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Ontology-based data access is an extensively studied paradigm aiming at improving query answers 
with the use of an “ontology”. An ontology is a specification of a domain of interest, which, 
in this context, is described via a logical theory. As a form of logical entailment, ontology-
mediated query answering is fully interpretable, which makes it possible to derive explanations 
for ontological query answers. This is a quite important aspect, as the fact that many recent 
AI systems mostly operating as black boxes has led to some serious concerns. In the literature, 
various works on explanations in the context of description logics (DLs) have appeared, mostly 
focusing on explaining concept subsumption and concept unsatisfiability in the ontologies. Some 
works on explaining query entailment in DLs have appeared as well, however, mainly dealing 
with inconsistency-tolerant semantics and, actually, non-entailment of the queries. Surprisingly, 
explaining ontological query entailment has received little attention for ontology languages based 
on existential rules. In fact, although DLs are popular formalisms to model ontologies, it is 
generally agreed that rule-based ontologies are well-suited for data-intensive applications, as 
they allow us to conveniently deal with higher-arity relations, which naturally occur in standard 
relational databases. The goal of this work is to close this gap, and study the problem of 
explaining query entailment in the context of existential rules ontologies in terms of minimal 
subsets of database facts. We provide a thorough complexity analysis for several decision problems 
associated with minimal explanations for various classes of existential rules, and for different 
complexity measures.

1. Introduction

Ontology-based data access (OBDA) [95] has recently emerged as a popular paradigm in knowledge representation and reasoning 
technologies. The goal of OBDA is to facilitate the access to data by separating the user from the raw data sources through the use of 
an ontology. An ontology is an explicit specification via an unambiguous language, typically based on logic, of an abstract model of a 
domain of interest. In this context, the ontology therefore provides a unified conceptual view of the data sources, which can hence be 
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heterogeneous, and makes it accessible via queries solely formulated in the vocabulary of the ontology without any knowledge of the 
actual structure of the data. Furthermore, by formalizing the domain knowledge, the ontology also enriches the possibly incomplete 
data sources, enabling hence more complete answers to queries.

Description logics (DLs) [8] and existential rules [28–30], together, encompass the most widely used knowledge representation 
languages in the context of OBDA. Both families of languages are first-order logic fragments, which result from a trade-off between 
the expressivity of the language and the computational complexity (or even decidability) of reasoning in the language. Since they 
are logic-based languages, ontology-mediated query answering is fully interpretable for them, which makes it possible to derive 
explanations for ontological query answers. This is quite important for modern AI systems, as the fact that many recent AI systems 
mostly operating as black boxes has led to some serious concerns [44]. Ontologies have found applications in data exchange [54], 
medical diagnosis [13], and life sciences [11], just to name a few, all of which can potentially benefit from the idea of explanations.

In fact, there has been a significant interest in tracking down and understanding the causes of various types of “consequences” 
in ontologies. Early works dealing with explanations in ontologies primarily focused on DLs as the underlying ontology language 
and, interestingly, they had a “debugging” perspective. This was because, since devising an ontology is an error-prone task, people 
were interested in having tools supporting the analysis of ontologies and their consequences. In particular, the consequences of an 
ontology that they focused on were concept subsumption or concept unsatisfiability. In the former task, one wants to know why a concept 
subsumes another; this was needed to double-check in the ontology the explicitly and implicitly defined taxonomies. In the latter 
task, it is asked why a given concept is unsatisfiable; this was regarded as an important sign of a badly-designed ontology.

A prominent approach has been to identify explanations for the above two types of consequences in terms of subsets of the ontology 
axioms [7,71]. The benefit of this approach, in contrast to those based on proof systems, which had previously been proposed in the 
literature, allows us to abstract away from the particular proof technique used to derive an entailment, and hence to pinpoint the 
sets of axioms that are responsible for a consequence. Such explanation sets are, furthermore, required to be minimal with respect to 
some order, like subset-inclusion, cardinality, or a preference order. These explanations are called justifications [64,71,105], and the 
overall approach, in the DL literature [7,65], is also known as axiom pinpointing. Despite the extensive work carried out on explaining 
consequences in ontologies, there has been very little work in the direction of explaining query entailment. To date, the only works 
dealing with the explanation of query answers are for the DL-Lite family of languages [19,21] (see the related work section).

Surprisingly, explanations have not been studied in the context of existential rules. This formalism to express ontologies is rec-
ognized to be well-suited for data-intensive applications such as OBDA, as it allows us to deal with higher-arity relations, which 
naturally occur in standard relational databases. We provide an example to give an intuition on what query answer explanations are 
in the context of existential rules.

Example 1.1. In this paper, a knowledge base KB = (𝐷,Σ) is a pair, where 𝐷 is a relational database, and Σ is a set of “rules” 
describing the domain of interest. Let us assume to have the following knowledge base, whose database 𝐷 is:

dep(cs, 𝑢), dep(math, 𝑢), affil(matthew, cs), affil(john,math), prof (john), head(john,math).

The facts in this database state that cs and math are two departments in the university 𝑢, that matthew and john are affiliated to the 
departments cs and math, respectively, and that john is a professor and the head of the department math. Let us assume that the rules 
Σ of the knowledge base are:

head(𝑃 ,𝐷)→ affil(𝑃 ,𝐷),

head(𝑃 ,𝐷)→ prof (𝑃 ),

dep(𝐷,𝑈 ) ∧ affil(𝑋,𝐷)→ (∃𝑃 ) prof (𝑃 ) ∧ affil(𝑃 ,𝐷) ∧ head(𝑃 ,𝐷).

The first rule states that if 𝑃 is the head of a department 𝐷, then 𝑃 must be affiliated to 𝐷. The second rule states that if 𝑃 is the 
head of a department 𝐷, then 𝑃 must be a professor. The third rule states that if 𝐷 is a department in the university 𝑈 and some 
person 𝑋 is affiliated to 𝐷, then there must be a professor 𝑃 affiliated to 𝐷 who is the head of 𝐷.

Consider now the query 𝑞𝑎 = prof (𝑃 ), asking whether there is a professor in the university. The knowledge base entails the query, 
i.e., the query holds true over the knowledge base. In the present paper, an explanation will be a set of facts from the database that 
are sufficient to entail the query via the mediation of the rules. The set 𝐸1 = {prof (𝑗𝑜ℎ𝑛)} is clearly an explanation for the query, but 
it is not the only one. Also the set 𝐸2 = {dep(cs, 𝑢), affil(matthew, cs)} is an explanation for the query. Indeed, since 𝐸2 declares that cs
is a department to which matthew is affiliated, by the third rule, there must be a professor (of not specified identity) that is the head 
of cs. This rule does not say who this professor is, but the rule states that there must be one. So, the set 𝐸2 provides a reason, i.e., 
explains, why 𝑞𝑎 holds true over the knowledge base, and the reason is the content of 𝐸2 : the department cs has matthew affiliated 
(and by the third rule there must be a professor leading cs). Another explanation for 𝑞𝑎 is 𝐸3 = {head(john,math)}, because via the 
second rule we know that john must be a professor as well.

Consider now the query 𝑞𝑏 = head(𝑃 , 𝑐𝑠), asking whether there is a head of the department cs. Also 𝑞𝑏 is entailed by the knowledge 
base, and an explanation is the set 𝐸2 mentioned above, for the same reason already pointed out.

Consider now the query 𝑞𝑐 = head(𝑃 ,math), asking whether there is a head of the department math. In this case, the set 𝐸4 =
{head(john,math)} is clearly an explanation for 𝑞𝑐 , but also 𝐸5 = {dep(math, 𝑢), affil(john,math)} is an explanation for 𝑞𝑐 , for a reason 
similar to that for which 𝐸2 is an explanation for 𝑞𝑎. ⊲



Artificial Intelligence 341 (2025) 104294

3

İ.İ. Ceylan, T. Lukasiewicz, E. Malizia et al. 

Interestingly, more recently, query answer explanations within the rule framework have found application in “compositional” 
neuro-symbolic systems [107]. To give an example of these systems, we report the scenario described by Tsamoura et al. [107] (see 
the referenced work for additional details). Assume that a compositional neuro-symbolic system needs to learn to recognize (images 
of) chess configurations on a chessboard corresponding to the concepts that the black king has a valid move (“safe”), is stalemated 
(“draw”), or is mated (“mate”). The system is composed by two parts. The first sub-symbolic (neuronal) part of the system receives in 
input an image of the chessboard with the pieces on it, and outputs the locations of the pieces on the chessboard. The neuronal part’s 
output is re-encoded into a set database facts stating the position of the pieces on the chessboard. The second symbolic (logical) part 
of the system receives the database facts obtained from the output of the neuronal part, and via an ontology describing the rules of 
the game of chess outputs whether the configuration is “safe”/“draw”/“mate”. When this system needs to be trained as a whole, the 
learning process has to go through two parts working together, but in different ways. The training set for the system is constituted 
by pairs of a chessboard configuration (an image) and a label “safe”/“draw”/“mate”. During the training process, given an image, 
the neuronal part makes some prediction regarding the locations of the pieces on the chess board. This prediction is re-encoded into 
database facts. These database facts are then used to infer, via the ontology, whether the position is “safe”/“draw”/“mate”. From this 
predicted label, it can be seen whether there is a mistake or not with respect to the label in the training instance. If the label predicted 
and the label in the training instance differ, the training step proceeds as follows. From the label in the training instance, the possible 
sets of database facts describing a suitable chessboard configuration explaining the desired “safe”/“draw”/“mate” label appearing 
in the training instance are built—in [107], these explanations are called “abductive proofs”. These explanations are essentially the 
possible expected outputs of the neuronal part, which can then be trained via standard backpropagation without the need for the 
logical theory in the ontology to be differentiable (see [107] for more details).

Studying queries’ entailment explanations and analyzing the computational complexity of related problems are therefore quite 
relevant research questions. This is precisely the main focus of the present work. More specifically, given a knowledge base, i.e., a 
pair composed by a relational database and an ontology expressed via existential rules, and a (conjunctive) query, we are interested 
in explaining the query entailment by the knowledge base in terms of the minimal subsets of database facts satisfying the query. Such 
a minimal subset of the database is called minimal explanation, or simply MinEx. By incorporating ideas from axiom pinpointing [94], 
we introduce a class of problems based on the notion of minimal explanation. In particular, for a knowledge base and a query, we 
analyze the problem Is-MinEx (resp., All-MinEx) of deciding whether a given set of database facts (resp., a given sets of database 
facts) is a MinEx (resp., are all and only the MinExes) for the query; the problems MinEx-Irrel and MinEx-Rel asking for the 
existence of a MinEx for the query excluding sets of forbidden facts and including a distinguished fact, respectively; and the problems
Small-MinEx and Large-MinEx concerning whether the query admits a MinEx whose size does not exceed and is at least a given 
threshold, respectively.

We conduct a detailed complexity analysis for each of the problems introduced, and provide a host of complexity results that cover 
a representative set of existential rules. In fact, it is known that query answering under arbitrary existential rules is undecidable (see, 
e.g., [30]). This has led to identifying restrictions on existential rules guaranteeing decidability. The main decidable paradigms that 
we consider in this paper are guardedness [30] (which includes linearity [28]), acyclicity [54], and stickiness [29]. Furthermore, we 
carry out the complexity analysis of all these problems for four interesting complexity measures. The most general one is the combined
complexity, in which both the knowledge base and the query are considered part of the problem’s input (i.e., they can vary). Then, we 
consider the bounded-arity combined complexity, or ba-combined complexity, which is similar to the previous, with the exception that 
the relational schema over which the knowledge base is defined has predicates whose arity is bounded by a fixed integer. Moreover, 
the fixed-program combined complexity, or fp-combined complexity, is also analyzed, in which the ontology of the input knowledge 
base is fixed, and only the database and the query can change in the input. Furthermore, we study the data complexity, where only 
the database may vary in the input (all the rest is fixed, also the query).

In what follows, we delineate a quick overview of our complexity results, which range from membership in AC0 to 2Exp- completeness. 
In the discussion below, we denote by OMQA the problem of deciding ontological query entailment, that is, given a knowledge base 
and a query, decide whether the query is entailed by the knowledge base.

• Regarding Is-MinEx, its data complexity does not increase compared to OMQA. Indeed, in the data complexity, Is-MinEx remains 
tractable (in most cases), because, to check the minimality of an explanation, we need to perform a polynomial number of extra 
non-entailment checks, which, although are not required to answer OMQA, can be carried out in polynomial time in the data 
complexity for most of the existential rules languages that we consider (and, in general, in the same complexity class of OMQA). 
Moreover, Is-MinEx is in AC0 for FO- rewritable languages in the data complexity, because we can capture the property of being 
a MinEx with a FO-formula. In the fp-combined complexity setting and above, Is-MinEx shows in various cases an increased 
complexity compared to OMQA. This is because, in these cases, the necessary check of the explanation’s minimality does not 
come for free, as the non-entailment checks are in a complement non-deterministic complexity class.

• Interestingly, for acyclic rules, we prove Is-MinEx DExp- complete in the ba-combined and combined complexity, instead of the
OMQA’s easier NExp-completeness. The class DExp is defined, similarly to DP, as the class of languages that are the intersection 
of a NExp language and a co-NExp language—this class is at the second level of the Boolean Hierarchy over NExp [42]. This 
complexity result in this case stems from the fact that checking whether a set is a MinEx requires to test that the set entails the 
query, which is a NExp task, and that the set is minimal, which is a co-NExp task. These two tasks can be shown to be completely 
independent in this case, and hence, intuitively, we can have them solved in parallel by two distinct machines, from which 
the complexity in DExp = NExp ∧ co-NExp follows. To the best of our knowledge, this DExp- completeness result characterizes
Is-MinEx, together with All-MinEx, among the very few known natural problems complete for DExp.
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• For All-MinEx, we observe an intractability result already in the data complexity for guarded existential rules, because checking 
that there is no MinEx outside the input candidate set of all MinExes requires a co-NP check. Surprisingly, we see that, in the fp-, 
ba-, and combined complexity settings, Is-MinEx and All-MinEx are complete for the same complexity classes. This is because, 
when solving All-MinEx, for any set  of subsets of the database 𝐷, checking the minimality of all the sets in  and ensuring 
that there is no MinEx outside  can be combined. This results in matching complexities of the two problems for these complexity 
settings.

• The problems MinEx-Irrel and Small-MinEx have the same complexity, which, compared to that of OMQA, shows an increase 
only in the data complexity setting. For both problems, we observe intractability results in the data complexity for guarded 
rules, as we need to guess an explanation satisfying the conditions (i.e., it avoids forbidden sets or is smaller than a threshold, 
respectively), which requires an NP machine. These problems do not have a higher complexity than OMQA in the fp-combined 
complexity setting and above, because, if there is an explanation 𝐸 that either avoids the forbidden sets or is smaller than some 
threshold number, then all subsets of 𝐸 enjoy this property as well. Therefore, we do not need to check the minimality of the 
guessed explanation.

• The complexity results for the problems MinEx-Rel and Large-MinEx match as well. Similarly to what happens for MinEx-
Irrel and Small-MinEx, there is an increase in the complexity compared to OMQA in the data complexity due to the need to 
guess in NP an explanation satisfying the required properties (i.e., either including the distinguished fact or having a size bigger 
than the threshold). We have ΣP

2 - completeness results in the fp-combined complexity, which is one step higher in the polynomial 
hierarchy compared to OMQA’s complexity in the same setting. This is because we need to guess an explanation satisfying the 
required property and check that the set is a MinEx. However, already checking whether a set is a MinEx is intractable in the 
fp-combined complexity for all the existential rules languages here considered; from this the ΣP

2 results follow.

• For these two problems, on acyclic rules, we obtain PNExp-completeness in the ba-combined and combined complexity, instead 
of the OMQA’s easier NExp-completeness. This is because, for MinEx-Rel and Large-MinEx, after guessing in NP the candidate 
explanation, we need to check that it actually entails the query, which is a task in NExp, and we also need to check its minimality, 
which is a task in co-NExp. However, on the contrary of what happens for Is-MinEx, these two tasks are not independent in this 
case, as they are linked by the initial NP guess of the candidate MinEx. Hence, in this case, we obtain an NPNExp complexity, 
which, by the collapse of the Strong Exponential Hierarchy [62], equals PNExp, instead of a DExp complexity, as for Is-MinEx
and All-MinEx.

The paper is organized as follows. Basics on relational databases, conjunctive queries, existential rules, as well as basic complexity 
classes are recalled in Section 2. Formal definitions of minimal explanations and the problems here analyzed, together with some 
examples, are provided in Section 3. Then, we start our complexity analysis, and, in each section, we study each of the considered 
problems in turn. More specifically, from Section 4 to Section 9, we analyze, in this order, the problems Is-MinEx, All-MinEx,
MinEx-Irrel, Small-MinEx, MinEx-Rel, and Large-MinEx, respectively. In Section 10, we discuss related work, and we settle our 
paper in the research context of explanations in ontologies. Section 11 concludes our work and we also discuss possible directions 
for further research.

2. Preliminaries

In this section, we recall the basics on relational databases, (unions of) conjunctive queries, ontological query answering, and the 
complexity classes encountered in this paper.

Relational databases and (unions of) conjunctive queries. Throughout the paper, we assume the mutually disjoint countably 
infinite sets Const , Null , and Var of constants, (labelled) nulls, and variables, respectively. We refer to constants, nulls, and variables 
also as terms.

A (relational) schema  is a finite set of relation symbols (or predicates) with an associated arity. We write 𝑟∕𝑛 to denote that the 
arity of the predicate 𝑟 is 𝑛 ≥ 0. A (relational) atom over  is an expression of the form 𝑟(𝑡1,… , 𝑡𝑛), where 𝑟 is an 𝑛-ary predicate from 
 , and (𝑡1,… , 𝑡𝑛) is an 𝑛-tuple of terms. An atom is ground if it contains only constants and nulls. A fact is a ground atom containing 
only constants. For a nullary predicate 𝑝∕0, the only ground atom over 𝑝, which is also a fact, is denoted by 𝑝(). A schema instance
over  is a (possibly infinite) set of ground atoms over  , while a database over  is a finite schema instance over  containing only 
facts, i.e., a finite instance without nulls. For a set 𝐴 of atoms, dom(𝐴) denotes the set of all terms (variables, constants, and nulls) 
occurring in 𝐴.

Let 𝑇 = {𝑡1,… , 𝑡𝑢} and 𝑆 = {𝑠1,… , 𝑠𝑣} be two sets of terms. A mapping from 𝑇 to 𝑆 is a function ℎ ∶ 𝑇 → 𝑆 ; a mapping ℎ from 
𝑇 to 𝑆 can be seen as a set ℎ = {𝑡𝑖1 ↦ 𝑠𝑖1 ,… , 𝑡𝑖𝑛 ↦ 𝑠𝑖𝑛}, where 𝑡𝑖𝑗 ∈ 𝑇 and 𝑠𝑖𝑗 ∈ 𝑆 for all 𝑗, denoting that ℎ(𝑡𝑖𝑗 ) = 𝑠𝑖𝑗 . The restriction 
of ℎ to 𝑇 ′ ⊆ 𝑇 , denoted by ℎ∣𝑇 ′ , is the mapping from 𝑇 ′ to 𝑆 such that, for every 𝑡 ∈ 𝑇 ′, ℎ|𝑇 ′ (𝑡) = ℎ(𝑡). Let 𝐴 and 𝐵 be two sets 
of atoms. A homomorphism from 𝐴 to 𝐵 is a mapping ℎ from the set of terms in 𝐴 to the set of terms in 𝐵, i.e., from dom(𝐴) to 
dom(𝐵), such that (i) if 𝑡 ∈ Const , then ℎ(𝑡) = 𝑡, and (ii) if 𝑟(𝑡1,… , 𝑡𝑛) ∈𝐴, then ℎ(𝑟(𝑡1,… , 𝑡𝑛)) = 𝑟(ℎ(𝑡1),… , ℎ(𝑡𝑛)) ∈𝐵. When dealing 
with homomorphisms, in what follows we will regard conjunctions of atoms and tuples of variables as set of atoms and variables, 
respectively.

A conjunctive query (CQ) over a schema  is a first-order formula of the form

𝑞(𝐗) = ∃𝐘𝜙(𝐗,𝐘),
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where 𝜙 is a conjunction of atoms over  without nulls and over the variables 𝐗,𝐘. The evaluation of CQs is defined via homomor-
phisms. For an instance 𝐼 , the evaluation of 𝑞(𝐗) over 𝐼 , denoted 𝑞(𝐼), is the set of all tuples 𝐭 ∈ Const |𝐗| such that there exists a 
homomorphism ℎ from 𝜙(𝐗,𝐘) to 𝐼 with ℎ(𝐗) = 𝐭.

If 𝐗 is empty, i.e., if 𝑞 = ∃𝐘𝜙(𝐘), then 𝑞 is a Boolean conjunctive query (BCQ). Notice that, for a BCQ, the only possible answer is 
the empty tuple. A BCQ 𝑞 = ∃𝐘𝜙(𝐘) is true or holds over 𝐼 , if 𝑞(𝐼) = {()}, which means that there is a homomorphism ℎ such that 
ℎ(𝜙(𝐘)) ⊆ 𝐼 . When 𝑞 holds over 𝐼 , we denote this by 𝐼 ⊧ 𝑞.

A union of conjunctive queries over  is a first-order formula of the form

𝑞(𝐗) = 𝑞1(𝐗) ∨⋯ ∨ 𝑞𝑛(𝐗) = ∃𝐘1𝜙1(𝐗,𝐘1) ∨⋯ ∨ ∃𝐘𝑛𝜙𝑛(𝐗,𝐘𝑛),

where each 𝑞𝑖(𝐗) is a CQ over  . The evaluation of such a union of CQs 𝑞 over an instance 𝐼 , denoted again by 𝑞(𝐼), is defined as 
the set of tuples 

⋃𝑛
𝑖=1 𝑞𝑖(𝐼). By a slight abuse of notation, we may treat a union of conjunctive queries 𝑞(𝐗) like the one above as the 

set of CQs {𝑞1(𝐗1),… , 𝑞𝑛(𝐗𝑛)}.
Also in this case, if 𝐗 is empty, i.e., if 𝑞 = 𝑞1 ∨⋯ ∨ 𝑞𝑛 = ∃𝐘1𝜙1(𝐘1) ∨⋯ ∨ ∃𝐘𝑛𝜙𝑛(𝐘𝑛), then 𝑞 is a union of Boolean conjunctive 

queries (UCQ).1 Also for a UCQ the only possible answer is the empty tuple, as the only possible answer for any of the constituent 
BCQs 𝑞𝑖 = ∃𝐘𝑖𝜙𝑖(𝐘𝑖) is the empty tuple. We say that a UCQ 𝑞 = 𝑞1 ∨⋯∨ 𝑞𝑛 is true, or holds, over 𝐼 , denoted 𝐼 ⊧ 𝑞, if 𝑞(𝐼) = {()}, that 
is, there is a query 𝑞𝑖 ∈ 𝑞 that is true over 𝐼 .

Dependencies. A tuple-generating dependency (TGD) 𝜎 over a relational schema  is a first-order sentence

∀𝐗∀𝐘(𝜙(𝐗,𝐘)→ ∃𝐙𝜓(𝐗,𝐙)),

where 𝐗, 𝐘, and 𝐙, are pairwise disjoint tuples of variables from Var , and 𝜙(𝐗,𝐘) and 𝜓(𝐗,𝐙) are (non-empty) conjunctions of 
atoms over  , all without nulls [12]. For brevity, we write 𝜎 as ‘𝜙(𝐗,𝐘)→ ∃𝐙𝜓(𝐗,𝐙)’. We refer to 𝜙(𝐗,𝐘) and 𝜓(𝐗,𝐙) as the body
and head of 𝜎, denoted body(𝜎) and head(𝜎), respectively. An instance 𝐼 satisfies a TGD 𝜎 like the one above, written 𝐼 ⊧ 𝜎, if the 
following holds: whenever there exists a homomorphism ℎ such that ℎ(𝜙(𝐗,𝐘)) ⊆ 𝐼 , then there exists an extension ℎ′ of ℎ∣𝐗, i.e., 
ℎ′ ⊇ ℎ∣𝐗, such that ℎ′(𝜓(𝐗,𝐙)) ⊆ 𝐼 . The instance 𝐼 satisfies a set Σ of TGDs, written 𝐼 ⊧ Σ, if 𝐼 ⊧ 𝜎 for each 𝜎 ∈ Σ. Finite sets of TGDs 
are also called programs, and TGDs are also called existential rules. In the following, we consider only finite sets of TGDs.

Knowledge bases and ontological query answering. A knowledge base over a relational schema  is a pair (𝐷,Σ), where 𝐷 is a 
database over  , and Σ is a program over  . Programs are the ontologies of the knowledge bases, and in this paper we use the two 
terms interchangeably. The set of models of a knowledge base KB = (𝐷,Σ) (over ), denoted mods(KB), is the set of instances (over 
) {𝐼 ∣ 𝐼 ⊇ 𝐷∧ 𝐼 ⊧ Σ}. The certain answers to a (union of) CQs 𝑞(𝐗) over a knowledge base KB = (𝐷,Σ) are defined as the set of tuples

ans(𝑞(𝐗),KB) =
⋂

𝐼∈mods(KB)
𝑞(𝐼).

A different, however equivalent, way to define ontological query answering in the context of existential rules is via the concept of 
the chase (see, e.g., [12,30,86,106], and references therein).

As it is customary when studying the complexity of computing the answers to a (U)CQ, one focuses on its decision variant: given 
a knowledge base KB, a (U)CQ 𝑞(𝐗), and a tuple of constants 𝐭, decide whether 𝐭 ∈ ans(𝑞(𝐗,KB)).

For a knowledge base KB = (𝐷,Σ) and a UCQ 𝑞, the answer to 𝑞 over KB is true, denoted by KB ⊧ 𝑞, if ans(𝑞,KB) = {()} (see above). 
In this case, we also say that 𝐷 entails 𝑞 via Σ. The UCQ/BCQ answering problem is the following decision problem: given a knowledge 
base KB, and a UCQ/BCQ 𝑞, decide whether KB ⊧ 𝑞. If  is a class of programs (we mention some of these classes below), we denote 
by OMQA() the problem of UCQ/BCQ answering when the knowledge bases are restricted to those whose programs belong to . 
Since CQ answering can be reduced in logarithmic-space to BCQ answering, we focus on BCQs and UCQs.

This general formulation of the UCQ/BCQ answering problem refers to the combined complexity setting of the problem, that 
is, the database, the program, and the UCQ/BCQ, are considered part of the input [108]. It is common, however, to study also 
refined complexity measures that are more realistic in practice [108]. Here, we consider the bounded-arity combined (or ba-combined) 
complexity, where the arity of the underlying schema is bounded by a fixed integer, the fixed-program combined (or fp-combined) 
complexity, where the program is fixed, and the data complexity, where the UCQ/BCQ and the program are fixed.

Decidability paradigms. It is known that ontological query answering under arbitrary existential rules is undecidable (see, e.g., [30]). 
This has led to identifying restrictions on existential rules guaranteeing decidability. The classes of programs/TGDs (or Datalog±

languages/fragments) that we consider to guarantee the decidability of UCQ/BCQ answering are among the most frequently analyzed 
in the literature. More specifically, the (syntactic) restrictions here considered are guardedness [30], linearity [28], stickiness [29], and 
acyclicity, each having a “weak” counterpart: weak guardedness [30], weak stickiness [29], and weak acyclicity [54]—definitions of 
the just mentioned existential rules languages can also be found collected all together in [81, Sections 3 and 8] and [27, Appendix A].

A TGD 𝜎 is guarded, if there exists an atom in the body that contains (or “guards”) all the body variables of 𝜎. Although the chase 
under a set of guarded TGDs does not necessarily terminate, query answering is decidable. This follows from the fact that the result 
of the chase procedure is “treelike”, or, in other words, has finite treewidth [30]. The class of guarded TGDs, denoted 𝖦, is the family 

1 Notice here that, in what follows, the acronym UCQ refer to unions of BCQs, and not to unions of CQs.
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Fig. 1. A schematic representation of the inclusion relationships between the Datalog± fragments considered in this paper. Two fragments 𝖷 and 𝖸, represented in 
the figure as two nodes, are such that 𝖷 ⊂ 𝖸 if and only if there is an arc from 𝖷 to 𝖸.

of all possible sets of guarded TGDs. A key subclass of guarded TGDs are the linear TGDs with just one body atom (which is a guard), 
and the corresponding class is denoted 𝖫.

The acyclicity of a set Σ of TGDs is related to the topology of its predicate graph, which is defined as follows: its nodes are the 
predicates occurring in Σ, and there is an arc from 𝑝 to 𝑟 if and only if there is a TGD 𝜎 ∈ Σ such that 𝑝 occurs in body(𝜎) and 𝑟 occurs 
in head(𝜎). The program Σ is acyclic (a.k.a. non-recursive) if its predicate graph contains no directed cycles. It is easy to show that 
acyclicity ensures the termination of the chase [54].

Stickiness is inherently different from guardedness and acyclicity. It ensures neither finite treewidth nor termination of the chase, 
like for guardedness and acyclicity, respectively. Instead, the decidability of query answering via stickiness is obtained via backward-
chaining techniques. The goal underlying stickiness is to express non-guarded statements without forbidding recursion as in acyclicity. 
The central property of stickiness is as follows: variables that appear more than once in a rule’s body (i.e., join variables) are always 
propagated (or “stick”) to the inferred atoms. A set of TGDs with the above property is sticky, and the corresponding class is denoted 𝖲.

Another key fragment of TGDs are the full TGDs, i.e., TGDs without existentially quantified variables in the rules’ heads, and the 
corresponding class is denoted 𝖥. This class of TGDs are essentially plain Datalog rules. Moreover, it is known that the logical core 
of the RL profile of OWL 2, which is aimed at applications that require efficient reasoning without sacrificing too much expressive 
power, corresponds to full TGDs. If full TGDs enjoy linearity, guardedness, stickiness, or acyclicity, then we obtain the classes 𝖫𝖥, 
𝖦𝖥, 𝖲𝖥, and 𝖠𝖥, respectively.

Interestingly, the main classes of TGDs that we have mentioned above, based on the notions of guardedness, acyclicity and 
stickiness, come with their “weakly” version: weakly-guarded (𝖶𝖦) [30], weakly-acyclic (𝖶𝖠) [54], and weakly-sticky (𝖶𝖲) [29], 
respectively. The definition of all these “weakly” versions follows the same principle: the underlying syntactic condition is relaxed 
in such a way that only certain “harmful” variables are taken into account; for details, we refer the reader to the references given 
above. Notice that the precise definition of these “harmful” variables is not required in this paper, as our results will require us to 
only directly deal with acyclic and guarded-full programs. In some cases, our results will even hold for knowledge bases with empty 
programs, i.e., plain relational databases. The results for the other Datalog± fragments mentioned above, will be inherited by results 
on simpler fragments.

The relationships between the Datalog± fragments here considered are depicted in Fig. 1. Table 1 reports the complexity of 
UCQ/BCQ answering for the Datalog± fragments and the complexity measures here analyzed [81].

Complexity classes. We assume that the reader has some background in computational complexity theory, including the notions of 
(oracle) Turing machine, and hardness and completeness of a problem for a complexity class, as can be found in standard textbooks 
(see, e.g., [68,87]). In what follows, we briefly recall the complexity classes that we encounter in our work. The complexity class 
PSpace (resp., P, Exp, and 2Exp) contains all the decision problems that can be solved in polynomial space (resp., polynomial, 
exponential, and double exponential time) via a deterministic Turing machine. The complexity classes NP and NExp contain all 
the decision problems that can be solved in polynomial and exponential time via a non-deterministic Turing machine, respectively, 
while co-NP and co-NExp are their complementary classes, where ‘yes’- and ‘no’-instances are interchanged. The complexity class 
ΣP
2 = NPNP (resp., NPNExp) is the class of decision problems that can be solved in non-deterministic polynomial time using an NP
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Table 1
Complexity of ontological UCQ answering under existential rules [81, and 
references therein]. All non-“in” entries are completeness results. Hard-
ness results hold even on BCQs.

 Data fp-combined ba-combined Combined 
𝖫, 𝖫𝖥, 𝖠𝖥 in AC0 NP NP PSpace
𝖲, 𝖲𝖥 in AC0 NP NP Exp
𝖠 in AC0 NP NExp NExp
𝖦 P NP Exp 2Exp
𝖥, 𝖦𝖥 P NP NP Exp
𝖶𝖲, 𝖶𝖠 P NP 2Exp 2Exp
𝖶𝖦 Exp Exp Exp 2Exp

Fig. 2. Protein network, where each complex 𝑐𝑖 contains some of the proteins 𝑝1,… , 𝑝6 . 

oracle (resp., a NExp oracle). Interestingly, due to the collapse of the Strong Exponential Hierarchy [62], it was shown that NPNExp

equals PNExp, which is the class of decision problems that can be solved in polynomial time by a deterministic Turing machine 
using a NExp oracle. The complexity class DP = NP ∧ co-NP (resp., DExp = NExp ∧ co-NExp) is the class of decision problems that 
are an intersection of a problem in NP and a problem in co-NP (resp., a problem in NExp and a problem in NExp)—notice here 
that we are speaking of intersections of languages (remember that, in computational complexity theory, a language is just a set of 
strings) and not of intersections of complexity classes; more precisely, DP = {𝐿 ∣ (𝐿 = 𝐿1 ∩ 𝐿2) ∧ (𝐿1 ∈ NP) ∧ (𝐿2 ∈ co-NP)}, and 
DExp = {𝐿 ∣ (𝐿 = 𝐿1 ∩ 𝐿2) ∧ (𝐿1 ∈ NExp) ∧ (𝐿2 ∈ co-NExp)}. The complexity class AC0 contains all languages that are decidable 
via uniform families of Boolean circuits of polynomial size and constant depth. The inclusion relationships (which are all currently 
believed to be strict) between the above mentioned complexity classes are shown below2:

AC0 ⊆ P ⊆ NP, co-NP ⊆DP ⊆ ΣP
2 ⊆ PSpace ⊆ Exp ⊆ NExp, co-NExp ⊆DExp ⊆ PNExp ⊆ 2Exp.

3. Explanations for query answers

In this section, we introduce the notion of minimal explanation, and we define the problems that we will analyze. Definitions are 
followed by examples.

Definition 3.1 (MinEx). For a knowledge base KB = (𝐷,Σ) and a query 𝑞 such that KB ⊧ 𝑞, an explanation for KB ⊧ 𝑞, or for 𝑞 w.r.t. 
KB, is a subset 𝐸 ⊆𝐷 of facts such that (𝐸,Σ) ⊧ 𝑞.

A minimal explanation 𝐸, or MinEx, for KB ⊧ 𝑞, or for 𝑞 w.r.t. KB, is an explanation for KB ⊧ 𝑞 that is inclusion-minimal, i.e., there 
is no proper subset 𝐸′ ⊊𝐸 that is an explanation for KB ⊧ 𝑞.

In the following, when the query and/or the knowledge base we refer to are clear from the context, we say that a set 𝐸 is a MinEx 
without explicitly mentioning the query and/or the knowledge base.

We provide below a running example that will be used throughout this section to illustrate the various problems studied in this 
paper. This example is taken from the study of protein networks [73,97].

Example 3.2. We consider the protein containment scenario illustrated in Fig. 2. In this example, there are proteins 𝑝1 ,… , 𝑝6 and 
complexes 𝑐1, 𝑐2, 𝑐3, which are sets of proteins. We want to find a minimal subset of the proteins covering all the complexes, i.e., a 
minimal subset of the proteins having at least one representative from each complex.3

This problem can be expressed as the search for MinExes for a suitable knowledge base and query. Consider a database encoding 
all the proteins:

2 For these inclusion relationships, the notation “𝐴 ⊆ 𝐵,𝐶 ⊆ 𝐷” is a shorthand for: 𝐴 ⊆ 𝐵; 𝐴 ⊆ 𝐶 ; 𝐵 ⊆ 𝐷; and 𝐶 ⊆ 𝐷. Moreover, no inclusion relationships are 
currently known for 𝐵 and 𝐶 , and it is currently believed that 𝐵 ⊈ 𝐶 and 𝐶 ⊈ 𝐵.

3 This example could be adapted to any other task equivalent to finding minimal hypergraphs transversals [57,59].
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𝐷prot = {protein(𝑝𝑖) ∣ 1 ≤ 𝑖 ≤ 6}.

The following program states which proteins are contained in which complexes according to Fig. 2:

Σprot = {protein(𝑝𝑖)→
⋀
𝑐𝑗∋𝑝𝑖

covered(𝑐𝑗 ) ∣ 1 ≤ 𝑖 ≤ 6}.

We denote by KBprot the knowledge base (𝐷prot,Σprot).
The following query asks whether every complex can be covered:

𝑞prot = covered(𝑐1) ∧ covered(𝑐2) ∧ covered(𝑐3).

Consider now a subset 𝐸 ⊆ 𝐷prot . Clearly, (𝐸,Σprot) ⊧ 𝑞prot if and only if (𝐸,Σprot) ⊧ covered(𝑐𝑖) for every complex 𝑐𝑖. Thus, the 
MinExes for KBprot ⊧ 𝑞prot are in bijection with the minimal protein covers of the complexes. ⊲

The aim of this work is to analyze the complexity of various tasks associated with MinExes under existential rules. We give here 
an overview of the six problems considered in this paper, which have been inspired by those studied in axiom pinpointing [94] 
and logic-based abduction [48]. These problems concern recognising MinExes, determining the roles of facts in MinExes, and the 
cardinality of MinExes. In what follows, after the definitions of the problems, we provide examples for them based on Example 3.2.

The most fundamental problem that we study is recognising a MinEx for a given query and knowledge base. This is a natural 
decision version of the problem of computing a minimal explanation.

Problem: Is-MinEx () 
Input: A knowledge base KB = (𝐷,Σ) with Σ ∈, a UCQ 𝑞 with KB ⊧ 𝑞, and a set of facts 𝐸 ⊆𝐷. 
Output: Is 𝐸 a MinEx for KB ⊧ 𝑞?

Example 3.3. The following are some MinExes for KBprot ⊧ 𝑞prot :

𝐸1 = {protein(𝑝1),protein(𝑝3)}, 

𝐸2 = {protein(𝑝2),protein(𝑝5)}, 

𝐸3 = {protein(𝑝2),protein(𝑝4),protein(𝑝6)}.

The above sets are also minimal protein covers of the complexes.
The set 𝐸′ = {protein(𝑝4),protein(𝑝5),protein(𝑝6)} is not a MinEx, as the proteins in 𝐸′ do not cover all the complexes, and 

thus (𝐸′,Σprot) ̸⊧ 𝑞prot . A set of facts, together with the program, might entail the query but not be a MinEx. For example, 
𝐸′′ = {protein(𝑝1),protein(𝑝2),protein(𝑝3)} is such that (𝐸′′,Σprot) ⊧ 𝑞prot , however 𝐸′′ is not a MinEx, as it is not minimal; indeed, 
the fact protein(𝑝2) can be removed without breaking the query entailment. ⊲

Another fundamental problem, All-MinEx, is the problem of recognising the set of all MinExes for a given query. This problem 
is the decision version of the problem of computing the set of all MinExes, which is particularly important when we want to gain a 
complete understanding of how a particular query can be entailed.

Problem: All-MinEx() 
Input: A knowledge base KB = (𝐷,Σ) with Σ ∈, a UCQ 𝑞 with KB ⊧ 𝑞, and a set  = {𝐸1,… ,𝐸𝑛} of subsets of D. 
Output: Is  the set of all and only the MinExes for KB ⊧ 𝑞?

Example 3.4. The following set of subsets of 𝐷prot is exactly the set of all the MinExes for KBprot ⊧ 𝑞prot :

 =
{
{protein(𝑝1),protein(𝑝3)},{protein(𝑝1),protein(𝑝5)},{protein(𝑝1),protein(𝑝6)},

{protein(𝑝2),protein(𝑝5)},{protein(𝑝3),protein(𝑝4)},{protein(𝑝3),protein(𝑝5)},

{protein(𝑝2),protein(𝑝4),protein(𝑝6)}
}
.

This set corresponds to the set of all and only the minimal protein covers of the complexes. ⊲

In some applications, the user might specify some database subsets as “forbidden”. For example, the user might know that some 
facts are incompatible or might be interested in explanations excluding some specific sets of facts. We study this problem, MinEx-
Irrel, of deciding whether there is a MinEx for a query that avoids forbidden sets of facts.

Problem: MinEx-Irrel() 
Input: A knowledge base KB = (𝐷,Σ) with Σ ∈, a UCQ 𝑞 with KB ⊧ 𝑞, and a set  = {𝐹1,… , 𝐹𝑛} of subsets of D. 
Output: Is there a MinEx 𝐸 for KB ⊧ 𝑞 such that, for every 𝐹𝑖 ∈  , 𝐹𝑖 ⊈ 𝐸?
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Table 2
Complexity results for Is-MinEx(). All non-“in” entries are completeness results. Membership re-
sults hold for UCQs, while hardness results hold even on BCQs. In square brackets, we report the 
number of the theorems providing the membership and the hardness results, respectively.

 Data fp-combined ba-combined Combined 
𝖫, 𝖫𝖥, 𝖠𝖥 in AC0 [4.2 / –] DP [4.1 / 4.4] DP [4.1 / 4.4] PSpace [4.1 / 4.6] 
𝖲, 𝖲𝖥 in AC0 [4.2 / –] DP [4.1 / 4.4] DP [4.1 / 4.4] Exp [4.1 / 4.6] 
𝖠 in AC0 [4.2 / –] DP [4.1 / 4.4] DExp [4.1 / 4.5] DExp [4.1 / 4.5] 
𝖦 P [4.1 / 4.3] DP [4.1 / 4.4] Exp [4.1 / 4.6] 2Exp [4.1 / 4.6] 
𝖥, 𝖦𝖥 P [4.1 / 4.3] DP [4.1 / 4.4] DP [4.1 / 4.4] Exp [4.1 / 4.6] 
𝖶𝖲, 𝖶𝖠 P [4.1 / 4.3] DP [4.1 / 4.4] 2Exp [4.1 / 4.6] 2Exp [4.1 / 4.6] 
𝖶𝖦 Exp [4.1 / 4.3] Exp [4.1 / 4.6] Exp [4.1 / 4.6] 2Exp [4.1 / 4.6] 

Example 3.5. Suppose that we are aware of configurations of proteins that are not allowed to be together in a cover:

 = {{protein(𝑝1)},{protein(𝑝3),protein(𝑝5)},

{protein(𝑝2),protein(𝑝4),protein(𝑝6)}}.

In this case, {protein(𝑝3),protein(𝑝4)} is a desirable MinEx that does not contain any set from  and covers all the complexes. On the 
other hand, observe that neither {protein(𝑝1),protein(𝑝3)} nor {protein(𝑝3),protein(𝑝5)} are desirable MinExes, as they both contain 
some forbidden set. ⊲

Another problem, MinEx-Rel, is the problem of deciding the relevance of a fact in explaining the entailment of a given query. 
We say that a fact 𝜓 is relevant for KB ⊧ 𝑞 if there is a MinEx 𝐸 for KB ⊧ 𝑞 with 𝜓 ∈ 𝐸. This problem is of interest when we want to 
decide whether a particular fact can contribute to the query entailment.

Problem: MinEx-Rel() 
Input: A knowledge base KB = (𝐷,Σ) with Σ ∈, a UCQ 𝑞 with KB ⊧ 𝑞, and a fact 𝜓 ∈𝐷. 
Output: Is 𝜓 relevant for KB ⊧ 𝑞, i.e., is there a MinEx 𝐸 for KB ⊧ 𝑞 such that 𝜓 ∈𝐸?

Example 3.6. Suppose that we are interested in knowing whether the fact 𝜓 = protein(𝑝6) is contained in some MinEx. The sets 
{protein(𝑝1),protein(𝑝6)} and {protein(𝑝2),protein(𝑝4),protein(𝑝6)} are MinExes for KBprot ⊧ 𝑞prot containing this fact. Therefore, 𝜓 =
protein(𝑝6) is relevant for KBprot ⊧ 𝑞prot , and, in particular, there is a minimal protein cover containing the protein 𝑝6 . ⊲

We also study two cardinality-based problems for MinExes. These problems can be seen as the decision versions of the problems 
of computing the size of the smallest and largest MinExes. The first problem, Small-MinEx, asks whether there is a MinEx whose 
size is smaller than some given threshold, while the second, Large-MinEx, asks whether there is a MinEx whose size is larger than 
some given threshold.

Problem: Small-MinEx() 
Input: A knowledge base KB = (𝐷,Σ) with Σ ∈, a UCQ 𝑞 with KB ⊧ 𝑞, and an integer 𝑛 ≥ 1 represented in binary. 
Output: Is there a MinEx 𝐸 for KB ⊧ 𝑞 such that |𝐸| ≤ 𝑛?
Problem: Large-MinEx() 
Input: A knowledge base KB = (𝐷,Σ) with Σ ∈, a UCQ 𝑞 with KB ⊧ 𝑞, and an integer 𝑛 ≥ 1 represented in binary. 
Output: Is there a MinEx 𝐸 for KB ⊧ 𝑞 such that |𝐸| ≥ 𝑛?
Example 3.7. Observe that every MinEx for KBprot ⊧ 𝑞prot is either of size 2 or 3 (see Example 3.4). For example, {protein(𝑝1),protein(𝑝3)}
is a MinEx of size 2 and {protein(𝑝2),protein(𝑝4),protein(𝑝6)} is a MinEx of size 3, which are a smallest and a largest MinEx for 
KBprot ⊧ 𝑞prot , respectively. ⊲

4. Recognizing minimal explanations

In this section, we start our complexity analysis by considering the fundamental problem Is-MinEx: for an instance (KB, 𝑞,𝐸), 
where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a UCQ (with KB ⊧ 𝑞), and 𝐸 ⊆𝐷 is a set of facts, decide whether 𝐸 is a MinEx for KB ⊧ 𝑞. 
A summary of the complexity results for this problem is reported in Table 2.

Before delving into the details of the complexity analysis of Is-MinEx, we highlight some of interesting results that we obtain in 
this section. We are able to show that Is-MinEx(𝖠) is DExp- complete in the ba-combined and combined complexity (Theorem 4.5). 
Recall that DExp = NExp ∧ co-NExp = {𝐿 ∣ (𝐿 = 𝐿1 ∩ 𝐿2) ∧ 𝐿1 ∈ NExp ∧ 𝐿2 ∈ co-NExp}. To our knowledge, Is-MinEx(𝖠) is among 
the very few, if not the first, natural problem to be shown complete for DExp. We also prove that deciding whether a set of database 
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Algorithm 1: A general algorithm for the Is-MinEx problem.

Input: A knowledge base KB = (𝐷,Σ), a UCQ 𝑞, and a set 𝐸 ⊆𝐷 of facts.
Output: 𝖺𝖼𝖼𝖾𝗉𝗍, if 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞; 𝗋𝖾𝗃𝖾𝖼𝗍, otherwise.

/* The statement “verify 𝜓” is equivalent to “if not 𝜓 then return 𝗋𝖾𝗃𝖾𝖼𝗍; whereas 
the statement “verify not 𝜓” is equivalent to “if 𝜓 then return 𝗋𝖾𝗃𝖾𝖼𝗍” */

Procedure IsMinex(KB, 𝑞,𝐸):
1 verify (𝐸,Σ) ⊧ 𝑞
2 foreach 𝛼 ∈𝐸 do
3 verify not (𝐸 ⧵ {𝛼},Σ) ⊧ 𝑞

4 return 𝖺𝖼𝖼𝖾𝗉𝗍

facts is a minimal set entailing a BCQ is already DP- hard for plain relations databases when the query is assumed not to be fixed 
(Theorem 4.4), i.e., there is no need to have a program to make the problem difficult to solve. Furthermore, on the side of the results 
of feasibility, we show that, in the data complexity, deciding Is-MinEx for the FO-rewritable Datalog± fragments is FO-rewritable 
(Theorem 4.2), and hence also feasible in polynomial time.

We begin by proving the membership results for this problem. These results are obtained via a general algorithm, Algorithm 1, 
tackling Is-MinEx (details and comments about the algorithm will be provided in the proof of Theorem 4.1).

The algorithms presented in this paper are described via pseudocode in which we may use the keywords “verify”/“verify not”. 
The syntax and the semantics adopted in this paper for the statement “verify 𝜓” (resp., “verify not 𝜓”) are as follows: 𝜓 is a Boolean 
expression that can be built by Boolean values, Boolean tests, and calls to Boolean functions, linked by Boolean logic connectives; the 
statement “verify 𝜓” (resp., “verify not 𝜓”) is expanded to “if not 𝜓 then return 𝗋𝖾𝗃𝖾𝖼𝗍” (resp., “if 𝜓 then return 𝗋𝖾𝗃𝖾𝖼𝗍”). Keywords 
“verify” and “verify not” can straight after also be followed by a begin/end-enclosed code-block (see, e.g., Algorithm 2), which 
defines a(n anonymous) Boolean function with no arguments and having access to all the variables in the outer function’s scope; this 
inline-defined Boolean function is invoked to evaluate the Boolean expression associated with the preceding “verify” or “verify not”. 
We underline here that, when there is a sequence of non-nested “verify”/“verify not” statements in an algorithm (see, e.g., lines 2
and 3 in Algorithm 3), these are simply evaluated one after the other in the order specified, and the execution is interrupted only if 
one of them fails by returning 𝗋𝖾𝗃𝖾𝖼𝗍 at the corresponding line.

Going back to the general procedure for the Is-MinEx problem, thanks to the use of an OMQA oracle, Algorithm 1 provides us 
the upper bounds for Is-MinEx for all the classes of TGDs and the complexity measures considered here. The resulting upper bounds 
are those reported in Table 2 and are tight, except for those in the data complexity for the cases in which OMQA is FO- rewritable 
(namely, the languages 𝖫,𝖲,𝖠, and their specializations), for which the tighter upper bounds reported in the table will require a 
stronger result stated later. A key insight of Algorithm 1 is that negation is not allowed in the programs, and hence entailment is 
monotonic in the framework here studied. For this reason, non-entailment is preserved by removing elements from the database. 
Indeed, for a knowledge base (𝐷,Σ) and a query 𝑞, if a set 𝑆 ⊆𝐷 does not entail 𝑞 via Σ, then every subset 𝑆′ of 𝑆 does not entail 
𝑞 via Σ either. This implies that, to verify the inclusion-minimality of an explanation 𝐸, it suffices to check that removing any single
fact from 𝐸 yields a set that does not entail the query via the program; hence, we do not need to carry out this check for all the 
possible (exponentially-many) subsets of 𝐸.

Theorem 4.1. For every class  of TGDs considered in this paper, if OMQA() is in the complexity class 𝐂 in the combined (resp., ba-
combined, fp-combined, and data) complexity, then Is-MinEx() can be decided by a check in 𝐂 and a linear number of checks in co-𝐂 in 
the combined (resp., ba-combined, fp-combined, and data) complexity.

Proof. Let KB = (𝐷,Σ) be a knowledge base with Σ belonging to , let 𝑞 be UCQ, and let 𝐸 be a subset of 𝐷. A general approach 
to test whether 𝐸 is a MinEx for KB ⊧ 𝑞 is outlined in Algorithm 1. In particular, we need to check whether (i) the knowledge base 
(𝐸,Σ) entails 𝑞 (line 1), which essentially tests whether 𝐸 is an explanation; and whether (ii) the just-ascertained explanation 𝐸 is 
actually subset-minimal (lines 2 and 3).

The entailment test at line 1 is a single check in the complexity class 𝐂. To test the subset-minimality of 𝐸, by the entailment 
monotonicity of the considered framework, it suffices to check whether removing any single element 𝛼 from 𝐸 results into a set 
such that (𝐸 ⧵ {𝛼},Σ) does not entail 𝑞 (rather than checking this for all subsets of 𝐸). Therefore, we need to perform |𝐸|-many 
non-entailment tests, i.e., a linear number of checks, each of them in co-𝐂. □

The membership results in Table 2 obtained from the previous theorem descend also from the following computational complexity 
facts: NP and NExp are complexity classes closed under conjunction, hence a linear number of co-NP and co-NExp checks can be 
combined into a single check in co-NP and co-NExp, respectively; additionally, NP ∧ co-NP = DP and NExp ∧ co-NExp = DExp .

Next, we show that Is-MinEx is in AC0 in the data complexity for FO- rewritable languages. This is obtained by showing that the
Is-MinEx problem, in these cases, can be encoded into a FO formula, which can be evaluated in AC0 in the data complexity. The 
intuition behind this proof is showing that a tailored FO formula can both encode that a set of facts 𝐹 entails the query and that none 
of the facts can be removed from 𝐹 without losing the entailment property.

Theorem 4.2. For every class  of TGDs considered in this paper such that  is FO- rewritable, Is-MinEx() is in AC0 in the data complexity.
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Proof. We will show that Is-MinEx(), when  is FO- rewritable, can be expressed via an FO query. By this, because answering 
FO queries is in AC0 in the data complexity [109], Is-MinEx() will result to be in AC0 in the data complexity, as well, when  is 
FO- rewritable. To prove this we will use the following fact that we remind to the reader: If  is a FO- rewritable class of TGDs, then, 
for each program Σ ∈  and each UCQ 𝑞 over a relational schema  , there is a FO query/formula 𝜙𝑞,Σ such that, for every set 𝐹 of 
facts over  , (𝐹 ,Σ) ⊧ 𝑞 if and only if 𝐹 ⊧ 𝜙𝑞,Σ. Note here that, since 𝑞 is a UCQ, all variables of 𝑞 are existentially quantified, and 
hence there are no free variables in 𝜙𝑞,Σ either.

As a first step, we prove that testing the subset-minimality of explanations for 𝑞 w.r.t. a knowledge base over  can be encoded 
into a FO formula 𝜙min. We will show how 𝜙min is defined by considering its constituent pieces.

Let us first focus on a generic 𝑛-ary predicate 𝑝 from  . For a set 𝐗𝑝 = {𝑋1,… ,𝑋𝑛} of fresh variables, consider the FO formula 
𝜙
≠𝑝
𝑞,Σ(𝐗𝑝) obtained from 𝜙𝑞,Σ as follows: all occurrences in 𝜙𝑞,Σ of 𝑝-atoms 𝑝(𝐭), where 𝐭 is an 𝑛-tuple of constants and variables, are 

substituted with the expression ‘
(
𝑝(𝐭) ∧ (𝑝(𝐭) ≠ 𝑝(𝑋1,… ,𝑋𝑛))

)
’. Note that, on the contrary of what happens for 𝜙𝑞,Σ, the FO formula 

𝜙
≠𝑝
𝑞,Σ(𝐗𝑝) has free variables, namely, 𝐗𝑝 = {𝑋1,… ,𝑋𝑛}.

Observe that, for an 𝑛-tuple 𝐜 of constants, 𝜙≠𝑝
𝑞,Σ(𝐜) is such that, for every set 𝐹 of facts over  , 𝐹 ⊧ 𝜙≠𝑝

𝑞,Σ(𝐜) if and only if (𝐹 ⧵

{𝑝(𝐜)},Σ) ⊧ 𝑞, because the portions ‘
(
𝑝(𝐭) ∧ (𝑝(𝐭) ≠ 𝑝(𝑋1,… ,𝑋𝑛))

)
’ of the formula 𝜙≠𝑝

𝑞,Σ(𝐗𝑝) can be satisfied only by 𝑝-atoms different 
from 𝑝(𝐜). This implies that 𝐹 ⊧ 𝜙≠𝑝

𝑞,Σ(𝐜) if and only if 𝐹 ⧵ {𝑝(𝐜)} is an explanation for 𝑞 w.r.t. (𝐹 ,Σ), and, symmetrically, we have that 
𝐹 ⊧ ¬𝜙≠𝑝

𝑞,Σ(𝐜) if and only if 𝐹 ⧵ {𝑝(𝐜)} is not an explanation for 𝑞.
We are almost ready to define the FO formula 𝜙min , which tests the minimality of explanations for 𝑞. To this aim, consider now 

the FO formula 𝜙𝑝 = ∀𝐗𝑝
(
𝑝(𝐗𝑝)→ ¬𝜙≠𝑝

𝑞,Σ(𝐗𝑝)
)
, built upon the formula 𝜙≠𝑝

𝑞,Σ(𝐗𝑝)
)

seen above. From what we have just observed about 
¬𝜙≠𝑝

𝑞,Σ(𝐜), the FO formula 𝜙𝑝 is satisfied by those sets 𝐹 of facts over  such that, if 𝐹 contains any generic 𝑝-atom 𝑝(𝐜), then 𝐹 ⧵{𝑝(𝐜)}
is not an explanation for 𝑞. We can now define 𝜙min =

⋀
𝑝∈ 𝜙

𝑝. From our previous discussion, a set 𝐹 of facts over  satisfies 𝜙min if 
and only if 𝐹 is such that the removal of each single fact from 𝐹 yields a fact set that is not an explanation for 𝑞 (observe here that 
𝜙min does not test for 𝐹 to be an explanation for 𝑞; 𝜙min just tests that, for any atom 𝛼 ∈ 𝐹 , 𝐹 ⧵ {𝛼} is not an explanation for 𝑞).

To conclude, let us consider the FO formula 𝜙 = 𝜙𝑞,Σ ∧ 𝜙min. Observe that, to satisfy 𝜙, a set 𝐹 of facts over  must be an 
explanation for 𝑞, as 𝜙𝑞,Σ is part of 𝜙. Hence, 𝐹 ⊧ 𝜙 if and only if 𝐹 is an explanation for 𝑞 that is not an explanation for 𝑞 any longer 
when any of its fact is removed, i.e., 𝐹 must be a MinEx for 𝑞. □

In the rest of this section, we prove lower bounds for Is-MinEx. We start by showing that, when  ⊇ 𝖦𝖥, Is-MinEx() is at least as 
hard as OMQA(), i.e., there is a reduction from OMQA() to Is-MinEx(). This theorem proves all the P- hardness results reported 
in Table 2 and all the hardness results (in the data, fp-combined, ba-combined, and combined, complexity) for the 𝖶𝖦 fragment—
the following statement actually covers also some hardness results shown in Table 2 for the ba-combined and combined complexity 
(namely, for 𝖦, 𝖶𝖲, and 𝖶𝖠); however, another statement, needed to cover the remaining cases in the ba-combined and combined 
complexity, will cover these results as well. The intuition behind the reduction is translating an OMQA instance 𝛼 into an Is-MinEx
instance 𝛽, such that the set of all facts in the database of 𝛼 is a MinEx for a suitable modified query in 𝛽. In this way, if the database 
of 𝛼 does not entail the original query in 𝛼, then that set of facts is not an explanation (at all) of the query in 𝛽.

Theorem 4.3. For every class  of TGDs considered in this paper such that ⊇𝖦𝖥, Is-MinEx() is at least as hard as OMQA() in the 
data (resp., fp-combined, ba-combined, and combined) complexity. Hardness holds even on instances whose queries are BCQs.

Proof. We prove the statement by showing a logspace reduction (so for the reduction to hold also for the P- hardness results) from
OMQA(), where  ⊇ 𝖦𝖥. Given an OMQA() instance (KB, 𝑞), where KB = (𝐷,Σ) is a knowledge base, and 𝑞 is a BCQ, we build in 
logspace, as explained below, an instance (KB′, 𝑞′,𝐸) of Is-MinEx(), where KB′ = (𝐷′,Σ′) is a knowledge base, 𝑞′ is a BCQ, and 𝐸
is a candidate MinEx.

(The database). We obtain 𝐷′ from 𝐷 and 𝑞 as follows. For each fact 𝑝(𝐚) ∈𝐷, 𝐷′ contains two facts 𝑝′(𝐚, 𝑖) and 𝑟(𝑖− 1, 𝑖), where 𝑝′
and 𝑟 are fresh predicate symbols, with the former associated with 𝑝, and 𝑖 is an incremental integer constant (over all facts) starting 
from 1 (‘𝑖 − 1’ is just an expression indicating the integer constant preceding 𝑖). These integer values are used to “enumerate” all 
the facts in 𝐷′ coming from 𝐷 (i.e., different facts in 𝐷′ coming from 𝐷 have different integer values 𝑖 in the last position). The 
predicate 𝑟 intuitively states that the integer constant ‘𝑖’ is the subsequent number represented by the integer constant ‘𝑖−1’. Further, 
𝐷′ contains two additional facts 𝑢(0) and num-facts(|𝐷|), both of them over fresh predicate symbols. To conclude, 𝐷′ contains the 
facts of a full grounding of 𝑞, where each variable in 𝑞 is grounded with a fresh constant, and we call this set of facts 𝐷𝑞 ; this ensures 
that 𝐷′ entails 𝑞.
(The program). We build the program Σ′ starting from Σ as follows. The program Σ′ contains all the rules of Σ. Moreover, for each 
𝑛-ary predicate 𝑝 of the relational schema, Σ′ contains the rules

𝑝′(𝐗, 𝐽 )→ 𝑝(𝐗), 𝑝′(𝐗, 𝐽 )→ 𝑡(𝐽 ),

where 𝐗 = {𝑋1,… ,𝑋𝑛} is a set of variables, and 𝑡 is a fresh predicate symbol. Furthermore, Σ′ contains two other rules

𝑢(𝐼) ∧ 𝑟(𝐼, 𝐽 ) ∧ 𝑡(𝐽 )→ 𝑢(𝐽 ), 𝑢(𝐽 ) ∧ num-facts(𝐽 )→ all(),
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ensuring that the fresh fact all() can be derived from a set of facts 𝐹 only if all 𝑝′-facts are in 𝐹 .

(The query). The query is 𝑞′ = 𝑞 ∧ all().
(The candidate MinEx). We take the set 𝐸 =𝐷′ ⧵𝐷𝑞 .

Observe that this instance of Is-MinEx can be computed in logarithmic space. Notice that, like Σ, we have that Σ′ ∈ , because 
Σ ∈  and the additional rules are guarded and full (remember that we are assuming  ⊇ 𝖦𝖥). Moreover, Σ′ is built independently 
from 𝐷, hence, in the data and the fp-combined complexity settings, where the relational schema is fixed, Σ′ is fixed as well. For the 
ba-combined complexity setting, observe that the fresh predicates have bounded arity, hence, when Σ is over a relational schema 
with bounded arity, also Σ′ is over a relational schema with bounded arity. Observe that 𝑞′ depends on 𝑞 and does not depend on 𝐷; 
hence, when 𝑞 is fixed, also 𝑞′ is fixed. Moreover, since 𝑞 is a BCQ, 𝑞′ is a BCQ, as well. We further notice that (𝐷′,Σ′) ⊧ 𝑞′, because 
𝐷𝑞 is part of 𝐷′.

We now show that (𝐷,Σ) ⊧ 𝑞 if and only if 𝐸 is a MinEx for (𝐷′,Σ′) ⊧ 𝑞′.
(⇒) Suppose that (𝐷,Σ) ⊧ 𝑞. Observe that, via the rules ‘𝑝′(𝐗, 𝐽 ) → 𝑝(𝐗)’ in Σ′, all the facts present in 𝐷 can be derived from 

𝐸. This implies that (𝐸,Σ′) ⊧ 𝑞. By construction of 𝐸, we have that (𝐸,Σ′) ⊧ all(), and thus (𝐸,Σ′) ⊧ 𝑞′, which means that 𝐸 is an 
explanation for 𝑞′ w.r.t. (𝐷′,Σ′). Moreover, 𝐸 is a subset-minimal explanation for 𝑞′ , because, by construction, removing any fact 
from 𝐸 would break the derivation of the fact all().

(⇐) Suppose that 𝐸 is a MinEx for (𝐷′,Σ′) ⊧ 𝑞′. Since 𝑞′ = 𝑞 ∧ all(), it must be the case that (𝐸,Σ′) ⊧ 𝑞, as well. Observe that 
𝑞 involves only non-primed predicate symbols (i.e., the 𝑝-predicates, and not the 𝑝′-predicates, for every predicate symbol 𝑝), and 
none of the fresh predicate symbols introduced to build 𝐷′ and Σ′ appears in 𝑞. Hence, the facts needed to satisfy the ‘𝑞’ part within 
the query 𝑞′ are only the non-primed predicate facts that can be derived from 𝐸 via Σ′. Notice that the non-primed predicate facts 
derived from 𝐸 via Σ′ are contained in 𝐷. Moreover, since all the rules in Σ′ not involving primed or fresh predicate symbols are 
also in Σ, we have that (𝐷,Σ) ⊧ 𝑞. □

Next, we show that Is-MinEx() is DP- hard in the fp-combined complexity, even when the program is empty. This proves all 
the DP- hardness results in Table 2. In the proof of this theorem, the classical Sat-Unsat problem is used as the starting problem 
in our reduction. This is different from what was done in the proof of the DP- hardness of Is-MinA in [94, Theorem 4], in which a 
tailored DP- complete problem is used for the reduction. By using the canonical problem Sat-Unsat, recognizing from our proof the 
two sources of complexity for the problem Is-MinEx is immediate. Indeed, from our proof it is evident that the NP- hardness part of 
the DP- hardness is obtained by linking the satisfiability check of a Boolean formula 𝜙 to checking whether a suitable set 𝐸 of facts is 
an explanation of a tailored query, whereas the co-NP- hardness part of the DP- hardness is obtained by associating the unsatisfiability 
check of a Boolean formula 𝜓 with checking whether the mentioned explanation 𝐸 is also minimal.

Theorem 4.4. For every class  of TGDs considered in this paper, Is-MinEx() is DP- hard in the fp-combined (resp., ba-combined) com-
plexity. Hardness holds even on instances whose programs are empty and whose queries are BCQs.4

Proof. We show a reduction to Is-MinEx() from the DP- complete problem Sat-Unsat [88]: for an instance (𝜙(�̄�), 𝜓(�̄�)), where 
𝜙(�̄�) and 𝜓(�̄�) are two 3CNF Boolean formulas defined over the Boolean variables sets �̄� and �̄�, respectively, decide whether 𝜙(�̄�) is 
satisfiable and 𝜓(�̄�) is unsatisfiable.

Let (𝜙(�̄�), 𝜓(�̄�)) be an instance of Sat-Unsat, where �̄�= {𝑥1,… , 𝑥𝑛} and �̄�= {𝑦1,… , 𝑦𝑚}. From (𝜙(�̄�), 𝜓(�̄�)), we build as follows 
an instance (KB, 𝑞,𝐸) of Is-MinEx(), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝐸 is a candidate MinEx. We will 
encode the (un)satisfiability of the formulas 𝜙 and 𝜓 via the database 𝐷 and the query 𝑞.
(The database). The database 𝐷 contains facts that will be used to impose the consistency of truth assignments, mimicked by mappings 
from 𝑞 to 𝐷, to the literals of the formulas 𝜙(�̄�) and 𝜓(�̄�):

simlit(f , f ), opplit(f , t), simlit(⋆,⋆),

simlit(t, t), opplit(t, f ), opplit(⋆,⋆),

where t and f are constants associated with the Boolean values true and false, respectively, and ⋆ is an additional constant used as a 
“jolly”. Intuitively, the “jolly” constant allows to bypass the Boolean formulas’ satisfiability checks.

Further, 𝐷 contains facts capturing the satisfying assignments to the literals for a clause:

clsat𝜙(𝜏1, 𝜏2, 𝜏3), clsat𝜙(⋆,⋆,⋆),

clsat𝜓 (𝜏1, 𝜏2, 𝜏3), clsat𝜓 (⋆,⋆,⋆),

where each 𝜏𝑖 ∈ {f , t} and at least one of 𝜏𝑖 for 𝑖 ∈ {1,2,3} is t. Note that in 𝐷 there are 7 clsat𝜙-facts and 7 clsat𝜓 -facts. Intuitively, 
the facts with the “jolly” constant allow to bypass the satisfiability checks of 𝜙 and 𝜓 .

4 Notice that this hardness result holds already over plain relational databases: given a set 𝐸 of facts and a BCQ 𝑞 (both 𝐸 and 𝑞 are part of the input and may 
vary), deciding whether 𝐸 is a minimal set of facts entailing 𝑞 is DP- hard.
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(The program). We take Σ to be the empty set.

(The query). For presentation purposes, we gradually introduce the query 𝑞 by giving intuitions for each piece defined. In what follows, 
𝓁𝛼
𝑗,𝑘

is the 𝑘th literal in the 𝑗 th clause of the formula 𝛼 ∈ {𝜙,𝜓}, and 𝑣𝛼
𝑗,𝑘

is the Boolean variable of 𝓁𝛼
𝑗,𝑘

.

A first query piece imposes that the query variables 𝑇 𝜙
𝑗,𝑘

and 𝑇 𝜓
𝑗,𝑘

, associated with the formula literals 𝓁𝜙
𝑗,𝑘

and 𝓁𝜓
𝑗,𝑘

, respectively, 
are mapped to consistent constants; in this way, we simulate that the assignments to the formula literals, derived by the mappings of 
the query atoms to the database facts, are consistent. This part of the query is:

consist ≡
⋀

𝛼∈{𝜙,𝜓}

( ⋀
for all pairs of literals 
(𝓁𝛼
𝑗,𝑘
,𝓁𝛼
𝑗′ ,𝑘′

) in 𝛼 s.t.

𝓁𝛼
𝑗,𝑘

= 𝓁𝛼
𝑗′ ,𝑘′

simlit(𝑇 𝛼
𝑗,𝑘
, 𝑇 𝛼
𝑗′ ,𝑘′

) ∧ 
⋀

for all pairs of literals 
(𝓁𝛼
𝑗,𝑘
,𝓁𝛼
𝑗′ ,𝑘′

) in 𝛼 s.t.

𝓁𝛼
𝑗,𝑘

= ¬𝓁𝛼
𝑗′ ,𝑘′

opplit(𝑇 𝛼
𝑗,𝑘
, 𝑇 𝛼
𝑗′ ,𝑘′

)

)
.

A second piece of the query captures the satisfiability of 𝜙 and 𝜓 :

satisfied ≡ 
⋀

for all clauses
𝑐𝑗 of 𝜙

clsat𝜙(𝑇
𝜙

𝑗,1, 𝑇
𝜙

𝑗,2, 𝑇
𝜙

𝑗,3) ∧ 
⋀

for all clauses
𝑐𝑗 of 𝜓

clsat𝜓 (𝑇
𝜓

𝑗,1, 𝑇
𝜓

𝑗,2, 𝑇
𝜓

𝑗,3).

We define the query as: 𝑞 =𝐷st ∧ consist ∧ satisfied, where with the notation 𝐷st in the query we mean the conjunction of all the 
structural facts from 𝐷st =𝐷 ⧵ {clsat𝜙(⋆,⋆,⋆), clsat𝜓 (⋆,⋆,⋆)}.

(The candidate MinEx). We take 𝐸 =𝐷st ∪ {clsat𝜓 (⋆,⋆,⋆)} =𝐷 ⧵ {clsat𝜙(⋆,⋆,⋆)}.

The reduction can be computed in polynomial time, and is such that (𝐷,Σ) ⊧ 𝑞, because clsat𝜙(⋆,⋆,⋆) and clsat𝜓 (⋆,⋆,⋆) are in 
𝐷; indeed, assigning the value ⋆ to all the query variables 𝑇 𝛼

𝑗,𝑘
satisfies the query. Furthermore, the empty program Σ is vacuously 

linear (and guarded), acyclic, sticky, and full; clearly, such a program is also fixed.

We now show that (𝜙(�̄�), 𝜓(�̄�)) is a ‘yes’-instance of Sat-Unsat if and only if 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞.
(⇒) Suppose that (𝜙(�̄�), 𝜓(�̄�)) is a ‘yes’-instance of Sat-Unsat, i.e., 𝜙(�̄�) is satisfiable and 𝜓(�̄�) is unsatisfiable. Assume by con-

tradiction that 𝐸 is not a MinEx for (𝐷,Σ) ⊧ 𝑞. Then, either (𝐸,Σ) ̸⊧ 𝑞 (i.e., 𝐸 is not an explanation at all) or 𝐸 is a non-minimal 
explanation. Let us consider the case when 𝐸 is not an explanation. Because the inclusion of clsat𝜓 (⋆,⋆,⋆) in 𝐸 guarantees that all 
clsat𝜓 atoms in the query are satisfied, it must be the case that the query is not satisfied by 𝐸 via Σ because 𝜙(�̄�) is unsatisfiable: 
a contradiction. Let us now consider the case when 𝐸 is a non-minimal explanation. Since the 𝐷st part of the query requires for its 
satisfaction that all facts but clsat𝜓 (⋆,⋆,⋆) are in every explanation, if 𝐸 is an explanation that is not minimal, then it must be the 
case that ((𝐸 ⧵ {clsat𝜓 (⋆,⋆,⋆)}),Σ) ⊧ 𝑞. This implies that 𝜓(�̄�) is satisfiable: a contradiction. Therefore, 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞.

(⇐) First, observe that the query is built so to be entailed by a set 𝐹 of facts only if 𝐹 ⊇𝐷st , and, when 𝜙(�̄�) is unsatisfiable, the 
set of facts 𝐹 has to contain the fact clsat𝜙(⋆,⋆,⋆) as well.

Suppose now that (𝜙(�̄�), 𝜓(�̄�)) is a ‘no’-instance of Sat-Unsat, i.e., 𝜙(�̄�) is unsatisfiable or 𝜓(�̄�) is satisfiable. Let us consider the 
case in which 𝜙(�̄�) is unsatisfiable. From our prior observation, 𝐸 does not entail the query, as 𝐸 does not include clsat𝜙(⋆,⋆,⋆). 
Hence, 𝐸 is not an explanation. Let us now consider the case in which 𝜙(�̄�) is satisfiable. Since (𝜙(�̄�), 𝜓(�̄�)) is a ‘no’-instance of
Sat-Unsat, it must be the case that 𝜓(�̄�) is satisfiable too. By this, ((𝐸 ⧵ {clsat𝜓 (⋆,⋆,⋆)}),Σ) ⊧ 𝑞, as the fact {clsat𝜓 (⋆,⋆,⋆)} is 
not required for the satisfaction of the query part encoding the satisfiability of 𝜙(�̄�) (by definition of the query) or for the query 
part encoding the satisfiability of 𝜓(�̄�) (as 𝜓(�̄�) is satisfiable in this case). Therefore, 𝐸 is an explanation, but in this case it is not 
minimal. □

We are left to focus on the remaining hardness results in the ba-combined and combined complexity. In the following, we show 
the DExp- hardness of Is-MinEx(𝖠) in the ba-combined complexity; this statement provides the two DExp- hardness results reported in 
Table 2. The result is obtained via a reduction from a DExp- complete problem that is a variation of the exponential tiling problem. 
Intuitively, in the result below, the NExp- hardness component of the DExp- hardness is obtained by linking the existence of a suitable 
exponential-square tiling for a tiling system to checking whether a set of facts 𝐸 is an explanation for a specific query, and the 
co-NExp- hardness component of the DExp- hardness is obtained by linking the non-existence of a suitable exponential-square tiling for 
a different tiling system to checking whether the proposed set 𝐸 is moreover a minimal explanation.

To more formally define the exponential tiling problem, we start by defining its instances. A tiling system  = (𝑇 ,𝑉 ,𝐻) is formed by 
a set of tile-types 𝑇 = {𝑡1,… , 𝑡𝑘}, and by the vertical and horizontal adjacency rules 𝑉 ⊆ 𝑇 ×𝑇 and 𝐻 ⊆ 𝑇 ×𝑇 , respectively [55]—the 
rules are simply represented by pairs of tile-types that can contiguously be placed vertically or horizontally, respectively, on the 
surface. A tiling for  is a function 𝑓 ∶ {1,… , 𝑖,… } × {1,… , 𝑗,… }↦ 𝑇 placing a tile of the specified type at position (𝑖, 𝑗) on the 
surface, such that (𝑓 (𝑖, 𝑗), 𝑓 (𝑖 + 1, 𝑗)) ⊆ 𝐻 and (𝑓 (𝑖, 𝑗), 𝑓 (𝑖, 𝑗 + 1)) ⊆ 𝑉 ; i.e., 𝑓 complies with the horizontal and vertical adjacency 
rules. A tiling problem asks, for a tiling system, whether it admits a tiling covering the entirety of a given surface.

The following problem is NExp- complete [55]: for an instance ( , 𝑡, 𝑛), where  = (𝑇 ,𝑉 ,𝐻) is a tiling system, 𝑡 ∈ 𝑇 is a tile-type, 
and 𝑛 is an integer in unary notation, decide whether  admits a tiling of the exponential square 2𝑛 × 2𝑛 (i.e., a finite surface) that 
places a tile of type 𝑡 at the first position of the first row.

The Exponential Tiling Problem (Exp-Tiling) [51, Theorem 15] and [81, Lemma 3.2] here considered is a variation of the one 
above, from which Exp-Tiling inherits its NExp- hardness: for an instance ( , 𝑠, 𝑛), where  is a tiling system, 𝑠 is an initial tiling 
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condition, which is a sequence of tiles with 𝑠[𝑖] denoting the 𝑖- th element of 𝑠, and 𝑛 is an integer in unary notation, decide whether 
 admits a tiling of the exponential square 2𝑛 × 2𝑛 that places a tile of type 𝑠[𝑖] at the 𝑖- th position of the first row.

To obtain our DExp- hardness results, we need however a reduction from a different problem, the Exponential Tiling-Non-Tiling 
Problem Exp-TnT, that we here introduce: for an instance ((1, 𝑠1, 𝑛1), (2, 𝑠2, 𝑛2)), where ExpT1 = (1, 𝑠1, 𝑛1) and ExpT2 = (2, 𝑠2, 𝑛2)
are two (completely independent) instances of Exp-Tiling, decide whether ExpT1 and ExpT2 are a ‘yes’-instance and a ‘no’-instance 
of Exp-Tiling, respectively. The DExp- hardness of Exp-TnT follows from the NExp- completeness of Exp-Tiling and from the fact that 
the instances ExpT1 and ExpT2 are completely independent, and hence they can encode any language in DExp = NExp ∧ co-NExp.5

Theorem 4.5. Is-MinEx(𝖠) is DExp- hard in the ba-combined (resp., combined) complexity. Hardness holds even on instances whose queries 
are BCQs.

Proof. To prove the statement, we exhibit a reduction from the prototypical DExp- complete Exponential Tiling-Non-Tiling Problem
(Exp-TnT). From an instance ((1, 𝑠1, 𝑛1), (2, 𝑠2, 𝑛2)) of Exp-TnT, we build as follows an instance (KB, 𝑞,𝐸) of Is-MinEx(𝖠), where 
KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝐸 is a candidate MinEx.

For the two instances ExpT1 = (1, 𝑠1, 𝑛1) and ExpT2 = (2, 𝑠2, 𝑛2) of Exp-Tiling, we use the TGD and database encoding presented 
in [51, Theorem 15], [52, Lemma 23], and [81, Lemma 3.2]. More specifically, we have two sets of bounded-arity TGDs Σ𝑖,𝑛𝑖,|𝑠𝑖|, 
for 𝑖 = 1,2, to encode the structure of the tiling task, that is, describe how a correct tiling looks like when covering the exponential 
square 2𝑛𝑖 × 2𝑛𝑖 and has an initial condition of length |𝑠𝑖|; and two sets 𝐷𝑖

of facts, for 𝑖 = 1,2, to encode the adjacency rules of 1
and 2, respectively. There are also the database facts 𝐷𝑠𝑖 , for 𝑖 = 1,2, encoding the initial tiling conditions 𝑠1 and 𝑠2, respectively. 
The two sets of TGDs and the database facts for ExpT1 and ExpT2 are made disjoint by using disjoint predicates (we index them 
with superscript 𝑖). That is, we have Σ1 = Σ1 ,𝑛1 ,|𝑠1|1, 𝐷1 = 𝐷1

1 ∪𝐷𝑠1
1, and Σ2 = Σ2 ,𝑛2 ,|𝑠2|2, 𝐷2 = 𝐷2

2 ∪𝐷𝑠2
2. The rules Σ𝑖 and 

the database 𝐷𝑖, for 𝑖 = 1,2, are such that the tiling system 𝑖 admits a tiling of the exponential square 2𝑛𝑖 × 2𝑛𝑖 with initial tiling 
condition 𝑠𝑖 if and only if 𝐷𝑖 entails the fact yes𝑖() via Σ𝑖 [51, Theorem 15], [52, Lemma 23], and [81, Lemma 3.2]. We can now 
provide the details of the reduction.

(The database). The database is taken to be 𝐷 =𝐷1 ∪𝐷2 ∪ {yes1(), yes2()}.

(The program). We take the program to be Σ = Σ1 ∪ Σ2.

(The query). The query is 𝑞 =𝐷1 ∧𝐷2 ∧ yes1() ∧ yes2(), where with symbols 𝐷1 and 𝐷2 in the query we mean the conjunction of all 
database facts from 𝐷1 and 𝐷2, respectively.

(The candidate MinEx). We take 𝐸 =𝐷1 ∪𝐷2 ∪ {yes2()} =𝐷 ⧵ {yes1()}.

Observe that the reduction can be computed in polynomial time and that the program has bounded arity. Moreover, the reduction 
is such that (𝐷,Σ) ⊧ 𝑞, because 𝐷1 ∪𝐷2 ∪ {yes1(), yes2()} ⊆𝐷.

We now prove that 1 admits a tiling of the exponential square 2𝑛1 × 2𝑛1 with initial condition 𝑠1 and 2 does not admit a tiling of 
the exponential square 2𝑛2 × 2𝑛2 with initial condition 𝑠2 if and only if 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞.

(⇒) Suppose that ((1, 𝑠1, 𝑛1), (2, 𝑠2, 𝑛2)) is a ‘yes’-instance of Exp-TnT and assume by contradiction that 𝐸 is not a MinEx for 
(𝐷,Σ) ⊧ 𝑞. There are two cases: (i) 𝐸 is an explanation for (𝐷,Σ) ⊧ 𝑞 that is not minimal, or (ii) (𝐸,Σ) ̸⊧ 𝑞 (i.e., 𝐸 is not an explanation 
for 𝑞 at all).

For (i), since the presence of the facts of 𝐷1 and 𝐷2 is required in 𝐸 to satisfy 𝑞, if 𝐸 is a non-minimal explanation for 𝑞, it must 
be the case that the fact yes2() can be removed from 𝐸 and still have ((𝐸 ⧵ {yes2()}),Σ) ⊧ 𝑞. However, this implies that yes2() can be 
derived via Σ2, which means that 2 admits a tiling of the exponential square 2𝑛2 × 2𝑛2 with initial condition 𝑠2: a contradiction. 
For (ii), since the facts of 𝐷1, of 𝐷2, and yes2(), are in 𝐸, if (𝐸,Σ) ̸⊧ 𝑞, it must be the case that the fact yes1() cannot be derived via 
Σ1, which is a contradiction. Thus, 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞.

(⇐) Suppose that 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞. Since 𝐸 entails 𝑞 via Σ, the fact yes1(), which is not present in 𝐸, can be derived 
via Σ1, implying that 1 admits a tiling of the exponential square 2𝑛1 × 2𝑛1 with initial condition 𝑠1. Moreover, since 𝐸 is a minimal 
explanation and no fact of 𝐷1 or 𝐷2 can be removed from 𝐸 without losing the property of entailing 𝑞, the fact yes2() is required to 
be in 𝐸 to entail 𝑞. This implies that yes2() cannot be derived via Σ2, and hence that 2 does not admit a tiling of the exponential 
square 2𝑛2 × 2𝑛2 with initial condition 𝑠2. Thus, ((1, 𝑠1, 𝑛1), (2, 𝑠2, 𝑛2)) is a ‘yes’-instance of Exp-TnT. □

The remaining hardness results in Table 2 follow from proving that Is-MinEx is not easier than OMQA in the fp-combined, ba-
combined, and combined complexity. Intuitively, to obtain this reduction, we exploit the fact that in the fp-combined setting, and 
above, we can encode the database in the query.

Theorem 4.6. For every class  of TGDs considered in this paper, Is-MinEx() is at least as hard as OMQA() in the fp-combined, (resp., 
ba-combined, combined) complexity. Hardness holds even on instances whose queries are BCQs.

5 The argument proving this is an extension of the one proposed in the proof of [Theorem 17.1 in 87] showing that Sat-Unsat is DP- complete.
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Table 3
Complexity results for All-MinEx(). All non-“in” entries are completeness results. Membership results 
hold for UCQs, while hardness results hold even on BCQs. In square brackets, we report the number of 
the theorems providing the membership and the hardness results, respectively. *The theorem indicated 
holds also for All-MinEx by noticing that, in the reduction proposed, the MinEx 𝐸 is the only MinEx 
for the query.

 Data fp-combined ba-combined Combined 
𝖫, 𝖫𝖥, 𝖠𝖥 in P [5.5 / –] DP [5.3 / 4.4*] DP [5.3 / 4.4*] PSpace [5.1 / 4.6*] 
𝖲, 𝖲𝖥 in P [5.5 / –] DP [5.3 / 4.4*] DP [5.3 / 4.4*] Exp [5.1 / 4.6*] 
𝖠 in P [5.5 / –] DP [5.3 / 4.4*] DExp [5.2 / 4.5*] DExp [5.2 / 4.5*] 
𝖦 co-NP [5.1 / 5.6] DP [5.3 / 4.4*] Exp [5.1 / 4.6*] 2Exp [5.1 / 4.6*] 
𝖥, 𝖦𝖥 co-NP [5.1 / 5.6] DP [5.3 / 4.4*] DP [5.3 / 4.4*] Exp [5.1 / 4.6*] 
𝖶𝖲, 𝖶𝖠 co-NP [5.1 / 5.6] DP [5.3 / 4.4*] 2Exp [5.1 / 4.6*] 2Exp [5.1 / 4.6*] 
𝖶𝖦 Exp [5.1 / 4.3*] Exp [5.1 / 4.6*] Exp [5.1 / 4.6*] 2Exp [5.1 / 4.6*] 

Proof. We prove the statement by showing a logspace reduction from OMQA() to Is-MinEx(). Given an OMQA() instance (KB, 𝑞), 
where KB = (𝐷,Σ) is a knowledge base, and 𝑞 is a BCQ, we build an instance (KB′, 𝑞′,𝐸) of Is-MinEx(), where KB′ = (𝐷′,Σ′) is a 
knowledge base, 𝑞′ is a BCQ, and 𝐸 is a candidate MinEx.

(The database). We define 𝐷′ = 𝐷 ∪ 𝐷𝑞 , where 𝐷𝑞 is a set containing the facts of a full grounding of 𝑞 over fresh constants, i.e., 
constants not belonging to dom(𝐷).
(The program). We let Σ′ = Σ.

(The query). The query is 𝑞′ = 𝑞 ∧𝐷, where with the notation 𝐷 in the query we mean the conjunction of all facts in 𝐷.

(The candidate MinEx). We take the set 𝐸 =𝐷.

Observe that this instance of Is-MinEx can be computed in logspace. From Σ ∈  follows that Σ′ ∈ , because Σ′ = Σ. Since Σ′

does not change w.r.t. Σ, when we are in the fp-combined (resp., ba-combined) complexity setting, the classes of instances obtained 
via this reduction comply with the restrictions on the fixed (resp., bounded-arity) program. Notice moreover that (𝐷′ ,Σ′) ⊧ 𝑞′, because 
𝐷′ contains a grounding of 𝑞, and that 𝑞′ is a BCQ.

We now show that (𝐷,Σ) ⊧ 𝑞 if and only if 𝐸 is a MinEx for (𝐷′,Σ′) ⊧ 𝑞′.
(⇒) Suppose that (𝐷,Σ) ⊧ 𝑞. By the definition of Σ′, 𝑞′, and 𝐸, we have that (𝐸,Σ′) ⊧ 𝑞′, hence 𝐸 is an explanation for 𝑞. Moreover, 

since ‘𝐷’ is in 𝑞′, no fact from 𝐸 can be removed without breaking the property of entailing the query 𝑞′ . Therefore, 𝐸 is also minimal.
(⇐) Suppose that (𝐷,Σ) ̸⊧ 𝑞. Since (𝐷,Σ) ̸⊧ 𝑞 and the facts of 𝐷𝑞 do not belong to 𝐸, we have that (𝐸,Σ′) ̸⊧ 𝑞′, by which 𝐸 is not 

an explanation (at all) of 𝑞′. □

5. Recognizing the set of all minimal explanations

In this section, we analyze the problem All-MinEx of deciding whether given subsets of a database are all and only the MinExes 
of a given query: for an instance (KB, 𝑞,), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a UCQ (with KB ⊧ 𝑞), and  = {𝐸1,… ,𝐸𝑛}
is a set of subsets of 𝐷, decide whether  is precisely the set of all and only the MinExes for KB ⊧ 𝑞. A summary of the complexity 
results for this problem is reported in Table 3.

We highlight for this setion an interesting feasibility result. More specifically, for FO-rewritable Datalog± fragments, we provide 
a polynomial time algorithm computing all the MinExes for a given fixed query and a given fixed ontology (see the proof of Theo-
rem 5.4). A second interesting aspect of this section is the general algorithm, i.e., Algorithm 2, to answer All-MinEx. This algorithm 
is more refined than the naive one in which one guesses a missing MinEx, checks that the guessed MinEx is actually missing from 
the set given in input, and then answers ‘no’. The latter procedure, although completely fine from a correctness perspective, would 
provide non-tight complexity upper bounds, as it would be too eager of computational resources. The approach employed by Al-
gorithm 2 provides tight complexity upper bounds more easily, as we need to give additional comments only for the DExp and DP

membership results.
We start hence with the mentioned general procedure, Algorithm 2, which provides a prototypical approach to solve the problem

All-MinEx (details and comments about the algorithm are provided in the proof of Theorem 5.1). This algorithm allows to obtain 
(not necessarily tight) upper bounds for All-MinEx for all Datalog± fragments and complexity settings considered here. The tight 
membership results obtained via this algorithm are those reported in Table 3 except for the P, DP, and DExp ones, for which we need 
tighter statements that we will provide later.

Observe that there is a significant difference in the way All-MinEx needs to be dealt with compared to Is-MinEx. Apart from 
the minor difference of the necessity to check that multiple sets are MinExes and not just one, like in Is-MinEx, what really makes
All-MinEx different from Is-MinEx is that to solve the former we need to check that there are no MinExes besides those in the input. 
The intuition at the base of the working of Algorithm 2 is that we first need to check that all sets of facts in  entail the query, i.e., 
all of them are actually explanations. Then, we can check, at the same time, that all sets in  are minimal (and hence MinExes) and
that there is no MinEx outside  : we can do this by simply checking that there is no explanation 𝐸′ for the query that either is a 
proper subset of any of the sets in  or is not a superset of any set in  . Indeed, if such 𝐸′ existed, depending on whether the found 
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Algorithm 2: A general algorithm for the All-MinEx problem.

Input: A knowledge base KB = (𝐷,Σ), a UCQ 𝑞, and a set  = {𝐸1,… ,𝐸𝑛} of sets 𝐸𝑖 ⊆ 𝐷 of facts.
Output: 𝖺𝖼𝖼𝖾𝗉𝗍, if  is the set of all and only the MinExes for (𝐷,Σ) ⊧ 𝑞; 𝗋𝖾𝗃𝖾𝖼𝗍, otherwise.

/* “verify not” is here followed by a begin/end-enclosed block defining a Boolean function that is straight after 
invoked to evaluate the preceding “verify not” */

Procedure AllMinex(KB, 𝑞,):
1 foreach 𝐸𝑖 ∈  do
2 verify (𝐸𝑖,Σ) ⊧ 𝑞

3 verify not
4 begin
5 𝐸′ ← guess a subset of 𝐷
6 verify (𝐸′ is a strict subset of some 𝐸𝑖 ∈ ) or

(𝐸′ is not a strict superset of any 𝐸𝑗 ∈ )
7 verify (𝐸′,Σ) ⊧ 𝑞
8 return 𝖺𝖼𝖼𝖾𝗉𝗍

9 end

10 return 𝖺𝖼𝖼𝖾𝗉𝗍

𝐸′ is contained in a set of  , or does not contain any of the sets of  , then 𝐸′ would witness that a set of facts in  is a non-minimal 
explanation, or that 𝐸′ contains a MinEx that is not in  , respectively.

Theorem 5.1. For every class  of TGDs considered in this paper, if OMQA() is in the complexity class 𝐂 in the combined (resp., ba-
combined, fp-combined, and data) complexity, then All-MinEx() can be decided by a linear number of checks in 𝐂 and a check in co-(NP𝐂)
in the combined (resp., ba-combined, fp-combined, and data) complexity.

Proof. Let (𝐷,Σ) be a knowledge base with Σ belonging to , let 𝑞 be a UCQ, and let  = {𝐸1,… ,𝐸𝑛} be a set of sets of facts, 
where each 𝐸𝑖 ⊆ 𝐷. A general approach to check that  is the set of all and only the MinExes for 𝑞 is outlined in Algorithm 2 (more 
comments below). In particular, the set  is the set of all and only the MinExes for (𝐷,Σ) ⊧ 𝑞 if and only if the following conditions 
hold: (1) all sets 𝐸𝑖 ∈  are MinExes for (𝐷,Σ) ⊧ 𝑞, and (2) there is no MinEx for 𝑞 missing in  . Observe that the condition (1) holds 
if and only if: (1a) all sets 𝐸𝑖 ∈  entail 𝑞 via Σ, and (1b) all sets 𝐸𝑖 ∈  are subset-minimal w.r.t. the entailment of 𝑞.

Condition (1a) can be checked via ||-many (i.e., a linear number of) entailment checks, each of them feasible in the complexity 
class 𝐂 (lines 1 and 2).

Now consider conditions (1b) and (2). Condition (1b) holds if and only if there is no set of facts 𝐸′ ⊆𝐷 entailing the query such that 
𝐸′ ⊊𝐸𝑖, for some 𝐸𝑖 ∈  . Indeed, if 𝐸𝑖 is a non-minimal explanation, then it is possible to guess an explanation strictly contained in 
𝐸𝑖.

6 Condition (2) holds if and only if there is no set of facts 𝐸′ ⊆𝐷 entailing the query such that 𝐸′ ⊉𝐸𝑗 , for all 𝐸𝑗 ∈  . Indeed, if there 
is a MinEx 𝐸 missing in  , then it is possible to guess 𝐸′ =𝐸, and 𝐸′ is such that it does not contain any of the 𝐸𝑗 ∈  (as 𝐸 is missing 
in ). Given the quite similar structure of the tests of these two conditions, their checks can be carried out together (lines 3 to 9).

We can verify the opposite, i.e., the existence of such a set 𝐸′ (lines 4 to 9), by guessing a subset 𝐸′ ⊆𝐷 (line 5, feasible in NP), 
then checking that 𝐸′ satisfies at least one of the required conditions (line 6, feasible in polynomial time), and then checking, in the 
complexity class 𝐂, that 𝐸′ entails 𝑞 via Σ (line 7). Therefore, overall, this opposite task can be carried out in NP𝐂. To conclude, 
checking whether the conditions (1b) and (2) hold is feasible in co-(NP𝐂). □

The membership results in Table 3 obtained from the previous theorem descend also from the following computational complexity 
facts: co-(NPP) = co-NP; for 𝐂 ∈ {PSpace,Exp,2Exp}, co-(NP𝐂) = 𝐂; the complexity classes P, PSpace, Exp, and 2Exp, are closed 
under conjunctions, and hence a linear number of checks in these classes are still in these classes; and a check in P followed by a 
check in co-NP can be both carried out by a single co-NP machine.

Next we prove that, for the language 𝖠, All-MinEx can be solved in DExp; this result covers the DExp upper bounds in the 
combined and ba-combined complexity listed in Table 3. Intuitively, this is due to the fact that OMQA(𝖠) is in NExp, from which 
checking whether each set of facts in  entails the query can be shown in NExp, and checking whether every set of facts in  is 
minimal and that there is no MinEx outside  is in co-NExp.

Theorem 5.2. All-MinEx(𝖠) is in DExp in the combined (resp., ba-combined) complexity.

Proof. We build on the proof of Theorem 5.1. First, notice that OMQA(𝖠) is in NExp. Then, the condition (1a) can be checked with a 
linear number of NExp tests, that can be combined into a single NExp test, as NExp is closed under conjunction. Let us now focus on 
checking conditions (1b) and (2). We claim that checking that one of them does not hold is feasible in NExp. Indeed, the initial guess 
of the set 𝐸′ (line 5) and the additional containment tests for 𝐸′ (line 6) can be carried out by the same NExp machine checking also 

6 Observe that this case covers also the one in which  contains two sets 𝐸𝑖 and 𝐸𝑗 such that 𝐸𝑖 ⊋ 𝐸𝑗 .
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the entailment from 𝐸′ (line 7). Thus, the conditions (1b) and (2) can be checked in co-NExp. Therefore, in this case, All-MinEx is 
in DExp. □

We now show that whenever OMQA() is in NP, the problem All-MinEx is in DP. This theorem covers all the membership results 
in DP in Table 3. This is obtained in a similar way to what was done for the membership in DExp . In this case, it can be shown that 
checking whether each set of facts in  entails the query is in NP, and checking whether every set of facts in  is minimal and that 
there is no MinEx outside  is in co-NP.

Theorem 5.3. For every class  of TGDs considered in this paper such that OMQA() is in NP in the ba-combined (resp., fp-combined) 
complexity, All-MinEx() is in DP in the ba-combined (resp., fp-combined) complexity.

Proof. Consider the proof of Theorem 5.1. The condition (1a) can be checked with a linear number of NP tests, that can be combined 
into a single NP test, as NP is closed under conjunction. Let us focus now on conditions (1b) and (2). Checking that condition (1b) 
or (2) do not hold requires to guess a set 𝐸′ ⊆𝐷 complying with the containment requirements of line 6 and that entails 𝑞 (line 7). 
Observe that an NP machine can combine the guess of 𝐸′ and the guess of the NP certificate witnessing (𝐸′,Σ) ⊧ 𝑞 (as OMQA() is 
in NP). Hence, in this case, the execution of lines 4 to 9 can actually be carried out in NP. Thus, checking the conditions (1b) and (2) 
is in co-NP. Hence, the overall procedure is in DP. □

To conclude with the membership results for All-MinEx, we prove that, when  is a FO- rewritable language, All-MinEx is in P
in the data complexity. This proves all the P membership results in Table 3. This result is achieved via an intermediate step: we first 
show that, when we are in the data complexity setting, and  is FO- rewritable, computing all the MinExes for a query can be done 
in polynomial time.

Theorem 5.4. Let (𝐷,Σ) be a knowledge base with Σ ∈ , where  is one of the FO- rewritable classes of TGDs considered in this paper, and 
let 𝑞 be a UCQ. If Σ and 𝑞 are fixed, then computing the set of all the MinExes for (𝐷,Σ) ⊧ 𝑞 is feasible in polynomial time.

Proof. Since query answering over Datalog± ontologies is preserved under homomorphisms and  is an FO- rewritable class of TGDs, 
besides an FO- rewriting of 𝑞 and Σ, there also exists a UCQ-rewriting of 𝑞 and Σ [10,17,99], i.e., there is a UCQ 𝑞Σ such that, for every 
𝐷′ ⊆ 𝐷, (𝐷′,Σ) ⊧ 𝑞 if and only if 𝐷′ ⊧ 𝑞Σ. Assume w.l.o.g. that 𝑞Σ = 𝑞1Σ ∨⋯ ∨ 𝑞𝑚Σ , where 𝑞𝑖Σ = ∃𝐘𝑖 𝜙𝑖Σ(𝐘

𝑖), 𝐘𝑖 is a tuple of variables, 
and 𝜙𝑖Σ is a conjunction of atoms. Recall that the active domain dom(𝐷) of the database 𝐷 is the set of all constants appearing in 𝐷
(as 𝐷 does not contain nulls). In what follows, for a tuple of constants 𝐚 ∈ dom(𝐷)|𝐘𝑖|, we denote by {𝜙𝑖Σ(𝐚)} the set of the facts that 
are the conjuncts in the formula 𝜙𝑖Σ(𝐚).

Let 𝑖
Σ be the set containing all the sets of facts that can be obtained by grounding 𝜙𝑖Σ(𝐘

𝑖) with constants from the active domain, 
i.e., 𝑖

Σ =
{
{𝜙𝑖Σ(𝐚)} ∣ 𝐚 ∈ dom(𝐷)|𝐘𝑖|}. Notice that 𝑖

Σ is a set of sets of facts. Observe that, since the query 𝑞 and the program Σ are 
fixed, the query 𝑞Σ is fixed, and hence |𝐘𝑖| is a constant. Moreover, the active domain dom(𝐷) is of polynomial size in the size of the 
database 𝐷. Therefore, it takes polynomial time to compute 𝑖

Σ. Furthermore, again because the query 𝑞Σ is fixed, there is a constant 
number 𝑚 of disjuncts in 𝑞Σ, implying that it takes polynomial time to compute Σ = ∪𝑚

𝑖=1
𝑖
Σ, from which it follows that Σ has size 

polynomial in the size of 𝐷.
Let ̃Σ be the set of subset-minimal elements of Σ, that is, ̃Σ = {𝐹 ∈Σ ∣ ∄𝐺 ∈Σ s.t. 𝐺 ⊊ 𝐹 }. This set can be computed in 

polynomial time in the size of Σ, whose size is polynomial in the size of 𝐷, and hence ̃Σ can be computed in polynomial time in 
the size of 𝐷. Let ̃Σ[𝐷] = {𝐹 ∈ ̃Σ ∣ 𝐹 ⊆𝐷} be the selection of the sets in ̃Σ that are moreover subsets of 𝐷. Clearly, also ̃Σ[𝐷]
can be computed in polynomial time in the size of 𝐷.

We claim that ̃Σ[𝐷] is precisely the set of all and only the MinExes for (𝐷,Σ) ⊧ 𝑞. From the way in which ̃Σ[𝐷] has been 
defined, it is not hard to see that each element in ̃Σ[𝐷] is actually a MinEx for 𝑞. It remains to prove that if 𝐸 is a MinEx for 𝑞, then 
𝐸 ∈ ̃Σ[𝐷]. Let 𝐸 be a MinEx for (𝐷,Σ) ⊧ 𝑞. We have that 𝐸 ⊧ 𝑞Σ, because 𝑞Σ is a UCQ-rewriting of 𝑞 and Σ. Since 𝐸 is a MinEx for 
𝑞, none of its strict subsets satisfies 𝑞Σ = 𝑞1Σ ∨⋯ ∨ 𝑞𝑚Σ . Hence there must be an index 𝑖 such that 𝐸 is a subset-minimal set of facts 
satisfying 𝑞𝑖Σ, and each 𝐸′ ⊊ 𝐸 does not satisfy any 𝑞𝑗Σ. Because each set 𝑘

Σ is defined as containing all the subset-minimal sets of 
facts satisfying 𝑞𝑘Σ that can be built from dom(𝐷), it must be the case that 𝐸 ∈𝑖

Σ and none of the strict subsets of 𝐸 belong to any 

𝑗
Σ. Thus, since Σ = ∪𝑚

𝑗=1
𝑗
Σ, 𝐸 ∈Σ and none of the strict subsets of 𝐸 belong to Σ. Therefore, 𝐸 ∈ ̃Σ as well. From the fact 

that 𝐸 ⊆𝐷 we obtain that 𝐸 ∈ ̃Σ[𝐷]. □

From the previous theorem, we obtain that, when  is a FO- rewritable language, All-MinEx is in P in the data complexity. 
Because, in order to check whether a set of sets of facts  is actually the set of all and only the MinExes for a query, it suffices to 
compute the set of all MinExes (in polynomial time) and then compare these two sets.

Theorem 5.5. For every class  of TGDs considered in this paper such that  is FO- rewritable, All-MinEx() is in P in the data complexity.

We now show the lower bounds for the All-MinEx problem. First, we show that All-MinEx(𝖦𝖥) is co-NP- hard in data complexity. 
This result covers all the co-NP- hardness results reported in Table 3, as this hardness extends to all languages  ⊇ 𝖦𝖥. The result 
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is shown via a reduction from the canonical problem Unsat, rather than from a tailored problem closer to All-MinEx as in [94, 
Theorem 28]. Intuitively, the reduction builds a knowledge base, a query, and a set  of MinExes, such that the only MinExes that 
might be outside  are sets of facts encoding consistent assignments for the Boolean variables of a Boolean formula 𝜙; the construction 
is done so that if 𝜙 is satisfiable, then a set of facts encoding a satisfying assignment for 𝜙 is actually a MinEx outside  . Again, thanks 
to the use of a canonical problem in the reduction, we can easily individuate that the source of the complexity of the problem is the 
task of individuating a new explanation if it exists.

Theorem 5.6. For every class  of TGDs considered in this paper such that ⊇ 𝖦𝖥, All-MinEx() is co-NP- hard in the data complexity. 
Hardness holds even on instances whose queries are BCQs.

Proof. We provide a reduction to All-MinEx() from the co-NP- complete problem Unsat, which is the problem of deciding 
whether a 3CNF Boolean formula is unsatisfiable. Let 𝜙(�̄�) be a 3CNF formula over Boolean variables �̄� = {𝑥1,… , 𝑥𝑛} and clauses 
𝐶 = {𝑐1,… , 𝑐𝑚}. We assume w.l.o.g. that 𝜙(�̄�) has at least two clauses not sharing any variable. From 𝜙(�̄�), we build the following 
instance (KB, 𝑞,) of All-MinEx(), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and  is a set of sets of facts.

(The database). For each Boolean variable 𝑥𝑖 ∈ �̄�, 𝐷 contains the facts false(𝑥𝑖) and true(𝑥𝑖), where 𝑥𝑖 is a constant representing the 
respective variable in 𝜙(�̄�), and the facts false(𝑥𝑖) and true(𝑥𝑖) intuitively state that to the variable 𝑥𝑖 is assigned the Boolean value 
false and true, respectively.

For each clause 𝑐𝑗 of 𝜙(�̄�), the database 𝐷 contains the following facts:

• a fact succ-cl(𝑗 −1, 𝑗): this fact states that the 𝑗 th clause is the successor of the (𝑗 −1)th clause (here, 𝑗 is a numeric constant, and 
𝑗 − 1 is an expression denoting the numeric constant associated with the value 𝑗 − 1); and

• a fact encoding 𝑐𝑗 : e.g., for 𝑐𝑗 = (𝑥𝑝 ∨ 𝑥𝑞 ∨ ¬𝑥𝑟), 𝐷 contains the fact clp,p,n(𝑗, 𝑥𝑝, 𝑥𝑞, 𝑥𝑟). The presence of such a fact in 𝐷 states 
that the 𝑗 th clause (see 𝑗 as the first argument of the fact) is one in which the first, second, and third literal are positive, positive, 
and negative, respectively (see the superscript of the predicate), and that the first, second, and third variable in the clause are 
𝑥𝑝, 𝑥𝑞 , and 𝑥𝑟, respectively (again, 𝑗 is a numeric constant identifying the clause, and 𝑥𝑝, 𝑥𝑞 , and 𝑥𝑟 are constant associated with 
the respective Boolean variables of 𝜙(�̄�)).
More formally, let 𝓁 be a literal in a clause of 𝜙(�̄�), we denote by var(𝓁) the variable of the literal 𝓁, and we let sign(𝓁) = p
and sign(𝓁) = n if 𝓁 = 𝑥 and 𝓁 = ¬𝑥, for some Boolean variable 𝑥, respectively. E.g., for a literal 𝓁 = ¬𝑥𝑞 , we have var(𝓁) = 𝑥𝑞
and sign(𝓁) = n. We denote by 𝓁𝑗,𝑘 the 𝑘th literal of the clause 𝑐𝑗 . For the clause 𝑐𝑗 of 𝜙(�̄�), the database contains the fact: 
clsign(𝓁𝑗,1),sign(𝓁𝑗,2),sign(𝓁𝑗,3)(𝑗, var(𝓁𝑗,1), var(𝓁𝑗,2), var(𝓁𝑗,3)).

In addition, the database contains the facts satchain(0) that acts as an initial condition in the satisfiability check, and the fact 
maxcl(𝑚) that captures the number of clauses in the formula. To summarize, the database contains facts:

𝐷 = {satchain(0),maxcl(𝑚)} ∪ {false(𝑥𝑖), true(𝑥𝑖) ∣ for each variable 𝑥𝑖 ∈ �̄�} ∪

{succ-cl(𝑗 − 1, 𝑗), clsign(𝓁𝑗,1),sign(𝓁𝑗,2),sign(𝓁𝑗,3)(𝑗, var(𝓁𝑗,1), var(𝓁𝑗,2), var(𝓁𝑗,3)) ∣ for each clause 𝑐𝑗 of 𝜙}.

(The program). A rule in the program states that if a variable is assigned both false and true values, then sat() holds:

false(𝑋) ∧ true(𝑋)→ sat().

The program also contains rules capturing different ways to satisfy a clause; satcl(𝐽 ) is derived when the 𝐽 -th clause is true. Below, 
the symbol “∙” is a placeholder for either p or n, and “_” is a “don’t care” variable occurring only once:

clp,∙,∙(𝐽,𝑋, _, _) ∧ true(𝑋)→ satcl(𝐽 ),

cln,∙,∙(𝐽,𝑋, _, _) ∧ false(𝑋)→ satcl(𝐽 ),

cl∙,p,∙(𝐽, _, 𝑌 , _) ∧ true(𝑌 )→ satcl(𝐽 ),

cl∙,n,∙(𝐽, _, 𝑌 , _) ∧ false(𝑌 )→ satcl(𝐽 ),

cl∙,∙,p(𝐽, _, _,𝑍) ∧ true(𝑍)→ satcl(𝐽 ),

cl∙,∙,n(𝐽, _, _,𝑍) ∧ false(𝑍)→ satcl(𝐽 ).

The last two rules in the program capture that sat() is entailed if the false-/true-facts in a set of facts encode a satisfying assignment 
for the formula 𝜙(�̄�) (more precisely, the rules check that all clauses of the formula are satisfied):

satchain(𝐼) ∧ succ-cl(𝐼, 𝐽 ) ∧ satcl(𝐽 )→ satchain(𝐽 ),

maxcl(𝑀) ∧ satchain(𝑀)→ sat().

(The query). We take the query to be 𝑞 = sat().
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Table 4
Complexity results for MinEx-Irrel(). All non-“in” entries are completeness results. Membership 
results hold for UCQs, while hardness results hold even on BCQs. In square brackets, we report 
the number of the theorems providing the membership and the hardness results, respectively.

 Data fp-combined ba-combined Combined 
𝖫, 𝖫𝖥, 𝖠𝖥 in P [6.4 / –] NP [6.3 / 6.5] NP [6.3 / 6.5] PSpace [6.1 / 6.5] 
𝖲, 𝖲𝖥 in P [6.4 / –] NP [6.3 / 6.5] NP [6.3 / 6.5] Exp [6.1 / 6.5] 
𝖠 in P [6.4 / –] NP [6.3 / 6.5] NExp [6.2 / 6.5] NExp [6.2 / 6.5] 
𝖦 NP [6.1 / 6.6] NP [6.3 / 6.5] Exp [6.1 / 6.5] 2Exp [6.1 / 6.5] 
𝖥, 𝖦𝖥 NP [6.1 / 6.6] NP [6.3 / 6.5] NP [6.3 / 6.5] Exp [6.1 / 6.5] 
𝖶𝖲, 𝖶𝖠 NP [6.1 / 6.6] NP [6.3 / 6.5] 2Exp [6.1 / 6.5] 2Exp [6.1 / 6.5] 
𝖶𝖦 Exp [6.1 / 6.5] Exp [6.1 / 6.5] Exp [6.1 / 6.5] 2Exp [6.1 / 6.5] 

(The candidate set of all MinExes). As a candidate set of all MinExes, we have:  = {{false(𝑥𝑖), true(𝑥𝑖)} ∣ 𝑥𝑖 ∈ �̄�}.

This instance of All-MinEx can be computed in polynomial time, the program and the query do not depend on 𝜙(�̄�), and hence 
they are fixed, the program is guarded and full, and (𝐷,Σ) ⊧ 𝑞 (via the rule ‘false(𝑋) ∧ true(𝑋)→ sat()’).

We now show that 𝜙(�̄�) is unsatisfiable if and only if  is the set of all and only the MinExes for 𝑞.
There are two ways for sat() to be entailed from a set 𝐹 of facts. A first way is that both facts false(𝑥𝑖) and true(𝑥𝑖), for some 

variable 𝑥𝑖 ∈ �̄�, are present in 𝐹 . In this case, sat() is obtained via the rule ‘false(𝑋) ∧ true(𝑋)→ sat()’.
A second way is when 𝐹 encodes, via the false-/true-facts that it contains, a satisfying assignment for 𝜙(�̄�). In this case, via the rules 

encoding the possible ways of satisfying the clauses, it is possible to derive from 𝐹 all facts satcl(1),… , satcl(𝑚). Then, via successive 
applications of the rule ‘satchain(𝐼) ∧ succ-cl(𝐼, 𝐽 ) ∧ satcl(𝐽 )→ satchain(𝐽 )’, the facts satchain(1),… , satchain(𝑚) can be derived. As a 
last step, via the rule ‘maxcl(𝑀) ∧ satchain(𝑀)→ sat()’ also sat() can be derived, because we have completed the “chain” until the last 
link. Observe that we can traverse the chain until the last link only if, for all clauses 𝑐𝑗 of 𝜙(�̄�), it is possible to derive satcl(𝑗).

Because each set in  contains both facts false(𝑥𝑖) and true(𝑥𝑖), for some variable 𝑥𝑖 ∈ �̄�, and nothing else, each set in  is a 
MinEx—observe that, since we have assumed that 𝜙(�̄�) has at least two clauses that do not share any variable, neither the singleton 
{false(𝑥𝑖)}, nor the singleton {true(𝑥𝑖)}, for any 𝑥𝑖 ∈ �̄�, can entail the query. Therefore, in order to show that 𝜙(�̄�) is unsatisfiable if 
and only if  is the set of all and only the MinEx for 𝑞 it suffices to prove that 𝜙(�̄�) is unsatisfiable if and only if there is no MinEx 
outside  .

(⇒) Suppose that 𝜙(�̄�) is unsatisfiable, and let us assume by contradiction that there is a MinEx 𝐸 outside of  . First, notice that, 
for all 𝑥𝑖 ∈ �̄�, 𝐸 ⊉ {false(𝑥𝑖), true(𝑥𝑖)}, otherwise 𝐸 would not be a MinEx outside  . Therefore, 𝐸 encodes a consistent (not necessarily 
complete) truth assignment for �̄�. This means that the rule ‘false(𝑋) ∧ true(𝑋)→ sat()’ cannot be triggered by 𝐸. From what we have 
said, the remaining program rules encode the satisfiability of 𝜙(�̄�). Since 𝐸 entails the query via Σ, it must be the case that 𝐸 encodes 
a (not necessarily complete) satisfying assignment for 𝜙(�̄�): a contradiction, as we have assumed 𝜙(�̄�) to be unsatisfiable.

(⇐) Suppose that 𝜙(�̄�) is satisfiable, and let 𝜎 be an assignment to the variables in �̄� that satisfies 𝜙(�̄�). Then, take 𝐸 = {false(𝑥𝑖) ∣
𝜎(𝑥𝑖) = false} ∪ {true(𝑥𝑖) ∣ 𝜎(𝑥𝑖) = true}. By construction, (𝐸,Σ) ⊧ 𝑞 and does not contain any set in  . Therefore, 𝐸 must contain a 
MinEx for (𝐷,Σ) ⊧ 𝑞 that does not belong to  . □

The remaining hardness results for All-MinEx in Table 3 are obtained via minimal variations of the hardness proofs for Is-MinEx. 
More specifically, in the reductions shown in the proofs of Theorems 4.3 to 4.6, we have constructed the subset 𝐸 of the database 
that we have shown to be a MinEx. By inspection of the proofs, it can be seen that this constructed subset 𝐸, when it is a MinEx, it 
is the only MinEx in all these reductions. Therefore, we have that all these arguments, when we take  = {𝐸} as the set of all the 
MinExes, apply to All-MinEx as well. So, these theorems restated with All-MinEx replacing Is-MinEx hold as well.

6. Irrelevant facts for explanations

In this section, we study the complexity of the problem MinEx-Irrel, asking whether there exists a MinEx avoiding a collection of 
forbidden sets of facts: for an instance (KB, 𝑞, ), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a UCQ (with KB ⊧ 𝑞), and  = {𝐹1,… , 𝐹𝑛}
is a set of subsets of 𝐷, decide whether there exists a MinEx 𝐸 for (𝐷,Σ) ⊧ 𝑞 such that, for all 𝐹𝑖 ∈  , 𝐸 ⊉ 𝐹𝑖. A summary of the 
complexity results for this problem is reported in Table 4.

We first exhibit an algorithm, Algorithm 3, that provides a general procedure for MinEx-Irrel (details and comments about 
the algorithm are provided in the proof of Theorem 6.1). This general approach provides (not necessarily tight) upper bounds for
MinEx-Irrel. The tights ones are all those in Table 4 but the P, the NP in the fp- and ba- combined complexity, and the NExp ones. 
For these, we need stronger statements that will be proven later. The main takeaway of this section is the idea behind the algorithm, 
which is also the reason why we obtain complexity results for MinEx-Irrel that are in lower complexity classes compared to those 
of Is-MinEx. A procedure simply guessing an explanation 𝐸 excluding the forbidden sets, and then checking that 𝐸 entails the query 
and that none of its subset entails the query is overly complex. Actually, we can avoid to test the minimality of 𝐸, as this guessed 
explanation surely contain within itself a subset-minimal explanation.
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Algorithm 3: A general algorithm for the MinEx-Irrel problem.

Input: A knowledge base KB = (𝐷,Σ), a UCQ 𝑞, and a set  = {𝐹1 ,… , 𝐹𝑛} of sets 𝐹𝑖 ⊆ 𝐷 of facts.
Output: 𝖺𝖼𝖼𝖾𝗉𝗍, if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 not including any 𝐹𝑖 ∈  ; 𝗋𝖾𝗃𝖾𝖼𝗍, otherwise.

Procedure MinexIrrel(KB, 𝑞,):
1 𝐸← guess a subset of 𝐷
2 verify (∀𝐹𝑖 ∈  )(𝐸 ⊉ 𝐹𝑖)
3 verify (𝐸,Σ) ⊧ 𝑞
4 return 𝖺𝖼𝖼𝖾𝗉𝗍

Theorem 6.1. For every class  of TGDs considered in this paper, if OMQA() is in the complexity class 𝐂 in the combined (resp., ba-
combined, fp-combined, and data) complexity, then MinEx-Irrel() can be decided by a check in NP𝐂 in the combined (resp., ba-combined, 
fp-combined, and data) complexity.

Proof. Let (𝐷,Σ) be a knowledge base, let 𝑞 be a UCQ, and let  = {𝐹1,… , 𝐹𝑛}, where each 𝐹𝑖 ⊆ 𝐷, be a set of forbidden sets of 
facts. A general procedure to check the existence of a MinEx for (𝐷,Σ) ⊧ 𝑞 not containing any of the forbidden sets is outlined in 
Algorithm 3 (more comments below).

Observe that checking whether there exists a MinEx for (𝐷,Σ) ⊧ 𝑞 not containing any set in  just requires to check the existence 
of any (not-necessarily minimal) explanation 𝐸 for (𝐷,Σ) ⊧ 𝑞 not containing any of the forbidden sets. Indeed, the existence of 𝐸
guarantees also the existence within 𝐸 of a MinEx for (𝐷,Σ) ⊧ 𝑞 not containing any of the forbidden sets. Therefore, to solve this 
problem, we can guess in NP a subset 𝐸 ⊆𝐷 (line 1), check (in polynomial time) that 𝐸 does not contain any of the forbidden sets in 
(line 2), and then check via an OMQA oracle call, in the complexity class 𝐂, that 𝐸 entails the query 𝑞 via the program Σ (line 3). □

The membership results in Table 4 obtained from the previous theorem descend also from the following computational complexity 
facts: NPP = NP; and for 𝐂 ∈ {PSpace,Exp,2Exp}, NP𝐂 =𝐂.

We now show that MinEx-Irrel is in NExp for the Datalog± fragment 𝖠 in the combined and ba-combined complexity. This 
provides all the NExp membership results in Table 4. This result holds because a single NExp machine can guess the explanation and 
then carry out the checks, which will not be harder than NExp, as OMQA(𝖠) is in NExp in the combined and ba-combined complexity.

Theorem 6.2. MinEx-Irrel(𝖠) is in NExp in the combined (resp., ba-combined) complexity.

Proof. By inspection of Algorithm 3 and of the proof of Theorem 6.1, we can notice that a single NExp machine can guess the set 𝐸
at line 1 of the algorithm and subsequently carry out the checks at line 2, which is feasible in polynomial time, and at line 3, which 
is in NExp for the specific language and complexity settings considered. Hence, in this case, we do not need an oracle call to perform 
the entailment test, and the overall procedure can be carried out in NExp. □

MinEx-Irrel can be shown in NP for those cases in which OMQA() is in NP. This provides all the NP membership results in 
Table 4. The intuition behind this result is that, when OMQA() is in NP, the same NP machine can guess the needed explanation 
and then perform also the entailment test.

Theorem 6.3. For every class  of TGDs considered in this paper such that OMQA() is in NP in the ba-combined (resp., fp-combined) 
complexity, MinEx-Irrel() is in NP in the ba-combined (resp., fp-combined) complexity.

Proof. If OMQA is in NP, by inspection of Algorithm 3 and of the proof of Theorem 6.1, we can see that the same NP machine 
guessing the set 𝐸 at line 1 of the algorithm can also guess the concise certificate to subsequently check in polynomial time the 
entailment property at line 3. Therefore, in this case, we do not need an oracle call to perform the entailment test. Hence, the overall 
procedure can be carried out in NP. □

The only membership results in Table 4 remaining to be proven are the P ones in the data complexity for the classes  of TGDs for 
which OMQA() is FO- rewritable. These results are a straightforward consequence of Theorem 5.4. Indeed, when  is FO- rewritable 
and we are in the data complexity setting, we can compute in polynomial time all the MinExes for the query, and then we can 
simply scan this set to look for a MinEx that does not include any of the forbidden sets. Clearly, the entire procedure is feasible in 
polynomial time.

Theorem 6.4. For every class  of TGDs considered in this paper such that  is FO- rewritable, MinEx-Irrel() is in P in the data 
complexity.

We now show the lower bounds for MinEx-Irrel. The following theorem proves all the hardness results in Table 4, but the NP
ones in the data complexity. To show these hardness results, we provide a reduction from OMQA() to MinEx-Irrel(), which is 
a variation of the one in the proof of Theorem 4.6. In this case, we obtain a hardness result valid also in the data-complexity, and 
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not only for the fp-combined complexity and up, because, on the contrary of what happens in the reduction provided in the proof of 
Theorem 4.6, in the reduction of Theorem 6.5 the query does not vary.

Theorem 6.5. For every class  of TGDs considered in this paper, MinEx-Irrel() is at least as hard as OMQA() in the data (resp., 
fp-combined, ba-combined, and combined) complexity. Hardness holds even on instances whose queries are BCQs.

Proof. We prove the statement by showing a logspace reduction from OMQA() to MinEx-Irrel(). Given an OMQA() instance 
(KB, 𝑞), where KB = (𝐷,Σ) is a knowledge base, and 𝑞 is a BCQ, we build an instance (KB′, 𝑞′, ) of MinEx-Irrel(), where KB′ =
(𝐷′,Σ′) is a knowledge base, 𝑞′ is a BCQ, and  is a set of forbidden sets of facts.

(The database). We have 𝐷′ =𝐷 ∪𝐷𝑞 , where 𝐷𝑞 is a grounding of the query 𝑞 with fresh constants.

(The program). We take the program Σ′ = Σ.

(The query). The query is 𝑞′ = 𝑞.
(The forbidden sets of facts). We take  = {{𝛼} ∣ 𝛼 ∈𝐷𝑞}, where 𝛼 is every fact in 𝐷𝑞 .

Observe that this instance of MinEx-Irrel can be computed in logspace. Notice that, from Σ ∈  follows that Σ′ ∈ , because 
Σ′ = Σ. Moreover, as Σ′ and 𝑞′ do not change w.r.t. Σ and 𝑞, when we are in the data (resp., fp-combined, ba-combined, and combined) 
complexity settings, the classes of instances obtained via this reduction comply with the restrictions on the fixed/bounded-arity 
program and/or fixed query. Notice moreover that (𝐷′,Σ′) ⊧ 𝑞′, because 𝐷′ contains a grounding of 𝑞, and that 𝑞′ is a BCQ.

To conclude, notice that (𝐷,Σ) ⊧ 𝑞 if and only if there is a MinEx for (𝐷′,Σ′) ⊧ 𝑞′ not containing any set in  . □

Our next result proves that MinEx-Irrel(𝖦𝖥) is NP- hard in the data complexity. This provides all the NP- hardness results in the 
data complexity in Table 4. Intuitively, the NP- hardness is obtained by encoding a suitable NP- hard graph reachability problem into
MinEx-Irrel, and this can be achieved thanks to the fact the 𝖦𝖥 language allows to express graph reachability via a fixed program 
and query.

Theorem 6.6. For every class  of TGDs considered in this paper such that  ⊇ 𝖦𝖥, MinEx-Irrel() is NP- hard in the data complexity. 
Hardness holds even on instances whose queries are BCQs.

Proof. This proof adapts the ideas adopted in the proof of [Theorem 5 in 94]. We reduce to MinEx-Irrel(𝖦𝖥) the NP- complete
problem Path-with-Forbidden-Arc-Pairs [56] [58, Problem GT54]: for an instance (𝐺,𝑠, 𝑡,), where 𝐺 = (𝑉 ,𝐴) is a directed 
acyclic graph, 𝑠, 𝑡 ∈ 𝑉 are two vertices of 𝐺, and  ⊆𝐴×𝐴 is a set of pairs of arcs, decide whether there exists in 𝐺 a path 𝑃 from 𝑠
to 𝑡 such that, for every pair of arcs (𝑒, 𝑒′) ∈ , {𝑒, 𝑒′} ⊈ 𝑃 (i.e., the path 𝑃 does not pass through both arcs of the pair).

From an instance of Path-with-Forbidden-Arc-Pairs, we build as follows an instance (KB, 𝑞, ) of MinEx-Irrel(𝖦𝖥), where 
KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and  is a set of forbidden sets of facts.

(The database). We encode in the database the graph 𝐺, and the starting and destination vertices 𝑠 and 𝑡:

𝐷 = {arc(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈𝐴} ∪ {reach(𝑠),dest(𝑡), reach(𝑡)}.

Here, 𝑢 and 𝑣 in the predicate arc are constants related to the vertices 𝑢 and 𝑣 of the graph 𝐺, and a fact arc(𝑢, 𝑣) encodes the presence 
in 𝐺 of an arc from 𝑢 to 𝑣; the predicate reach has the meaning that a specific vertex can be reached from 𝑠—observe that reach(𝑠) is 
in the database, so that, together with the TGD shown below, the predicate reach encodes the reachability in 𝐺 from 𝑠 and not from 
other vertices; the predicate dest(𝑡) states the destination vertex of the path. The fact reach(𝑡) in the database ensures that the query 
is entailed by the database via the program (see the TGDs below). However, we will declare reach(𝑡) among the forbidden facts, so 
that we will be able to test whether 𝑡 can be reached from 𝑠, without using the fact reach(𝑡).
(The program). The program captures what vertices are reachable from a certain vertex (in this case from 𝑠, as reach(𝑠) is in the 
database; see above), and whether the destination vertex has been reached. In particular, we have two TGDs stating that: first, if a 
vertex 𝑥 is reachable, and there is moreover an arc from 𝑥 to 𝑦, then 𝑦 is reachable as well; and second, if the destination vertex is 
reached, then we can flag this with the entailment of a nullary fact dest-reached().

Σ = {reach(𝑋) ∧ arc(𝑋,𝑌 )→ reach(𝑌 ),

dest(𝑋) ∧ reach(𝑋)→ dest-reached()}.

(The query). We take the query to be 𝑞 = dest-reached().
(The forbidden sets of facts). The forbidden sets are the pairs of arcs in  plus the reach-fact for the destination vertex:

 =
{{

arc(𝑢1, 𝑣1),arc(𝑢2, 𝑣2)
}
∣
(
(𝑢1, 𝑣1), (𝑢2, 𝑣2)

)
∈ 

}
∪ {{reach(𝑡)}}.

This instance of MinEx-Irrel can be computed in polynomial time, the program and the query are fixed, the program is guarded 
and full, and that (𝐷,Σ) ⊧ 𝑞, as {dest(𝑡), reach(𝑡)} ⊂𝐷 and ‘dest(𝑋) ∧ reach(𝑋)→ dest-reached()’ ∈ Σ.
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Table 5
Complexity results for Small-MinEx(). All non-“in” entries are completeness results. Member-
ship results hold for UCQs, while hardness results hold even on BCQs. In square brackets, we report 
the number of the theorems providing the membership and the hardness results, respectively.

 Data fp-combined ba-combined Combined 
𝖫, 𝖫𝖥, 𝖠𝖥 in P [7.4 / –] NP [7.3 / 7.7] NP [7.3 / 7.7] PSpace [7.1 / 7.7] 
𝖲, 𝖲𝖥 in P [7.4 / –] NP [7.3 / 7.7] NP [7.3 / 7.7] Exp [7.1 / 7.7] 
𝖠 in P [7.4 / –] NP [7.3 / 7.7] NExp [7.2 / 7.7] NExp [7.2 / 7.7] 
𝖦 NP [7.1 / 7.5] NP [7.3 / 7.7] Exp [7.1 / 7.7] 2Exp [7.1 / 7.7] 
𝖥, 𝖦𝖥 NP [7.1 / 7.5] NP [7.3 / 7.7] NP [7.3 / 7.7] Exp [7.1 / 7.7] 
𝖶𝖲, 𝖶𝖠 NP [7.1 / 7.5] NP [7.3 / 7.7] 2Exp [7.1 / 7.7] 2Exp [7.1 / 7.7] 
𝖶𝖦 Exp [7.1 / 7.6] Exp [7.1 / 7.7] Exp [7.1 / 7.7] 2Exp [7.1 / 7.7] 

Algorithm 4: A general algorithm for the Small-MinEx problem.

Input: A knowledge base KB = (𝐷,Σ), a UCQ 𝑞, and an integer 𝑛≥ 1.
Output: 𝖺𝖼𝖼𝖾𝗉𝗍, if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 of size at most 𝑛; 𝗋𝖾𝗃𝖾𝖼𝗍, otherwise.

Procedure SmallMinex(KB, 𝑞, 𝑛):
1 𝐸← guess a subset of 𝐷
2 verify |𝐸| ≤ 𝑛
3 verify (𝐸,Σ) ⊧ 𝑞
4 return 𝖺𝖼𝖼𝖾𝗉𝗍

We now prove that there is a path in 𝐺 from 𝑠 to 𝑡 not passing through any pair of arcs in  if and only if there is a MinEx for 𝑞 not 
containing any set in  .

(⇒) Suppose that there is a path 𝑃 in 𝐺 from 𝑠 to 𝑡 not containing any of the forbidden arc pairs in . For presentation convenience, 
assume that 𝑃 is a sequence of arcs (and not a sequence of vertices). Let 𝐸𝑃 = {arc(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝑃 } ∪ {reach(𝑠)}. Notice that 𝐸𝑃
entails the query, because 𝑃 connects 𝑠 to 𝑡, reach(𝑠) is in 𝐸, and hence, via the TGDs of Σ, it is possible to derive reach(𝑡) and 
dest-reached(). Furthermore, 𝐸𝑃 is a minimal explanation, as otherwise some arc could be removed from 𝑃 ; but this is not possible, 
because 𝑃 is a path in an acyclic graph, implying that 𝑃 is simple (i.e., 𝑃 has no cycles), and hence the removal of any arc from 𝑃
would break the connectivity. Finally, since 𝑃 does not contain any of the forbidden arc pairs in , by construction, 𝐸𝑃 does not 
contain any of the sets in  .

(⇐) Suppose that there is a MinEx 𝐸 for 𝑞 not containing any set in  . By this, the fact reach(𝑡) does not belong to 𝐸. Let �̃� ⊂ 𝐸
be the set of arc-facts contained in 𝐸. Since (𝐸,Σ) ⊧ 𝑞, and since reach(𝑠) ∈ 𝐸 and reach(𝑡) ∉ 𝐸, by the fact that a TGD in Σ encodes 
reachability in a graph, it must be the case that �̃� contains, in principle among others, arc-facts associated with arcs in 𝐺 constituting 
a path in 𝐺 from 𝑠 to 𝑡. However, since 𝐸 is a minimal explanation, no fact from 𝐸 can be removed without losing the property for 
𝐸 to entail the query. Therefore, the set �̃� , not only contains facts associated with arcs constituting a path in 𝐺 from 𝑠 to 𝑡, but it 
does not contain any superfluous arc-fact. This implies that the arcs associated with the facts in �̃� constitute a simple path (i.e., a 
path without cycles).

Let 𝑃𝐸 be a sequence of arcs from 𝐺 built from the arc-facts in 𝐸 as follows: the first arc in 𝑃𝐸 is the arc (𝑠, 𝑣) ∈ 𝐴 for a fact 
arc(𝑠, 𝑣) ∈𝐸; the other arcs of 𝑃𝐸 are appended so that, if (𝑢, 𝑣) is the last arc appended to 𝑃𝐸 , then the arc (𝑣,𝑤) ∈𝐴 for some fact 
arc(𝑣,𝑤) ∈𝐸 is appended to 𝑃𝐸 ; no more arcs are appended to 𝑃𝐸 when no additional arc can be appended to 𝑃𝐸 according to the 
above rules.

By the property of �̃� (see above), the sequence 𝑃𝐸 , built from 𝐸 according to the rules above, is actually a path from 𝑠 to 𝑡 in the 
acyclic graph 𝐺. To conclude, given that 𝐸 does not contain any of the forbidden sets in  , the path 𝑃𝐸 does not pass through any 
of the forbidden arc-pairs in . □

7. Small explanations

In this section, we analyze the Small-MinEx problem of deciding whether there is a MinEx whose size is not bigger than some 
given threshold: for an instance (KB, 𝑞, 𝑛), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is an UCQ (with KB ⊧ 𝑞), and 𝑛 is an integer 
number represented in binary, decide whether there is a MinEx for (𝐷,Σ) ⊧ 𝑞 of size smaller than or equal to 𝑛. We first provide the 
membership results for UCQs and then proceed with the hardness results for BCQs. The complexity results for Small-MinEx are the 
same of those for MinEx-Irrel and are reported in Table 5.

A general approach to solve Small-MinEx is outlined in Algorithm 4. This algorithm allows to obtain (not necessarily tight) upper 
bounds for all the Small-MinEx problems considered.

By comparing Algorithm 4 with Algorithm 3 for MinEx-Irrel, we notice that they are quite similar. The only difference is that, 
to solve Small-MinEx, after guessing a set of facts (line 1), we test that the guessed set is small enough (line 2), instead of checking, 
as in the case of the MinEx-Irrel problem, that it avoids all the forbidden sets. This is done before checking that the guessed set is 
an explanation (line 3). As for MinEx-Irrel, also for Small-MinEx we do not need to test the minimality of the guessed explanation, 
because the existence of an explanation 𝐸 of size at most 𝑛 guarantees the existence, within 𝐸, of a minimal explanation of size at most 
𝑛. The two tasks of checking the size of the guessed explanation and of checking that the guessed explanation avoids the forbidden sets 
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are both feasible in (deterministic) polynomial time. Hence, the arguments showing the membership results for MinEx-Irrel, with 
just minimal variations accounting for the test of the size of the guessed explanation, show the membership results of Small-MinEx
as well. For this reason, we report only the statements of the results, without the detailed proofs.

The following theorem covers all the membership results for Small-MinEx in Table 5 apart from the NP, NExp, and P ones (details 
of the proof are in the proof of Theorem 6.1).

Theorem 7.1. For every class  of TGDs considered in this paper, if OMQA() is in the complexity class 𝐂 in the combined (resp., ba-
combined, fp-combined, and data) complexity, then Small-MinEx() can be decided by a check in NP𝐂 in the combined (resp., ba-combined, 
fp-combined, and data) complexity.

The membership results in Table 5 obtained from the previous theorem descend also from the following computational complexity 
facts: NPP = NP; and for 𝐂 ∈ {PSpace,Exp,2Exp}, NP𝐂 =𝐂.

The next theorem provides all the NExp membership results in Table 5 (proof details are in the proof of Theorem 6.2).

Theorem 7.2. Small-MinEx(𝖠) is in NExp in the combined (resp., ba-combined) complexity.

The next theorem provides all the NP membership results in Table 5 (proof details are in the proof of Theorem 6.3).

Theorem 7.3. For every class  of TGDs considered in this paper such that OMQA() is in NP in the ba-combined (resp., fp-combined) 
complexity, Small-MinEx() is in NP in the ba-combined (resp., fp-combined) complexity.

The following result provides all the P membership results in Table 5 (details of the proof are provided in the comment before 
Theorem 6.4).

Theorem 7.4. For every class  of TGDs considered in this paper such that  is FO- rewritable, Small-MinEx() is in P in the data 
complexity.

This leaves to us only to show the lower bounds. We show first the NP- hardness of Small-MinEx(𝖦𝖥) in the data complexity. We 
notice that the construction in the proof of Theorem 6.6 for the NP- hardness of MinEx-Irrel(𝖦𝖥) in the data complexity does not 
apply in this case. Thus, we provide a different reduction, which is from Vertex Cover. This shows all the NP- hardness results in 
the data complexity in Table 5. Intuitively, we encode the problem of deciding the existence of a small vertex cover in a graph with 
the problem of deciding the existence of a small MinEx.

Theorem 7.5. For every class  of TGDs considered in this paper such that ⊇ 𝖦𝖥, Small-MinEx() is NP- hard in the data complexity. 
Hardness holds even on instances whose queries are BCQs.

Proof. Recall that a vertex cover of a graph is a set of vertices intersecting every edge of the graph. The NP- complete Vertex 
Cover [72] problem asks, for a pair (𝐺,𝑘), where 𝐺 = (𝑉 ,𝐴) is a(n undirected) graph, and 𝑘 is an integer, to decide whether 𝐺
has a vertex cover of at most 𝑘 vertices. We reduce Vertex Cover to Small-MinEx(𝖦𝖥). For an instance (𝐺,𝑘) of Vertex Cover, 
where 𝐺 = (𝑉 ,𝐴) is a graph, we build as follows an instance (KB, 𝑞, 𝑛), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝑛 is 
an integer. In what follows, 𝑎1,… , 𝑎𝑚 are the 𝑚 edges in 𝐴.

(The database). We encode the graph 𝐺 in the database 𝐷 via an incidence graph. More specifically,

𝐷𝐺 = {vertex(𝑣𝑖) ∣ 𝑣𝑖 ∈ 𝑉 } ∪ {inc(𝑣𝑖, 𝑎𝑗 ) ∣ the edge 𝑎𝑗 is incident on the vertex 𝑣𝑖},

where vertex is a predicate stating that 𝑣𝑖 is a vertex (𝑣𝑖 is a constant associated with the respective vertex in 𝐺), and inc is a predicate 
stating that an edge 𝑎𝑗 touches a vertex 𝑣𝑖 (𝑎𝑗 is a constant associated with the respective edge in 𝐺).

In the database, there are also the structural facts needed to test whether a MinEx encodes a vertex cover of 𝐺:

𝐷st = {succ(𝑎𝑖, 𝑎𝑖+1) ∣ 1 ≤ 𝑖 ≤ |𝐴|− 1} ∪ {succ(𝑎0, 𝑎1), cov-chain(𝑎0),max-edge(𝑎𝑚)},

where succ(𝑎𝑖, 𝑎𝑖+1) is a predicate stating that 𝑎𝑖+1 is the edge successor of 𝑎𝑖 (“successor” from an index perspective, not that 𝑎𝑖+1
comes after 𝑎𝑖 in the graph topology), max-edge(𝑎𝑚) states that 𝑎𝑚 is the last edge, succ(𝑎0, 𝑎1) states that 𝑎0 (an additional dummy 
constant) is followed by 𝑎1, and cov-chain(𝑎0) is a predicate allowing us to test whether all edges are covered by a vertex cover 
(encoded in a MinEx; see the TGDs below). Hence, the database is 𝐷 =𝐷𝐺 ∪𝐷st .

(The program). The program consists of three rules. The first encodes that if a vertex 𝑣 is in a vertex set, then all edges intersected by 
𝑣 are covered. The second rule is used to build the “sequence” of covered edges. The third rule captures that the fact all-covered is 
entailed only if all the edges are covered (by testing that the “sequence” covers all edges).
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Table 6
Complexity results for MinEx-Rel(). All non-“in” entries are completeness results. Membership 
results hold for UCQs, while hardness results hold even on BCQs. In square brackets, we report the 
number of the theorems providing the membership and the hardness results, respectively.

 Data fp-combined ba-combined Combined 

𝖫, 𝖫𝖥, 𝖠𝖥 in P [8.2 / –] ΣP
2 [8.1 / 8.6] ΣP

2 [8.1 / 8.6] PSpace [8.1 / 8.5] 
𝖲, 𝖲𝖥 in P [8.2 / –] ΣP

2 [8.1 / 8.6] ΣP
2 [8.1 / 8.6] Exp [8.1 / 8.5] 

𝖠 in P [8.2 / –] ΣP
2 [8.1 / 8.6] PNExp [8.1 / 8.7] PNExp [8.1 / 8.7s] 

𝖦 NP [8.1 / 8.3] ΣP
2 [8.1 / 8.6] Exp [8.1 / 8.5] 2Exp [8.1 / 8.5] 

𝖥, 𝖦𝖥 NP [8.1 / 8.3] ΣP
2 [8.1 / 8.6] ΣP

2 [8.1 / 8.6] Exp [8.1 / 8.5] 
𝖶𝖲, 𝖶𝖠 NP [8.1 / 8.3] ΣP

2 [8.1 / 8.6] 2Exp [8.1 / 8.5] 2Exp [8.1 / 8.5] 
𝖶𝖦 Exp [8.1 / 8.4] Exp [8.1 / 8.5] Exp [8.1 / 8.5] 2Exp [8.1 / 8.5] 

Σ = {vertex(𝑉 ) ∧ inc(𝑉 ,𝐴)→ covered(𝐴),

cov-chain(𝑋) ∧ succ(𝑋,𝑌 ) ∧ covered(𝑌 )→ cov-chain(𝑌 ),

max-edge(𝑀) ∧ cov-chain(𝑀)→ all-covered()}.

(The query). The query is 𝑞 = all-covered().
(The threshold integer). We take the threshold integer to be 𝑛 = 𝑘 + 2 ⋅ |𝐴| + 2. The intuition for this number is that in a set to be 
a MinEx for (𝐷,Σ) ⊧ 𝑞 there must be exactly |𝐴|-many inc-facts, all |𝐴|-many succ-facts, cov-chain(𝑎0), and max-edge(𝑎𝑚). Also, we 
expect that at most 𝑘 vertex-facts to be in a MinEx. This adds up to the number 𝑛 specified.

Observe that this instance of Small-MinEx can be computed in polynomial time, the program and the query are fixed, the program 
is guarded and full, and that (𝐷,Σ) ⊧ 𝑞, as the whole database encodes the set of all vertices which clearly is a vertex cover of the 
graph (and hence all-covered() can be derived from the whole database via Σ).

We show that 𝐺 has a vertex cover of size at most 𝑘 if and only if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 of size at most 𝑛.
(⇒) Suppose that there is a vertex cover 𝐶 of 𝐺 of size at most 𝑘. Consider the set 𝐸𝐶 =𝐷st ∪{vertex(𝑣𝑖) ∣ 𝑣𝑖 ∈ 𝐶}∪𝐸′

𝐶
, where 𝐸′

𝐶
contains, for each edge 𝑎𝑗 ∈𝐴, exactly one fact inc(𝑣𝑖, 𝑎𝑗 ) such that 𝑣𝑖 ∈ 𝐶 . Notice that 𝐸𝐶 is of size at most 𝑛 (as defined above), and 
that 𝐸𝐶 entails the query by construction. Therefore, 𝐸𝐶 is a (not necessarily minimal) explanation of size at most 𝑛 for the query. 
However, this is enough to conclude that there exists within 𝐸𝐶 a MinEx for the query of size at most 𝑛.

(⇐) Suppose that there is a MinEx 𝐸 of size at most 𝑛. Since 𝐸 entails the query, by the construction of the program Σ, it must 
be the case that the set of vertices 𝐶𝐸 = {𝑣𝑖 ∈ 𝑉 ∣ vertex(𝑣𝑖) ∈ 𝐸} is a vertex cover of 𝐺. By the discussion in the definition of 𝑛 (see 
above), since 𝐸 entails the query, there are (|𝐴|+ 2)-many facts in 𝐸 that are structural facts, and |𝐴|-many facts that are inc-facts. 
Since |𝐸| ≤ 𝑛 = 𝑘+ 2 ⋅ |𝐴|+ 2, we have that there are at most 𝑘 vertex-facts in 𝐸, from which it follows that the vertex cover 𝐶𝐸 is of 
size at most 𝑘. □

The other hardness results in Table 5 follow from Theorem 7.6 and Theorem 7.7 below, whose proofs are slight variations of the 
proofs of Theorem 4.3 and Theorem 4.6, respectively. More specifically, the reductions proving the two theorems below are from 
OMQA() to the Small-MinEx().

For both theorems, the reductions transform in logspace an OMQA() instance (KB, 𝑞), where KB = (𝐷,Σ) is a knowledge base, 
and 𝑞 is a BCQ, into an instance (KB′, 𝑞′, 𝑛) of Small-MinEx(), where KB′ = (𝐷′,Σ′) is a knowledge base, 𝑞′ is a BCQ, and 𝑛 is an 
integer number. In the reductions of Theorem 7.6 and Theorem 7.7, we build 𝐷′, Σ′, and 𝑞′ as in the reductions of Theorem 4.3 and 
Theorem 4.6, respectively. Then, in the reductions of Theorem 7.6 and Theorem 7.7, we let the threshold integer 𝑛 to be 2 ⋅ |𝐷|+ 2, 
and to be |𝐷|, respectively.

These proofs end by noticing that if (𝐷,Σ) ⊧ 𝑞, then the only MinEx for 𝑞 is 𝐸 =𝐷′ ⧵𝐷𝑞 , whose size is 𝑛. On the other hand, if 
(𝐷,Σ) ̸⊧ 𝑞, then the only MinEx for 𝑞 is the entire database 𝐷′, whose size is strictly bigger than 𝑛.

Theorem 7.6. For every class  of TGDs considered in this paper such that ⊇𝖦𝖥, Small-MinEx() is at least as hard as OMQA() in 
the data (resp., fp-combined, ba-combined, and combined) complexity. Hardness holds even on instances whose queries are BCQs.

Theorem 7.7. For every class  of TGDs considered in this paper, Small-MinEx() is at least as hard as OMQA() in the fp-combined 
(resp., ba-combined, and combined) complexity. Hardness holds even on instances whose queries are BCQs.

8. Relevant facts for explanations

We now carry out a complexity analysis, summarized in Table 6, of the MinEx-Rel problem of deciding whether a given fact is 
relevant for the entailment of a query: for an instance (KB, 𝑞,𝜓), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is an UCQ (with KB ⊧ 𝑞), 
and 𝜓 ∈𝐷 is a fact, decide whether there is a MinEx for (𝐷,Σ) ⊧ 𝑞 containing 𝜓 .

A first insight that we get from this section is that, although MinEx-Rel may seem pretty similar to MinEx-Irrel, the complexities 
of the two problems are rather different. Remember that, for the MinEx-Irrel problem, a procedure to answer the problem can be 
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Algorithm 5: A general algorithm for the MinEx-Rel problem.

Input: A knowledge base KB = (𝐷,Σ), a UCQ 𝑞, and a fact 𝜓 ∈𝐷.
Output: 𝖺𝖼𝖼𝖾𝗉𝗍, if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 including 𝜓 ; 𝗋𝖾𝗃𝖾𝖼𝗍, otherwise.

Procedure MinexRel(KB, 𝑞,𝜓):
1 𝐸← guess a subset of 𝐷
2 verify 𝐸 ∋ 𝜓
3 verify IsMinex(KB, 𝑞,𝐸)
4 return 𝖺𝖼𝖼𝖾𝗉𝗍

Table 7
Complexity results for Large-MinEx(). All non-“in” entries are completeness results. Membership 
results hold for UCQs, while hardness results hold even on BCQs. In square brackets, we report the 
number of the theorems providing the membership and the hardness results, respectively.

 Data fp-combined ba-combined Combined 

𝖫, 𝖫𝖥, 𝖠𝖥 in P [9.2 / –] ΣP
2 [9.1 / 9.6] ΣP

2 [9.1 / 9.6] PSpace [9.1 / 9.5] 
𝖲, 𝖲𝖥 in P [9.2 / –] ΣP

2 [9.1 / 9.6] ΣP
2 [9.1 / 9.6] Exp [9.1 / 9.5] 

𝖠 in P [9.2 / –] ΣP
2 [9.1 / 9.6] PNExp [9.1 / 9.7] PNExp [9.1 / 9.7s] 

𝖦 NP [9.1 / 9.3] ΣP
2 [9.1 / 9.6] Exp [9.1 / 9.5] 2Exp [9.1 / 9.5] 

𝖥, 𝖦𝖥 NP [9.1 / 9.3] ΣP
2 [9.1 / 9.6] ΣP

2 [9.1 / 9.6] Exp [9.1 / 9.5] 
𝖶𝖲, 𝖶𝖠 NP [9.1 / 9.3] ΣP

2 [9.1 / 9.6] 2Exp [9.1 / 9.5] 2Exp [9.1 / 9.5] 
𝖶𝖦 Exp [9.1 / 9.4] Exp [9.1 / 9.5] Exp [9.1 / 9.5] 2Exp [9.1 / 9.5] 

as follows: guess an explanation 𝐸 not including the forbidden sets, and check that 𝐸 entails the query. This is enough to say that 
there is a minimal explanation for the query not including the forbidden sets, because within 𝐸 there exists the sought after MinEx. 
However, a naive adaptation to MinEx-Rel of the procedure for MinEx-Irrel is not correct. Indeed, after guessing an explanation 𝐸
containing the fact 𝜓 , and after checking that 𝐸 entails the query, we cannot be sure that the MinExes within 𝐸 actually contain 𝜓 . 
Therefore, the procedure, to be correct for MinEx-Rel, needs an additional step in which the minimality of the guessed explanation 
𝐸 is checked.

An interesting complexity result that we obtain is that, given a plain relational database 𝐷, a BCQ query 𝑞, and a fact 𝜓 ∈ 𝐷, 
deciding whether there is a minimal subset of 𝐷 including 𝜓 that entails 𝑞 is already ΣP

2 - hard (Theorem 8.6), i.e., there is no need 
to have a program to make the problem difficult to solve. Another complexity result interesting to look at is the PNExp- hardness of
MinEx-Rel(𝖠) (Theorem 8.7), which puts this problem among the few natural ones complete for PNExp, which is the last level of the 
Strong Exponential Hierarchy.

Let us now delve into the complexity analysis. Again, we start by providing the membership results when UCQs are considered, and 
then we show the hardness results for MinEx-Rel when BCQs are considered. Algorithm 5 outlines a general approach to solve MinEx-
Rel (details and comments about the algorithm are provided in the proof of Theorem 8.1). This algorithm provides (not necessarily 
tight) upper bounds for the MinEx-Rel problems. In particular, in Table 6, apart from the P membership results, for which we need 
tighter statements that we will be discussed next, all other membership results are tight and descend from Algorithm 5 and the 
following statement. Intuitively, to check the existence of a MinEx that contains a distinguished fact 𝜓 , we can guess a candidate 
minimal explanation containing 𝜓 and then ask to an oracle for Is-MinEx() to check whether 𝐸 is actually a MinEx.

Theorem 8.1. For every class  of TGDs considered in this paper, if Is-MinEx() is in the complexity class 𝐃 in the combined (resp., ba-
combined, fp-combined, and data) complexity, then MinEx-Rel() can be decided by a check in NP𝐃 in the combined (resp., ba-combined, 
fp-combined, and data) complexity.

Proof. Let (𝐷,Σ) be a knowledge base, let 𝑞 be a UCQ, and let 𝜓 ∈𝐷 be a fact in the database. A general procedure to check the 
existence of a MinEx for (𝐷,Σ) ⊧ 𝑞 containing 𝜓 is outlined in Algorithm 5 (more comments below). We can check whether there exists 
such a MinEx for 𝑞 by guessing (line 1) a subset 𝐸 ⊆𝐷 of the database (feasible in NP), check that 𝜓 belongs to the guessed set (line 2), 
and then check whether 𝐸 is a MinEx for (𝐷,Σ) ⊧ 𝑞 by calling an oracle in the complexity class 𝐃 for Is-MinEx() (line 3). □

The membership results in Table 7 obtained from the previous theorem descend also from the following complexity facts: NPP =
NP; for 𝐃 ∈ {PSpace,Exp,2Exp}, NP𝐃 = 𝐃; and PNExp ⊆ NPDExp

⊆ NPNPNExp
, for which, by the collapse of the Strong Exponential 

Hierarchy [62], it holds PNExp = NPNPNExp
, and hence PNExp = NPDExp

; additionally, NPNP = ΣP
2 .

The P membership results in the data complexity of Table 6, for the classes  of FO- rewritable TGDs, are a straightforward 
consequence of Theorem 5.4. By this theorem, when  is FO- rewritable, and we are in the data complexity setting, all the MinExes 
for a query can be computed in polynomial time. Hence, we can simply scan this set to look for a MinEx including the fact 𝜓 . Clearly, 
the entire procedure is feasible in polynomial time.

Theorem 8.2. For every class  of TGDs considered in this paper such that  is FO- rewritable, MinEx-Rel() is in P in the data complexity.
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We now proceed with the study of the complexity lower-bounds of the problem. First, we show that MinEx-Rel(𝖦𝖥) is NP- hard in 
the data complexity. This shows all the NP- hardness results in the data complexity in Table 6. The idea for this reduction is similar to 
the NP- hardness proof of MinEx-Irrel(𝖦𝖥) in the data complexity, where we encode graph reachability via a fixed program and query.

Theorem 8.3. For every class  of TGDs considered in this paper such that  ⊇ 𝖦𝖥, MinEx-Rel() is NP- hard in the data complexity. 
Hardness holds even on instances whose queries are BCQs.

Proof. This proof adapts ideas from [Theorem 7 in 94]. Consider the problem Path-via-Arc: for an instance (𝐺,𝑠, 𝑡, 𝑎), where 𝐺
is a directed graph, 𝑠, 𝑡 are two vertices of 𝐺, and 𝑎 is an arc of 𝐺, decide whether there is in 𝐺 a simple path from 𝑠 to 𝑡 via 𝑎.
Path-via-Arc has (implicitly) been shown NP- complete by Peñaloza and Sertkaya [94, Theorem 7].

We provide a reduction from Path-via-Arc to MinEx-Rel. From an instance (𝐺,𝑠, 𝑡, 𝑎) of Path-via-Arc, we build as follows an 
instance (KB, 𝑞,𝜓) of MinEx-Rel, where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝜓 ∈𝐷 is a fact.

The database 𝐷, the program Σ, and the query 𝑞, are obtained as in the proof of Theorem 6.6.

(The candidate relevant fact). We take 𝜓 = arc(𝑢, 𝑣).

Remember, from the proof of Theorem 6.6, that this instance of MinEx-Rel can be computed in polynomial time, the program 
and the query are fixed, the program is guarded and full, and that (𝐷,Σ) ⊧ 𝑞.

The argument proving that there is a path in 𝐺 from 𝑠 to 𝑡 via 𝑎 if and only if there is a MinEx for 𝑞 including 𝜓 is very similar 
to the one in the proof of Theorem 6.6. The difference here is that, in the (⇒)-direction of the proof, we focus on a path 𝑃 passing 
via the arc 𝑎 and we obtain a MinEx 𝐸𝑃 including 𝜓 . For the (⇐)-direction, let 𝐸 be a MinEx including 𝜓 . Since includes 𝜓 and is 
minimal, 𝐸 does not include reach(𝑡); indeed, if reach(𝑡) were in 𝐸 then 𝜓 could be removed from 𝐸 without breaking the entailment 
of the query, contradicting that 𝐸 is a minimal explanation. After observing this, the proof follows the (⇐)-direction of the proof of 
Theorem 6.6, and we obtain a path 𝑃𝐸 via 𝑎. □

The other hardness results in Table 6, but the ΣP
2 and the PNExp ones, follow from Theorem 8.4 and Theorem 8.5 below, whose 

proofs are slight variations of the proofs of Theorem 4.3 and Theorem 4.6, respectively. More specifically, the reductions proving the 
two theorems below are from OMQA() to the complement of MinEx-Rel().7 However, since the results sought after are for deter-
ministic complexity classes, these classes are closed under complement, and hence the hardness obtained hold also for MinEx-Rel().

For both theorems, the reductions transform in logspace an OMQA() instance (KB, 𝑞), where KB = (𝐷,Σ) is a knowledge base, 
and 𝑞 is a BCQ, into an instance (KB′, 𝑞′, 𝜓) of MinEx-Rel(), where KB′ = (𝐷′,Σ′) is a knowledge base, 𝑞′ is a BCQ, and 𝜓 ∈𝐷 is a 
fact. In the reductions of Theorem 8.4 and Theorem 8.5, we build 𝐷′, Σ′, and 𝑞′ as in the reductions of Theorem 4.3 and Theorem 4.6, 
respectively. Then, in both reductions of Theorem 8.4 and Theorem 8.5, we let 𝜓 to be a fact from 𝐷𝑞 (recall that 𝐷𝑞 is a grounding 
of the query 𝑞 over fresh constants).

To conclude these proofs, it is enough to notice that if (𝐷,Σ) ⊧ 𝑞, then the only MinEx for 𝑞′ is 𝐸 =𝐷′ ⧵𝐷𝑞 , which does not contain 
𝜓 , hence there is no MinEx for 𝑞 including 𝜓 . On the other hand, if (𝐷,Σ) ̸⊧ 𝑞, then the only MinEx for 𝑞′ is the entire database 𝐷′, 
which includes also 𝜓 .

Theorem 8.4. For every class  of TGDs considered in this paper such that ⊇ 𝖦𝖥, the complement of MinEx-Rel() is at least as hard 
as OMQA() in the data (resp., fp-combined, ba-combined, and combined) complexity. Hardness holds even on instances whose queries 
are BCQs.

Theorem 8.5. For every class  of TGDs considered in this paper, the complement of MinEx-Rel() is at least as hard as OMQA() in 
the fp-combined (resp., ba-combined, and combined) complexity. Hardness holds even on instances whose queries are BCQs.

Next, we show that MinEx-Rel() is ΣP
2 - hard in the fp-combined complexity even when the program is empty. This shows all 

the ΣP
2 - hardness results in Table 6. We prove this result via a reduction from the canonical ΣP

2 - complete QBF validity problem for a 
formula Φ= ∃�̄�∀�̄�¬𝜙(�̄�, �̄�), where 𝜙(�̄�, �̄�) is a quantifier-free Boolean formula in 3CNF, to MinEx-Rel. Our reduction is different from 
what is proposed in the proof of the ΣP

2 - hardness of MinA-Relevance in [94, Theorem 9], in which a tailored ΣP
2 - complete problem, 

whose shape is rather close to MinA-Relevance, is used for the reduction. By using the QBF validity canonical problem, recognizing 
from our proof the two sources of complexity for the problem MinEx-Rel is easy. More specifically, we encode the formula’s structure 
in the database, the satisfiability condition in the query, the assignment to the existentially quantified Boolean variables of the QBF 
via the possible MinExes, and the assignments to the universally quantified variables of the QBF are enacted by the homomorphisms 
mapping the query variables to the facts in the MinExes during the query answering process. We can hence say that the two sources of 
complexity are finding a minimal explanation, and individuating the homomorphism mapping the query atoms over the explanation 
facts to check the entailment of the query.

7 Remember that the complement of a problem is defined on the very same input strings, but ‘yes’ and ‘no’ answers are interchanged.
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Theorem 8.6. For every class  of TGDs considered in this paper, MinEx-Rel() is ΣP
2 - hard in the fp-combined (resp., ba-combined) 

complexity. Hardness holds even on instances whose programs are empty and whose queries are BCQs.8

Proof. We show a reduction to MinEx-Rel() from the ΣP
2 - complete problem QBFCNF

2,∀,¬ [104,112]: given a quantified Boolean formula 
Φ= ∃�̄�∀�̄�¬𝜙(�̄�, �̄�), where 𝜙(�̄�, �̄�) is a quantifier-free Boolean formula in 3CNF defined over the Boolean variable sets �̄� = {𝑥1,… , 𝑥𝑛}
and �̄�, and clauses 𝐶 = {𝑐1,… , 𝑐𝑚}, decide whether Φ is valid.

Let Φ= ∃�̄�∀�̄�¬𝜙(�̄�, �̄�) be an instance of QBFCNF
2,∀,¬, we build as follows an instance (KB, 𝑞,𝜓) of MinEx-Rel(), where KB = (𝐷,Σ)

is a knowledge base, 𝑞 is a BCQ, and 𝜓 ∈𝐷 is a fact.

(The database). The database 𝐷 contains facts giving the possibility to encode in the candidate MinExes truth assignments to the 
existentially quantified variables 𝑥𝑖 ∈ �̄�. More specifically, for each 𝑥𝑖 ∈ �̄�, 𝐷 contains the facts:

val(𝑥𝑖, f ) val(𝑥𝑖, t),

where 𝑥𝑖 is a constant representing the respective Boolean variable in �̄�, and f and t are constants associated with the Boolean values 
false and true, respectively.

The database 𝐷 also contains facts used to impose the consistency of truth assignments to the literals of 𝜙(�̄�, �̄�):

simlit(f , f ), simlit(f ,⋆), opplit(f , t), simlit(⋆,⋆),

simlit(t, t), simlit(t,⋆), opplit(t, f ), opplit(⋆,⋆),

where f and t are constants with the same meanings as above, and ⋆ is an additional constant used as a “jolly”. Intuitively, the “jolly” 
constant will allow to bypass the Boolean formula satisfiability check.

Further, the database 𝐷 contains facts capturing the satisfying assignments to the literals for a clause:

clsat(𝜏1, 𝜏2, 𝜏3), clsat(⋆,⋆,⋆),

where each 𝜏𝑖 ∈ {f , t} and at least one of 𝜏𝑖 for 𝑖 ∈ {1,2,3} is t. Note that in 𝐷 there are 7 clsat-facts. Intuitively, the facts with the 
“jolly” constant allow to bypass the satisfiability checks of 𝜙.

(The program). We take Σ to be the empty set.

(The query). For presentation purposes, we gradually introduce the query 𝑞, by giving intuitions for each piece defined.
A first piece of the query “reads” the assignment for the Boolean variables in �̄� encoded in the MinEx onto the query variables 𝑇𝑖, 

which represent in the query the value of the Boolean variable 𝑥𝑖 ∈ �̄�, and also imposes that, for each variable 𝑥𝑖 ∈ �̄�, at least one 
fact between val(𝑥𝑖, f ) and val(𝑥𝑖, t) is present in the candidate MinExes:

assignX ≡
⋀
𝑥𝑖∈�̄�

val(𝑥𝑖, 𝑇𝑖).

In what follows, 𝓁𝑗,𝑘 denotes the 𝑘th literal in the 𝑗 th clause in the formula 𝜙, and 𝑣𝑗,𝑘 is the Boolean variable of the literal 𝓁𝑗,𝑘 . A 
second piece of the query “copies” the truth assignment to each Boolean variable 𝑥𝑖 (and stored in the query variable 𝑇𝑖; see above) 
onto a suitable query variable 𝑇𝑗,𝑘, which represents in the query the value of the literal 𝓁𝑗,𝑘 = 𝑥𝑖 (this “copy” is captured, in the 
query evaluation task, by the homomorphism mapping the query variable 𝑇𝑗,𝑘 to the respective constants in the database via the 
similit-predicate). Notice here that the query variable 𝑇𝑗,𝑘 must be one associated with a positive literal 𝓁𝑗,𝑘 for which 𝑣𝑗,𝑘 = 𝑥𝑖. We 
take this part of the query to be

copy ≡
⋀
𝑥𝑖∈�̄�

simlit(𝑇𝑖, 𝑇𝑗,𝑘).

For copy to properly work, each variable 𝑥𝑖 ∈ �̄� must appear as a positive literal at least once in the formula 𝜙. This can be assumed 
w.l.o.g., because, if 𝑥𝑖 always appears as a negative literal in all the clauses of 𝜙, then we can replace all the occurrences of the 
negative literal ¬𝑥𝑖 with the positive literal 𝑥𝑖 without altering the satisfiability property of 𝜙.

A third query piece imposes that the various query variables 𝑇𝑗,𝑘, which are the query variables associated with the formula 
literals 𝓁𝑗,𝑘, are mapped to consistent constants; in this way, we simulate that the assignments to the formula literals, derived by the 
mappings of the query atoms to the database facts, are consistent. This part of the query is:

consist ≡ 
⋀

for all pairs of literals 
(𝓁𝑗,𝑘,𝓁𝑗′ ,𝑘′ ) in 𝜙 s.t.

𝓁𝑗,𝑘= 𝓁𝑗′ ,𝑘′

simlit(𝑇𝑗,𝑘, 𝑇𝑗′ ,𝑘′ ) ∧ 
⋀

for all pairs of literals 
(𝓁𝑗,𝑘,𝓁𝑗′ ,𝑘′ ) in 𝜙 s.t.

𝓁𝑗,𝑘= ¬𝓁𝑗′ ,𝑘′

opplit(𝑇𝑗,𝑘, 𝑇𝑗′ ,𝑘′ ).

8 Notice that this hardness result holds already over plain relational databases: given a database 𝐷, a BCQ 𝑞, and a fact 𝜓 ∈𝐷 (both 𝐷 and 𝑞 are part of the input 
and may vary), deciding whether there is a minimal subset 𝐸 of 𝐷 containing 𝜓 and entailing 𝑞 is ΣP

2 - hard.
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The last piece of the query checks the satisfiability of 𝜙(�̄�, �̄�):

satisfied ≡ 
⋀

for all clauses
𝑐𝑗 of 𝜙

clsat(𝑇𝑗,1, 𝑇𝑗,2, 𝑇𝑗,3).

We define the query as 𝑞 =𝐷st∧assignX∧copy∧consist∧satisfied, where with the notation 𝐷st in the query we mean the conjunction 
of all the structural facts from 𝐷st = {simlit(𝐚) ∣ simlit(𝐚) ∈𝐷} ∪ {opplit(𝐚) ∣ opplit(𝐚) ∈𝐷} ∪ ({clsat(𝐚) ∣ clsat(𝐚) ∈𝐷} ⧵ {clsat(⋆,⋆,⋆)}).

(The candidate relevant fact 𝜓). We choose the distinguished fact 𝜓 = clsat(⋆,⋆,⋆).

The reduction can be computed in polynomial time. Moreover, the reduction is such that (𝐷,Σ) ⊧ 𝑞, because clsat(⋆,⋆,⋆), 
simlit(f ,⋆), 
simlit(t,⋆), simlit(⋆,⋆), opplit(⋆,⋆), and the val-facts are in 𝐷; indeed, assigning the value ⋆ to all the query variables 𝑇𝑗,𝑘, and 
any value f or t to all the query variables 𝑇𝑖, satisfies the query. Furthermore, the empty program Σ is vacuously linear (and hence 
guarded), acyclic, sticky, and full; such a program is clearly also fixed.

We now show that Φ is valid if and only if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 containing 𝜓 . Observe that the formula Φ= ∃�̄�∀�̄�¬𝜙(�̄�, �̄�)
is valid if and only if there exists a truth assignment 𝜎�̄� for �̄� such that 𝜙(�̄�∕𝜎�̄�, �̄�) is not satisfiable.

(⇒) Assume that Φ is valid. Hence, there exists a truth assignment �̃��̄� for the variables �̄� such that 𝜙(�̄�∕�̃��̄�, �̄�) is not satisfiable. 
Consider the set 𝐸�̃��̄� =𝐷st ∪ {val(𝑥𝑖, f ) ∣ �̃��̄�(𝑥𝑖) = false} ∪ {val(𝑥𝑖, t) ∣ �̃��̄�(𝑥𝑖) = true} ∪ {clsat(⋆,⋆,⋆)}. By construction, 𝐸�̃��̄� entails the 
query and contains the fact 𝜓 = {clsat(⋆,⋆,⋆)} (the reason why this set entails the query is the same for which the whole database 
entails the query; see above). Moreover, we argue that 𝐸�̃��̄� is also a minimal explanation. In particular, removing any fact from 𝐷st
results in the respective part of the query not being entailed, and removing any val-fact results in the assignX part of the query not 
being entailed. Moreover, since 𝜙(�̄�∕�̃��̄�, �̄�) is not satisfiable and the val-facts in 𝐸�̃��̄� encode the truth assignment �̃��̄� for �̄�, removing the 
fact clsat(⋆,⋆,⋆) from 𝐸�̃��̄� breaks the entailment of the query. Therefore, 𝐸�̃��̄� is a MinEx for (𝐷,Σ) ⊧ 𝑞 containing 𝜓 = clsat(⋆,⋆,⋆).

(⇐) Assume that there is a MinEx 𝐸 for 𝑞 containing clsat(⋆,⋆,⋆). First, we claim that, since 𝐸 is a minimal explanation, it 
contains exactly one fact between val(𝑥𝑖, f ) and val(𝑥𝑖, t) for each Boolean variable 𝑥𝑖 ∈ �̄�. Indeed, since the query variables 𝑇𝑖 are 
existentially quantified in 𝑞, the presence of exactly one fact between val(𝑥𝑖, f ) and val(𝑥𝑖, t) in the MinEx is enough for the satisfaction 
of the assignX part of the query. Therefore, 𝐸 encodes a proper truth assignment 𝜎𝐸 to �̄�. Because 𝐸 is a minimal explanation, the 
fact clsat(⋆,⋆,⋆) cannot be removed from 𝐸 without breaking the entailment of the query. Therefore, 𝜙(�̄�∕𝜎𝐸, �̄�) is not satisfiable, 
which implies that Φ is valid. □

We now study the complexity lower bound for the language 𝖠 in the ba-combined and combined complexity, and show that
MinEx-Rel(𝖠) is PNExp-hard in the ba-combined complexity; this result provides the two PNExp-hardness results in Table 6. The result 
is obtained via a reduction from a PNExp-complete Extended-Tiling problem that is a variation of the exponential tiling problem.

Theorem 8.7. MinEx-Rel(𝖠) is PNExp-hard in the ba-combined (resp., combined) complexity. Hardness holds even on instances whose 
queries are BCQs.

Proof. To prove the statement, we show a reduction from the PNExp-complete Extended-Tiling problem [51, Theorem 6] and [81, 
Theorem 5.2]: for an instance (1,2, 𝑛,𝑚), where 1 and 2 are two tiling systems, and 𝑛 and 𝑚 are two integers represented in unary, 
decide whether there exists an initial tiling condition 𝑠 of length 𝑚 such that 1 admits a tiling of the exponential square 2𝑛 × 2𝑛
with initial condition 𝑠 and 2 does not admit a tiling of the exponential square 2𝑛 × 2𝑛 with initial condition 𝑠. From an instance 
(1,2, 𝑛,𝑚) of the Extended-Tiling problem, we build as follows an instance (KB, 𝑞,𝜓) of MinEx-Rel(𝖠), where KB = (𝐷,Σ) is a 
knowledge base, 𝑞 is a BCQ, and 𝜓 ∈𝐷 is a fact.

For the two tiling systems 1 and 2, we use the TGD and database encoding presented in [51, Theorems 6 and 15], [52, extended 
proof of Theorem 6, Lemma 23], and [81, Lemma 3.2, Theorem 5.2]. More specifically, we have two sets of bounded-arity TGDs 
Σ𝑖 ,𝑛,𝑚

, for 𝑖 = 1,2, to encode the structure of the tiling task, that is, describe how a correct tiling looks like when covering the 
exponential square 2𝑛 × 2𝑛 and has an initial condition of length 𝑚; and two sets 𝐷𝑖

of facts, for 𝑖 = 1,2, to encode the adjacency 
rules of 1 and 2, respectively. In this reduction, we do not use the set of facts “𝐷𝑤” (see [51,81]; this would be the database 
encoding the initial tiling condition), as we need a reduction simulating a test for all the initial conditions 𝑠 of length 𝑚. The two 
sets of TGDs and the database facts for 1 and 2 are made disjoint by using disjoint predicates (we index them with superscript 𝑖). 
That is, we have Σ1 = Σ1 ,𝑛,𝑚

1, 𝐷1 =𝐷1
1, and Σ2 = Σ2 ,𝑛,𝑚

2, 𝐷2 =𝐷2
2. The rules Σ𝑖 and the database 𝐷𝑖, for 𝑖 = 1,2, are such that 

the tiling system 𝑖 admits a tiling of the exponential square 2𝑛 × 2𝑛 with an initial tiling condition 𝑠, encoded via the init𝑗 -facts (see 
their meaning below), if and only if 𝐷𝑖 entails the fact yes𝑖() via Σ𝑖 [51, Theorem 15], [52, Lemma 23], and [81, Lemma 3.2]. We 
can now provide the details of the reduction.

(The database). The database is 𝐷 = 𝐷1 ∪𝐷2 ∪ {diff -tiles(𝑡′, 𝑡′′) ∣ for all pairs of tile-type constants 𝑡′ ≠ 𝑡′′} ∪ {init𝑗 (𝑡) ∣ for all 0 ≤ 𝑗 <
𝑚 and for all tile-type constants 𝑡} ∪ {yes2()}, where diff -tiles(𝑡′, 𝑡′′) is a predicate stating that the tile constants 𝑡′ and 𝑡′′ refer to 
different tile-types, and init𝑗 (𝑡) is a predicate stating that, at the 𝑗 th position of the initial tiling condition, there is a tile of type 𝑡.
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(The program). We take the program to be Σ = Σ1 ∪ Σ2 ∪ Σinit , where Σinit is defined as follows:

Σinit = {diff -tiles(𝑋,𝑌 ) ∧ init𝑗 (𝑋) ∧ init𝑗 (𝑌 )→ yes1(),

diff -tiles(𝑋,𝑌 ) ∧ init𝑗 (𝑋) ∧ init𝑗 (𝑌 )→ yes2(),

diff -tiles(𝑋,𝑌 ) ∧ init𝑗 (𝑋) ∧ init𝑗 (𝑌 )→ init-all() ∣ for all 0 ≤ 𝑗 < 𝑚} ∪

{init0(𝑆0) ∧⋯ ∧ init𝑚−1(𝑆𝑚−1)→ init-all()}.

Intuitively, these TGDs state that, if in a candidate MinEx, two different types of tiles are assigned to the same initial location, then 
yes1(), yes2(), and init-all() are derived; the last rule says that, if in a set of facts, there is at least a fact assigning a tile-type to each 
location of the initial condition, then we can derive init-all().
(The query). The query is 𝑞 =𝐷1 ∧𝐷2 ∧ init-all() ∧ yes1() ∧ yes2(), where the symbols 𝐷1 and 𝐷2 in the query denote the conjunction 
of all database facts from 𝐷1 and 𝐷2, respectively.

(The candidate relevant fact). We take 𝜓 = yes2().
Observe that the reduction can be computed in polynomial time. Moreover, the reduction is such that the instances obtained have 

a bounded-arity program, and such that (𝐷,Σ) ⊧ 𝑞, because yes1(), yes2(), and init-all() are obtained by the presence in 𝐷 of all the 
init𝑗 -facts and the TGDs in Σinit .

Before showing that (1,2, 𝑛,𝑚) is a ‘yes’-instance of the Extended-Tiling problem if and only if there exists a MinEx for 𝑞 including 
𝜓 , let us focus on the possible (minimal) explanations for the query.

A set of facts 𝐸 ⊆𝐷, to be an explanation, needs to contain all facts in 𝐷1 and 𝐷2. If besides these facts, 𝐸 additionally contains, 
for a single 0 ≤ 𝑗 < 𝑚 and two distinct tiles types 𝑡′ and 𝑡′′, precisely the facts init𝑗 (𝑡′) and init𝑗 (𝑡′′), then we claim that 𝐸 is a minimal

explanation. Indeed, due to the presence in 𝐸 of init𝑗 (𝑡′) and init𝑗 (𝑡′′), from 𝐸 it is possible to derive yes1(), yes2(), and init-all(), besides 
all the facts in 𝐷1 and 𝐷2 that are assumed to be in 𝐸; therefore, 𝐸 is an explanation. The set 𝐸 is moreover a minimal explanation, 
because removing any fact from 𝐸 would break the entailment of the query. For this reason, any set of facts that is a proper superset 
of 𝐷1 ∪𝐷2 ∪ {init𝑗 (𝑡′), init𝑗 (𝑡′′)}, for a single 0 ≤ 𝑗 < 𝑚 and two distinct tiles types 𝑡′ and 𝑡′′, is a non-minimal explanation.

Hence, a necessary condition for a set of facts containing 𝜓 = yes2() to be a MinEx is the one of not including, for every 0 ≤ 𝑗 < 𝑚
and every pair of different tile-types 𝑡′ and 𝑡′′, the pair of facts {init𝑗 (𝑡′), init𝑗 (𝑡′′)}.

Moreover, a MinEx including 𝜓 must also satisfy init-all() in the query, and hence it has to include at least one fact init𝑗 (𝑡), for 
each 0 ≤ 𝑗 < 𝑚. Thus, a necessary condition for a fact set to be a MinEx including 𝜓 is to include exactly one fact init𝑗 (𝑡), for each 
0 ≤ 𝑗 < 𝑚. These sets hence encode a proper initial tiling condition 𝑠 for the tiling problems.

We now prove that there exists a initial tiling condition 𝑠 of length 𝑚 such that 1 admits a tiling of the exponential square 2𝑛 ×2𝑛
with the initial condition 𝑠, and 2 does not admit a tiling of the exponential square 2𝑛 × 2𝑛 with initial condition 𝑠, if and only if 
there exists a MinEx for (𝐷,Σ) ⊧ 𝑞 including 𝜓 .

(⇒) Assume that there exists an initial condition �̃� of length 𝑚 such that 1 has a solution with �̃�, and 2 has no solution with �̃�. 
Consider the following set of facts 𝐸�̃� =𝐷1 ∪𝐷2 ∪ {init𝑗 (𝑡) ∣ the 𝑗th tile of �̃� is of type 𝑡} ∪ {yes2()}.

First, we show that (𝐸�̃�,Σ) entails 𝑞. Clearly, 𝐸�̃� satisfies the parts 𝐷1, 𝐷2, and yes2() of 𝑞, as they are contained in 𝐸�̃� . Moreover, 
𝐸�̃� contains exactly one fact init𝑗 (𝑡) for each 0 ≤ 𝑗 < 𝑚, hence also the part init-all() of the query is satisfied by 𝐸�̃�. To conclude, since 
we are assuming that 1 has a solution with �̃�, also the part yes1() of 𝑞 is satisfied via the mediation of the program Σ1.

We claim that 𝐸�̃� is moreover a minimal explanation. Indeed, none of the facts in 𝐷1 ∪𝐷2 or init𝑗 -facts can be removed from 𝐸�̃�, 
otherwise, the query would not be entailed. Regarding yes2(), since we are assuming that 2 has no solution with 𝑠, the fact yes2()
cannot be entailed from 𝐸�̃� via the mediation of the program Σ2, and hence the presence of yes2() in 𝐸�̃� is essential for the entailment 
of the query.

(⇐) Assume that there exists a MinEx 𝐸 including 𝜓 = yes2(). We show that there exists an initial tiling condition 𝑠𝐸 of length 𝑚
such that 1 has solution with 𝑠𝐸 and 2 has no solution with 𝑠𝐸 .

Since 𝐸 is a MinEx containing yes2(), it must be the case that 𝐸 encodes a proper initial tiling condition 𝑠𝐸 of length 𝑚 (see the 
discussion above regarding the presence or not of the pairs of facts {init𝑗 (𝑡′), init𝑗 (𝑡′′)} in a candidate MinEx). Observe that the set 𝐸
does not contain the fact yes1(), as the fact yes1() does not belong to the database 𝐷 by construction, but 𝐸 anyway entails the query, 
which means that the fact yes1() is entailed from 𝐸 via the mediation of the program Σ1 , implying that 1 has a solution with 𝑠𝐸 . 
Moreover, the minimality of 𝐸 implies that the fact yes2() cannot be removed from 𝐸 without breaking the entailment of the query. 
Hence, 2 has no solution with 𝑠𝐸 . □

9. Large explanations

In this section, we conclude by carrying out a complexity analysis for the Large-MinEx problem of deciding whether there is a 
MinEx whose size is not smaller than some given threshold: for an instance (KB, 𝑞, 𝑛), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is an
UCQ (with KB ⊧ 𝑞), and 𝑛 is an integer number represented in binary, decide whether there is a MinEx for (𝐷,Σ) ⊧ 𝑞 of size larger 
than or equal to 𝑛. We first provide the membership results for UCQs and proceed with the hardness results for BCQs. The complexity 
results for Large-MinEx are the same of those for MinEx-Rel and are reported in Table 7.
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Algorithm 6: A general algorithm for the Large-MinEx problem.

Input: A knowledge base KB = (𝐷,Σ), a UCQ 𝑞, and an integer 𝑛≥ 1.
Output: 𝖺𝖼𝖼𝖾𝗉𝗍, if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 of size at least 𝑛; 𝗋𝖾𝗃𝖾𝖼𝗍, otherwise.

Procedure LargeMinex(KB, 𝑞, 𝑛):
1 𝐸← guess a subset of 𝐷
2 verify |𝐸| ≥ 𝑛
3 verify IsMinex(KB, 𝑞,𝐸)
4 return 𝖺𝖼𝖼𝖾𝗉𝗍

We outline a general approach solving Large-MinEx in Algorithm 6. This algorithm allows us to obtain (not necessarily tight) 
upper bounds for all the Large-MinEx problems considered. Also in this case, if we compare Algorithm 6 with Algorithm 5 for the
MinEx-Rel problem, we can see that they are very similar. The only difference is that, for Large-MinEx, after guessing a set of 
facts (line 1), we check that the guessed set has size at least 𝑛 (line 2), instead of checking, as for MinEx-Rel, that the guessed set 
contains the distinguished fact 𝜓 . Then, in both cases, we perform an oracle call to check that the guessed set is a MinEx (line 3)—like 
for the MinEx-Rel case and unlike for the Small-MinEx case, we need to check the minimality of the guessed explanation. The two 
tasks of checking the size of the guessed explanation and checking that the guessed explanation includes the distinguished fact are 
both feasible in (deterministic) polynomial time. Hence, the arguments showing the membership results for MinEx-Rel, with just 
minimal variations accounting for the test of the size of the guessed explanation, show the membership results for Large-MinEx as 
well. For this reason, we report only the statements of the results, without the detailed proofs. Also in this case, similarly to MinEx-
Rel, an interesting complexity result that we obtain is that, given a relational database 𝐷, a BCQ query 𝑞, and an integer 𝑛 ≥ 1, 
deciding whether there is a minimal subset of 𝐷 of size at least 𝑛 entailing 𝑞 is already ΣP

2 - hard (Theorem 9.6), i.e., again there is no 
need to have a program to make the problem difficult to solve.

The following theorem covers all the membership results for Large-MinEx in Table 7, but the P ones (details of the proof are in 
the proof of Theorem 8.1).

Theorem 9.1. For every class  of TGDs considered in this paper, if Is-MinEx() is in the complexity class 𝐃 in the combined (resp., ba-
combined, fp-combined, and data) complexity, then Large-MinEx() can be decided by a check in NP𝐃 in the combined (resp., ba-combined, 
fp-combined, and data) complexity.

The membership results in Table 7 obtained from the previous theorem descend also from the following complexity facts: NPP =
NP; for 𝐃 ∈ {PSpace,Exp,2Exp}, NP𝐃 = 𝐃; and PNExp ⊆ NPDExp

⊆ NPNPNExp
, for which, by the collapse of the Strong Exponential 

Hierarchy [62], it holds PNExp = NPNPNExp
, and hence PNExp = NPDExp

; additionally, NPNP = ΣP
2 .

The following theorem provides all the P membership results in Table 7 (details of the proof are provided in the comment before 
Theorem 8.2).

Theorem 9.2. For every class  of TGDs considered in this paper such that  is FO- rewritable, Large-MinEx() is in P in the data 
complexity.

We now proceed with the hardness results. First, we show in the following theorem that Large-MinEx is NP- hard for guarded full 
TGDs in the data complexity. This proves all the NP- hardness results in the data complexity in Table 7. We note that the construction, 
provided for MinEx-Rel is not directly applicable here, and thus we provide a slightly different reduction. In this case, we encode 
the Hamiltonian path problem into Large-MinEx.

Theorem 9.3. For every class  of TGDs considered in this paper such that ⊇ 𝖦𝖥, Large-MinEx() is NP- hard in the data complexity. 
Hardness holds even on instances whose queries are BCQs.

Proof. Recall that a Hamiltonian path in a graph is a path traversing all vertices of the graph without passing twice through the same 
vertex. We reduce to Large-MinEx(𝖦𝖥) the NP- complete Hamiltonian-Path problem defined as follows [58, Problem GT39]: for 
an instance (𝐺,𝑠, 𝑡), where 𝐺 = (𝑉 ,𝐴) is a directed graph, and 𝑠, 𝑡 ∈ 𝑉 are two vertices, decide whether there exists a Hamiltonian 
path in 𝐺 starting from 𝑠 and terminating in 𝑡—notice here that 𝐺 cannot be assumed acyclic, for otherwise the problem would be 
polynomial [58, Problem GT39].

From an instance (𝐺,𝑠, 𝑡) of Hamiltonian-Path, where 𝐺 = (𝑉 ,𝐴) is a directed graph assumed w.l.o.g. to be such that |𝑉 | ≥ 2, we 
build as follows an instance (KB, 𝑞, 𝑛) of Large-MinEx(𝖦𝖥), where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝑛 is an integer 
number. The reduction is an adaptation of the one proposed in the proof of Theorem 6.6. We comment here only the additional 
elements, database facts and program rules, specific to the current reduction. More details on the meaning of the other elements can 
be found in the proof of Theorem 6.6.

(The database). We encode in the database the graph 𝐺, and the starting and destination vertices 𝑠 and 𝑡:

{arc(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈𝐴} ∪ {reach(𝑠),dest(𝑡), reach(𝑡)}.
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The database also contains facts declaring pairs of different vertices and facts over a predicate to have guarded rules:

{diff (𝑣,𝑤) ∣ 𝑣,𝑤 ∈ 𝑉 ∧ 𝑣 ≠𝑤}, {guard(𝑢, 𝑣,𝑤) ∣ 𝑢, 𝑣,𝑤 ∈ 𝑉 }.

(The program). The program is defined as

Σ = {reach(𝑋) ∧ arc(𝑋,𝑌 )→ reach(𝑌 ),

dest(𝑋) ∧ reach(𝑋)→ dest-reached(),

guard(𝑋,𝑌 ,𝑍) ∧ arc(𝑋,𝑌 ) ∧ arc(𝑋,𝑍) ∧ diff (𝑌 ,𝑍)→ dest-reached()},

where the last rule, when triggered, bypasses the test of reachability of 𝑡 from 𝑠 when in a set of facts there are facts encoding two 
different outgoing arcs from a same source vertex.

(The query). We take the query to be 𝑞 = dest-reached() ∧𝐷st , where with the notation 𝐷st in the query we mean the conjunction of 
all structural facts from the set 𝐷st containing all the diff -facts and guard-facts.

(The threshold integer). We take 𝑛 = |𝐷st|+ |𝑉 |+ 1.

This instance of Large-MinEx can be computed in polynomial time, the program and the query are fixed, the program is guarded 
and full, and (𝐷,Σ) ⊧ 𝑞, as {dest(𝑡), reach(𝑡)} ⊂𝐷 and ‘dest(𝑋) ∧ reach(𝑋)→ dest-reached()’ ∈ Σ.

We show that there is a Hamiltonian path from 𝑠 to 𝑡 in 𝐺 if and only if there is a MinEx for (𝐷,Σ) ⊧ 𝑞 of size at least 𝑛.
(⇒) Suppose that there is a Hamiltonian path 𝑃 from 𝑠 to 𝑡 in 𝐺. For presentation convenience, let us assume that 𝑃 is a sequence 

of arcs (and not a sequence of vertices). Notice that the path 𝑃 is of size |𝑉 | − 1, as it traverses all vertices exactly once. Take the 
set of facts 𝐸𝑃 = {arc(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝑃 } ∪ {reach(𝑠),dest(𝑡)} ∪𝐷st . Observe that (𝐸𝑃 ,Σ) ⊧ 𝑞, as 𝑡 is reachable from 𝑠 via the path 𝑃
and the arc-facts associated with the arcs in 𝑃 are in 𝐸𝑃 ; hence, 𝐸𝑃 is an explanation. Moreover, we claim that 𝐸𝑃 is a minimal 
explanation. Indeed, we cannot remove reach(𝑠) from 𝐸𝑃 , for otherwise no reach-fact other than reach(𝑠) could be entailed, and neither 
reach(𝑡). Also, no arc-fact can be removed from 𝐸𝑃 , because 𝑃 is a simple path, and this would result in reach(𝑡) not being entailed. 
Furthermore, no fact of 𝐷st can be removed from 𝐸, for otherwise the corresponding query part would not be satisfied. Observe that 
the size of 𝐸𝑃 is 𝑛.

(⇐) First, notice that the fact dest(𝑡) must be in every MinEx for 𝑞, otherwise the TGD ‘dest(𝑋) ∧ reach(𝑋)→ dest-reached()’ could 
not be triggered and the fact dest-reached() = 𝑞 would not be entailed.

Observe now that there are two kinds of “trivial” MinExes for 𝑞: (i) the set 𝐷st ∪ {dest(𝑡), reach(𝑡)}, and (ii) the sets 𝐷st ∪
{arc(𝑢, 𝑣),arc(𝑢,𝑤)}, for a pair of arcs {(𝑢, 𝑣), (𝑢,𝑤)} ⊆ 𝐴 with 𝑣 ≠ 𝑤. The set of kind (i) is a MinEx for the presence of the rule 
‘dest(𝑋) ∧ reach(𝑋)→ dest-reached()’, whereas the sets of kind (ii) are MinExes for the presence the rule ‘guard(𝑋,𝑌 ,𝑍) ∧ arc(𝑋,𝑌 ) ∧
arc(𝑋,𝑍) ∧ diff (𝑌 ,𝑍)→ dest-reached()’.

Let us consider non-trivial MinExes for 𝑞. These MinExes have to be different from trivial ones, and cannot be strict superset of 
trivial MinExes. Since a non-trivial MinEx is not a strict superset of the trivial MinEx of kind (i), a non-trivial MinEx must include 
dest(𝑡) (see above) and has to exclude reach(𝑡). By this, a non-trivial MinEx has instead to include reach(𝑠), because it is a necessary fact 
to start the successive applications of the rule ‘reach(𝑋) ∧ arc(𝑋,𝑌 )→ reach(𝑌 )’, that eventually entail the fact reach(𝑡) and trigger the 
TGD ‘dest(𝑋)∧ reach(𝑋)→ dest-reached()’. Moreover, since a non-trivial MinEx is neither a strict superset of trivial MinExes of kind (ii), 
a non-trivial MinEx cannot include two (distinct) arc-facts associated with two different outgoing arcs from each given vertex.

Suppose now that there is a MinEx 𝐸 for (𝐷,Σ) ⊧ 𝑞 of size at least 𝑛 = |𝐷st|+ |𝑉 |+ 1. As we are assuming |𝑉 | ≥ 2, the size of 𝐸
is at least |𝐷st|+ 3, and hence 𝐸 is a non-trivial MinEx. From our observations above, we hence have that:

– 𝐸 ⊇ {reach(𝑠),dest(𝑡)} and reach(𝑡) ∉𝐸, and
– 𝐸 includes at most one arc-fact associated with an outgoing arc from each given vertex.

Because 𝐸 entails the query and reach(𝑡) ∉ 𝐸, among the arc-facts in 𝐸 there are some encoding a path from 𝑠 to 𝑡. However, 
since 𝐸 includes at most one arc-fact associated with an outgoing arc from each given vertex, all the arc-facts in 𝐸 encode altogether 
a simple path from 𝑠 to 𝑡.

To conclude, notice that 𝐸, to be an explanation, must include all facts from 𝐷st , together with the facts dest(𝑡) and reach(𝑡) (see 
above). Since the size of 𝐸 is at least 𝑛 = |𝐷st|+ |𝑉 |+ 1, and there is in 𝐸 at most one arc-fact for each given vertex, it must be the 
case the number of arc-facts in 𝐸 is |𝑉 |− 1. By this, the arc-facts in 𝐸 must encode a Hamiltonian path in 𝐺 from 𝑠 to 𝑡. □

The other hardness results in Table 7, but the ΣP
2 and the PNExp ones, follow from Theorem 9.4 and Theorem 9.5 below, whose 

proofs are slight variations of the proofs of Theorem 4.3 and Theorem 4.6, respectively. More specifically, the reductions prov-
ing the two theorems below are from OMQA() to the complement of Large-MinEx().9 However, since the results sought after 
are for deterministic complexity classes, these classes are closed under complement, and hence the hardness obtained hold also 
for Large-MinEx().

9 See Footnote 7 on page 26.
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For both theorems, the reductions transform in logspace an OMQA() instance (KB, 𝑞), where KB = (𝐷,Σ) is a knowledge base, 
and 𝑞 is a BCQ, into an instance (KB′, 𝑞′, 𝑛) of Large-MinEx(), where KB′ = (𝐷′,Σ′) is a knowledge base, 𝑞′ is a BCQ, and 𝑛 is 
an integer. In the reductions of Theorem 9.4 and Theorem 9.5, we build 𝐷′, Σ′, and 𝑞′ as in the reductions of Theorem 4.3 and 
Theorem 4.6, respectively. Then, in the reductions of Theorem 9.4 and Theorem 9.5, we let the threshold integer 𝑛 to be 2 ⋅ |𝐷|+ 3, 
and to be |𝐷|+ 1, respectively.

To conclude these proofs, it is enough to notice that if (𝐷,Σ) ⊧ 𝑞, then the only MinEx for 𝑞 is 𝐸 =𝐷′ ⧵𝐷𝑞 , whose size is 𝑛−1 (so, 
not big enough). On the other hand, if (𝐷,Σ) ̸⊧ 𝑞, then the only MinEx for 𝑞 is the entire database 𝐷′, which includes also the facts 
from 𝐷𝑞 , whose size is at least 𝑛.

Theorem 9.4. For every class  of TGDs considered in this paper such that ⊇ 𝖦𝖥, the complement of Large-MinEx() is at least as hard 
as OMQA() in the data (resp., fp-combined, ba-combined, and combined) complexity. Hardness holds even on instances whose queries are 
BCQs.

Theorem 9.5. For every class  of TGDs considered in this paper, the complement of Large-MinEx() is at least as hard as OMQA() in 
the fp-combined, (resp., ba-combined, and combined) complexity. Hardness holds even on instances whose queries are BCQs.

The ΣP
2 - hardness of Large-MinEx() in the fp-combined complexity can be shown by slightly modifying the reduction in the 

proof of Theorem 8.6. The theorem below provides all ΣP
2 - hardness results in Table 7 for Large-MinEx.

Theorem 9.6. For every class  of TGDs considered in this paper, Large-MinEx() is ΣP
2 - hard in the fp-combined (resp., ba-combined) 

complexity. Hardness holds even on instances whose programs are empty and whose queries are BCQs.10

Proof. We show a reduction to Large-MinEx() from the ΣP
2 - complete problem QBFCNF

2,∀,¬. From an instance Φ = ∃�̄�∀�̄�¬𝜙(�̄�, �̄�) of 
QBFCNF

2,∀,¬, we obtain an instance (KB, 𝑞, 𝑛) of Large-MinEx as follows, where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝑛 is 
an integer number.

The database 𝐷, the program Σ, and the query 𝑞 are obtained as in the proof of Theorem 8.6.

(The threshold integer). We take 𝑛 = |𝐷st|+ |�̄�|+ 1.

Recall, from the proof of Theorem 8.6, that this instance of Large-MinEx can be computed in polynomial time, the program is 
fixed, as it is empty, and it is linear (and guarded), acyclic, sticky, and full. Recall also that (𝐷,Σ) ⊧ 𝑞.

(⇒) This direction easily follows, as in the (⇒)-direction of the proof of Theorem 8.6, the MinEx 𝐸�̃��̄� has size 𝑛.
(⇐) Let us assume that there exists a MinEx 𝐸 for (𝐷,Σ) ⊧ 𝑞 of size at least 𝑛 = |𝐷st|+ |�̄�|+ 1.
We know that every MinEx contains exactly one fact between val(𝑥𝑖, f ) and val(𝑥𝑖, t), for each 𝑥𝑖 ∈ �̄� (see the proof of Theorem 8.6). 

Therefore, 𝐸 encodes a truth assignment 𝜎𝐸 for the Boolean variables in �̄�. As there are |�̄�|-many val-facts in 𝐸, the other facts in 
𝐸 are at least (|𝐷st| + 1)-many. However, the non-val-facts in 𝐷 are precisely the facts in 𝐷st ∪ clsat(⋆,⋆,⋆), which clearly are 
(|𝐷st|+ 1)-many, therefore all of them are contained in 𝐸.

Since 𝐸 is a minimal explanation, none of the facts in 𝐸 can be removed without breaking the entailment of the query. Hence, 
neither clsat(⋆,⋆,⋆) can be removed from 𝐸, implying that this fact is necessary for the entailment of the query. Therefore, by the 
definition of the query, the truth assignment 𝜎𝐸 for the variables in �̄� is such that 𝜙(�̄�∕𝜎𝐸, �̄�) is not satisfiable. Thus, the formula Φ
is valid. □

The PNExp-hardness results in Table 7 for the language 𝖠 in the ba-combined and combined complexity provided by the statement 
below are obtained by adapting the reduction shown in the proof of Theorem 8.7. This provides all the PNExp-hardness results in 
Table 7 for Large-MinEx.

Theorem 9.7. Large-MinEx(𝖠) is PNExp-hard in the ba-combined (resp., combined) complexity. Hardness holds even on instances whose 
queries are BCQs.

Proof. We show a reduction to Large-MinEx(𝖠) from the PNExp-hard problem Extended-Tiling. From an instance (1,2, 𝑛,𝑚)
of the Extended-Tiling problem, where here we assume w.l.o.g. that 𝑚 ≥ 2, we build an instance (KB, 𝑞, 𝑛′) of Large-MinEx(𝖠), 
where KB = (𝐷,Σ) is a knowledge base, 𝑞 is a BCQ, and 𝑛′ is an integer number.

The database 𝐷, the program Σ, and the query 𝑞 are obtained as in the proof of Theorem 8.7.

(The threshold integer). We take 𝑛′ = |𝐷1|+ |𝐷2|+𝑚+ 1.

Recall, from the proof of Theorem 8.7, that this instance of Large-MinEx can be computed in polynomial time, the program has 
bounded arity, and that (𝐷,Σ) ⊧ 𝑞.

10 Notice that this hardness result holds already over plain relational databases: given a database 𝐷, a BCQ 𝑞, and an integer number 𝑛 ≥ 1 (both 𝐷 and 𝑞 are part 
of the input and may vary), deciding whether there is a minimal subset 𝐸 of 𝐷 whose size is at least 𝑛 and entailing 𝑞 is ΣP

2 - hard.
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(⇒) This direction easily follows, as in the (⇒)-direction of the proof of Theorem 8.7, the MinEx 𝐸�̃� has size 𝑛.
(⇐) Let us assume that there is a MinEx 𝐸 for (𝐷,Σ) ⊧ 𝑞 of size at least 𝑛 = |𝐷1|+ |𝐷2|+𝑚+1, which, by our assumption on 𝑚, is 

at least |𝐷1|+ |𝐷2|+3. Notice that MinExes of the form 𝐷1 ∪𝐷2 ∪{init𝑗 (𝑡′), init𝑗 (𝑡′′)}, for some 0 ≤ 𝑗 < 𝑚 and two distinct tile-types 𝑡′

and 𝑡′′, have only size |𝐷1|+ |𝐷2|+2. Hence, it must be the case that 𝐸 is a MinEx not containing any pair of facts {init𝑗 (𝑡′), init𝑗 (𝑡′′)}, 
for each 0 ≤ 𝑗 < 𝑚 and two distinct tile-types 𝑡′ and 𝑡′′.

Since 𝐸 is an explanation and entails the query, it entails also the init-all() part of the query. Therefore, 𝐸 contains exactly one 
init𝑗 -fact, for each 0 ≤ 𝑗 < 𝑚, and hence 𝐸 encodes an initial tiling condition 𝑠𝐸 . From this, we have that the other facts in 𝐸 are at 
least (|𝐷1|+ |𝐷2|+1)-many. Since the facts in 𝐷 that are not init𝑗 -facts are precisely the facts in 𝐷1 ∪𝐷2 ∪ {yes2()}, and clearly they 
are (|𝐷1|+ |𝐷2|+1)-many, it follows that 𝐸 contains all of them. Therefore, by the fact that 𝐸 entails the query, it means that yes1()
is entailed by 𝐸, which implies that 1 admits a tiling of the exponential square with initial condition 𝑠𝐸 .

On the other hand, since 𝐸 is a MinEx, none of the facts in 𝐸 can be removed without breaking the entailment of the 𝑞, and 
this holds for the fact yes2() as well. Therefore, the presence of yes2() in 𝐸 is necessary to ensure the entailment of the query, which 
implies that 2 does not admit a tiling of the exponential square with initial condition 𝑠𝐸 . □

10. Related work

Abstracting away from subtle differences, the study of explanations for ontological query answering can be classified according 
to the underlying logical formalism (e.g., description logics or existential rules) and the reasoning task to be explained (e.g., query 
answering or concept subsumption). In this section, we review the existing literature on explanations for logical formalisms and 
present the larger context which our work settles in.

Logical abduction. From a broader perspective, we may say that our work deals with abductive reasoning, since we seek to find the 
causes for some observations. Abductive reasoning has been studied in the AI community since the 1970s [39,89,96] with applications 
in fault diagnosis, belief revision, automated planning, and others. Abductive reasoning has been studied for several formalisms, such 
as propositional logic [48], logic programs [49], default theories [50], probabilistic temporal logic [85], and DLs [15,94,100]. The 
study of explanations and diagnosis in logical formalisms dates back to the work of Reiter [98]. He studied the problem of explaining 
the discrepancy between the observed and the correct system behaviour by employing first-order logic.

An early relevant work to ours is that on propositional abduction by Eiter and Gottlob [48], which analyses the complexity of 
various problems in this setting. In their work, a propositional theory 𝑇 formalises a particular application domain, a set 𝑀 of atomic 
formulas describes the observed manifestations, and a set 𝐻 of formulas contains possible hypotheses. Then, an explanation for 𝑀 is 
a subset of hypotheses 𝑆 ⊆𝐻 such that 𝑇 ∪ 𝑆 is consistent and logically entails 𝑀 . This work contains the complexity analysis of a 
number of decision problems, including the problems of deciding whether an explanation exists, and whether a particular hypothesis is 
relevant or necessary, which have inspired some of the problems studied in this paper, like MinEx-Rel. In their complexity analysis, 
Eiter and Gottlob [48] looked into the two cases when 𝑇 is an arbitrary propositional theory, and when 𝑇 consists only of Horn 
formulas. Their work also studied a number of different minimality criteria, including, subset-minimality, minimum-cardinality, and 
weight-minimality (penalisation).

Explaining axiom consequences. Early works dealing with explanations in the context of ontologies primarily focused on DLs as 
the underlying ontology language and, interestingly, they investigated this topic from an ontology “debugging” perspective. This was 
because, since devising an ontology is an error-prone task, people were interested in having tools supporting the analysis of ontologies 
and their consequences. In particular, they were focused in discovering which parts of an ontology bolster concepts subsumption or 
cause concepts unsatisfiability: In the former task, given an ontology  (a TBox, using a DL terminology), it is asked why two given 
concepts 𝐶 and 𝐷 (intuitively, unary predicates, in the terminology of the present paper) are such that  ⊧ (∀𝑥)(𝐶(𝑥)→𝐷(𝑥)) (i.e., 
𝐷 subsumes 𝐶)—this was needed to double-check in the ontology the explicitly and implicitly defined taxonomies; whereas in the 
latter task it is asked why a given concept 𝐶 is such that  ⊧ ¬(∃𝑥)(𝐶(𝑥)) (i.e., 𝐶 is unsatisfiable)—this was regarded as an important 
sign of a badly-designed ontology.

Different works that dealt with these problems proposed different notions of explanations. The earliest works considered formal 
proofs as explanations, while later works considered subsets of the TBox as explanations. Providing formal proofs for concept sub-
sumption was first considered by McGuinness and Borgida [84] and Borgida et al. [20], who provided algorithms to obtain such 
proofs based on different deductive calculi. This approach greatly differs from ours, as we abstract away from a particular proof by 
considering subsets that support the entailment.

A subsequent line of research focused on axiom pinpointing [67,69,100]. In axiom pinpointing, explanations are taken to be minimal 
subsets of the ontology (TBox). Such explanations are called justifications [64,65], or MinAs, which stands for “minimal axiom set” [7, 
94]. Early works in axiom pinpointing focused on explaining concept unsatisfiability. The first such work, to our knowledge, was 
by Schlobach and Cornet [100], which was inspired by medical applications. The authors provided an algorithm to pinpoint the axioms 
in an unfoldable    TBox that cause unsatisfiability of a concept by extending the standard tableau algorithm [101] with labels. 
Later, this problem was addressed in the Semantic Web setting for repairing unsatisfiable concepts in OWL ontologies [70], which 
are based on the expressive DL  (). Justifications have also been considered to explain inconsistencies in ontologies [65], 
where inconsistency means that the ontology does not admit any model and entails everything. Various types of justifications have 
also been considered depending on different notions of semantic minimality [64]. Later works in axiom pinpointing mainly focused 
on a more general task of explaining any concept subsumption [7,65,94]. Axiom pinpointing has been extensively studied for the 
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Semantic Web ontologies, OWL [64,71,105], and for the Snomed CT medical ontology [7]. Also, systems were developed to compute 
justifications [71,102].

From the context of axiom pinpointing, the work by Peñaloza and Sertkaya [94] is closely related to ours. They analyse the 
complexity of decision, counting, and enumeration problems, associated with axiom pinpointing for concepts subsumption, by in-
corporating and extending many of their previous works [91–93]. The authors give a nearly complete picture of the complexity of 
axiom pinpointing for lightweight DLs  and DL-Lite family of languages. In particular, they studied the problems of recognising a 
MinA, recognising the set of all MinAs, deciding whether a particular axiom is relevant for explaining, and deciding whether there 
is an explanation that avoids all of some forbidden sets. By adapting these problems, we have introduced the problems Is-MinEx,
All-MinEx, MinEx-Rel, and MinEx-Irrel, when studying explanations for query answers. For more expressive description logics, 
the complexity of the problems associated with axiom pinpointing were considered more recently as well [90].

Some other works on axiom pinpointing focused on analysing the problems associated with computing a pinpointing formula [5,6] 
that provides an encoding of all MinAs. However, it is known that extracting the MinAs from such representations is already a hard 
problem. Beside computing justifications efficiently, several works addressed the problem of making them understandable for the 
user, either by studying their cognitive complexity [66], or by grouping justifications that have a similar structure to help to handle 
a large number of justifications [9].

Explaining query entailment. Closer to our work are those explicitly dealing with explanations of query entailment (or non-
entailment) from knowledge bases. An extensive portion of research on explanations of query entailment has been carried out under 
the umbrella of provenance. Query provenance has widely been studied in the database community [25,40]. The notions of provenance 
can be divided into the three main categories, namely, why-, how-, and where-provenance. The why-provenance, which is the notion 
closest to our minimal explanation, provides a witness that is a subset of the database for a query [26,41], the how-provenance is more 
general than the why-provenance, as it also provides how the answer is derived from a witness [53,60], and the where-provenance 
captures where the output data came from in the input database [26,110]. The classical database provenance has recently been 
extended for ontology-based data access to capture why-provenance [23,33]. The main difference between our approach and the 
work on provenance is that, in our work, we seek minimal database subsets supporting the query entailment, while, in the context of 
provenance, all possible explanations are relevant, irrespective of whether they are minimal or not.

Focusing now on query entailment explanations in knowledge base settings, works in the literature on this topic mainly dealt with 
query entailment under inconsistency-tolerant semantics or explaining query non-entailment. Surprisingly, prior to the initial appear-
ance of our work in its conference version, very little work investigated explanations of query entailment under standard semantics.

To our knowledge, prior to our work, explanations for ontology-mediated query answering under standard semantics have only 
been studied for the DL-Lite and DL-Lite families of languages [21,103]. These works provide formal proofs as explanations for query 
answers, and thus substantially differ from our approach. The only other work on query entailment explanations under existential 
rules preceding our work is relative to probabilistic databases and hence of a very different flavor [34]. Our initial work on this topic 
was then followed up by some focusing on explaining query answers in DLs [22,37], where the explanations are subsets of the ABox 
(intuitively, the database, in the terminology of the present paper), another in which the explanations are instead proofs [1], and 
another focusing on explanations with preferences in the context of existential rules [38].

Explanations for query entailment under inconsistency tolerant semantics have been studied both for description logics and ex-
istential rules. In the DL setting, the work that is most similar to ours is that by Bienvenu et al. [18,19], which studies explanations 
for both positive and negative query answers over inconsistent DL-Litecore knowledge bases. This work defines explanations, named 
causes, as subsets of the ABox, which makes them very similar to ours, for positive and negative query answers under brave, AR, and 
IAR semantics. They study the problems of recognizing a minimal explanation, deciding if a particular assertion (intuitively, a fact, in 
the terminology of the present paper) is relevant, and if a particular assertion is necessary. Despite the fact that their work considers 
similar problems, the fact that a different semantics is considered makes their work and the analysis in the present paper substantially 
different. Explanations for query answers under the inconsistency-tolerant semantics ICR was considered by Arioua et al. [3], where 
an argumentation framework was used as the basis for the explanations. Another argumentation framework was provided for BCQ ex-
planations under the IAR and brave semantics in [2], which was also implemented in the DALEK prototype [4]. Preferred explanations 
for negative query answers were considered under the inconsistency-tolerant semantics IAR by Du et al. [47]. In the existential rule 
setting, explanations for query entailment under the AR, IAR, and ICR semantics were studied in [80], and in [82] explanations for 
query non-entailment under inconsistency-tolerant semantics were studied. Empirical evaluation was provided in [61] for assessing 
different methods for computing explanations under the ICR semantics.

Explanations for negative query answers have been studied for DLs, under the name of ABox abduction [32,45,46,74], and in 
the context of databases [63]. The closest work to ours is that by Calvanese et al. [31,32]. In this work, as it is common in the 
ABox abduction research, they start with a set of abducible predicates, called signature. Then, given a query that is not entailed 
by the knowledge base, the idea is to find a set of assertions such that, when added to the ABox, the entailment holds (avoiding 
inconsistencies). This formulation is suitable when abducible predicates are known, but relevant constants may not be known. They 
analysed the computational complexity of the problems associated with negative explanations in DL-Litecore, and in particular they 
focused on the problems of recognising an explanation, deciding whether an explanation exists, whether an assertion is relevant, 
and whether an assertion is necessary. They considered arbitrary inclusion-minimal and cardinality-minimal explanations. A similar 
approach to the problem was also investigated in [43,103]. Koopmann et al. [76] (see also [75]) considered an extended scenario, 
in which the abduction is not limited to assertions to add to the ABox, but they also consider rules to add to the TBox. Du et al. [46]
introduced a kind of minimal explanations, called representative explanations, from which all minimal explanations can be retrieved. 
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Different works focused on the efficient computation of explanations for ABox abduction; see, e.g., [43,45,46,111]. For existential 
rules, explanations of query non-entailment were investigated in [36].

Explanations for negative query answers have also been considered for database, as minimal sets to be added to support the 
entailment [63], or, via a different approach, by considering subqueries causing an answer to be missing [14].

11. Conclusion

In this paper, we have defined the notion of minimal explanations for ontological query entailment under the existential rules 
formalism. We have carried out a thorough complexity analysis of various problems associated with minimal explanations for the most 
prominent classes of TGDs, and from different complexity measures, with the aim of understanding how the complexity is affected 
when key parameters of the input are considered to be fixed. We have found that in various circumstances, the complexity of dealing 
with minimal explanations increases compared to the complexity of query entailment, as it is needed to ensure the minimality of the 
explanation sets. Among the complexity results obtained, we have proven a few DExp- completeness ones, which characterize some 
of the problems studied here among the very few natural ones that are complete for this complexity class.

There are many interesting directions for future work, apart from studying other ontology languages, such as considering richer 
notions of explanations in which also the rules play a role. In fact, in some inconsistency-tolerant semantics, also ontological rules can 
be repaired, e.g., in the generalized repair semantics [51,79], and hence richer notions of explanations might be needed, in which also 
the repair conducted on the ontology has to be taken into account. Other problems can be considered, as counting and enumerating 
explanations, as it was done, e.g., by Peñaloza and Sertkaya [94]. The case in which preferences can be expressed over explanations, 
especially when enumerating them, can be enriched by more expressive preference languages [24,77,78], as discussed in [27], where 
a notion of preferred repairs is introduced in the context of inconsistency-tolerant query answering. We can extend the notion of 
explanations for the inconsistency-tolerant framework to take into account user preferences, as discussed there, or use richer notions 
of order to select repairs in the inconsistency-tolerant framework [16,83]. Also investigating more general definitions of explanations 
encompassing positive and negative query answering, both from the perspective of a consistent and inconsistent setting, is interesting.
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