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Entanglement degradation in the presence of Markovian noise: A statistical analysis
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Adopting a statistical approach we study the degradation of entanglement of a quantum system under the
action of an ensemble of randomly distributed Markovian noise. This enables us to address scenarios where
only limited information is available on the mechanisms that rule the noisy evolution of the model. As an
application, we characterize the statistic of entanglement deterioration for a quantum memory formed by n
qudits that undergo randomly distributed local, uniform, Markovian noise evolution.
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I. INTRODUCTION

Entanglement represents a unique yet fragile feature of
quantum mechanics: it can be used as a resource in famous
quantum information protocols, like superdense coding [1]
and quantum teleportation [2,3], as well as in contexts like
quantum computation and quantum cryptography [4], but, at
the same time, it can be easily degraded by noise, making
it difficult to exploit all its potential. For this reason, it is
meaningful to study and deepen the entanglement properties
of quantum states in the framework of open quantum systems,
which are systems the dynamics of which is influenced by
the interaction with noisy external environments. The first
works in this field [5,6] showed that the results of such an
interaction are decoherence of individual systems and entan-
glement degradation, which are two different aspects of the
same process. However, even if, in some cases, coherence
can vanish asymptotically in time, a different effect has been
discovered regarding entanglement: a total loss of entangle-
ment could occur, after a finite time, even in presence of
weakly dissipative environments [7]. This effect, which can
be also seen as a consequence of the compactness of the
set of entangled states, has been called entanglement sudden
death and it has been the main object of recent studies, which
addressed this phenomenon both on a theoretical level and,
subsequently, on an experimental one [8–12]. An in-depth
treatment of entanglement dynamics for open quantum sys-
tems, especially focused on decoherence effects, can be found,
among others, in the work of Aolita et al. [13], where the
authors give a thorough review of this phenomenon both con-
sidering bipartite and multipartite systems, while also taking
into account experimental results in this field. What most
studies on this subject have in common is that they consider
well-characterized noises. However, in real contexts, noise
is not necessarily known or, in other words, it is not neces-
sarily said that we know exactly the mathematical structure

of noise and how quantum systems are expected to evolve
when subjected to it. A practical example is given by quantum
computers, where one can have a sudden and unexpected
change in voltage or temperature, or the appearance of elec-
tromagnetic fields due to nearby quantum objects, effectively
causing total randomness in the possible noises that could
afflict a qubit. Very often, all that is known is that the different
types of noise acting on a system share only some basic
characteristics, for example they can be of the Markovian
type, and it would be desirable to exploit this information
to obtain a general understanding about how systems behave
in these cases, with respect to the physical properties of
interest.

In this spirit, we have decided to study the entanglement
degradation that a quantum system S has initially established
with an auxiliary reference S′ under the influence of an en-
semble of (local) Markovian noises. The degradation effect
of random Markovian noise has been studied in the work
by Yang et al. [14] to analyze the decoherence dynamics of

FIG. 1. Pictorial representation of the degradation of the entan-
glement between two quantum memories S and S′ formed by a large
collection of n qudits, induced by random noise that acts locally, and
independently on the subparts s1, s2, . . . , sn of S.
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open quantum systems. Here, the authors focused on the rate
at which these systems transition from quantum to classical
behavior, introducing the decoherence rate to study the decay
of the purity over time and showing that chaotic quantum
systems tend to decohere rapidly, regardless of the initial state,
with the rate clustering near its upper bound. At variance with
this approach here instead we analyze the effect of random
Markovian noise on the dynamical evolution of maximally
entangled systems.

The starting point of our analysis is the distribution of
what we call the positive partial transpose time (PPTT) of the
model. This quantity represents the minimum time after which
the partial transpose of a maximally entangled state between
S and S′ becomes positive, hence not distillable. An analo-
gous quantity called entanglement survival time (EST) was
introduced in Ref. [15]: this last measures the minimal time
at which the input entanglement of the model gets completely
degraded. For each individual noisy Markovian evolution, the
two terms are connected by a natural ordering which makes
the PPTT a lower bound for the EST. The main advantage
of focusing on PPTT instead of EST is associated with the
fact that the former is relatively easy to compute (at least
for low-dimensional systems), while the latter is typically a
difficult functional to compute. A case of particular interest is
obtained when S corresponds to a quantum memory formed
by n qudits s1, . . . , sn that evolve under the action of random
Markovian noisy evolutions that act locally and independently
on each individual subsystem (see Fig. 1). For these models,
the PPTT distribution turns out to be a simple functional of the
PPTT distributions of the individual subsystems of S, leading
to some important simplification.

As an application of our analysis we focus on the case
where S (or its subsystems si) corresponds either to a qubit or
to a qutrit evolving under the action of a dynamical semigroup
the Lindbladian generator of which is selected via the ran-
dom matrix sampling method developed in Ref. [16]. Keeping
fixed the ratio between the Hamiltonian and dissipative contri-
butions of the generators, the resulting PPTT distributions are
studied with the help of a statistical analysis, carried out with
the MINITAB software [17]. We also exhibit probability density
functions that represent a good fit for the recovered data and
we investigate the relationship between their characteristic
times (such as mean time, median time, and minimum time)
and the model parameters. Finally, since we report a limit
trend in these distributions, appearing for predominant unitary
Hamiltonian terms in the dynamical generator, we propose a
general analytical expression for the dynamical generator in
this limit.

The present paper is organized as follows. Section II in-
troduces the notation and the key definitions. In Sec. III we
formally define the PPTT distribution, and its cumulative
counterpart, and clarify how they behave when applied to
many-body quantum systems that evolve under the action of
independent local noise models. In Sec. IV we specify the
problem to the case of qubit and qutrit systems subjected
to random dynamical semigroups sampled with the mea-
sure introduced in Ref. [16]. The obtained numerical results
are reported in Sec. V. In particular in Sec. V A we focus
on the limit trend emerging in the PPTT distribution when
considering predominant unitary Hamiltonian contributions,

proposing a general analytical expression of the dynamical
generator that, properly sampled, allows one to obtain the
limit distribution. Section VI is devoted to provide a statis-
tical analysis of the results of Sec. V. Conclusions and final
remarks are presented in Sec. VII. The paper includes also a
couple of technical Appendixes.

II. ENTANGLEMENT DEGRADATION
FOR DYNAMICAL SEMIGROUPS

The temporal evolution of a quantum system S that is in-
teracting with an external environment can be formally repre-
sented in terms of a one-parameter family F :={�(0,t ), t � 0}
of linear completely positive and trace-preserving (LCPT)
superoperators �(0,t ) [18]. In this picture, given ρ̂S (0), the
density matrix that defines the input state of S at time t = 0, its
output counterpart at time t � 0 is obtained via the application
of the t th element of the set via the mapping

ρ̂S (0) �→ ρ̂S (t ) = �(0,t )[ρ̂S (0)]. (1)

In our analysis we shall focus on dynamical processes that
are of Markovian type and homogeneous with respect to t .
Under these conditions the family F forms a so-called dy-
namical semigroup, characterized by a hierarchical ordering
of the elements �(0,t ) which, as time increases, leads to a
gradual accumulation of the deterioration effects induced by
the environment. The corresponding evolution is described
by a Gorini, Kossakowski, Sudarshan, and Lindblad (GKSL)
master equation:

˙̂ρS (t ) = L[ρ̂S (t )] �⇒ �(0,t ) = eLt , (2)

of which the dynamical generator L, known as the Lindblad
superoperator or Lindbladian [19], completely characterizes
the properties of F . Such a term can be expressed as the sum
of two components: a unitary Hamiltonian term, represented
by a self-adjoint operator Ĥ , which preserves quantum coher-
ence of S, and a purely dissipative term which instead tends
to suppress coherence. Specifically, given {F̂m}m=1,N2−1, a set
of traceless matrices that satisfy the orthonormality condition
Tr[F̂ †

m F̂n] = δmn, with N being the dimension of the Hilbert
space HS of S, the Lindbladian of a generic dynamical semi-
group F can be written as

L(· · · ) = −i[Ĥ , · · · ] + DK (· · · ), (3)

with the dissipative contribution given by

DK ( · · · ) =
N2−1∑
m,n=1

Kmn

{
F̂n( · · · )F̂ †

m

−1

2
[F̂ †

m F̂n( · · · ) + ( · · · )F̂ †
m F̂n]

}
, (4)

where Kmn are elements of a positive definite matrix K , called
the Kossakowski matrix (hereafter for simplicity h̄ is set equal
to 1). For future reference we recall that upon diagonalization
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of K , (4) can also be cast in the more compact form

DK ( · · · ) =
N2−1∑
n=1

{
L̂(n)

K ( · · · )L̂(n)†
K

−1

2

[
L̂(n)†

K L̂(n)
K ( · · · ) + ( · · · )L̂(n)†

K L̂(n)
K

]}
, (5)

with L̂(n)
K :=

√
λ

(n)
K

∑
m U (m,n)

K F̂m the associated Lindblad op-

erators constructed in terms of the eigenvalues λ
(n)
K of K and of

matrix elements U (m,n)
K which define its eigenvectors through

the spectral decomposition Kn,m = ∑
n′ U

(n,n′ )
K U (m,n′ )∗

K λ
(n′ )
K .

Entanglement survival time and positive partial transpose time

Positive partial transpose (PPT) channels and entanglement
breaking (EB) channels are LCPT maps that represent the
most severe examples of noisy transformations a quantum sys-
tem can experience. When PPT channels are applied locally to
the joint input states ρ̂SS′ of system S and an external auxiliary
system S′, the resulting joint outputs have a positive partial
transpose, indicating that they are not entanglement distillable
[20]. In contrast, when EB channels are used, the resulting
density matrix is separable, making any EB channel also
PPT (the opposite being not necessarily true for N � 3) [21].
Hence, these channels, when acting locally on one subsystem,
either restrict the overall system’s ability to maintain certain
kinds of entanglement or eliminate entanglement altogether,
leaving behind only classical correlations, which makes them
examples of the most severe transformations that a quantum
system can experience. The initial elements of a dynamical
semigroup F are usually close to the identity mapping and do
not exhibit the properties of being either EB or PPT. However,
as time progresses and noise accumulates, it is highly likely
that the maps �(0,t ) will acquire these characteristics. In order
to assess the influence of the dynamics F on system S, it is
therefore sensible to define two characteristic times [15]: the
EST and the PPTT defined respectively as

τEST(L) := min{t � 0 such that �(0,t ) ∈ EB}, (6)

τPPT(L) := min{t � 0 such that �(0,t ) ∈ PPT}, (7)

where the notation stresses that ESTs and PPTTs are explicit
functionals of the generator L of the semigroup [when no fi-
nite t exists such that �(0,t ) ∈ EB we simply set τEST(L) = ∞,
similarly for τPPT(L)]. It is worth stressing that since in our
analysis the �(0,t )’s are assumed to be elements of a dynamical
semigroup (2), it naturally follows that once the dynamics
acquires an EB or PPT property, it will keep forever, i.e.,

�(0,t ) ∈ EB, ∀t � τEST(L), (8)

�(0,t ) ∈ PPT, ∀t � τPPT(L). (9)

In the case that S is a qubit, τPPT(L) and τEST(L) coincide: for
larger systems however the former will typically represent a
lower bound for the latter, i.e.,

τPPT(L) � τEST(L). (10)

From Ref. [22] we know that determining if a quantum
map is EB is equivalent to checking if the associated Choi-

Jamiołkowski state [23] is separable or not. A similar property
holds also for the PPT property (see Appendix A for a proof
of this fact). Accordingly, computing τEST(L) [respectively,
τPPT(L)] corresponds to finding the minimum value of t at
which the state

ρ̂
�(0,t )

SS′ := �(0,t ) ⊗ IdS′ (|�max〉SS′ 〈�max|) (11)

becomes separable (respectively, PPT; in this expression S′ is
an auxiliary system of the same dimension N of S, |�max〉SS′ =

1√
N

∑N
i=1 |i〉S ⊗ |i〉S′ is a maximally entangled state of SS′

with {|i〉S/S′ } being the orthonormal basis, and IdS′ is the
identity superoperator on S′). Due to the absence of universal
conclusive criteria for identifying the presence of entangle-
ment in a system, the characterization of the EST is typically
very challenging. The same problem does not hold however
for the PPTT which instead can be cast in terms of the follow-
ing optimization problem:

τPPT(L) = min{t � 0 such that N
(
ρ̂

�(0,t )

SS′
) = 0}, (12)

where N (ρ̂�(0,t )

SS′ ) is the negativity of entanglement [24]. This
last is an algebraic entanglement measure that can be ex-
pressed as

N (ρ̂SS′ ) = 1

2

∑
l

(|λl | − λl ), (13)

with {λl} the eigenvalues of ρ̂
TS′
SS′ and TS′ representing the

partial transposition with respect to to basis {|i〉S′ } of S′.
Simple scaling arguments can be used to observe that by

multiplying the generator of the dynamical group by a positive
factor β > 0, the EST and PPTT acquire a multiplicative
prefactor 1/β, i.e.,

τ•(βL) = 1

β
τ•(L), (14)

where hereafter the symbol “•” is used as a placeholder for
PPT and EST. A nontrivial challenge is to comprehend the
respective contributions of the Hamiltonian and dissipator
components of L in determining the values of the ESTs and
PPTTs. This inquiry was explored in Ref. [15] for specific
models, such as single qubit and a restricted class of con-
tinuous variable systems, where EST and PPT are known to
coincide. In this context, the authors utilized Eq. (12) to ex-
amine the functional relationship of τEST(L) for Lindbladian
generators of the form

L(α,γ )
H,K ( · · · ) := −iα[Ĥ , · · · ] + γDK ( · · · ), (15)

where Ĥ and K were selected to represent specific types of
noises (such as dephasing, thermalization, and depolariza-
tion). The positive coefficients α and γ were introduced as
adjustable parameters that determine the relative strengths of
the Hamiltonian and dissipator contributions. Interestingly,
the study reveals that in certain cases of the noise mod-
els, incorporating a unitary Hamiltonian component into the
dissipative dynamics results in a more rapid decay of entan-
glement. Specifically, the value of τEST(L) decreases as α

increases and approaches a limit as α approaches infinity. Our
objective is to extend this analysis by adopting a statistical
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perspective. Instead of focusing on restricted classes of gen-
erators, we aim to employ tools from random matrix theory
to sample the values of τPPT(L) across the entire range of
possible L, following the approach outlined in Ref. [16]. This
approach offers two significant advantages: First, it allows us
to gain insights into the problem that are not dependent on
specific characteristics of the noise model. Second, it provides
an effective characterization of scenarios where only partial
information about the noise affecting the quantum system is
available.

III. PPTT DISTRIBUTION AND CUMULATIVE
PPTT DISTRIBUTION

Consider the case where the system S evolves in time
under the action of dynamical semigroup �(0,t ) the Lindblad
generator L of which is known only up to a certain precision.
Specifically in our analysis we shall assume that the only
prior information we have on the process is that L has been
randomly extracted via some assigned probability measure
dμ(L) that acts on the set L of the Lindblad superoperators.
Under this condition we define PPPT(τ ) as the density proba-
bility distribution in which the selected dynamics has PPTT
equal to τ , i.e., formally

PPPT(τ )dτ := Prob(τPPT(L) ∈ [τ, τ + δτ ]). (16)

The distribution (16) is an emergent property of the model
which can in principle be reconstructed via Eq. (12) by
sampling L through the measure dμ(L). Recalling Eq. (9)
it follows that the cumulative integral of PPPT(τ ) yields the
probability P̄PPT(T ) that the dynamical evolution of S at time
T is ruled by a PPT map:

P̄PPT(T ) :=
∫ T

0
dτPPPT(τ ). (17)

Operationally P̄PPT(T ) corresponds to the probability that a
maximally entangled state of SS′ will become PPT at time T
given the uncertainty on the dynamics of S. Notice that by
construction P̄PPT(T ) is null for T = 0 (the input state being
indeed maximally entangled), while in the large T limit, it
always approaches 1, at least for those models where PPPT(τ )
is not zero for some finite τ . By construction P̄PPT(T ) also pro-
vides a (strict) lower bound, for the probability P̄PPT(T |ρ̂SS′ )
that, starting from a generic (possibly not maximally entan-
gled) input state ρ̂SS′ of SS′, we find it in a PPT configuration
at time T , i.e.,

P̄PPT(T |ρ̂SS′ ) � P̄PPT(T ), ∀ρ̂SS′ , (18)

the inequality being saturated for ρ̂SS′ being maximally entan-
gled (a proof of this follows immediately from the observation
in Appendix A).

PPTT under random local noise

A case of particular interest in quantum computing and
information theory is represented by the scenario where S
is a large quantum memory constituted by a collection of n
noninteracting quantum systems s1, s2, . . . , sn which undergo
independent, random, local noisy evolutions as in the scheme
depicted in Fig. 1. In this case the Lindbladian L is given by a

sum of local terms:

L = L(1) + · · · + L(n), (19)

where for i ∈ {1, . . . , n}, L(i) is a superoperator acting on the
ith subsystems, the measure dμ(L) factorizes into a product
of local measures

dμ(L) = dμ(L(1) ) · · · dμ(L(n) ), (20)

and the maps �(0,t ) reduce to

�(0,t ) = �
(1)
(0,t ) ⊗ · · · ⊗ �

(n)
(0,t ) (21)

with �
(i)
(0,t ) = eL

(i)t . Accordingly, also the Choi-Jamiołkowski
state of the process �(0,t ) factorizes in the tensor product of
local contributions:

ρ̂
�(0,t )

SS′ = ρ̂
�

(1)
(0,t )

s1s′
1

⊗ · · · ⊗ ρ̂
�

(n)
(0,t )

sns′
n

, (22)

with ρ̂
�

(i)
(0,t )

sis′
i

the Choi-Jamiołkowski state of �
(i)
(0,t ) constructed

by applying the latter to a maximally entangled state of si with
an (isodimensional) component s′

i of S′. From Eq. (22) it now

follows that ρ̂
�(0,t )

SS′ is PPT if and only if all the ρ̂
�

(i)
(0,t )

sis′
i

fulfill the
same property, i.e.,(

ρ̂
�(0,t )

SS′
)TS′ � 0 ⇔ (

ρ̂
�

(i)
(0,t )

sis′
i

)Ts′i � 0 ∀i. (23)

Thanks to this implication we can hence conclude that the
cumulative distribution P̄[loc,n]

PPT (T ) of S can be expressed as
the product of the corresponding individual terms, i.e.,

P̄[loc,n]
PPT (T ) = P̄(1)

PPT(T ) · · · P̄(n)
PPT(T ), (24)

from which one can recover P[loc,n]
PPT (τ ) by inversion of (17),

i.e.,

P[loc,n]
PPT (τ ) = dP̄[loc,n]

PPT (τ )

dτ

= P̄[loc,n]
PPT (τ )

n∑
i=1

P(i)
PPT(τ )

P̄(i)
PPT(τ )

(25)

[in the above expressions P(i)
PPT(τ ) and P̄(i)

PPT(T ) represent re-
spectively the PPTT distribution of the ith subsystem and
its associated cumulative probability]. A simple recursion
argument can be used to show that to prove Eq. (24) it is
sufficient to show that such identity holds for n = 2. In this
case the probability P[loc,2]

PPT (τ ) of selecting a generator L of
a dynamical process which becomes PPT at time τ can be
expressed as the probability of generating a dynamical process
on one of the two subsystems which becomes PPT for the first
time exactly at t = τ times the probability that on the other
subsystem we selected a process that becomes PPT at some
prior time. In formula this means

P[loc,2]
PPT (τ ) = P(1)

PPT(τ )P̄(2)
PPT(τ ) + P̄(1)

PPT(τ )P(2)
PPT(τ )

= dP̄(1)
PPT(τ )

dτ
P̄(2)

PPT(τ ) + P̄(1)
PPT(τ )

dP̄(2)
PPT(τ )

dτ

= d

dτ

[
P̄(1)

PPT(τ )P̄(2)
PPT(τ )

]
, (26)

where in the second line we inverted (17) to express the PPT
distribution as the derivative of the cumulative distribution.

012407-4



ENTANGLEMENT DEGRADATION IN THE PRESENCE OF … PHYSICAL REVIEW A 111, 012407 (2025)

The integration of (26) with respect to τ gives now (24) for
n = 2 concluding the proof.

Cases of special interests are those where the many-body
system is formed by particles of the same type (say all qubits
or qutrits) and the local noise is uniform. Under this condition
Eqs. (24) and (25) lead to

P̄[loc,n]
PPT (T ) = [

P̄(1)
PPT(T )

]n
, (27)

P[loc,n]
PPT (τ ) = nP(1)

PPT(τ )
[
P̄(1)

PPT(τ )
]n−1

. (28)

A direct consequence of (27) is that for fixed value of T the
probability P̄[loc,n]

PPT (T ) is monotonically nonincreasing with
respect to n, meaning that the entanglement in these models
tends to be degraded more slowly as the system size grows.
This is to be expected, since it is more likely that there is
always at least one of the systems involved which is entangled
with its ancilla, so the time after which all systems become
disentangled increases. A close inspection of the identities
(27) and (28) reveals finally that the ratio between the PPTT
distribution and its cumulative counterpart is extensive with
respect to to the number of sites, i.e.,

R[loc,n]
PPT (τ ) := P[loc,n]

PPT (τ )

P̄[loc,n]
PPT (τ )

= nR(1)
PPT(τ ), (29)

with R(1)
PPT(τ ) := P(1)

PPT(τ )/P̄(1)
PPT(τ ).

IV. DYNAMICAL GENERATOR SAMPLING

In this section we study the PPTT distribution and its cu-
mulative counterpart for some low-dimensional systems under
the assumption of minimal amount of prior information on
the noise model. Specifically, maintaining the structure (15)
for the generator L, we introduce dedicated ensembles for Ĥ
and K that capture all the global characteristics of the system
to be described, along with the Lindbladian invariances. In
the case of the Hamiltonian component we sample Ĥ on the
set of Hermitian matrices without symmetry constraints [25]:
it can be proven that the natural ensemble for matrices with
these characteristics, that is invariant under transformations of
the U (N ) group, is the Gaussian unitary ensemble [GUE(N )]
[26]. For what concerns the dissipator component of (15)
having fixed the orthonormal basis {F̂n}n=1,...,N2−1 as the set
of infinitesimal generators of SU(N ) [16], we sample DK on
an ensemble of matrices K which is invariant under unitary
transformations. As explained in Ref. [27], to meet these re-
quirements, one can consider the so-called Wishart ensemble,
made up of matrices of the form W = A†A � 0, where A is
a complex square matrix, sampled from the Ginibre unitary
ensemble [GinUE(N )], the entries of which are complex with
real and imaginary parts that are independently normally dis-
tributed. This choice ensures that, by construction, all the
sampled matrices K are positive semidefinite and that they
are invariant under unitary transformations, as a consequence
of the same invariance of the Ginibre ensemble [28]. Given
hence A ∈ GinUE(N ) we define its associated Kossakowski
matrix as K (A) := N A†A

Tr(A†A) , which by construction is dimen-
sionless and has trace equal to N . It bears noting that, in this
way, apart from the normalization condition, sampling K (A)

is equivalent to sample a random density matrix with a flat
geometry [29].

Once the ensembles for sampling Ĥ and K have been
selected, we can examine the PPTT probability distributions
P(α,γ )

PPT (τ ) (16) which, for fixed values of α and γ , govern
the statistics of the PPTTs associated with the generators
L(α,γ )

H,K defined in Eq. (15). Reconstructing P(α,γ )
PPT (τ ) and its

cumulative counterpart P̄(α,γ )
PPT (τ ) (17) is generally a complex

task as it involves numerically integrating the dynamics of the
corresponding Choi-Jamiołkowski state (11) for each sampled
value of Ĥ and K , and determining the first time t at which it
becomes PPT. Consequently, in the following discussion, we
will explicitly focus first on the case where S is a qubit [N = 2
where, regardless of the choice of the generator, τPPT(L) and
τEST(L) always coincide] or a qutrit (N = 3). A further sim-
plification we shall adopt arises from the scaling (14) which,
setting β = 1/γ , implies

P(α,γ )
PPT (τ ) = γ P(k)

PPT(γ τ ),

P̄(α,γ )
PPT (τ ) = P̄(k)

PPT(γ τ ), (30)

where k := α/γ and P(k)
PPT(x), P̄(k)

PPT(X ) := ∫ X
0 P(k)

PPT(x) express
the PPTT distribution and its cumulant in (1/γ ) units corre-
sponding to the (dimensionless) GKSL generator [25]:

L(k,1)
H,K ( · · · ) := −ik[Ĥ , · · · ] + DK ( · · · ). (31)

Alternatively by setting β = 1/α we can also write

P(α,γ )
PPT (τ ) = αQ(k)

PPT(ατ ),

P̄(α,γ )
PPT (τ ) = Q̄(k)

PPT(ατ ), (32)

where now Q(k)
PPT(x) and Q̄(k)

PPT(X ) := ∫ X
0 Q(k)

PPT(x) express the
PPTT distribution and its cumulant in (1/α) units correspond-
ing to the (dimensionless) GKSL generator [25]:

L(1,1/k)
H,K ( · · · ) := −i[Ĥ, · · · ] + (1/k)DK ( · · · ). (33)

It goes without mentioning that the functions (30) and (32) are
linked by the identity

P(k)
PPT(x) = kQ(k)

PPT(kx),

P̄(k)
PPT(X ) = Q̄(k)

PPT(kX ). (34)

V. EMPIRICAL DISTRIBUTIONS

In the first part of this section we report the empiri-
cal estimation of the rescaled PPTT distributions P(k)

PPT(x)
and Q(k)

PPT(x) and their cumulative counterparts P̄(k)
PPT(x) and

Q̄(k)
PPT(x), for different values of the coefficient k in the case

of qubit and qutrit quantum systems (N = 2, 3), obtained by
sampling the corresponding Lindblad generators L(k,1)

H,K and

L(1,1/k)
H,K through the uniform measure defined in the previous

section. For each simulation, we sampled 20 000 Lindbladians
and derived the PPTTs associated with them. The number of
samplings chosen is justified by the fact that it was sufficient
to reveal the shape of the distributions while still guaranteeing
acceptable computational performances in terms of time. In
Sec. V B we will partly extend this analysis by considering a
quantum memory of n isodimensional qubit systems, studying
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FIG. 2. Histograms of the empirical PPTT distributions for a qubit (N = 2) system for different instances of the rescaled Lindbladians
L(k,1)

H,K and L(1,1/k)
H,K . For each assigned value of k we used 20 000 independent samplings of Ĥ in GUE(N = 2) and A with GinUE(N = 2).

(a) Histograms associated to the rescaled distribution P(k)
PPT(x) of Eq. (30) where γ is fixed and different values of α = kγ are considered.

Notice the emergence of a nontrivial limit distribution P(∞)
PPT (x) as k increases. (b) Histograms associated to the rescaled distribution Q(k)

PPT(x) of
Eq. (32) where instead α is fixed and different values of γ = α/k are considered.

the cumulative probability function defined in Eq. (27) in
Sec. III.

Figures 2 and 3 showcase the empirical PPTT distributions
derived for N = 2 and 3, respectively. In particular panels (a)
of these figures report the histograms associated with P(k)

PPT(x)
of Eq. (30) where all the quantities are expressed in units
of (1/γ ). The plots reveal that P(k)

PPT(x) becomes more and
more peaked as k increases and a nontrivial limit distribution
P(∞)

PPT (x) appears to emerge for k → ∞ (see also Sec. V A
below). These facts can be interpreted as a generalization
of what was observed in Ref. [15] and it indicates that, at
least at the distribution level, for a dissipative contribution of
fixed strength (in this case γ = 1), increasingly strong unitary
terms in the Lindbladian behave as an additional noise that
tends to cause entanglement to vanish sooner. The plots of
panels (a) seem also to suggest that all the histograms have the
same minimum time. However, from a subsequent analysis, it
emerges that there exists a relation that links such times to

the Lindbladian parameter k, which reveals that they have a
small range of variation. Observe finally that when comparing
the qubit case with the qutrit case, it is apparent that these
latter distributions are characterized by longer entanglement
degradation times as they are shifted to the right if compared
to the former ones. Panels (b) of Figs. 2 and 3 represent instead
the histograms obtained by samplings the rescaled Lindbla-
dian L(1,1/k)

H,K of (33) for different values of k—the associated

theoretical distribution being the function Q(k)
PPT(x) of (32)

where everything is expressed in units of (1/α). What emerges
in this case is in line with the expectations: in fact, once having
fixed the strength of the unitary Hamiltonian term [in this
case α = 1 according to Eq. (33)], the limiting case k � 1
represents the physical condition of a very noisy environment
(γ � 1) which causes the system to disentangle rapidly; in
contrast for k � 1 (i.e., γ � 1) entanglement vanishes at
increasingly longer times as the system becomes more and
more similar to a closed system.

FIG. 3. Same plots as Fig. 2 for a qutrit (N = 3) system. Also in this case we used 20 000 independent samplings of Ĥ in GUE(N = 3)
and A with GinUE(N = 3).
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FIG. 4. Empirical cumulative distribution functions related to the PPTT distributions of Figs. 2(a) and 2(b) for a qubit (N = 2) system for
different instances of the rescaled Lindbladians L(k,1)

H,K and L(1,1/k)
H,K . (a) Empirical cumulative distribution function P̄(k)

PPT(x) of Eq. (30) where γ

is fixed and different values of α = kγ are considered. (b) Empirical cumulative distribution function Q̄(k)
PPT(x) of Eq. (32) where instead α is

fixed and different values of γ = α/k are considered.

In Figs. 4 and 5 we report the plots of the empirical cu-
mulative distribution functions. Specifically, in panels (a) of
these figures we present the functions P̄(k)

PPT(x) of Eq. (30),
associated respectively with the PPTT distributions of the
qubit (N = 2) and qutrit (N = 3) case respectively, i.e., the
cumulative integrals of the histograms reported in Figs. 2(a)
and 3(a) and obtained by sampling the generator L(k,1)

H,K for
different values of k. Analogously, in panels (b) we present
the functions Q̄(k)

PPT(x) of Eq. (32) associated with the PPTT
distributions reported in Figs. 2(b) and 3(b) and related to the
generator L(1,1/k)

H,K .

A. Limit Lindbladian

From the plots reported in Figs. 2(a) and 3(a) it emerges
that when the system exhibits dynamics characterized by a
unitary Hamiltonian contribution that is predominant with re-
spect to the dissipative term, the rescaled distributions P(k)

PPT(x)
tend to a limit distribution P(∞)

PPT (x), through a process which
is distinguished by mean and median times that get smaller
and smaller as k increases. We are now interested in finding
the explicit expression of the effective Lindbladian L(eff )

H,K that,
properly sampled over Ĥ and K , allows one to obtain the limit

distribution P(∞)
PPT (x). We will refer to this superoperator as the

limit Lindbladian.
As a starting point of our analysis let us express the

GKSL master equation associated with the generator L(k,1)
H,K

of Eq. (31) in the interaction picture with respect to to the
Hamiltonian component, i.e.,

˙̃ρk (t ) = L̃(kt )
H,K [ρ̃k (t )], (35)

where

ρ̃k (t ) := eikĤt ρ̂(t )e−ikĤt , (36)

and L̃(kt )
H,K is the superoperator obtained from Eq. (4) by replac-

ing the operators F̂n with

F̃ (kt )
n;H := eikĤt F̂ne−ikĤt . (37)

Notice that in the above expressions, for the sake of sim-
plicity we dropped the index S. Notice also that since ρ̃k (t )
and ρ̂(t ) are connected via unitary transformations that act
locally on the systems of interest, their corresponding Choi-
Jamiołkowski states share the same entanglement properties,
meaning that PPTT values associated with L̃(kt )

H,K exactly match

those of the original Lindbladian L(k,1)
H,K . An ansatz for the

limit Lindbladian is obtained by considering the asymptotic

FIG. 5. Same plots as Fig. 4 for a qutrit (N = 3) system.
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average of D(kt )
K ;H for large k, i.e.,

L(eff )
H,K := lim

k→∞
1

k

∫ k

0
dk′ L̃(k′t )

H,K (38)

(as we shall see, as long as t > 0, the resulting superoperator
does not have any functional dependence upon such param-
eter). The resulting superoperator no longer depends on k,
but only on the eigenvectors of the selected Hamiltonian, as
well as the original Kossakowski matrix K . To perform the
integral in Eq. (38), we divide it into three terms and compute
them separately. Under these assumptions, the second and the
third term of the integral, given by the anticommutator in
the Lindblad master equation, will give the same result and
one can compute only one of the two. Leaving the explicit
derivation in Appendix D, we report here the final expression,
written in terms of the Lindblad operators {L̂(n)

K }n=1,...,N2−1 of
the dissipator DK :

L(eff )
H,K =

N2−1∑
n=1

{∑
i, j

Ẑ (n)
i,i (· · · )Ẑ (n) †

j, j +
∑
i, j �=i

Ẑ (n)
i, j (· · · )Ẑ (n) †

i, j

− 1

2

∑
i, j

[
Ẑ (n) †

j,i Ẑ (n)
j,i (· · · ) + (· · · )Ẑ (n) †

j,i Ẑ (n)
j,i

]}
, (39)

where indicating with �̂i the projector on the ith eigenspace
of Ĥ we define

Ẑ (n)
i, j := �̂iL̂

(n)
K �̂ j . (40)

To cast Eq. (39) in a more familiar form we perform an index
conversion in Ẑ (n)

i, j operators, in order to identify them with one
index. More specifically, one can do the conversion (i, j) →
m, with m = iN + j. In this way, Eq. (39) can be written in
terms of a sparse symmetric matrix A, the elements of which
are 0 and 1, and are determined in such a way to reproduce
that equation, i.e.,

L(eff )
H,K =

N2−1∑
n=1

N2−1∑
m,m′=0

Amm′

{
Ẑ (n)

m (· · · )Ẑ (n) †
m′

−1

2

[
Ẑ (n)†

m′ Ẑ (n)
m (· · · ) + (· · · )Ẑ (n)†

m′ Ẑ (n)
m

]}
. (41)

In particular Amm′ = 1 if m′ = m and m′ �= m with m, m′ such
that (im = lm) ∧ (im′ = lm′ ), where im (lm) is the first (second)
index before the conversion, associated with m. From this
expression it is clear that the matrix A is symmetric, therefore
diagonalizable. Defining as V the unitary matrix the columns
of which are the eigenvectors of A and as ηs its eigenvalues,
it is possible to introduce new Lindblad operators via the
identity

Ŷ (s,n) =
N2−1∑
m=0

√
η(s)V (m,s)Ẑ (n)

m , (42)

and write Eq. (39) in Lindblad form, in terms of them, i.e.,

L(eff )
H,K =

N2(N2−1)∑
=1

{
Ŷ ()(· · · )Ŷ ()†

−1

2
[Ŷ ()†Ŷ ()(· · · ) + (· · · )Ŷ ()†Ŷ ()]

}
, (43)

where  now stands for the joint indices s and n appearing in
the expression of the new Lindblad operators (42). It is worth
stressing that the Ŷ (s,n)’s inherit from the Ẑ (n)

m ’s an implicit
functional dependence upon the Kossakowski matrix K and
the Hamiltonian Ĥ of the original Lindbladian L.

To verify the correctness of the derivation we have con-
structed a new algorithm that, starting from the expression
of the limit Lindbladian defined in Eq. (39), and sampling
properly both the Hamiltonian and the dissipator, generates
the associated distribution of the entanglement survival times
and positive partial transpose times. In Fig. 6 we report the
plot obtained when considering both the limit distribution and
the ones in correspondence with the largest k value considered
in Figs. 2(a) and 3(a): as clear from the figures these curves
perfectly overlap (actually we have checked that there is good
agreement already starting from k = 5). This is in accordance
with what is expected and confirms that the formal expression
of the limit Lindbladian, reported in Eq. (39), gives a good
estimate of the limit distribution, obtained when the unitary
Hamiltonian contribution becomes predominant.

B. Entanglement degradation of a collection of n qubits
under random local noise

In Sec. III we have seen that the cumulative probabil-
ity function for quantum memories of many isodimensional
quantum systems on which uniform and local random Markov
noise acts (see Fig. 1) is obtained by raising the cumulative
distribution of a single system to the number of systems
involved. Suppose hence to have a quantum memory of this
kind, made up of n qubit systems (N = 2), and suppose that
each qubit is subjected to a random Markovian noise identified
by a generator L(k,1)

H,K with fixed value of k. According to
Eq. (27) the cumulative probability distribution of the model
can be expressed as

P̄[loc,n](k)
PPT (X ) = [

P̄(k)
PPT(X )

]n
, (44)

with P̄(k)
PPT(X ) the single site cumulative probability that

we have empirically estimated in Fig. 4. Fixing k = 1000
(i.e., equal to the biggest value considered in our statistical
analysis) we report the resulting function in Fig. 7 for dif-
ferent choices of n. As expected, for fixed X , the function
P̄[loc,n](k)

PPT (X ) is monotonically decreasing with respect to n.
To get a quantitative estimation of this effect we determine
numerically the time Xn at which the function P̄[loc,n](k)

PPT (X )
assumes value 1/2, i.e., the quantity

Xn := (
P̄[loc,n](k)

PPT

)−1
(1/2) = P̄(k)−1

PPT ( n
√

1/2), (45)

which formally corresponds to the evaluation of the median of
the PPTT distribution P[loc,n](k)

PPT (x). The results of this analysis
are summarized in Fig. 8. By inspecting the behavior of the
data points, a good ansatz for the fit function appears to be the
following power-law scaling:

Xn � �1n�2 . (46)
By using the MINITAB software, we find the values of the
coefficients �1 and �2, reported in Table I, and the fit function
together with the curves obtained considering a 95% confi-
dence interval for the fit parameters, reported in the figure. As
expected, in this model the degradation of entanglement slows
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FIG. 6. Comparison between the asymptotic distribution simulated sampling the limit Lindbladian L(eff )
H,K and the distributions obtained by

sampling the rescaled Lindbladian L(k,1)
H,K evaluated for k = 1000. The comparison between P(∞)

PPT (x) and P(k=1000)
PPT (x) for N = 2 is reported in

panel (a) while that for N = 3 is reported in panel (b).

down as the system size increases. This happens because, with
more systems involved, the chances that at least one system
stays entangled with its ancilla become higher, leading to
a longer time before the entire system loses entanglement.
Notably, the trend with which this occurs is modeled by the
function in Eq. (46), which exhibits a sublinear dependence
on the number of subsystems.

VI. STATISTICAL ANALYSIS

In this final section we investigate the properties of the
histograms derived in Sec. V obtaining fits of the probability
distribution functions and studying the relations that link their
characteristic times, such as mean time, median time, and
minimum time to the Lindbladian parameters. Without loss of
generality the analysis will focus on the rescaled distributions
P(k)

PPT(x) where all the quantities of interest are expressed in
the unit (1/γ ) [see Eq. (31)]: under this scenario we report

FIG. 7. Empirical cumulative distribution functions related to the
PPTT distributions P[loc,n](k)

PPT (x) of a collection of n qubit systems, on
which uniform and local random Markov noise acts [see Eq. (28)].
The generator of the noise is L(k,1)

H,K , with k = 1000. Plots are reported
as n varies from 1 to 10.

results for a few values of k. All the details about the statistical
analysis are reported in Appendix B for the qubit (N = 2)
case. Similar consideration, indeed, also applies for the qutrit
(N = 3) case.

Distribution fitting

For each data set associated with the sampling of the Lind-
bladian L(k,1)

H,K with k fixed, we used the MINITAB software
to carry out the statistical analysis, exploiting the maximum
likelihood (ML) method to find the optimal parameters of the
chosen model and the probability plots and goodness-of-fit
tests to understand which distribution represents the best fit
for the data. From this analysis, it emerges that there exist two
distributions that could represent a good fit for the data, which
are the three-parameter gamma distribution [Eq. (47)] and the
three-parameter log-normal distribution [Eq. (48)], with no

FIG. 8. Scatterplot of points Xn defined in Eq. (45) corresponding
to the median of the PPTT distributions P[loc,n](k)

PPT (x) obtained for a
quantum memory of n qubit systems as a function of the number n
of systems involved. The generator of the uniform and local random
Markov noise is L(k,1)

H,K , with k = 1000. Dashed green lines represent
the fit curve (46) obtained considering a 95% CI for the fit parameters
(see Table I).
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TABLE I. Parameter estimates for the median xn of the PPTT
distributions PPPT(x) for a quantum memory of n qubits (N = 2).

Parameter Estimate SE estimate 95% CI

�1 0.844 0.001 (0.841; 0.847)
�2 0.0762 0.0005 (0.0753; 0.0772)

elements that justify the propensity for one distribution rather
than the other:

f (β,σ,μ)
G (x) = (x − μ)(β−1)

σβγ (β )
exp

(
− (x − μ)

σ

)
, (47)

f (σ,μ,ν)
LN (x) = (x − μ)−1

√
2πσ

exp

(
− (ln(x − μ) − ν)2

2σ 2

)
. (48)

Here β is the shape parameter, σ is the scale parameter, μ is
the threshold value, and ν is the location. In Fig. 9 we report
a comparison between these functions and the corresponding
data set of P(k)

PPT(x) of the qubit (N = 2) case for some values
of k. The parameters obtained from the statistical analysis,
using the ML method, are reported in Table II.

The same analysis has then been conducted considering
the data set for P(k)

PPT(x) of the qutrit (N = 3) case, obtaining

the same results in terms of fit distributions, the characteristic
parameters of which are reported in Table III.

Analysis of characteristic PPTTs

We can now analyze the PPTT distributions P(k)
PPT(x) in

more detail studying how their characteristic times, such as
mean time μk , median time Mk , and minimum time mk which
are the quantities of interest in most cases, vary with respect
to the parameter k [30]. First and foremost one expects that all
the quantities will be expressed by functions which are even in
k, as positive and negative values of k formally correspond to
positive and negative values of α which will contribute equally
to the dynamics when sampling Ĥ in GUE(N ). Moreover,
from the limit behavior of the distributions P(k)

PPT(x), which can
be investigated from the data, it emerges that all the searched
functions μk , Mk , and mk must tend to a constant value both
for k approaching zero and for k approaching infinity. Based
on these considerations, the ansatz we have made is that they
will be expressed as ratios f�θ (k) of second-order polynomials
in k, with three parameters �θ := (θ1, θ2, θ3) to be determined,
i.e.,

f�θ (k) = θ ′
1 + θ2k2

θ3 + k2
, (49)

FIG. 9. Distribution P(k)
PPT(x) of the qubit (N = 2) case for k = 0, 1, 10, 1000, with theoretical fit probability density functions overlapped.

Fit parameters are reported in Table II.
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TABLE II. ML estimates of distribution parameters for P(k)
PPT(x) for the qubit (N = 2) case. The values of k are relative to the plots reported

in Fig. 9.

k Distribution Location (ν ) Shape (β ) Scale (σ ) Threshold (μ)

0
Three-parameter gamma 2.89677 0.08656 0.83435
Three-parameter log-normal −1.32915 0.49121 0.78692

1
Three-parameter gamma 2.45291 0.06334 0.82813
Three-parameter log-normal −1.86269 0.54827 0.80338

10
Three-parameter gamma 0.9322 0.06660 0.82410
Three-parameter log-normal −3.30639 1.10641 0.82249

1000
Three-parameter gamma 0.89219 0.06776 0.82400
Three-parameter log-normal −3.35909 1.14009 0.82252

where θ ′
1 = θ1θ3, and

θ2 = lim
k→∞

f�θ (k), θ1 = f�θ (0). (50)

As discussed in Appendix C the special choice of making θ ′
1

proportional to θ3 is made to reduce the parameter estimation
error and the correlation otherwise present between the θ1 and
θ3.

In the following, we present the results obtained in us-
ing the functions f�θ (k) as estimators for the characteristic
times of the problem. In particular, in order to associate
an error to data points, the characteristic times reported in
Figs. 10 and 11 have been obtained from the original sample
using the bootstrap method. Hence, they must be under-
stood as average values and therefore they are indicated as
〈Mk〉, 〈μk〉, and 〈mk〉. All the details can be found in Ap-
pendix C. As can be seen from Figs. 10(a) and 11(a), the fit
function (49) well describes the functional dependence of the
median time 〈Mk〉 from k. Very similar results, in terms of
fit precision, have been obtained also for the mean time 〈μk〉
(data not reported). In contrast for the minimum time 〈mk〉 the
data points are characterized by much larger errors than the
ones associated to 〈Mk〉, when one considers small k values,
and small errors that appear for large k values [see Figs. 10(b)
and 11(b)]. This trend can be justified by remembering that the
minimum time strongly depends on the number of iterations
chosen in the numerical simulation: for the qubit case, when
k assumes small values, the PPTT distributions are character-
ized by a smooth right-skewed form, therefore the minimum
time can be strongly dependent on the sampling, causing the

associated errors to be larger. When k increases, instead, these
distributions tend to a strongly peaked limit distribution, with
the peak in correspondence with the minimum time, therefore
such times tend to be estimated more precisely. Similar con-
siderations also apply to the qutrit case.

As a final remark we notice that from our numerical data
it emerges that in all the cases the optimal fitting parameter
θ1 is always greater than the associated θ3, implying that, in
agreement with the observation of Ref. [15] the characteristic
times that are obtained from the PPTT distributions are all
monotone functions, decreasing in k.

VII. CONCLUSIONS

The current paper delves into the distributions of positive
partial transpose times for quantum systems subjected to the
influence of an ensemble of Markovian noises. Our primary
focus lies in examining the correlation between the character-
istics of these distributions and the parameters governing the
relative intensities of the Hamiltonian and dissipative com-
ponents within the Lindbladian superoperator. Particularly
noteworthy is our characterization of the limit distribution
observed in the weak-coupling regime, where the predomi-
nance of the unitary Hamiltonian term is pronounced. This
facet of our paper draws inspiration from the findings in
Ref. [15], albeit in our case, we explore a broader spectrum
of noise models under the same limiting circumstances. As a
case of special interest we also consider the case where the
system of interest is composed by a collection of n elements
(many-body configuration) subject to local, independent

TABLE III. ML estimates of distribution parameters for P(k)
PPT(x) for the qutrit (N = 3) case. The values of k considered are the same as for

N = 2.

k Distribution Location (ν ) Shape (β ) Scale (σ ) Threshold (μ)

0
Three-parameter gamma 8.51657 0.04587 1.33097
Three-parameter log-normal −0.64667 0.24536 1.18184

1
Three-parameter gamma 7.30206 0.03678 1.26625
Three-parameter log-normal −1.03104 0.26581 1.16539

10
Three-parameter gamma 3.20057 0.04941 1.24257
Three-parameter log-normal −1.66817 0.42057 1.1949

1000
Three-parameter gamma 3.3158 0.04966 1.23287
Three-parameter log-normal −1.62198 0.41244 1.1827
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FIG. 10. (a) Functional dependence of the median 〈Mk〉 of the distribution P(k)
PPT(x) for the qubit (N = 2) case obtained from the data of

the histogram of Fig. 2(a). Dashed green lines represent the fit curves obtained considering a 95% CI for the fit parameters (see Table VI in
Appendix C). (b) Functional dependence of minimum time 〈mk〉 of the distribution P(k)

PPT(x) for the qubit (N = 2) case obtained from the data
of the histogram of Fig. 2(a). Dashed green lines represent the fit curves obtained considering a 95% CI for the fit parameters (see Table VIII
in Appendix C).

random evolutions: a numerical analysis of this configuration
shows that the characteristic time at which the system has
probability 1/2 of reaching PPTT starting from a maximally
entangled input configuration scales with a power law with
respect to the system size. While our paper is centered on
the seemingly straightforward yet nontrivial instances of qubit
and qutrit systems, we posit that this research could serve as
a stepping stone for broader generalizations. Specifically, an
intriguing avenue of investigation is the classical scenario,
manifested through the (super)decoherence of Lindblad op-
erators. These operators gradually transform into classical
Kolmogorov generators, exhibiting different statistical char-
acteristics. Therefore, it is worthwhile to explore how the shift
from quantum to classical impacts our statistical analysis,
particularly by examining the effects of weak decoherence
[31]. Moreover, we contemplate the extension of our approach
to more complex systems, exploring whether and how the
results observed in these cases might extrapolate. Addition-
ally, we foresee the potential to glean insights into positive
partial transpose times when introducing new symmetries or

imposing different constraints on the noise within the system
of interest.
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APPENDIX A: NECESSARY AND SUFFICIENT
CONDITION FOR PPT

Here we give an explicit proof that a generic � LCPT
superoperator is PPT if and only if the Choi-Jamiołkowski
state [23] ρ̂�

SS′ := � ⊗ IdS′ (|�max〉SS′ 〈�max|) is PPT, i.e.,

� ∈ PPT ⇔ (
ρ̂�

SS′
)TS′ � 0, (A1)

or equivalently

� ∈ PPT ⇔ (
ρ̂�

SS′
)TS � 0, (A2)

with TS and TS′ representing the partial transpositions with
respect to to the system S and S′ respectively. The direct
implication in Eq. (A1) is a consequence of the definitions.
To prove the reverse observation, given |�〉SS′ , a generic pure
state of SS′, there exists a local operator X̂S′ on S′ such that

|�〉SS′ = X̂S′ |�max〉SS′ , (A3)

so that

X̂S′ ρ̂�
SS′ X̂ †

S′ = � ⊗ IdS′ (|�〉SS′ 〈�|). (A4)

If hence ρ̂�
SS′ is PPT we can write

[� ⊗ IdS′ (|�〉SS′ 〈�|)]TS = X̂S′
(
ρ̂�

SS′
)TS X̂ †

S′ � 0. (A5)

The extension to a generic mixed input state follows finally by
linearity.

APPENDIX B: STATISTICAL ANALYSIS OF EST
DISTRIBUTIONS

The distributions of entanglement survival time have been
studied from a statistical point of view in order to find a
theoretical distribution that could represent a discrete fit for
the data. In particular, we used the the MINITAB software,
in which it is possible to test up to 14 theoretical distri-
butions. For each distribution tested, the probability plot is
shown and MINITAB calculates Anderson-Darling (AD) statis-
tics and the associated p value. In the probability plot, the
input data are plotted with respect to the percentage of values
in the sample that is less than or equal to the considered
value, so that they roughly follow a straight line if they come
from the chosen distribution. In particular, these graphs show
a central straight line, which corresponds to the expected
theoretical percentiles, calculated considering the theoretical
distribution, evaluated in correspondence with the parameters
obtained with the maximum likelihood method. Lines at a
95% confidence interval for the model parameters are also
added. Thus, deviations from the central line represent devia-
tions from the considered distribution. Associated with these
graphs is the AD coefficient: this value gives a measure of the
distance between the numerically found distribution and the
theoretical one and it is calculated considering the cumulative
distribution. Being a distance measure, smaller values of this

TABLE IV. Goodness-of-fit test: distribution identification for
N = 2, k = 0.

Distribution AD P LRT P

Gamma 250.107 <0.005
Three-parameter gamma 5.704 <0001
Log-normal 197.695 <0.005
Three-parameter log-normal 7.802 <0001

parameter indicate that the data better follow the theoretical
distribution. Consequently, during the analysis, among the
considered fit distributions, those with a lower AD value are
considered better than the others. Furthermore, the AD value
allows the calculation of the p value, which represents a prob-
ability that measures the evidence against the null hypothesis.
For this test, the null hypothesis is that the data follow the
tested distribution. Consequently, p values less than a certain
threshold (the threshold is fixed at ᾱ = 0.05) indicate that the
data do not follow that distribution, since the null hypothesis
is rejected. For certain classes of distributions reported in the
analysis, MINITAB also provides the p value associated with
the likelihood ratio test. This test is used to understand if the
addition of a parameter substantially changes the fit and the
null hypothesis at its base is that the distribution that best fits
the data is the one with the fewest parameters, i.e., the simplest
model. In this case, therefore, having a significance level of
ᾱ = 0.05, with low p values it can be concluded that the data
follow the distribution with a greater number of parameters.
By looking at these indicators it is possible to get an idea of
which distribution is the best. This analysis was made both for
the qubit and the qutrit case for a subset of the investigated k
values, in the case of constant γ and variable α. Below are
the considerations made to arrive at the chosen fit distribu-
tion, in the two-qubit case, for the value k = 1, which is the
intermediate case par excellence, where both contributions are
present with the same strength. For all the other cases the
same logic was followed, reaching the same conclusions. An
initial evaluation of the probability plots shows that the only
distributions that can represent a good fit for the data are the
three-parameter gamma distribution and the three-parameter
log-normal distribution. This can be deduced from the good
graphic agreement between the experimental points and the
theoretical line and from the AD values, significantly lower
than those of the other distributions. In Fig. 12 is reported
the summary plot where these distributions are compared with
the two-parameter ones. It should be noted that for the three-
parameter distributions it is not possible to define a p value,
but it is possible to compare the p values associated with the
likelihood ratio criterion. Table IV shows the goodness-of-fit
test obtained when considering the gamma and log-normal
distributions.Table IV shows that the p value associated with
the likelihood ratio test is less than the significance level for
both distributions. This means that the addition of a param-
eter significantly improves the fit in both cases, but does not
give information on which of the two distributions best fits
the experimental data. To obtain further information in this
sense, we have compared the log-likelihood values for both
distributions in Table V, using as parameters those estimated
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FIG. 12. Distribution identification for N = 2 and k = 1, probability plot, and goodness-of-fit test.

by MINITAB with the maximum likelihood estimation method.
As can be seen, the log-likelihood values of the two distribu-
tions are very similar and their difference would not justify
the propensity for one fit distribution rather than another.
Therefore, it is concluded that both theoretical distributions
can represent a good fit for the experimental data.

APPENDIX C: ANALYSIS OF CHARACTERISTICS
OF EST AND PPTT

To determine the optimal values of the parameters
θ ′

1, θ2, and θ3 which define the fit function f�θ (k) of Eq. (49)
we minimize the sum of squares of the residual error (SSE)
through an iterative procedure which has to be terminated
when a convergence criterion is satisfied. To perform the
analysis we used the MINITAB software which exploits the
Levenberg-Marquard algorithm, choosing 200 as the max-
imum number of iterations that the algorithm can use to
achieve convergence and 0.000 01 as the convergence toler-
ance. Once the algorithm converges, it returns the parameter

TABLE V. Log-likelihood associated with the three-parameter
gamma and three-parameter log-normal distributions for N = 2,
k = 0, computed using ML estimates of distribution parameters.

Distribution Log likelihood

Three-parameter gamma 12429.3
Three-parameter log-normal 12422.1

estimates, with a 95% confidence interval, and the correlation
matrix for them. Thanks to this matrix it was possible to see
that, in all the considered cases, if one chooses the first param-
eter as θ ′

1 = θ1, a strong correlation between θ ′
1 and θ3 appears

that also reflects a huge uncertainty in the parameter estimates.
This is due to the fact that, when considering the function’s
values for k = 0, one would get f�θ (0) = θ1/θ3. To avoid this
we chose θ ′

1 = θ1θ3: this choice eliminates partially the cor-
relation and also improves the estimation of these parameters.
To associate an error to data points we have used the bootstrap
method and from the original sample with 20 000 iterations,
we have created 100 new samples, each with the same number
of elements as the original one. Therefore, the points that are
represented in Figs. 10 and 11 must be understood as average
values over 100 points and the error associated with them is
equal to 1 σ . In order to find the parameter estimates with
the best precision possible, we have used in the analysis all
the values of k, up to k = 1000, while, for greater clarity of
visualization, a closeup of the original plots, up to k = 30, is
reported here for the two-qubit case. Finally, residual analysis
is considered in order to assess the goodness of fit. In partic-
ular, we considered the normal probability plot of residuals,
the plot of the residuals versus fitted values, the histograms
of the residuals, and the plot of the residuals versus order.
These plots allow us to understand if the assumptions that are
at the basis of the regression analysis are satisfied, and so if
the residuals are normally distributed and independent of each
other. It should be noted that, since the form of the histogram
of the residuals strongly depends on the number of data and,
as a consequence, on the number of used intervals, it is not
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TABLE VI. Parameter estimates for Mk in the two-qubit case
(N = 2).

Parameter Estimate SE estimate 95% CI

θ1 1.0514 0.0007 (1.0499; 1.0529)
θ3 1.05 0.02 (1.01; 1.09)
θ2 0.8599 0.0003 (0.8592; 0.8605)

always possible to obtain statistically significant information
about the emerging distribution having less than 20 points.
However, even if we had 16 data points, we have chosen to
report this plot as well to understand if it would be possible
to recover some information to be added to that obtained from
the other residual plots.

We report in the following the results of the statistical anal-
ysis for the two-qubit case (N = 2) regarding the estimation
of the median and minimum PPTTs. For the two-qutrit case
the same considerations hold and we will report, for the sake
of completeness, a subsequent section with the tables related
to the fit parameters’ estimates in this last case. Let us now
discuss the case N = 2; all the quantities will be referred to.

1. Estimation of the median PPTT Mk

The computed values of the parameters characterizing the
fit function are listed in Table VI. The standard error of the
estimate (“SE estimate”) gives information about the preci-
sion of the computed parameters: the smaller its value, the
more precise the estimate. We can notice that the error on
parameter θ3 is about one or two orders of magnitude larger
than the errors on parameters θ1 and θ2. In fact, while θ2 can be
estimated precisely as it represents the value of the fit function
when α goes to infinity, one expects a correlation between the
other two parameters, which emerges in the correlation matrix
in Table VII, that will reflect a less precise estimation of these
parameters, as they are both associated to the value of the fit
function when k = 0. In particular, from this consideration
the choice we made on θ ′

1 becomes clear, which guarantees
that just one of the latter two parameters has a larger error.
The correlation matrix has the expression given in Table VII.
As expected, θ1 and θ3 are quite strongly correlated; this
correlation could decrease if one considers more data points;
however, given also the precision of the fit [see Fig. 10(a)],
this has not been considered highly necessary. The residual
plots are reported in Fig. 13. From these graphs it emerges
that the residuals are of the order of thousands and that there
are some of them with values close to zero. These points
are responsible for the variations from the expected pattern’s
behavior, reported in the plot as a red line. In the normal
probability plot, the residuals follow approximatively the red

TABLE VII. Correlation matrix for parameter estimates for Mk

in the two-qubit case (N = 2).

θ1 θ3

θ3 −0.590165
θ2 0.087011 −0.338910

TABLE VIII. Parameter estimates for mk in the two-qubit case
(N = 2).

Parameter Estimate SE estimate 95% CI

θ1 0.8372 0.0007 (0.8358; 0.8386)
θ3 0.7 0.2 (0.4; 1.1)
θ2 0.8239 0.0003 (0.8233; 0.8245)

straight line and the presence of the aforementioned points
is not so evident, while it emerges more clearly in the plot
of the residuals versus fit and also in the plot of the residual
versus order. In the former, one expects that the points are
randomly distributed on both sides of the central dashed line.
What can be observed is that there is a first group of residuals,
that are randomly distributed in the range [−10−2, 10−2], and
a second group of them that, instead, have values in the range
[−3×10−2, 3×10−2]. In particular, the smallest residuals are
the ones obtained for larger k values, as can be seen from the
latter plot. However, when k increases the function saturates
to a certain value (given by θ2) and, as a consequence, the
residuals tend to assume smaller values; there are not, in fact,
sharp variations of the function as the ones that are present
for smaller k values or, in other words, the slope of the func-
tion becomes fixed. These considerations justify the obtained
residual’s graphs and permit us to conclude that the chosen
fit function can be considered as a quite good estimate of
the real function that links the considered time values to the
Lindbladian parameters.

2. Estimation of the minimum PPTT mk

The previous analysis is repeated for the minimum value
of the PPTT. As already pointed out in Sec. VI, one expects
this time to be a less stable point of the distributions, since
it strongly depends on the number of samplings that have
been done. Indeed, this clearly appears in Fig. 10(b), where
it can be seen that these points are characterized by larger
errors than the previous case, especially for small α values.
The parameter estimates are reported in Table VIII. Analo-
gously to the previous cases, the best-estimated parameter is
θ2. θ1 has a small error compared to θ3 which, instead, has a
20% uncertainty that can be caused by the minor stability of
this characteristic time. As previously, we report the correla-
tion matrix of parameters in Table IX. What emerges from
Table IX is in line with what was found for the median time,
therefore the same considerations hold. Finally, residual plots
reported in Fig. 14 are shown to assess the goodness of fit.
For these plots more careful considerations must be done. In
these graphs there emerges the presence of a large number
of points that have almost zero residuals. This is seen by the

TABLE IX. Correlation matrix for parameter estimates for mk in
the two-qubit case (N = 2).

θ1 θ3

θ3 −0.591603
θ2 0.080837 −0.327771
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FIG. 13. Residual plots for Mk in the two-qubit case (N = 2) (maximum value of k being 30).

presence of points forming an almost horizontal line in the
first graph while, instead, they should follow the red line, by
the presence also of a higher concentration of points in the
second graph, which therefore shows that the residuals have a
different variance, and by the fact that, in the last graph, the
points are no longer randomly distributed by increasing order,
i.e., by increasing k values, which would imply, in principle,
a correlation between adjacent points. As it can be seen from
the last graph, these points correspond to the minimum times
that one has for increasing k values, when the histograms tend
to a limit histogram and become more and more peaked in
correspondence with the minimum time. In analyzing these
graphs it is, therefore, necessary to take into account the
behavior of the distributions that are being analyzed. There-
fore, these residuals are not necessarily associated with an

error in the model but could be conditioned by the trend of
distributions.

3. Parameter estimation of the median PPTT Mk

and the minimum PPTT mk for the two-qutrit case

For the sake of completeness, we report the values of
parameter θ1, θ2, and θ3 related to the fit function f�θ (k) in
Eq. (49), and the correlation matrix of parameters, for the
median and the minimum positive partial transpose time in
the two-qutrit case, namely for N = 3.

Let us start from the median PPTT Mk . The fit param-
eters obtained from the statistical analysis are reported in
Table X, while the correlation matrix of parameters is given by
Table XI.

FIG. 14. Residual plots for mk in the two-qubit case (N = 2) (maximum value of k being 30).
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TABLE X. Parameter estimates for Mk , in the two-qutrit case
(N = 3).

Parameter Estimate SE estimate 95% CI

θ1 1.702 0.002 (1.697;1.707)
θ3 0.75 0.02 (0.69;0.81)
θ2 1.382 0.001 (1.379;1.385)

For the minimum PPTT mk , we report in Table XII the
parameter estimates and in Table XIII the correlation matrix
for the parameter estimates.

APPENDIX D: DERIVATION
OF THE LIMIT LINDBLADIAN

We report here the explicit derivation of the limit Lindbla-
dian starting from the expression of the Lindblad superopera-
tor written in the interaction picture:

L̃(kt )
H,K =

N2−1∑
n=1

{
L̃(kt )

n (· · · )L̃(kt ) †
n

− 1

2

[
L̃(kt ) †

n L̃(kt )
n (· · · ) + (· · · )L̃(kt ) †

n L̃(kt )
n

]}
, (D1)

where

L̃(kt )
n = eikĤt L̂(n)

K e−ikĤt (D2)

represents the Lindblad operator evolved in time. As pointed
out in Sec. V A, an ansatz for the limit Lindbladian is obtained
by considering the asymptotic average of L̃(kt )

K,H for large k, i.e.,

L(eff)
H,K := lim

k→∞
1

k

∫ k

0
dk′L̃(k′t )

H,K . (D3)

To perform the integral in Eq. (38), we divide it into three
terms and compute them separately, namely,

I (n)
1 (kt ) = 1

k

∫ k

0
L̃(k′t )

n (· · · )L̃(k′t ) †
n dk′, (D4)

I (n)
2 (kt ) = 1

k

∫ k

0
L̃(k′t ) †

n L̃(k′t )
n (· · · ) dk′, (D5)

I (n)
3 (kt ) = 1

k

∫ k

0
(· · · )L̃(k′t ) †

n L̃(k′t )
n dk′. (D6)

TABLE XI. Correlation matrix for parameter estimates for Mk in
the two-qutrit case (N = 3).

θ1 θ3

θ3 −0.592114
θ2 0.063677 −0.335808

TABLE XII. Parameter estimates for mk , in the two-qutrit case
(N = 3).

Parameter Estimate SE estimate 95% CI

θ1 1.383 0.003 (1.377;1.390)
θ3 0.59 0.05 (0.48;0.73)
θ2 1.242 0.002 (1.238;1.245)

The second and third integral will give the same result and
one can compute only one of the two, namely, I (n)

3 (t ). This
integral is performed only on Lindblad operators, which have
the following expression:

L̃(k′t ) †
n L̃(k′t )

n = eik′Ĥt L̂(n) †
K L̂(n)

K e−ik′Ĥt . (D7)

It can be seen that k′ appears only in the exponential operator,
which can be diagonalized because Ĥ is a Hermitian matrix,
i.e.,

eik′Ĥt =
∑

l

eik′λl t�̂l . (D8)

In this way it is possible to separate the exponential coeffi-
cient, which contains k′ and the eigenvalues λl of Ĥ , from
the projectors �̂l on the lth eigenspace of the Hamiltonian.
Therefore,

L̃(k′t ) †
n L̃(k′t )

n =
∑
i, j

eik′(λi−λ j )t�̂iL̂
(n) †
K L̂(n)

K �̂ j

=
∑
i, j

eik′t (λi−λ j )Ŵ (n)
i j

=
∑
i, j �=i

eik′t (λi−λ j )Ŵ (n)
i j +

∑
i, j

eik′t (λi−λ j )Ŵ (n)
i j δi, j

=
∑
i, j �=i

eik′t (λi−λ j )Ŵ (n)
i j +

∑
i

Ŵ (n)
i i . (D9)

TABLE XIII. Correlation matrix for parameter estimates for mk

in the two-qutrit case (N = 3).

θ1 θ3

θ3 −0.586919
θ2 0.065695 −0.349262
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Once the integrand is explicitly stated in terms of k′, it is possible to compute the integral

I (n)
3 (kt ) = 1

k

∫ k

0
(· · · )L̃(k′t ) †

n L̃(k′t )
n dk′.

= (· · · )
1

k

∫ k

0

∑
i, j �=i

eik′t (λi−λ j )Ŵ (n)
i j dk′ + (· · · )

1

k

∫ k

0

∑
i

Ŵ (n)
i i dk′

= (· · · )
∑
i, j �=i

i

kt (λ j − λi )
(eikt (λi−λ j ) − 1)Ŵ (n)

i j + (· · · )
∑

i

Ŵ (n)
i i . (D10)

When k → ∞ the first term goes to zero and I (n)
3 (kt ) becomes

I (n)
3 = (· · · )

∑
i

Ŵ (n)
i i . (D11)

The integral I (n)
2 (kt ) gives the same result as the integral I (n)

3 (kt ), with the only difference that the operator multiplies the matrix
Ŵ (n)

i j on the right. For this integral, the same considerations made for I (n)
3 (kt ) hold; therefore when k → ∞, it becomes

I (n)
2 =

∑
i

Ŵ (n)
i i (· · · ). (D12)

Finally, it is possible to compute the integral I (n)
1 (kt ) [see Eq. (D4)]. As in the previous case, the dependence on k in the integrand

must be made explicit. Writing the Hamiltonian spectral decomposition, one has

L̃(k′t )
n (· · · )L̃(k′t ) †

n =
∑
i, j

∑
l,m

eik′t[(λi+λl )−(λ j+λm )]�̂iL̂
(n)
K �̂ j (· · · )�̂l L̂

(n) †
K �̂m. (D13)

Defining the operator

Ẑ (n)
i, j := �̂iL̂

(n)
K �̂ j, (D14)

the expression in Eq. (D13) can be written in a more compact form. Moreover, as in the previous case, the summation is split
in two parts: a first part in which the exponential coefficient is different from 1, and a second part in which the exponential
coefficient is equal to 1, so the dependence from k′ is lost:

L̃(k′t )
n (· · · )L̃(k′t ) †

n =
∑
i, j

∑
l,m

eik′t[(λi+λl )−(λ j+λm )]Ẑ (n)
i, j (· · · )Ẑ (n) †

m,l

=
∑

i,l

∑
j,m such that

(λ j+λm )�=(λi+λl )

eik′t[(λi+λl )−(λ j+λm )]Ẑ (n)
i, j (· · · )Ẑ (n) †

m,l

+
∑
i, j

∑
l,m

eik′t[(λi+λl )−(λ j+λm )](δi, jδl,m)Ẑ (n)
i, j (· · · )Ẑ (n) †

m,l

+
∑
i, j

∑
m,l �=i

eik′t[(λi+λl )−(λ j+λm )](δ j,lδi,m)Ẑ (n)
i, j (· · · )Ẑ (n) †

m,l

=
∑

i,l

∑
j,m such that

(λ j+λm )�=(λi+λl )

eik′t[(λi+λl )−(λ j+λm )]Ẑ (n)
i, j (· · · )Ẑ (n) †

m,l

+
∑

i,l

Ẑ (n)
i,i (· · · )Ẑ (n) †

l,l +
∑
i,l �=i

Ẑ (n)
i,l (· · · )Ẑ (n) †

i,l . (D15)

In this way, the first term depends on k′ while the second term does not. Therefore, when integrating on k′, the only nontrivial
integral will be the first one. The form of the integrand function is the same as the previous case; as a consequence, the resulting
integral will be a function of the eigenvalues of Ĥ and will depend on k in such a way that, when k → ∞, it becomes negligible.
Calling g(k, t, λi, λ j, λl , λm) the resulting integral function, the final form of I (n)

1 (kt ) is

I (n)
1 (kt ) =

∑
i,l

∑
j,m such that

(λ j+λm )�=(λi+λl )

g(k, t, λi, λ j, λl , λm)Ẑ (n)
i, j (· · · )Ẑ (n) †

m,l

+
∑

i,l

Ẑ (n)
i,i (· · · )Ẑ (n) †

l,l +
∑
i,l �=i

Ẑ (n)
i,l (· · · )Ẑ (n) †

i,l . (D16)
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When k → ∞, the function g(k, t, λi, λ j, λl , λm) → 0 and I (n)
1 (kt ) becomes

I (n)
1 =

∑
i,l

Ẑ (n)
i,i (· · · )Ẑ (n) †

l,l +
∑
i,l �=i

Ẑ (n)
i,l (· · · )Ẑ (n) †

i,l . (D17)

Putting together the terms I (n)
1 , I (n)

2 , and I (n)
3 , one obtains the final expression of the limit Lindbladian, when k → ∞:

L(eff)
H,K =

N2−1∑
n=1

{ ∑
i,l

Ẑ (n)
i,i (· · · )Ẑ (n) †

l,l +
∑
i,l �=i

Ẑ (n)
i,l (· · · )Ẑ (n) †

i,l − 1

2

[ ∑
i

Ŵ (n)
i i (· · · ) + (· · · )

∑
i

Ŵ (n)
i i

]}
. (D18)

The operator W (n)
i i can be written in terms of Z (n) operators, so L(eff)

H,K assumes the following equivalent expression:

L(eff)
H,K =

N2−1∑
n=1

{∑
i,l

Ẑ (n)
i,i (· · · )Ẑ (n) †

l,l +
∑
i,l �=i

Ẑ (n)
i,l (· · · )Ẑ (n) †

i,l − 1

2

∑
i,l

[
Ẑ (n) †

l,i Ẑ (n)
l,i (· · · ) + (· · · )Ẑ (n) †

l,i Ẑ (n)
l,i

]}
. (D19)

To specify this derivation for example in the two-qubit case, where N = 2, the expression of the limit Lindbladian (39) [here
Eq. (D19)] reduces to (41) considering the index conversion (i, l ) → m = 2i + l , with i = 0, 1 and l = 0, 1, and introducing the
following symmetric matrix A:

A =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎠. (D20)

By diagonalizing it, one can obtain the Lindblad matrices, defined in Eq. (42), that enter in the final expression of the limit
Lindbladian (43):

Ŷ (0,n) = 0,

Ŷ (1,n) = Ẑ (n)
2 ,

Ŷ (2,n) = Ẑ (n)
1 ,

Ŷ (3,n) = −(
Ẑ (n)

0 + Ẑ (n)
3

)
. (D21)
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