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Abstract: The aim of this study was to assess the kinematic differences in the upper limb
and trunk between healthy and shoulder-injured softball position (non-pitchers) players.
Eleven first-division softball players (mean age: 25.9 ± 8.1 years) were enrolled: five players
who had experienced a shoulder injury with consequent surgery (time from surgery to
test: 0.9 years) and six healthy matched controls. The position players performed their
typical throw motor task after receiving the ball from a buddy. Wearable inertial sensors
(Xsens MTw Awinda) were used to collect the kinematical data on the shoulder, elbow, and
trunk. Peak joint kinematics and range of motion (ROM) were compared between healthy
and injured players separately for the “Pickup” and “Pass” phases. In the pickup phase, a
higher internal/external rotation ROM of the shoulder was found in healthy players than
in the injured ones (p = 0.016). Similarly, elbow flex/extension ROM was higher in the
healthy players (p = 0.039). A higher peak of trunk flexion was also found in healthy players
than the injured ones (p = 0.002). In the pass phase, shoulder internal/external rotation,
adduction/abduction, and flex/extension ROM were greater in healthy than injured players
(p = 0.050, p = 0.001, and p = 0.007, respectively). Healthy players also showed a higher
elbow peak flexion (p = 0.022). The shoulder-injured players showed a lower ROM than the
healthy ones during both the pickup and pass phases of a throw motor task. Despite being
cleared to return to play, the injured players could voluntarily or unconsciously perform
the motor task in a more conservative way than the healthy controls.

Keywords: wearable inertial sensors; shoulder injury; softball; kinematics; ecological
validity

1. Introduction
Softball is widely played across the world. It is particularly prominent in the United

States, Japan, Canada, Australia, and several European countries, such as the Netherlands
and Italy [1]. According to the Statista Research Department [2], in 2021, the number of
softball athletes in the U.S. reached 8.1 million. However, the physical demands of softball,
involving intense movements, such as pitching, batting, and sprinting, lead to both acute
injuries (i.e., sprains and fractures) and overuse injuries (i.e., shoulder or elbow strains) [3].

In particular, upper-limb injuries related to throwing movements are the most com-
mon in softball [4–7]. Continuous softball practice can lead to chronic overuse injuries,
particularly in the shoulder and elbow joints, due to repetitive stresses from repeated
throwing motions [8].
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The most common shoulder injuries among softball players are muscle–tendon strain,
tendinitis, and subluxation [9,10]. In severe cases, upper-body injuries may necessitate
surgery, extending the rehabilitation period and return-to-play time. Moreover, after severe
injuries or surgery, it is expected that players may alter their throw kinematics due to disuse
or changes in muscular and tendon strength balance [11,12].

In general, athletes often exhibit compensatory movements following injuries, which
can alter their kinematics in order to maintain their performance, despite physical limi-
tations [13]. These adaptations can vary depending on the type of injury sustained and
the specific demands of the sport. For example, wrist injuries in basketball players may
alter shooting movements, decreasing their performance [14]. In addition, athletes have
shown biomechanical deficits during non-specific motor tasks, such as the vertical jump
test [15]. While these adaptations may benefit their short-term performance, they can lead
to additional stresses on other body parts, potentially resulting in secondary injuries [3,16].

In light of this, to design and prescribe a sport-specific strength and conditioning
program aimed at reducing injury risk, enhancing performance, and improving health and
lifespan, it is crucial to understand how injuries can influence the kinematics of softball
position players once they return to play [7,8,17,18].

While many studies on softball primarily concentrate on the windmill pitch executed
by pitchers [6,7,19–21], it is important to note that pitchers are not the sole players suscep-
tible to injuries. Indeed, injuries sustained during softball practice are more commonly
linked to throwing activities not directly related to pitching, such as those carried out by
position (non-pitchers) players [8,9].

The aim of this study was to assess the kinematic differences in the upper limb and
trunk between healthy and shoulder-injured softball position players. It was hypothesized
that residual kinematical differences and compensatory strategies would emerge in players
that had suffered a shoulder injury compared to the healthy ones.

2. Materials and Methods
This was a cross-sectional study that compared the kinematics of two groups of

softball position players at one time point. The present study received approval from the
Bioethical Committee of the University of Bologna (ID: 0387977; date: 28 December 2023).
Informed consent was obtained from each softball player prior to enrollment. This study
was executed in accordance with the Helsinki Declaration.

2.1. Sample

A cohort of 11 first-division female softball players (mean age: 25.9 ± 8.1) was en-
rolled in this study. Five players experienced superior labrum and anterior and posterior
(SLAP) lesions to the shoulder of their dominant arm with consequent surgery. The time
from surgery to test was 0.9 ± 0.4 years. Six players with no previous shoulder injuries
were enrolled as matched controls. All players actively involved in softball training and
competitions, without upper-limb injuries in the past six months, were included in this
study. Pain, current injuries, or conditions that might impair throwing performance were
considered exclusion criteria.

2.2. Design

All the trial assessments were performed in January 2024. After a proper 10 min
warm up for throwing [9], guided by an experienced coach (A.M.), the players were
equipped with a set of 11 wearable inertial sensors (Xsens MTw Awinda, Movella, En-
schande, The Netherlands), placed on the head, shoulders, sternum, pelvis, upper arms,
forearms, and hands by a single experienced user (S.D.P.) [22]. This system is designed
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and validated for high accuracy when measuring joint angles and kinematics during
dynamic activities, including throwing [23,24]. Then, a dynamic calibration procedure
(standing still + walking) was performed according to the manufacturer’s guidelines. After
the calibration procedure, the players were asked to perform a typical throw motor task:
players received the ball from a buddy (15 mt away), picked up the ball from the ground,
and threw the ball back to the same buddy. This movement resembles the most typical
tasks of position players, which include throwing the ball back to the pitcher and to bases
during steal attempts or pickoff plays. The players completed 10 valid throw trials, and
the three with the highest spin velocity were retained for further analysis. Kinematic data
on the shoulder, elbow, and trunk were collected using a sample rate of 100 Hz. The data
acquisition process was overseen by A.M., an experienced softball coach.

2.3. Data Processing

The motor task was divided into two phases: the “Pickup” phase, which starts from
ball grabbing to reaching the throw position, and the “Pass” phase, which covers the
motion from the hand far back to the completion of the throw. XSENS Analyze software
was used to identify valid trials (highest hand velocity [25,26]) and specific events defining
the different stances of interest.

Primarily, the data from the different exercises were separated in a custom MATLAB
script (v R2020a, The MathWorks, Natick, MA, USA) [7,17]. The phases were extracted
from the data obtained during the data collection and normalized using 3 points of interest.
The initial point was defined as the beginning of the stance, set at the 0% frame, while the
endpoint of the stance was established as the 100% frame. An additional point was used to
define the 50% frame of the stance. The different points used are referenced in Table 1 and
Figure 1.

Table 1. Description of the different phases of the movement and their implementation in the
MATLAB scripts.

Phase of the
Movement

% of the Overall
Time Window

Event
(General Definition) Implementation

0 Player starts to move 40% of the mean CoM speed between frame 1
and the pickup 50%

Pickup 50 Ball grab Minimum CoM position along the z axis

100 Player getting in
throw position

Mean CoM position between the maximum
and the minimum CoM positions

0 End of the pickup End pickup
Pass 50 Hand far back (Start of throw) Elbow further back

100 Ball thrown Maximum hand position along the
x axis + 50 ms

Note: center of mass = CoM.

For the purpose of this study, kinematics for shoulder, elbow, and trunk were kept and
analyzed. The joint coordinate system used in this study adhered to the recommendations
set forth by International Society of Biomechanics (ISB), wherein positive rotations are
defined as shoulder abduction, internal rotation, flexion, elbow flexion, and internal rotation
(pronation) [27].

For each phase, the peak values defined as the maximum rotation value, the minimum
rotation value, and the range of motion (ROM) were computed. The whole data processing
was carried out in MATLAB.
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completed when the ball is released at point E. 

2.4. Statistical Analysis 

The normal distribution of the data was verified through the Shapiro–Wilk test. The 
normally distributed continuous data were presented as mean ± standard deviation with 
a 95% confidence interval (CI), the categorical data were presented as a percentage over 
the total, while the non-normally distributed data were presented as median and inter-
quartile range (IQR). 

Student’s t-test was employed to compare the characteristics, such as age, height, 
weight, BMI, and year of experience playing softball between the two groups. The Mann–
Whitney U test was used to inspect the differences in upper-limb and trunk kinematics 
between the healthy and injured athletes. A p < 0.05 was considered statistically signifi-
cant. Z-scores were used to compare each kinematic variable in a uniform space (radar 
plot) between healthy and injured softball players. The Z-score quantifies the number of 
standard deviations from the mean. For this analysis, the mean value for the Z-score was 
established based solely on the average measurements from the healthy group, allowing 
for a standardized comparison with injured players. 

All the analyses were performed in MATLAB. No a priori power analysis was per-
formed, due to the exploratory nature of the pilot study. 

3. Results 
The comparison of the samples’ characteristics did not show significant differences 

between the healthy and shoulder-injured groups (Table 2). 

Table 2. Comparison of samples’ characteristics. 

 Injured Players Healthy Players p Value 
Age (y.o.) 23.9 ± 6.8 27.5 ± 9.4 n.s. 

Height (cm) 169.4 ± 3.6 165.5 ± 5.9 n.s. 
Weight (Kg) 70.8 ± 13.9 62.7 ± 8.7 n.s. 
BMI (Kg/m2) 15.8 ± 7.5 18.8 ± 9.3 n.s. 

Years of experience 15.8 ± 7.5 18.8 ± 9.3 n.s. 
Years from injury 2.6 ± 1.8 - - 

Years from surgery 0.9 ± 0.4 - - 
Data are presented as mean ± standard deviation. Note: n.s., not significant. 

Figure 1. Player movement decomposition during the stance in the pickup and pass exercises. Pickup
starts at A and ends at C, while the pass starts at C and ends at E. The player starts to move at point
A to catch the ball on the ground at point B before getting into position to start the pass at point C.
From point C, the player starts the throw from the position of point D, and the pass is completed
when the ball is released at point E.

2.4. Statistical Analysis

The normal distribution of the data was verified through the Shapiro–Wilk test. The
normally distributed continuous data were presented as mean ± standard deviation with a
95% confidence interval (CI), the categorical data were presented as a percentage over the
total, while the non-normally distributed data were presented as median and interquartile
range (IQR).

Student’s t-test was employed to compare the characteristics, such as age, height,
weight, BMI, and year of experience playing softball between the two groups. The
Mann–Whitney U test was used to inspect the differences in upper-limb and trunk kine-
matics between the healthy and injured athletes. A p < 0.05 was considered statistically
significant. Z-scores were used to compare each kinematic variable in a uniform space
(radar plot) between healthy and injured softball players. The Z-score quantifies the number
of standard deviations from the mean. For this analysis, the mean value for the Z-score was
established based solely on the average measurements from the healthy group, allowing
for a standardized comparison with injured players.

All the analyses were performed in MATLAB. No a priori power analysis was per-
formed, due to the exploratory nature of the pilot study.

3. Results
The comparison of the samples’ characteristics did not show significant differences

between the healthy and shoulder-injured groups (Table 2).

Table 2. Comparison of samples’ characteristics.

Injured Players Healthy Players p Value

Age (y.o.) 23.9 ± 6.8 27.5 ± 9.4 n.s.
Height (cm) 169.4 ± 3.6 165.5 ± 5.9 n.s.
Weight (Kg) 70.8 ± 13.9 62.7 ± 8.7 n.s.

BMI (Kg/m2) 15.8 ± 7.5 18.8 ± 9.3 n.s.
Years of experience 15.8 ± 7.5 18.8 ± 9.3 n.s.
Years from injury 2.6 ± 1.8 - -

Years from surgery 0.9 ± 0.4 - -
Data are presented as mean ± standard deviation. Note: n.s., not significant.
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In the pickup phase (Figure 2), the shoulder showed a wider internal/external rotation
ROM in healthy players than in the injured ones (p = 0.016). The same results were observed
for the elbow flex/extension and internal/external rotation ROM (p = 0.039 and p < 0.001,
respectively), and trunk abduction–adduction ROM (p = 0.014). Moreover, healthy players
showed a higher peak of trunk flexion than the injured ones (p = 0.002) (Table 3). Joint
kinematics (minimum and maximum peak angles) and SPM1D analysis of the pickup
phase are presented in the Supplementary Materials (Figures S1–S3; Table S1).
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Figure 2. A radar chart of the joint ROM kinematic comparison between healthy and injured players,
standardized using Z-scores, during the pickup phase. The black line represents the normalized
mean ROM of healthy players, while the red line represents the ROM of injured players. Each dashed
line corresponds to the ROM of individual injured players. Note: * = p-value < 0.05. Abd–Add:
abduction–adduction, Flex–Ext: flexion–extension, Ext–Int: external–internal rotation.

Table 3. ROM parameters extracted for the trunk, shoulder, and elbow during the pickup phase for
the healthy and injured players.

Pickup

Joint (◦) Rotation Healthy Injured Diff [95% CI] p

Abd–Add 17.6 (8.2) 11.1 (3.5) 6.5 [−2.3, 15.3] 0.014
Trunk Flex–Ext 22.1 (10.0) 21.1 (6.3) 1.0 [−7.8, 9.8] n.s.

Ext–Int 18.8 (14.1) 19.3 (4.8) −0.5 [−9.3, 8.3] n.s.

Abd–Add 20.8 (13.0) 25.7 (30.4) −4.9 [−13.7, 3.9] n.s.
Shoulder Flex–Ext 63.8 (28.3) 37.6 (41.0) 26.2 [17.4, 35.0] n.s.

Ext–Int 47.9 (12.3) 25.2 (41.4) 22.7 [13.9, 31.5] 0.016

Abd–Add 54.7 (15.3) 52.3 (45.9) 2.4 [−6.4, 11.2] n.s.
Elbow Flex–Ext 104.5 (42.3) 80.5 (22.5) 24.0 [15.2, 32.8] <0.039

Ext–Int 61.2 (40.5) 31.7 (7.9) 29.5 [20.7, 38.3] <0.001
Data are presented as median (IQR). The statistically significant differences are bolded along the corresponding
p-value; when the differences are not statistically significant, the p-value is replaced by n.s. (not significant). Note:
Diff = differences between healthy and injured players; p = p-value.
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Similarly, in the pass phase (Figure 3), the shoulder internal/external rotation, adduc-
tion/abduction, and flex/extension ROMs of healthy players were wider than the injured
ones (p = 0.050, p = 0.001, and p = 0.007, respectively). Moreover, healthy players showed
a higher elbow flexion peak than the injured ones (p = 0.022) (Table 4). Joint kinematics
(minimum and maximum peak angles) and SPM1D analysis of the pass phase are presented
in the Supplementary Materials (Figures S4–S6; Table S2).
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Figure 3. A radar chart of the joint ROM kinematic comparison between healthy and injured players,
standardized using Z-scores, during the pass phase. The black line represents the normalized mean
ROM of healthy players, while the red line represents the ROM of injured players. Each dashed
line corresponds to the ROM of individual injured players. Note: * = p-value < 0.05. Abd–Add:
abduction–adduction, Flex–Ext: flexion–extension, Ext–Int: external–internal rotation.

Table 4. ROM parameters extracted for the trunk, shoulder, and elbow during the pass phase for the
healthy and injured players.

Pass

Joint Rotation Healthy Injured Diff [95% CI] p

Abd–Add 29.3 (11.0) 23.3 (12.4) 6.0 [−26.5, 38.5] n.s.
Trunk Flex–Ext 30.5 (14.5) 32.5 (11.9) −2.0 [−38.8, 34.8] n.s.

Ext–Int 40.1 (12.3) 40.8 (9.5) −0.7 [−31.2, 29.8] n.s.

Abd–Add 80.9 (22.3) 58.7 (47.8) 22.2 [−81.2, 125.6] 0.050
Shoulder Flex–Ext 159.8 (74.6) 74.7 (66.3) 85.1 [−110.5, 280.7] 0.001

Ext–Int 152.8 (141.1) 82.6 (70.0) 70.2 [−238.5, 378.9] 0.007

Abd–Add 74.8 (21.0) 67.9 (43.5) 6.9 [−87.8, 101.6] n.s.
Elbow Flex–Ext 151.0 (39.4) 122.0 (44.9) 29.0 [−88.1, 146.1] n.s.

Ext–Int 105.3 (109.0) 65.3 (81.8) 40.0 [−227.1, 307.1] n.s.
Data are presented as median (IQR). The statistically significant differences are bolded along the corresponding
p-value; when the differences are not statistically significant, the p-value is replaced by n.s. (not significant). Note:
Diff = differences between healthy and injured players; p = p-value.
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4. Discussion
The present study aimed to investigate the biomechanical differences between healthy

and injured first-division softball players in a common throwing movement performed in
an ecological environment by means of wearable inertial sensors.

The most important finding of the present study was that the shoulder-injured players
showed a lower ROM in the shoulder, elbow, and trunk joints than the healthy ones during
a common throw. These findings suggest that, even after recovery and return to play,
athletes may continue to exhibit conservative biomechanical strategies to protect themselves
against re-injury or they may display a reduced ROM due to structural impairments
or sensations of pain. Considering whether these changes in the ROM are protective
adaptations [18] or if they could potentially predispose athletes to other injuries in the future
due to compensatory mechanisms [3,16] is crucial for rehabilitation, post-rehabilitation,
and training programs.

The kinematic results of the present study show a consistent lower ROM across all
joints’ movements analyzed, with the exceptions of shoulder abduction–adduction (during
the pickup phase), trunk flexion/extension (during the pass phase), and trunk external–
internal rotation (during both phases). However, these differences were not statistically
significant. In the pass phase, injured players showed a significantly lower ROM in all
the shoulder’s movements. However, contrary to our expectations, the players did not
demonstrate differences in trunk or elbow kinematics, which are typically compensatory
movements that can help maintain a high level of performance when throwing [6]. This lack
of compensatory activity suggests that the reduced shoulder ROM directly impacts throw-
ing mechanics, potentially hindering the performance rather than adapting to maintain
it [28].

Reduced joint ROM can be attributed to several factors, among which pain is notably
significant. Pain in the shoulder is a well-recognized factor that can lead to a decreased
ROM [29]. However, in this study, softball players did not report experiencing pain in their
upper-limb joints before or during the trials, suggesting that the observed biomechanical
changes were not influenced by acute discomfort, but may instead reflect other adaptations.

These results may underscore the persistent impact of shoulder injuries on throwing
kinematics. Wilk et al. (2002) observed that athletes often exhibit altered shoulder me-
chanics post-injury, which may not fully return to pre-injury patterns even after perceived
recovery. Similarly, Hamer et al. [18] found that high-school and collegiate baseball pitchers
who had undergone an ulnar collateral ligament reconstruction showed significantly lower
degrees of elbow extension compared to the healthy controls. However, they did not find
a reduced ROM in injured baseball pitchers from before to after ulnar collateral ligament
reconstruction [18]. This raises the question of whether players exhibiting a reduced ROM
might be more susceptible to injuries during a throwing movement, independent from
previous injuries.

Shoulder ROM is essential for preventing injuries in athletes, particularly in sports
involving overhead movements [3]. A restricted shoulder ROM has been associated with an
increased incidence of shoulder injuries [30]. For example, in baseball pitchers, inadequate
shoulder external rotation is associated with a higher risk of shoulder injury and the
need for surgery [31]. Furthermore, generalized ligamentous laxity has been identified
as a predisposing factor for shoulder injuries in athletes, emphasizing the importance of
maintaining a proper ROM to prevent such injuries [32].

To the best of our knowledge, this was the first study to investigate the differences
between healthy and injured position softball players throw. Most research has traditionally
focused on pitchers’ pitch [18], given the higher incidence of shoulder injuries in such
a population. In absolute terms, non-pitcher softball players reported more upper-limb
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injuries than pitchers. This is both due to the larger number of position than pitcher players
and their huge effort in the throwing movements performed. Therefore, investigating the
prevalent injuries among position players represents a critical and slightly unexplored area
of concern due to the implications for injury prevention and management.

Krajnik et al. [8] reported that most of the injuries occurred during softball practice
rather than during competition, with a notably higher percentage (65%) of injuries happen-
ing to position players [8]. This suggests that training environments and routines might
expose players to greater risks, possibly due to repetitive drills [8], inadequate recovery
times [33], or insufficient attention to proper mechanics during practice [3], as most of the
injuries occur due to non-contact and overuse mechanisms. This highlights the critical
role of training, as most injuries in position softball players occur in non-contact situations
during training. Moreover, the ecologically valid design of the present study, including
tests performed by means of wearable inertial sensors in the regular softball training pitch,
could have highlighted kinematics compensations otherwise hard to detect in a laboratory
environment. It has been shown in previous studies on other sports that context-related
elements contribute to highlight differences from controlled laboratory settings [22,34]. The
radar chart representation through the Z-score analysis was designed to facilitate the assess-
ment of multiple biomechanical variables with different magnitudes and therefore promote
a clinical-friendly interpretation and sharing among clinicians, coaches, and players (or
patients) [35].

The present study has several limitations: first, the limited sample size presented by
the pilot nature of this study. Despite several biomechanical studies having been performed
with 10 subjects or less, a more extensive cohort could have led to a better interpretation
of the differences between healthy and injured players in the movements investigated.
Second, the rehabilitation protocol, the time from injury, and the recovery time were not
controlled and differed among the injured players. However, all players belonged to the
same team and the same medical and coaching staff organized their return to sport in the
same way after clearance. Third, the sampling frequency of the wearable sensor might have
been at the lower bound to produce a proper analysis of such high-speed (high gravity—g)
movements [36]. Further investigation of the potential biases due to the technological
limitations is mandatory.

5. Conclusions
This study provided novel insights into the biomechanical alterations observed in

position softball players following shoulder injuries. A significant lower ROM in the
shoulder, elbow, and trunk was found in shoulder-injured players compared to matched
healthy controls. Such a reduced ROM is likely a direct consequence of shoulder injuries.
Despite this, players all returned to play and reported no residual pain. Reduced ROM
in the shoulder complex can also serve as a potential risk factor for subsequent shoulder
injuries. Ecologically valid biomechanical studies by means of wearable inertial sensors
could help highlight residual compensations and injury risk for softball players and help
objectify return-to-sport clearance criteria.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app15041941/s1, Table S1: Peaks and ROM parameters
extracted for the trunk, shoulder, and elbow during the pick-up phase for the healthy and injured
players; Table S2: Peak parameters extracted for the trunk, shoulder, and elbow during the pass
phase for the healthy and injured players; Figure S1: Trunk kinematic comparison between healthy
and injured players during the pick-up phase; Figure S2: Shoulder kinematic comparison between
healthy and injured players during the pick-up phase; Figure S3: Shoulder kinematic comparison
between healthy and injured players during the pick-up phase; Figure S4: Trunk kinematic com-
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parison between healthy and injured players during the pass phase; Figure S5: Shoulder kinematic
comparison between healthy and injured players during the pass phase; Figure S6: Elbow kinematic
comparison between healthy and injured players during the pass phase.
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