SUPPORTING INFORMATION

Chemiluminescence "add-and-measure" sensing paper based on Prussian Blue/Metal-Organic Framework MIL-101 nanozyme for rapid hydrogen peroxide detection

Héctor Martínez-Pérez-Cejuela[‡], Maria Maddalena Calabretta[†], Elisa Michelini^{†,¥,*}

[‡] Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain; [†]Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy; [¥] IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy

Table of contents

- Page S1. Cover page and table of content
- Page S2. Experimental section (MOF syntheses)
- Page S3. Preliminary studies about MOF(Fe) candidate in batch (Figure S1)
- Page S4. Preliminary studies about MOF candidates in paper-based sensors (Figure S2)
- Page S5. Characterization studies of p-XRD for MIL-101(Cr, Al) (Figure S3)
- Page S6. Characterization studies of FT-IR for MIL-101(Cr, Al) (Figure S4)
- Page S7. Characterization studies of FT-IR for the developed sensor (Figure S5)
- Page S8. Mapping and EDX analysis (Figure S6)
- Page S9. SEM micrographs from MIL-101(Cr ,Al) (Figure S7)
- Page S10. TEM micrographs from MIL-101(Cr, Al) (Figure S8)
- **Page S11.** N₂ adsorption/desorption isotherms (Figure S9)
- Page S12. Dispersion stability using different dispersants (Figure S10)
- Page S12. pH study (Figure S11)
- Page S13. SEM images of the sensor on day 0 and day 14 (Figure S12)
- Page S14. Method comparison (Table S1)
- Page S15-16. References

EXPERIMENTAL SECTION

Synthesis of MIL-101(Cr): 5 mmol of metal precursor (Cr(NO₃)₃·9H₂O) was weighed and mixed with 2 mmol of terephthalic acid (TA) in 15 mL of MQ-water. The molar ratio was set at 1:2.5:417 for TA:Cr(III):H₂O. The mixtures were homogenized and introduced in a Teflon-lined stainless steel autoclave. After its sealing, the mixture was heated up to 150 °C for 12 h. Then, the resulting green powder was collected by centrifugation at 14,000 g for 10 min and washed with DMF several times (3 x 10 mL). Finally, further purification was performed as indicated for MIL-101(Fe) in Section 2.4. with methanol at 60 °C and drying process.

Synthesis of MIL-101(Al): 2 mmol of AlCl₃·6H₂O and 3 mmol of terephthalic acid were solved in 40 mL of DMF. The molar ratio was set at 1:1.5:258 for Al(III):TA:DMF. The mixture was homogenized in the ultrasonic bath for 30 min and placed in a Teflon-lined stainless steel autoclave. The synthesis was performed for 72 h at 130 °C. The resulting palish yellow was centrifuged (14,000 g for 10 min) and washed with DMF several times (3 x 20 mL). Finally, further purification was performed as indicated for MIL-101(Fe) in the Section 2.4. with methanol at 60 °C and drying process.

Synthesis of bare PB-NPs: 1.1 mmol of citric acid was added to a previously prepared solution of 1 mM FeCl₃·6H₂O (40 mL). The mixture was homogenized and heated up to 60 °C. Then, 40 mL of 1 mM K₄Fe(CN)₆·3H₂O were added dropwise for 30 min at 60 °C under vigorous stirring. After the addition of this latter reagent, an intensive blue color appeared with a perfect dispersion of NPs. The resulting PB-NPs were naturally cooled to room temperature under mild stirring for approximately 1 h.

Figure S1. Preliminary studies in batch using 384-well plate comparing MOF(Fe), composite, and pristine PB-NPs. Experimental conditions: 5.0 μ L PB-NPs@MIL-101 dispersions (500 mg L⁻¹), 5.0 μ L of luminol 0.025 M (pH 12.0) and 10.0 μ L of 0.1 mM H₂O₂.

Figure S2. Preliminary chemiluminescence studies in paper-sensor comparing MOF(Fe), composite, and pristine PB-NPs. Experimental conditions: dried 10 μ L commercial luminol and 10 μ L of 2000 mg L⁻¹ PB-NPs@MIL-101(Fe) (or bare MIL-101(Fe) or PB-NPs) and 10 μ L of H₂O₂ 0.1 mM.

Figure S3. p-XRD spectra from 5 to 60 degree (2 Θ) for MIL-101(Cr, Al), bare PB-NPs, and their respective composites.

Figure S4. FT-IR spectra from 4000 to 400 cm⁻¹ for MIL-101(Cr, Al), bare PB-NPs, and their respective composites.

Figure S5. FT-IR spectra from 4000 to 400 cm⁻¹ for different sensors and bulk composite.

Figure S6. A) Mapping and B) EDX analysis of the PB-NPs@MIL-101(Fe) and C) EDX analysis of MIL-101(Fe).

Figure S7. SEM micrographs of A) MIL-101(Cr); B) PB-NPs@MIL-101(Cr); C) MIL-101(Al); D) PB-NPs@MIL-101(Al). Magnification and scale-bars are included in their respective images.

Figure S8. TEM micrographs of A) MIL-101(Cr); B) PB-NPs@MIL-101(Cr); C) MIL-101(Al); D) PB-NPs@MIL-101(Al). Scale-bars are included in their respective images.

Figure S9. N_2 (77 K) adsorption/desorption isotherms before and after PB-NPs impregnation. Black and red lines indicate the adsorption and desorption isotherms, respectively (A: Relative pressure (P/P₀); and B: Vol. Adsorbed (cm³ g⁻¹)

Figure S10. Different dispersions of 500 μ g of PB-NPs@MIL-101(Fe) using 1% (w/v) of PVP and SA in Tris-HCl 50 mM (pH 7.8) after their incubation without stirring for 2 h.

Figure S11. pH stability study. Stability studies at different pH were performed by analyzing H_2O_2 (0.1 mM) with the PB-NPs@MIL-101(Fe) sensing paper in 50 mM Tris-HCl by adjusting the pH to 5.0, 7.4, and 10.0, respectively

Figure S12. SEM micrographs of PB-NPs@MIL-101(Fe) at days A) 0 and B) 14. Magnification (1-2) and scale-bars are included in their respective images.

Material	Km H ₂ O ₂ (mol)	(Co)Substrate	Reaction volume	V _{max} (Mol s ⁻¹)	LDR (mol)	LOD _{H2O2} (mol)	Ref.
C0 ₃ O ₄	4.7.10-5	TMB/H ₂ O ₂	3000 µL	3.63.10-10	1.67.10-8-8.33.10-6	3.33.10-8	1
Fe ₃ O ₄	2.03.10-4	TMB/H ₂ O ₂	1316 µL	1.29.10-10	-	-	2
MWCNT	2.66.10-7	TMB/H ₂ O ₂	200 µL	2.22.10-11	$2 \cdot 10^{-10} - 3 \cdot 10^{-7}$	2.10-11	3
PB	1.54.10-6	TMB/H ₂ O ₂	200 µL	8.38.10-13	-	-	3
PB	7.82.10-6	TMB/H ₂ O ₂	1000 µL	2.4.10-11	-	-	4
HRP	4.87.10-6	TMB/H ₂ O ₂	1316 µL	1.15.10-10	-	-	2
Hemin@MO F	1.64.10-5	TMB/H ₂ O ₂	1500 μL	1.35.10-10	7.5.10-9 - 3.10-7	-	5
MIL-53(Fe)	4.2.10-8	TMB/H ₂ O ₂	1050 µL	1.95.10-11	9.98·10 ⁻¹⁰ – 2.00·10 ⁻⁸	1.37.10-10	6
MIL-101(Cr)	1.06.10-6	TMB/H ₂ O ₂	1000 µL	9.7.10-11	-	-	4
MIL-101(Fe)	5.80·10 ⁻⁹	TMB/H ₂ O ₂	100 µL	2.22.10-12	$2.40 \cdot 10^{-6} - 1 \cdot 10^{-8}$	1.5.10-11	7
MOF(Ce)	-	TMB/H ₂ O ₂	300 µL	-	1.2.10-6 - 4.8.10-6	3.10-9	8
Fe ₃ O ₄	-	ABTS/H ₂ O ₂	1000 µL	-	$5 \cdot 10^{-9} - 1 \cdot 10^{-7}$	3.00.10-9	9
MIL-101(Cr)	-	Luciferin/H ₂ O ₂	200 µL	-	$2 \cdot 10^{-6} - 2 \cdot 10^{-14}$	5.6.10-15	10
ABEI/CuFe ₂ O ₄	-	ABEI/H ₂ O ₂	100 µL	-	$1 \cdot 10^{-12} - 1 \cdot 10^{-8}$	2.5.10-13	11
POMs	-	Luminol/H ₂ O ₂	1600 µL	-	$2.67 \cdot 10^{-11} - 8 \cdot 10^{-9}$	8.10-12	12
MOF(Co) ^a	1.55.10-5	Luminol/H ₂ O ₂	4000 µL	1.29.10-5	$6 \cdot 10^{-12} - 5 \cdot 10^{-9}$	-	13
MIL-101(Cr)	-	Luminol/H ₂ O ₂	310 µL	-	$9.3 \cdot 10^{-10} - 3.1 \cdot 10^{-8}$	1.55.10-10	14
MIL-101(Fe)	3.82.10-9	Luminol/H ₂ O ₂	10 μL (45 μL)	3.65.10-5	$1 \cdot 10^{-11} - 5 \cdot 10^{-10}$	(8.2 μM) 8.2·10 ⁻¹¹	This work

Table S1. Comparison of the nanozyme sensing paper with other reported methods for H_2O_2 detection.

Abbreviations: MWCNT: Multi-Walled Carbon Nanotube ; TMB: 3,3',5,5'-Tetramethylbenzidine; ABTS: 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt; ABEI: N-(4-aminobutyl)-N-ethylisoluminol; POM: olyoxometalates; LDR: linear dynamic range; LOD: limit of detection.

 $^a\mbox{The Km}$ and the V_{max} was calculated with TMB/H_2O_2 system

References

- Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic Peroxidase-like Activity and Catalase-like Activity of Co3O4 Nanoparticles. *Chemical Communications* 2012, 48 (19), 2540. https://doi.org/10.1039/c2cc17013b.
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. *Nat Nanotechnol* 2007, 2 (9), 577–583. https://doi.org/10.1038/nnano.2007.260.
- (3) Wang, T.; Fu, Y.; Chai, L.; Chao, L.; Bu, L.; Meng, Y.; Chen, C.; Ma, M.; Xie, Q.; Yao, S. Filling Carbon Nanotubes with Prussian Blue Nanoparticles of High Peroxidase-Like Catalytic Activity for Colorimetric Chemo- and Biosensing. *Chemistry A European Journal* 2014, 20 (9), 2623–2630. https://doi.org/10.1002/chem.201304035.
- (4) Su, L.; Xiong, Y.; Yang, H.; Zhang, P.; Ye, F. Prussian Blue Nanoparticles Encapsulated inside a Metal–Organic Framework via in Situ Growth as Promising Peroxidase Mimetics for Enzyme Inhibitor Screening. *J Mater Chem B* 2016, *4* (1), 128–134. https://doi.org/10.1039/C5TB01924A.
- Qin, F.-X.; Jia, S.-Y.; Wang, F.-F.; Wu, S.-H.; Song, J.; Liu, Y. Hemin@metal– Organic Framework with Peroxidase-like Activity and Its Application to Glucose Detection. *Catal Sci Technol* 2013, 3 (10), 2761. https://doi.org/10.1039/c3cy00268c.
- (6) Ai, L.; Li, L.; Zhang, C.; Fu, J.; Jiang, J. MIL-53(Fe): A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Colorimetric Biosensing. *Chemistry – A European Journal* 2013, 19 (45), 15105–15108. https://doi.org/10.1002/chem.201303051.
- Cui, F.; Deng, Q.; Sun, L. Prussian Blue Modified Metal–Organic Framework MIL-101(Fe) with Intrinsic Peroxidase-like Catalytic Activity as a Colorimetric Biosensing Platform. *RSC Adv* 2015, 5 (119), 98215–98221. https://doi.org/10.1039/C5RA18589K.
 - (8) Wei, X.; Li, Y.; Qi, S.; Chen, Y.; Yin, M.; Zhang, L.; Tian, X.; Gong, S.; Wang, F.; Zhu, Y.; Liu, Y.; Qiu, J.; Xu, D. Ce-MOF Nanosphere as Colorimetric Sensor with High Oxidase Mimicking Activity for Sensitive Detection of H2O2. *J Inorg Organomet Polym Mater* **2022**, *32* (9), 3595– 3600. https://doi.org/10.1007/s10904-022-02422-w.

- (9) Wei, H.; Wang, E. Fe ₃ O ₄ Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H ₂ O ₂ and Glucose Detection. *Anal Chem* 2008, 80 (6), 2250–2254. https://doi.org/10.1021/ac702203f.
- (10) Nemati, A.; Chaichi, M. J.; Lakouraj, M. M.; Hosseinkhani, S.; Seyedalipour, B. A Bioluminescent Earthworm Luciferase Mimetic MIL-101(Cr)-MOF for Enhanced Luciferin Chemiluminescence and H2O2 Sensing. *J Photochem Photobiol A Chem* 2023, 437, 114332. https://doi.org/10.1016/j.jphotochem.2022.114332.
- Wu, Y.; Wang, J.; Cui, H. Chemiluminescent Magnetic Nanoparticles with Good Catalytic Activity and Rapid Separation Capability and Sensitive Sensing for H2O2. *Anal Bioanal Chem* 2022, 414 (1), 367–375. https://doi.org/10.1007/s00216-021-03597-w.
- (12) Jia, Y.; Sun, S.; Cui, X.; Wang, X.; Yang, L. Enzyme-like Catalysis of Polyoxometalates for Chemiluminescence: Application in Ultrasensitive Detection of H2O2 and Blood Glucose. *Talanta* **2019**, *205*, 120139. https://doi.org/10.1016/j.talanta.2019.120139.
- (13) Li, D.; Zhang, S.; Feng, X.; Yang, H.; Nie, F.; Zhang, W. A Novel Peroxidase Mimetic Co-MOF Enhanced Luminol Chemiluminescence and Its Application in Glucose Sensing. Sens Actuators B Chem 2019, 296, 126631. https://doi.org/10.1016/j.snb.2019.126631.
- (14) Yu, H.; Long, D. Highly Chemiluminescent Metal-Organic Framework of Type MIL-101(Cr) for Detection of Hydrogen Peroxide and Pyrophosphate Ions. *Microchimica Acta* 2016, *183* (12), 3151–3157. https://doi.org/10.1007/s00604-016-1963-8.