∗

𝑡𝑖

)√
Δ𝑡, 𝑝−−

𝑖
= 1

4
− 1

4

(
𝜀𝜎𝑧

𝜎𝐷
𝑧∗
𝑡𝑖
− 𝑎𝑧∗

𝑡𝑖

)√
Δ𝑡.

The recursive algorithm to compute the market equilibrium is adapted from Dumas and Lyasoff (2012) and proceeds as follows. 
Fix a grid of values Ξ covering the interval (0,1) representing Ann’s consumption share at some time 𝑡, i.e., 𝑐

1
𝑡

𝐷𝑡
. (In the continuous-time 

model, dividends may become negative. The numerical simulations in this paper are based on parameters values for which dividends 
always remain positive.) Note that in the current setting �̄� = 𝛼

2 and 𝛽 = 𝛽.

1. For each terminal node (𝐷∗
𝑇
, 𝑧∗
𝑇
) and 𝜔 ∈ (0,1), set 𝑃𝑇 (𝜔) = 𝑃 𝑐𝑜𝑚𝑝(𝑧∗𝑇 ,𝐷

∗
𝑇
) and 𝑋1

𝑇
(𝜔) = 𝜔 ⋅𝐷∗

𝑇
⋅ 𝐶𝑐𝑜𝑚𝑝(𝑧∗

𝑇
) + 1

2 (𝑃
𝑐𝑜𝑚𝑝(𝑧∗

𝑇
,𝐷∗

𝑇
) −

𝐷∗
𝑇
⋅ 𝐶𝑐𝑜𝑚𝑝(𝑧∗

𝑇
)), where 𝑃 𝑐𝑜𝑚𝑝 and 𝐶𝑐𝑜𝑚𝑝 are the prices of the stock and the consol bond in the complete equilibrium defined in 

Theorem F.1. In other words, the stock price and Ann’s wealth at time 𝑇 are set at the corresponding values in the complete model 

where also consol bonds are traded. The value of 𝜔 represents 
𝑐1
𝑇

𝐷∗
𝑇

, the current optimal consumption share of Ann, which is yet to 
be determined.

2. Fix a node (𝐷∗
𝑡𝑛−1

, 𝑧∗
𝑡𝑛−1

) at time 𝑡𝑛−1 and a value 𝜔∈ Ξ, which represents 
𝑐1
𝑡𝑛−1
𝐷∗
𝑡𝑛−1

. Let 𝜂 ∈ {++,+−,−+,−−} index the four subsequent 

nodes for each of the four possible values of the random variable 𝜉𝑛−1 , e.g., 𝐷∗
𝑡𝑛,++

is the value of the dividend for 𝜉𝑛−1 =
[
𝜎𝐷
1

]
. 

Thus, solve a system of six equations in the six variables 𝑐1
𝑡𝑛 ,𝜂

for 𝜂 ∈ {++,+−,−+,−−}, 𝜃1
𝑡𝑛−1

and 𝜃𝑟𝑓,1
𝑡𝑛−1

. The variables {𝑐1
𝑡𝑛,𝜂

}𝜂 are 
Ann’s optimal consumption rates at time 𝑡𝑛 in each of the four subsequent nodes, 𝜃1

𝑡𝑛−1
is Ann’s optimal holdings in the stock at 

time 𝑡𝑛−1, and 𝜃𝑟𝑓,1
𝑡𝑛−1

is the dollar value (at the next time step) of Ann’s optimal position in the safe asset at time 𝑡𝑛−1 . Note that 
Bob’s consumption rate follows from the market clearing condition on consumption, i.e., 𝑐2

𝑡𝑛,𝜂
=𝐷∗

𝑡𝑛,𝜂
− 𝑐1

𝑡𝑛,𝜂
. The agents’ marginal 

utilities are, respectively, 
𝑀1
𝑡𝑛,𝜂

𝑀1
𝑡𝑛−1

= 𝑒−𝛽Δ𝑡−𝛼(𝑐
1
𝑡𝑛,𝜂

−𝜔⋅𝐷∗
𝑡𝑛−1

)
and 

𝑀2
𝑡𝑛,𝜂

𝑀2
𝑡𝑛−1

= 𝑒−𝛽Δ𝑡−𝛼(𝑐
2
𝑡𝑛,𝜂

−(1−𝜔)⋅𝐷∗
𝑡𝑛−1

)
. 

The system of six equations is therefore:

𝑋1
𝑡𝑛,𝜂

(
𝑐1
𝑡𝑛,𝜂

𝐷∗
𝑡𝑛,𝜂

)
= 𝜃1

𝑡𝑛−1

(
𝑃𝑡𝑛,𝜂

(
𝑐1
𝑡𝑛,𝜂

𝐷∗
𝑡𝑛,𝜂

)
+𝐷∗

𝑡𝑛,𝜂
Δ𝑡

)
+ 𝜃𝑟𝑓,1

𝑡𝑛−1
− 𝑐1

𝑡𝑛,𝜂
Δ𝑡, (G.1)

for 𝜂 ∈ {++,+−,−+,−−},
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Fig. 4. Interest rate (vertical) computed numerically (marked) and from the closed-form expressions (solid) in the second-order equilibrium against 𝜀 (horizontal). 

𝐸𝑡𝑛−1
[𝑀1

𝑡𝑛
(𝑃𝑡𝑛 (𝑐

1
𝑡𝑛
∕𝐷∗

𝑡𝑛
) +𝐷∗

𝑡𝑛
Δ𝑡)]

𝑀1
𝑡𝑛−1

=
𝐸𝑡𝑛−1

[𝑀2
𝑡𝑛
(𝑃𝑡𝑛 (𝑐

1
𝑡𝑛
∕𝐷∗

𝑡𝑛
) +𝐷∗

𝑡𝑛
Δ𝑡)]

𝑀2
𝑡𝑛−1

, (G.2)

−
𝐸𝑡𝑛−1

[𝑀1
𝑡𝑛
] −𝑀1

𝑡𝑛−1

𝑀1
𝑡𝑛−1

Δ𝑡 
= −

𝐸𝑡𝑛−1
[𝑀2

𝑡𝑛
] −𝑀2

𝑡𝑛−1

𝑀2
𝑡𝑛−1

Δ𝑡 
, (G.3)

where the functions 𝑋1
𝑡𝑛,𝜂

(⋅) and 𝑃𝑡𝑛,𝜂(⋅) have been computed in the previous step of the algorithm and the conditional expectation 
𝐸𝑡𝑛−1

[⋅] is taken over the four subsequent states 𝜂 ∈ {++,+−,−+,−−} with the corresponding probabilities 𝑝++
𝑛−1, 𝑝

+−
𝑛−1, 𝑝

−+
𝑛−1, 𝑝

−−
𝑛−1. 

Equations (G.1) are Ann’s budget equations for each of the four subsequent nodes, and equations (G.2) and (G.3) state that agents 
agree on stock price and interest rate. In particular, for the node (𝐷∗

𝑡𝑛−1
, 𝑧∗
𝑡𝑛−1

) and value 𝜔 ∈ Ξ the stock price and Ann’s wealth 
are

𝑃𝑡𝑛−1
(𝜔) ∶=

𝐸𝑡𝑛−1
[𝑀1

𝑡𝑛
(𝑃𝑡𝑛 (𝑐

1
𝑡𝑛
∕𝐷∗

𝑡𝑛
) +𝐷∗

𝑡𝑛
Δ𝑡)]

𝑀1
𝑡𝑛−1

,

𝑋1
𝑡𝑛−1

(𝜔) ∶=
𝐸𝑡𝑛−1

[𝑀1
𝑡𝑛
(𝑋1

𝑡𝑛
(𝑐1
𝑡𝑛
∕𝐷∗

𝑡𝑛
) + 𝑐1

𝑡𝑛
Δ𝑡)]

𝑀1
𝑡𝑛−1

,

where the dependence on 𝜔 is made explicit. 
For each node (𝐷∗

𝑡𝑛−1
, 𝑧∗
𝑡𝑛−1

) at time 𝑡𝑛−1 and for each value 𝜔 in Ξ, solve the system of equations (G.1), (G.2), (G.3) for the variables 
{𝑐1
𝑡𝑛,𝜂

}𝜂 , 𝜃1𝑡𝑛−1 and 𝜃𝑟𝑓,1
𝑡𝑛−1

. For each node, then compute the values 𝑃𝑡𝑛−1 (𝜔) and 𝑋1
𝑡𝑛−1

(𝜔), where 𝜔 ∈ Ξ. These values are interpolated 
to obtain the functions 𝑃𝑡𝑛−1 (⋅) and 𝑋1

𝑡𝑛−1
(⋅) on the interval (0,1). 

Iteratively, solve the system of equations for each node (𝐷∗
𝑡𝑖
, 𝑧∗
𝑡𝑖
) at time 𝑡𝑖 and for each value 𝜔 ∈ Ξ, where 𝑖 moves backwards 

from 𝑛− 1 to 0.
3. The iteration in the previous step leads to the function 𝑋1

𝑡0
(⋅). Let �̄� be the solution to the equation 𝑋1

𝑡0
(𝜔) = 𝑥𝑖, where 𝑥𝑖 is Ann’s 

initial wealth. Ann’s optimal consumption rate at time 0 is then 𝑐10 = �̄� ⋅𝐷0.

The equilibrium interest rate at time 0 is obtained by interpolating the values

𝑟𝑡0
(𝜔) = −

𝐸𝑡0
[𝑀1

𝑡1
] −𝑀1

𝑡0

𝑀1
𝑡0
Δ𝑡 

for 𝜔 ∈ Ξ, and evaluating the resulting function at �̄�.

G.1. Additional numerical comparison

In the present model, the parameter 𝜀 controls the standard deviation of the interest rate, which is �̄�√
2𝑎
𝜎𝑧𝜀.

14 Thus, 𝜀 is calibrated 
to match the historical standard deviation of the safe rate. Fig. 4 displays the equilibrium interest rate when Ann holds 80% of initial 
wealth for values of 𝜀 from zero to twice the calibrated value, with all other parameters as in Table 1. The discrepancy between our 

14 The parameter 𝑎 determines the mean-reversion speed of the interest rate, while 𝜎𝑧 is observationally indistinguishable from 𝜀 and set equal to 1.
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asymptotic expression and the numerical value remains small but increases with 𝜀. Extensive numerical testing suggests that most of 
this small discrepancy actually stems from imprecisions in the numerical solution rather than approximation error of the asymptotic 
expansion: for a fixed time step Δ𝑡 and large 𝜀, the transition probabilities computed above may fall outside [0,1]. Truncating 𝑝±±

𝑖

to remain in [0,1] causes the numerical imprecision.

Data availability

No data was used for the research described in the article.
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