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A B S T R A C T

In the context of global energy transition and decarbonization efforts, resilience emerges as a critical factor in 
ensuring the reliability and adaptability of industrial infrastructure systems. This paper introduces a novel model 
rooted in Dynamic Bayesian Networks (DBNs) for the quantitative assessment of the resilience of engineered 
systems in the event of escalation scenarios triggered by domino effect. The model is integrated into a systematic, 
step-by-step procedure capable of evaluating the ability of complex systems to recover functionality from sub
sequent disruptions occurring at different times throughout the operational lifecycle. Leveraging DBNs, the 
methodology captures the dynamic interactions and feedback among subsystems or components, overcoming the 
limitations associated with conventional methods. The innovative methodology has been applied to a case study 
involving a liquid hydrogen (LH2) bunkering system, illustrating its effectiveness in assessing resilience amidst 
evolving accident scenarios. The results demonstrate the significant impact of escalation scenarios on system 
resilience and underscore the importance of proper implementation and management of safety measures and 
mitigation strategies. The proposed approach provides a valuable insight into system performance and empowers 
proactive risk management in the face of escalation scenarios, ensuring the continued operation and success of 
industrial operations in an uncertain and interconnected reality.
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1. Introduction

In the dynamic landscape of global energy transition, resilience 
emerges as a pivotal concept, addressing the challenges and opportu
nities presented by the shift towards sustainable and renewable energy 
sources [1]. In the effort to mitigate the impacts of climate change and 
reduce carbon footprint, the integration of new technologies becomes 
essential [2]. Carbon Capture and Storage (CCS) technology along with 
hydrogen-based systems represent two of these potential innovative 
solutions [3]. However, this transformative journey is not without risks 
[4,5]. In fact, the rapid adoption of innovative solutions, also including 
smart grids, artificial intelligence, and decentralized energy systems, 
introduces a host of emerging challenges [6]. These challenges include 
cyber threats, technological disruptions, and increased vulnerabilities 
within interconnected infrastructure [7–9]. In the face of these com
plexities, the imperative for new strategies and methodological frame
works to improve resilience is evident [10]. Resilience, in the context of 
energy transition, involves the ability of systems to anticipate, prepare 
for, respond to, and recover from disruptions, ensuring a reliable energy 
supply [11,12]. This approach not only safeguards against potential 
threats but also fortifies the energy sector to withstand the uncertainties 
associated with the energy transition process [1].

In the maritime sector, with increasing emphasis on decarbonization 
and the adoption of alternative fuels, such as LNG (liquified natural gas), 
LH2 (liquid hydrogen), and biofuels, the infrastructure dedicated to 
bunkering operations must adapt to accommodate for these changes 
[13]. Consequently, significant investments in new technologies, infra
structure upgrades, and regulatory frameworks supporting the safe and 
efficient supply of alternative fuels are imperative [14]. Resilience in 
this context involves not only the physical infrastructure, but also the 
ability to anticipate and respond to market dynamics, regulatory shifts, 
and technological advancements [15]. The evaluation of resilience 
within maritime bunkering operations emerges as a new area of research 
as industries seek to mitigate risks and enhance operational stability in 
the face of disruptions [16].

In addition, the Oil&Gas sector, as well as the chemical and process 
industry, is susceptible to escalation scenarios, which are events in 
which a primary accident propagates involving one or more secondary 
equipment with resulting consequences more severe than the previous 
ones [17,18]. Alternative names used to define this kind of events are 
“domino” or “knock-on” accidents [19,20]. Indeed, several escalation 
scenarios have been observed among process equipment, pipelines, and 
other critical infrastructure [21,22]. About 5754 significant marine 
domino accidents were collected from IMO and HIS Markit [23]. 
Although there have not yet been any reported accidents in the marine 
bunkering operations of LH2, primarily due to the limited number of 
active infrastructure nowadays [24], escalation scenarios are deemed 
possible as well given the aforementioned evidence of domino effect in 
the offshore energy infrastructure [23].

A recent literature review addressing resilience methods in the 

chemical and process industry (CPI) highlighted several resilience 
assessment methodologies available to handle uncertainties, distur
bances, and potential hazards [25]. These methodologies include ap
proaches such as the Functional Resonance Analysis Method (FRAM) 
[26–29], the Process Resilience Analysis Framework (PRAF) [30], the 
Bayesian network (BN) model [31], the System-Theoretic Accident 
Model and Processes (STAMP) [32], and the Resilience-based Integrated 
Process Systems Hazard Analysis (RIPSHA) [33]. While these ap
proaches have been widely applied to CPI complex systems, limited 
research is available concerning the resilience assessment of systems in 
the event of escalation scenarios [10]. Only a few studies addressed the 
topic. However, they have primarily approached it from a qualitative or 
semi-quantitative perspective and within specific application domains 
[6,34–37]. For instance, Cincotta et al. [36] proposed a method which 
delved into domino accidents, but within the context of fire safety and 
firefighting intervention operations. A more generic approach was 
proposed by Chen et al. [37]. However, the numerical method proposed 
shows some limitations in addressing the possibility of escalation sce
narios occurring at different times throughout the entire operating 
process. On the contrary, Tan et al. [38] developed a methodology to 
assess the resilience of multi-state systems over time, but they assumed a 
discrete state of the system, not accounting for continuous state systems.

Based on previous findings, it is possible to assert that time repre
sents a further crucial factor when dealing with resilience evaluations 
[27,28,39]. A resilience perspective might indeed consider how a system 
can flexibly adapt to unexpected disruptions, for example, by rapidly 
adjusting production processes or re-routing materials in response to 
disruptions from process unit failures, human errors, cyber-physical 
attacks, and natural hazards, among others [40–44].

Furthermore, within the aforementioned approaches, only few 
studies addressed resilience assessment in the context of maritime 
infrastructure [45–49]. To the best of the author’s knowledge, only 
Vairo et al. [45] and Claussner and Ustolin [49] published research 
studies on resilience in cryogenic fuels bunkering operations. Vairo et al. 
[45] proposed a dynamic model based on Bayesian inference and Mar
kov Chain Monte Carlo (MCMC) simulations to be applied to LNG 
bunkering operations, while Claussner and Ustolin [49] proposed a 
qualitative framework for assessing system resilience applied to LH2 
storage facilities.

In the present study an innovative conceptual model is introduced 
for the quantitative assessment of the resilience of engineered systems 
over time in the event of escalation scenarios. A step-by-step procedure 
is also provided to support the application of the developed model to 
investigate how a complex infrastructure withstands or recovers from 
subsequent disruptions occurring at different times throughout the 
operational lifecycle (resilience assessment). The novel procedure pro
vides a systematic and explicit tool applicable to evaluate the resilience 
of different complex systems. The approach relies on a Dynamic 
Bayesian Network (DBN). This allows overcoming the limitations asso
ciated with state-of-the-art methods, such as fault trees (FTs) and event 
trees (ETs), which often overlook dynamic interactions and feedback 
among subsystems or components [39]. To demonstrate the effective
ness of the novel approach developed, an application to a notional case 
study involving a liquid hydrogen bunkering system potentially sus
ceptible to escalation scenarios across an extended period of time was 
carried out.

The following part of the paper is structured as follows. In Section 2, 
the quantitative resilience assessment methodology developed to 
address escalation scenarios is presented, also introducing the relevant 
features of Dynamic Bayesian Networks and the resilience metrics 
adopted. Section 3 illustrates the case study of interest for the applica
tion of the developed approach, involving an offshore LH2 bunkering 
system, while Section 4 presents the outcomes of the application. 
Finally, results are discussed in Section 5 and some conclusive remarks 
are outlined in Section 6.

F. Tamburini et al.                                                                                                                                                                                                                              Reliability Engineering and System Safety 257 (2025) 110816 

2 



2. Methodology

The original approach developed in the present study to support the 
quantitative assessment of resilience of engineered systems over time in 
the event of escalation scenarios, based on a DBN model and a specific 
resilience metric, is presented in the following. The relevant features of 
DBNs are first introduced, then the resilience metric is presented. The 
quantitative model for resilience assessment and the procedure for its 
application are then illustrated in detail.

2.1. Dynamic Bayesian network

A Dynamic Bayesian network (DBN) is an advanced probabilistic 
graphic model that extends the principles of Bayesian networks (BNs) to 
accommodate temporal dependencies within dynamic systems [10,50]. 
At its core, a DBN is a representation of a joint probability distribution 
over a set of random variables at different time steps. It is particularly 
applicable in scenarios where the state of a system evolves over time (e. 
g., sensor validation, risk management, environmental modelling, etc.), 
and understanding the temporal dynamics is crucial for making 
informed predictions [51–53].

The DBN framework involves a directed acyclic graph (DAG) where 
nodes represent random variables and arcs encode conditional de
pendencies between them [54]. Nodes can be categorized into parents 
and child nodes. Arcs are directed from parent to child nodes. The nodes 
that are not linked to any parent node are called root nodes while the 
ones without any outcoming arcs are defined as leaf nodes. Marginal 
prior probabilities are assigned to root nodes while the relational logic 
between two or more intermediate and leaf nodes is defined through 
associated Conditional Probability Tables (CPTs) [55].

To formalize the temporal aspect, each node in the graph is associ
ated with a specific time point, indicating the evolution of the system 
over discrete time steps. The joint probability distribution is found not 
only by multiplication of the node probabilities in the same time step, as 
done when handling static BNs, but also considering the nodes and their 
connections in the previous time steps, as follows [10]: 

P(X1:T) = P(X1)
∏T

t=2
P(Xt |Pa(Xt)) (1) 

where Xt denotes the random variable at time t, Pa(Xt) represents the set 
of parents of Xt in the DAG, X1:T indicates the set of random variables 
from time 1 to T, and the conditional probabilities P(Xt |Pa(Xt)) capture 
the dynamic relationships between the current state Xt and its parents 
Pa(Xt) at time t [56].

If new data becomes available, probabilistic reasoning and updating 
beliefs can be performed using the Bayes’ theorem, as follows: 

P(X|E) =
P(X)⋅P(E|X)

P(E)
(2) 

where P(X|E) is the posterior probability of node X given evidence E (i.e., 
the new observation) [54].

In the present study, given the features described above, DBNs have 
been selected to model the probability of the system functionality in case 
of occurrence of escalation scenarios over time.

2.2. Resilience metrics adopted

In the last decades, several resilience metrics have been proposed 
with the aim of assessing the ability of an engineered system to face 
disruptions. Unlike many existing methods assess resilience based on the 
impact of undesired disruptions in terms of performance loss, Tong et al. 
[10] redefine resilience by adopting a functionality term [57,58]. 
Resilience, in their context, is measured by assessing the probability of a 
system functionality state sustaining a "high" state or restoring to a 

"high" state from a "low" state during and after disruptions within a 
specific time frame [10]. Thus, Tong and coworkers [10] consider the 
resilience as the sum of the normal operating and restored states of the 
system as previously meant by Yodo et al. in [59]. This time-dependent 
probabilistic definition provides a comprehensive perspective, consid
ering both temporal and probabilistic characteristics of resilience. 
Therefore, the metric introduced by Tong et al. [10] has been adopted in 
the present study to model the resilience of the system.

The metric relies on the definition of four resilience attributes, which 
are pivotal elements within a resilient system: absorption, adaptation, 
restoration, and learning [60]. Absorption is the inherent ability of a 
system to endure and withstand disturbances. It is particularly crucial 
when disruptions are inevitable, as it helps to mitigate the decreasing 
rate of functionality. Adaptation refers to the capability of a system to 
adjust to a disrupted environment, recovering lost functionality without 
relying on external restoration efforts. Restoration represents the ability 
of a system to facilitate external interventions aimed at repairing dam
age caused by disturbances, ultimately restoring it to a new state of 
normality. The functionality of the new state can be either higher or 
lower than that of the pre-disruption state, as long as system operation is 
guaranteed. Finally, learning is a dynamic attribute that involves 
enhancing future system responses to disturbances by integrating past 
experiences. The contribution of all these elements to the resilience of a 
system can be visualized in Fig. 1-a), where the time-dependent resil
ience model in terms of functionality curve of a system is reported [10]. 
As shown, four states are used to quantify resilience. Notations such as 
S1 (normal operating state with functionality F1 when a disruption oc
curs at t0), S2 (disrupted state with functionality F2), S3 (state with 
functionality F3 after adaptation), and S4 (new stable state with func
tionality F4 after restoration) are introduced to illustrate these states. 
Learning ability impacts the functionality variation over the entire 
period.

The ability of the system to absorb, adapt, restore, and learn 
throughout each phase determines the transition rates between the 
states (λ1, λ2, μ1, μ2). The high or low functionality that characterize the 
resilience attributes (based on the inherent degradation rate of the 
system and the loss of system functionality after the disruption) also 
influence the values of the transition rates. In Tong et al. [10], the 
Markov chain model has been adopted to illustrate this concept (see 
Fig. 1-b)). In order to model the resilience, the Markov chain model has 
been transformed into a DBN (see Fig. 1-c)). The transition probabilities 
of each state are converted into the conditional probabilities of node 
“State of functionality” given the resilience attributes. Thus, resilience 
can be quantified as the sum of the probabilities of state S1 and S4 at 
each time step.

Overall, the functionality curve offers a dynamic portrayal of how a 
resilient system responds to disruptions over time, emphasizing the 
interconnectedness of absorption, adaptation, restoration, and learning 
in maintaining and improving the system functionality. Indeed, ac
cording to Tong et al.’s [10] definition of resilience provided above, 
examining resilience means analyzing changes in system functionality. 
Therefore, in the present study, the temporal variations in system 
functionality due to the occurrence of escalation scenarios after a 
disruption are considered to assess the overall resilience of the system 
under analysis.

2.3. The resilience escalation model

Engineered systems are subjected to process accidents, defined as 
sequences of events initiated by the deviation of process parameters, 
failures, or malfunctioning of one or more components [17]. These ac
cidents can result in different level of consequences, ranging from a near 
miss, which is an event that does not result in actual loss but has the 
potential to do so, up to a catastrophic disaster, which is an event that 
could cause multiple fatalities and extensive damage to assets and pro
duction [61]. Within this category of accidents, those involving chains of 
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accidents in which a primary undesired event (disruption event) 
sequentially or simultaneously triggers one or more secondary unde
sired events (escalation scenarios) in nearby equipment or facilities, 
leading to consequences of the secondary accidents more severe than 
those associated with the primary disruption event, are termed “esca
lation accidents” or domino effects [17,62].

In the present section a resilience metric has been proposed to ac
count for the potential occurrence of escalation scenarios over time, 
derived from that originally proposed by Tong et al. [10]. Specific 
original definitions are introduced for the functionality states, and novel 
approaches are developed to obtain a specific Markov chain model, to 
carry out the DBN construction, and to build the corresponding resil
ience curve for the system.

2.3.1. Definition of functionality states in the event of escalation scenarios
The number of functionality states needed to assess the system 

resilience in the event of a domino effect depends on the possible 
number of escalation scenarios taking place. Let [n] denotes the set {1, … 
, N}, where i represents the index for the ith escalation scenario affecting 
the system. In this context, (S2i)i∈[n], (S3i)i∈[n], and (S4i)i∈[n] denote the 
new states introduced to characterize the system functionality following 
each escalation scenario. These states supplement S1, S2, S3, and S4, 
which describe the functionality of the system during a single disruption 
event.

Fig. 2 illustrates the resilience model developed in the present study, 
based on the functionality curve approach, adapted to accommodate N 
escalation scenarios. The overall trend in system functionality in the 

case of N escalation scenarios is represented by the red curve in Fig. 2. 
The curve corresponds to the functionality curve of the model by Tong 
et al. [10], shown in Fig. 1-a), which addresses a single disruption event. 
While it is assumed that the first disruption event occurs when the sys
tem is in a high functionality state (i.e., the system is in S1 at t0), the state 
of system functionality when a new escalation scenario occurs is char
acterized by uncertainty. In fact, a probability distribution is associated 
with the possible states of system functionality, and the actual state 
following the accident depends on the sequence of events occurred 
before and during the escalation scenario under consideration, leading 
to its final outcome. For this reason, the points on the resilience curve in 
Fig. 2 which would correspond to the occurrences of the escalation 
scenarios after the first disruption (i.e., the points where a drop in sys
tem functionality takes place) are actually represented through dashed 
circles in order to express the uncertainty behind the states of func
tionality when an escalation scenario occurs, as was previously dis
cussed. This issue is further discussed in Section 2.3.3, when describing 
the Markov chain for system functionality modelling [63].

2.3.2. Resilience metrics in the event of escalation scenarios
According to the definition of resilience of Tong et al. [10], the 

resilience of a system can be calculated based on the probability of the 
system to be in a high functionality state, i.e., the state (S1), or in a 
recovered state after a single (S4) or more than one escalation scenarios 
(S4 and (S4i)i∈[n]).

In the case of generalization to N escalation scenarios after a 
disruption, resilience can be quantified as the sum of the probabilities of 
states S1, S4, and (S4i)i∈[n] that have been calculated as a function of 
time by the DBNs computation: 

R = S1 + S4 +
∑N

i=1
S4i (3) 

2.3.3. Markov chain model in the event of escalation scenarios
On the basis of the new states of functionality introduced in Section 

2.3.1 to account for N escalation scenarios, a novel Markov chain model 
has been developed to assess the transitions from one state to another. Its 
conceptual representation is shown in Fig. 3-a), where Block 0 resembles 
the Markov chain proposed by Tong et al. [10] (single disruption sce
nario) (see Fig. 1-b)), while Block i and Block N represent the Markov 
chains of the ith escalation scenario and the Nth escalation scenario (the 
last occurring), respectively. As shown in Fig. 3-a), the transition 
probabilities (i.e., λ and μ) among the states change at each block, 
reflecting alterations in resilience attributes (absorption, adaptation, 
restoration, and learning) due to the different accidental events occur
ring. The only exception is λ2, expressing the degradation reliability of 
the entire system, which is an inherent characteristic that may be 
considered to be unaffected by external disturbances. If λ1, λ2, μ1, and μ2 

Fig. 1. a) Time-dependent functionality curve under a single disruption (S1, normal operating state with functionality F1 when a disruption occurs at t0; S2, dis
rupted state with functionality F2; S3, state with functionality F3 after adaptation; S4, new stable state with functionality F4 after restoration); b) Markov chain 
model; c) DBN resulting from the conversion of the Markov chain model (adapted from [10]).

Fig. 2. Time-dependent functionality curve in the event of N escalation sce
narios after a disruption event.
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are the transition rates associated with the first disruption (see Block 0 in 
Fig. 3-a) and Fig. 1-b)), 

(
λi

1
)

i∈[n], 
(
μi

1
)

i∈[n], 
(
μi

2
)

i∈[n] and λ2 denote the 
transition rates associated with each escalation scenario (see Block 0 and 
Block N in Fig. 3-a)). It should be recalled (see Section 2.3.1) that the 
state of system functionality when a new escalation scenario occurs is 
uncertain. Thus, probability distributions are associated with the states 
of system functionality. This concept is visually represented through 
multiple dashed circles in blocks i and N of Fig. 3-a), with each circle 
corresponding to a potential state of system functionality. For instance, 
the state of functionality of the system when the ith escalation scenario 
occurs can be one of the following: S1, S2, S3, S4, (S21:i− 1)i∈[n], 
(S31:i− 1)i∈[n], or (S41:i− 1)i∈[n].

The resilience attributes may be in either a high (H) or low (L) state 
of functionality at the time of the analysis, depending on the inherent 
degradation rate of the system as well as on the level of functional loss 
reached after the occurrence of the first disruption and the subsequent 
escalation scenarios. This affects the values of the transition rates within 
the Markov chain model represented in Fig. 3-a). Thus, for example, two 
different values for λ1 shall be considered to account for high and low 
absorption abilities of the system.

In general, λ is associated with the failure process of a system, while μ 
reflects the repair process. In particular, λ1 is calculated as the inverse of 
the MTBF (Mean Time Between Failure) of the system after disruptions, 
which is the time between the occurrence of the disruption and the 
system failure, and reflects the absorption ability of the system, while λ2 
is evaluated as the inverse of the MTBF of the system at normal condi
tions, which can be obtained from the analysis of operational records. 
Therefore, λ2 is independent of the escalation scenarios considered. 
Differently, μ1 and μ2 reflect the adaptation and restoration abilities of 
the system. Specifically, μ1 is derived as the inverse of the MTTR (Mean 
Time To Repair) associated with the self-response of the system to the 
external disturbance, while μ2 is calculated as the inverse of the MTTR 
required by external maintenance to return the system to normal con

ditions or to a state in which the final outcomes of the disruption or 
escalation scenario are eliminated (e.g., fire is extinguished), even if 
other actions (e.g., repair of damaged equipment) are required to restore 
the system to normal operation. The MTBF and MTTR values are usually 
assessed by means of the statistical Maximum Likelihood Estimation 
(MLE) method [64].

The transition of the system functionality due to failure (e.g., the 
failure of the system after disruptions and the degradation of the system 
over time) and repair (e.g., the intervention of internal safety systems 
and the external intervention of firefighters) processes can be modeled 
by different types of Markov chains [63,65]. These provide the transi
tion probabilities for the system to move from one state to another, 
capturing changes in functionality over time due to failure and response 
processes.

In particular, the adoption of a continuous-time Markov chain 
(CTMC) to model the failure of the system after external disturbances 
over time is consolidated [65,66], since it is reasonable to consider that 
the failure probability depends solely on the most recently known time 
step and not on the previous steps (memoryless property) [10]. Thus, the 
transition probabilities among the states associated with this process are 
described assuming an exponential model [66,67], as follows: 

PE(λ1; t) =
∫t

t0

λ1e− λ1 tdt = 1 − e− λ1 t (4) 

where λ1 represents the transition rate in disrupted conditions and t0 
denotes the time at which the disruption occurs.

On the contrary, the intervention of internal safety systems and the 
external intervention of firefighters are better modelled by non- 
homogenous continuous-time Markov chains (NHCTMCs) as the prob
ability of intervention increases with time, reflecting the growing like
lihood of response as the events progress [63]. Different probability 
distribution models can be used to describe the probabilities of 

Fig. 3. The Markov chain model transformation into DBNs in the event of N escalation scenarios: a) the proposed novel Markov chain model; b) the DBNs resulting 
from the conversion of the novel Markov chain model.
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transitioning from one state to another for these processes [67,68], such 
as the Weibull distribution [69,70] or the normal / log-normal distri
bution [71,72].

For the sake of brevity, the model considered in the case study, i.e., a 
normal distribution modelling the MTTR, is reported below. The model 
is referred to both self-repair processes (as for μ1) or external processes 
(as for μ2): 

PN
(
μMTTR, δ

2
MTTR; t

)
=

∫t

− ∞

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πδ2
MTTR

√ e
−
(t− μMTTR)

2

2δ2
MTTR dt

= 0.5
(

1+ erf
(

t − μMTTR

δMTTR
̅̅̅
2

√

))

(5) 

where μMTTR and δMTTR represent the mean and the standard deviation of 
the MTTR distribution.

Clearly, the selection of the most appropriate distribution depends 
on the available data and/or prior experience [67]. NHCTMCs are sug
gested also for the modelling of the degradation of the system over time 
[63]. However, a simplified assumption entails considering a uniform 
distribution over time to calculate the reliability degradation rate [67], 
as follows: 

PC(λ2) = C (6) 

where C is a value between 0 and 1 (0 denotes no degradation over time, 
1 denotes maximum degradation over time).

Table 1 shows the transition probabilities for the Nth escalation 
scenario (Block N in Fig. 3-a)) based on the models and probability 
distributions reported in Eqs. (4)-(6).

2.3.4. DBN development in the event of escalation scenarios
In case of escalation scenarios, multiple DBNs (see Fig. 3-b)) are 

required to assess the system resilience by the metrics defined in Section 
2.3.2. In particular, the number of required DBNs corresponds to the 
number of external disturbances encompassing the disruption event and 
the alternative escalation scenarios. This arises from the need to 

represent different scenarios occurring over time, along with changing 
the resilience attributes whenever a new scenario occurs. Therefore, 
extending to N escalation scenarios, each Markov chain associated with 
every block shown in Fig. 3-a) shall be converted into a DBN, as illus
trated in Fig. 3-b). Details regarding the structure of the DBNs and the 
associated conditional probabilities are provided in Section 2.4.

2.4. Procedure for the quantitative assessment of resilience

Based on the conceptual framework and on the metric introduced in 
Section 2.3, a specific methodology has been developed for the quanti
tative assessment of the resilience of engineered systems in the case of 
escalation scenarios. The procedure consists of five subsequent steps, as 
shown in the flowchart reported in Fig. 4.

Step 1. involves collecting the necessary data to conduct the quanti
tative assessment of resilience (i.e., the input data required for the 
application of the methodology). In particular, this includes information 
concerning the layout of the engineered system under assessment, the 
substances involved, the operating conditions of the equipment units (i. 
e., pressure and temperature), the type and operation of the safety sys
tems and safety barriers (SBs) implemented in the facility analyzed, as 
well as relevant information concerning maintenance, plant inspections, 
and other specific procedures.

Step 2. of the proposed methodology requires the identification of the 
accident paths that may affect the engineered system under assessment. 
This involves both the identification of the sequence of physical sce
narios (the first disruption and the consequent escalation scenarios) that 
may occur, defining them within the timeline of events (i.e., definition of 
time intervals between the scenarios), and the identification of the 
specific preventive, controlling, and mitigative SBs, which may be 
involved in each accident path.

The accident path typically consists of three steps: 

Table 1 
Transition probabilities of the novel Markov chain model in the event of N escalation scenarios.

Transition 
rates

S1 S2 S3 S4 … S2i S3i S4i … S2N S3N S4N

S1 1 −
PE

(
λN

1 , t
)

0 0 0 0 0 0 0 0 PE
(
λN

1 , t
)

0 0

S2 0 1 −

PE
(
λN

1 , t
)

0 0 0 0 0 0 0 PE
(
λN

1 , t
)

0 0

S3 0 0 1 −

PE
(
λN

1 , t
)

0 0 0 0 0 0 PE
(
λN

1 , t
)

0 0

S4 0 0 0 1 −

PE
(
λN

1 , t
)

0 0 0 0 0 PE
(
λN

1 , t
)

0 0

… 0 0 0 0 1 −

PE
(
λN

1 , t
)

0 0 0 0 PE
(
λN

1 , t
)

0 0

S2i 0 0 0 0 0 1 −

PE
(
λN

1 , t
)

0 0 0 PE
(
λN

1 , t
)

0 0

S3i 0 0 0 0 0 0 1 −

PE
(
λN

1 , t
)

0 0 PE
(
λN

1 , t
)

0 0

S4i 0 0 0 0 0 0 0 1 −

PE
(
λN

1 , t
)

0 PE
(
λN

1 , t
)

0 0

… 0 0 0 0 0 0 0 0 1 −

PE
(
λN

1 , t
)

PE
(
λN

1 , t
)

0 0

S2N 0 0 0 0 0 0 0 0 0 1 − PN

(
μMTTRN

1
,

δ2
MTTRN ; t

)
PN

(
μMTTRN

1
,

δ2
MTTRN ; t

)

0

S3N 0 0 0 0 0 0 0 0 0 0 1 − PN(μMTTRN
2
,

δ2
MTTRN ; t)

PN

(
μMTTRN

2
,

δ2
MTTRN ; t

)

S4N PC(λ2) 0 0 0 0 0 0 0 0 0 0 1 − PC(λ2)
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1. Initiation, which consists in the disruption event where an accident 
starts;

2. Propagation, entailing the sequence of events that maintain or 
expand the initial accident;

3. Termination, encompassing the events or actions aimed at resolving 
the accidental event.

Identifying the first disruption event (initiation) requires performing 
hazard identification and analysis. Since the goal is to identify process- 
related major hazards (i.e., hazards leading to releases of materials and/ 
or energy), the conventional HAZard and OPerability (HAZOP) study 
[73] can be used for this purpose.

The accident scenarios following the initiating event must then be 
identified (propagation). In this regard, the failure analysis of the SBs in 
place aimed at preventing, controlling, and mitigating the secondary 
accidents is crucial for conducting a comprehensive accident path 
analysis. Therefore, suggested methods to carry out this task are the 
Bow-Tie Analysis [68] or the systematic System Hazard Identification, 
Prediction and Prevention (SHIPP) methodology [61]. However, it is 
important to remark that these methods do not address the possibility of 
accident propagation involving secondary equipment (domino effect). 
Thus, additional approaches shall be applied to complement the analysis 
and obtain a comprehensive overview of the entire accident propagation 
path. The relevant literature concerning the quantitative assessment of 
domino effect in chemical, process, and Oil&Gas industries [18,19,62] 
provides several methodologies aimed at the specific analysis of prop
agation possibility and probability, to which the reader is referred for 
details.

Finally, termination is the stage in which tailored restoration at
tempts are carried out to repair damages and resolve the reduction in 
system functionality. Interventions aimed at solving the escalation sce
nario or repairing the engineered system through inspections, mainte
nance and, eventually, equipment replacement, are examples of 
common practices. Emergency and rescue plans should also be consid
ered for a comprehensive analysis of the restoration operations.

Step 3. consists in the definition and quantification (in terms of 
occurrence probability) of the resilience attributes (absorption, adap
tation, restoration, and learning) associated with each event included in 
the accident paths identified in Step 2 (i.e., first disruption event and 
subsequent escalation scenarios). Except for learning, these attributes 

vary, based on the safety barrier activated in response to specific acci
dental events within the process accident sequence.

More specifically, absorption pertains to the inherent ability of the 
system to sustain or withstand external disruptions. Consequently, 
preventive measures and actions affect the absorption ability. Examples 
of preventive barriers include insulation materials, which aim to reduce 
damage to the equipment caused by heat or extremely low temperatures. 
Adaptation instead refers to the ability of the system to recover to the 
normal operational state without relying on external restoration actions. 
This attribute is characterized by inherent flexibility in self-responding 
to accidental situations and protection barriers, such as detection mea
sures. For example, the emergency shut-down (ESD) system is a standard 
protection measure available in most industrial systems. Lastly, resto
ration, involving external contributions that return the system to the 
normal operational state, is represented by mitigative barriers and 
equipment maintenance and replacement. An example of restoration 
measures includes the intervention of firefighters in the event of a fire. 
Human reliability also influences restoration and consists of human 
effectiveness and involvement in disruption handling (e.g., operator 
level of training in inspection operations).

In order to determine and quantify the resilience attributes, fault tree 
analysis (FTA) can be employed [53]. Indeed, FTA enables the definition 
of resilience attributes through the generation of specific FTs which 
emphasize the causal relationships among root causes (also referred to 
as basic events (BEs)), leading to the failure or success of the safety 
barriers to which they are associated. It is worth noting that, depending 
on the system analyzed, there is the possibility of overlapping resilience 
attributes (i.e., safety barriers) between the different accidental events 
that may take place within the accident paths under consideration. The 
quantification of FTs and, consequently, of the resilience attributes, re
quires the identification of specific occurrence probabilities of failure or 
success of the BEs. In this regard, generic literature sources [7,14,55,74] 
can be consulted, alongside more specialized technical databases such 
OREDA [75]. FTs shall not be applied to the learning attribute, since it 
can occur or not depending on the availability of past experience.

In Step 4. the resilience escalation model proposed in Section 2.3 shall 
be applied to each accident path identified in Step 2. More in detail, 
given an accident path, for each event (i.e., the first disruption and the 
subsequent escalation scenarios) a specific DBN shall be generated. All 
the DBNs are expected to adhere to the generic structure shown in Fig. 5, 
which represents a simplified framework for measuring variations in 
system functionality states [10]. Thus, the general structure represented 
in the figure shall be applied to generate the specific DBN. The gener
ation of the DBN is typically carried out by the application of tools for 
the development and deployment of decision support systems aimed at 
reasoning and decision making under uncertainty. Two notable software 
packages supporting the definition of DBNs are Hugin [76] and GeNIe 
Modeler [77], both relying on BNs and influence diagram tools.

As shown in Fig. 5, the specific framework comprises six main nodes 
(“First disruption / Escalation scenario”, “State of functionality”, “Absorp
tion”, “Adaptation”, “Restoration”, and “Learning”) plus nodes “Contrib
uting element” associated with the resilience attributes (in dashed line as 
their arrangement cannot be determined a priori but shall be tailored to 
the specific cases). The nodes “First Disruption / Escalation scenario”, 
“Learning” and part of the nodes “Contributing element” constitute the 
root nodes of the DBN, while the node “State of functionality” is the leaf 
node. These nodes “Contributing element” correspond to the BEs identi
fied through the FTA. The resilience attribute nodes “Absorption”, 
“Adaptation”, and “Restoration” alongside the rest of the nodes 
“Contributing element”, instead, are intermediate nodes. The arcs (ar
rows) of the DBN denote the relationships among the nodes. Thus, the 
change in system functionality is a collective result of the disruption/ 
escalation scenario in the current state, the resilience attributes at cur
rent states, and the system functionality at its previous states (previous 

Fig. 4. Flowchart of the methodology proposed in the current study for the 
quantitative assessment of resilience in the event of escalation scenarios.
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time steps). In the absence of external disturbances, the state of func
tionality of the system is conditionally dependent on its prior states 
(indicating a natural time-dependent degradation process of the sys
tem). In the DBN, all the time-dependent nodes involve temporal in
fluences of the first order (i.e., influences between neighbouring time 
steps). More details regarding the order of the arcs are reported else
where [10,78].

After constructing the DBNs, it is necessary to define the states of 
each node. In general, the nodes assume two states, except for the node 
“State of functionality”, which is characterized by four or more states 
depending on whether the system it is solely affected by the first 
disruption event or also by escalation scenarios (see Section 2.3.3 and 
Fig. 3-a), where the Markov chain is outlined). The node “First disruption 
/ Escalation scenario”, which reflects the occurrence of accidental events 
at any time during the operation process, can be in the state of YES (or 
NO) depending on whether the disruption or escalation scenario in 
question occurs (or does not occur). The same logic applies to the node 
“Learning”, which is based on the presence or absence of past experience. 
The states of nodes “Absorption”, “Adaptation”, and “Restoration”, 
instead, can be set as HIGH or LOW, depending on the effectiveness of 
their performance in carrying out their pre-established tasks at the time 
of the analysis. Finally, the nodes “Contributing element” can be in either 
a state of SUCCESS (S) or FAILURE (F), depending on the state of the BE 
under investigation for the part of root nodes, or based on the results of 
FTA (Boolean logic) for the part of non-root nodes.

Once the DBNs have been created and detailed, they must be quan
tified through the fulfillment of Conditional Probability Tables (CPTs) 
for each node present in each DBN. Those associated with the root nodes 
involve marginal probabilities, while the ones linked to the non-root 
nodes (i.e., intermediate and leaf nodes) concern conditional 
probabilities.

More in detail, for the node “State of Functionality”, two distinct CPTs 
are required: 

1. First CPT. This CPT defines the state of the node “State of Function
ality” at the occurrence of the related disruption event or escalation 
events (initial conditions). In the case of the first disruption event, 
the system is assumed to be in state S1 at the start of system opera
tions. Differently, in the case of escalation scenarios, this CPT reflects 
the functionality state based on the values from the time step 
immediately preceding the unfolding of the escalation scenario.

2. Second CPT. This second CPT represents the probability of state 
transitions at subsequent time steps and is crucial to define how 
functionality evolves over time (evolving conditions). Unlike the first 
CPT, this second CPT is independent of specific accidental events 
(whether they are initial disruptions or escalation scenarios). 
Instead, it is determined by the transition probabilities from the 
Markov chains, reflecting how likely it is for the system to move from 
one state to another (refer to Table 1 in Section 2.3.3).

By doing so, the Markov chain underpins the transition probabilities 
for the node “State of Functionality” across time steps, capturing the 
likelihood of shifts in system functionality regardless of the first 
disruption or escalation scenarios.

In contrast, for all the other time-independent nodes, a single CPT 
must be assigned. The CPT of the root node “First disruption / Escalation 
scenario” shall be compiled with the marginal probability of occurrence 
of the accidental scenario under consideration. Typically, a unit prob
ability of occurrence is assigned to the state YES, aiming to analyse the 
system after the initial accident event has occurred. The same approach 
applies to node “Learning”, whose CPT is influenced by the presence or 
absence of past experience. Setting the state of node “Learning” to YES, 
equal to 1, indicates available past experience with the same engineered 
system, while setting it to 0 implies a lack of past experience. Alterna
tively, setting it to a value higher than 0 and lower than 1 implies that 
data is available concerning similar equipment, with the specific value 
being determined by the amount of available data and the similarity of 
the system.

Then, the CPTs of the root nodes “Contributing element” (i.e., the BEs) 
are defined by marginal probabilities of success or failure, retrieved as 
discussed in Step 3, while the CPTs of the non-root nodes “Contributing 
element” adhere to the Boolean logic resembling "AND" and "OR" gates in 
FTs. Rules for CPTs deriving from FTAs are reported elsewhere in [55,
74].

Lastly, the CPTs of nodes “Absorption”, “Adaptation”, and “Restora
tion” are constructed considering all their parent nodes contributing 
equally to the probability of HIGH (H) or LOW (L) performance of the 
resilience attributes. In order to better understand these rules, three 
different examples of CPTs involving two, three, or four parent nodes (i. 
e., nodes “Contributing element” (CE)) are reported in the following in 
Table 2.

After the quantification of the CPTs, DBNs must be sequentially 
computed following the timeline of events of the accident path 

Fig. 5. The simplified general DBN structure assumed to measure the variations in system functionality states (BE, basic event) [10].
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identified in Step 2. By doing so, the state of functionality curves asso
ciated with each accidental event (disruption event and subsequent 
escalation scenarios) of each accident path are obtained. In order to 
generate the resilience curves, the same tools mentioned for the con
struction of the DBNs’ frameworks can be used, i.e., Hugin [76] and 
GeNIe Modeler [77].

Then, in order to develop the resilience curve, Eq. (3) (Section 2.3.2) 
must be applied. It is essential to remind that in order to obtain the 
overall resilience curve of the system for a given accident path, it is 
necessary to combine the values of the state of functionality from the 
different computed DBNs within their respective validity time ranges in 
the path timeline (defined in Step 2 by the time intervals between the 
accidental events in the accident paths) [10].

Lastly, in Step 5. the results obtained shall be analyzed and discussed. 
The focus is mainly dedicated to the examination of the developed 
resilience curves (e.g., time required to restore a high functionality of 
the system, identification of potential design improvements, etc.). 
However, Step 5 also provides the opportunity to discuss and apply 
further investigations based on the scope of the study. For instance, 
“posterior analysis” within the context of Bayesian network can be 
employed to observe how the system restores in the face of continuous 
solicitations or threats posed by specific elements. This analysis may 
involve assuming specific failure causes as evidence and analyzing their 
impact on the resilience of the system. Additionally, sensitivity analysis 
can be performed to assess the impact of changes in failure and repair 
rates on the resilience curves.

3. Case study

The transfer of cryogenic fuels, such as LNG or LH2, from shore-based 
storage facilities to the onboard tanks of ships is known as cryogenic 
bunkering. There are three primary bunkering configurations, namely 
truck-to-ship (TTS), land-to-ship (LTS), and ship-to-ship (STS), each of 
which fulfills specific logistical and infrastructural requirements [79]. 
While the LTS bunkering arrangement involves filling the onboard tanks 
of the cryogenic vessel directly from a stationary storage facility or 
liquefaction plant located at the port, the TTS bunkering configuration 
uses specially designed trucks equipped with cryogenic tanks to trans
port and deliver the fuel directly to the receiving vessel. As an alterna
tive, the STS configuration is distinguished by a receiving vessel that 
serves as a mobile fuel station and is moored to the bunker vessel [80]. 
This final arrangement, which is schematized in Fig. 6, is the one 
considered as case study to demonstrate the application of the proposed 
methodology.

The transfer of LH2, stored at extremely low temperature of about 
− 253 ◦C, has been considered in the case study. Three different transfer 
lines can be identified in the scheme shown in Fig. 6: the LH2 transfer 
line, for the transfer of the cryogenic substance, the Boil-Off-Gas (BOG) 
transfer line, to handle the gaseous hydrogen generated due to the heat 
exchange with the external environment that causes a partial vapor
ization of LH2, and the helium (He) line, that is necessary to carry out 
sweeping operations before/after the transfer. The fuel is assumed to be 
transferred from the “bunker supply” to the “receiving vessel” via the 
use of a submerged cryogenic pump [81]. However, when the pressure 
differential is sufficient to guarantee a successful transfer, the pump may 

Table 2 
Rules for CPTs associated with two, three or four nodes labelled as “Contributing elements” (CE) entering an intermediate node characterized by two possible states: 
HIGH (H) and LOW (L). S, Successful; F, Failure.

CE S F ​ ​ ​ ​ ​ ​ ​ ​ ​
CE S F S F ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
H 1 0.5 0.5 0 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
L 0 0.5 0.5 1 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
CE S F ​ ​ ​ ​ ​ ​ ​ ​
CE S F S F ​ ​ ​ ​ ​ ​ ​ ​
CE S F S F S F S F ​ ​ ​ ​ ​ ​ ​ ​
H 1 0.67 0.67 0.33 0.67 0.33 0.33 0 ​ ​ ​ ​ ​ ​ ​ ​
L 0 0.33 0.33 0.67 0.33 0.67 0.67 1 ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​
CE S F
CE S F S F
CE S F S F S F S F
CE S F S F S F S F S F S F S F S F
H 1 0.75 0.75 0.5 0.75 0.5 0.5 0.25 0.75 0.5 0.5 0.25 0.5 0.25 0.25 0
L 0 0.25 0.25 0.5 0.25 0.5 0.5 0.75 0.25 0.5 0.5 0.75 0.5 0.75 0.75 1

Fig. 6. Ship-to-ship bunkering scheme.
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be stopped. The tanks are double-walled vacuum insulated through the 
adoption of aluminum-based multi-layer insulation (MLI). Furthermore, 
the transfer is carried out via a flexible hose. The hose protection system 
consists of a hydraulically operated Quick Connect Disconnect Coupler 
(QCDC), together with upper and lower Emergency Shut-Down (ESD) 
systems and an Emergency Release Coupling (ERC, which serves as a 
breakpoint within the LH2 hose transfer system and is designed to 
minimize risk). Pressure Safety Valves (PSVs) are located on different 
lines to safeguard the equipment from pressurization and potential 
process safety incidents. Sequential filling is carried out to better control 
the pressure in the receiving tank. Starting with top filling (shower/
spray) is a common procedure to lower the pressure of the receiving 
tank. After a satisfactory pressure is reached, supply is switched to 
bottom filling. The BOG line allows excess vapor to return to the bunker 
supply cargo tank. Its adoption is not always necessary, especially for 
smaller transfers, but in the current case study it is considered since it 
contributes to the reduction of transfer times. In general, the pressure 
regulating capability of the receiving tank determines whether a BOG 
line is required or not [82].

4. Results

In the following, the results of the application of the proposed 
methodology to the case study considered are shown.

In Step 1 (see Fig. 4), input data were collected. They include the 
system layout, substance properties (thermodynamic, physical, and 
hazard), technical procedures (e.g., ordinary bunkering operations, in
spection and maintenance, and so on), and safety devices (see Section 3).

In Step 2 (see Fig. 4), the SHIPP methodology [61] was used to 
identify and characterize the accident sequential paths of the first 
disruption event resulting from hazardous conditions affecting the 
bunkering area analyzed. Then, the procedure suggested by Cozzani 
et al. [17] was applied to determine the potential escalation scenarios.

More in detail, the occurrence of events such as malfunctions of the 
BOG removal system, falling objects, natural adverse conditions, mali
cious interventions, and so on, have been identified as the possible 
causes of minor leakages of LH2 from the flexible hose connecting the 
bunker supply and the receiving vessel. The accident propagation path 
may then involve a wide range of possible scenarios. If the release occurs 
on the water surface, it may trigger the Rapid Phase Transition (RPT) 
phenomenon, which is a violent physical explosion caused by the 
interaction between liquids with significantly differing temperatures 
and boiling points [79]. On the contrary, immediate or delayed ignition 
of the evaporated hydrogen gaseous cloud could occur [83]. Recent 
full-scale experimental campaigns have shown that no RPTs occurred 
following LH2 spills onto water [84–86]. Although these results do not 
entirely exclude the possibility of RPT, its likelihood can be considered 
low based on available experimental evidence. As a result, the scenario 
was not further considered [87].

On the other hand, the possibility of ignition in the case of atmo
spheric releases of LH2 is highly probable due to the wide flammability 
range and low ignition energy of hydrogen [79]. In particular, imme
diate ignition was identified as the most frequently observed outcome, 
as noted by sources such as the Safe Hydrogen Fuel Handling and Use for 
Efficient Implementation (SH2IFT) project [84]. Consequently, a jet-fire 
resulting from a minor LH2 release emerges as the most probable sce
nario [83].

Such a scenario raises significant safety concerns and has the po
tential to trigger domino effects involving the adjacent equipment, 
including the bunkering system. Indeed, in the event of a jet-fire 
impinging the onboard hydrogen vessels, the potential for a Boiling 
Liquid Expanding Vapor Explosion (BLEVE) associated to a fireball 
arises as the most probable scenario, amplifying the risks to personnel, 
assets, and the environment [88].

Given the results obtained by the application of the SHIPP method
ology and domino effect literature, and considering that release and 

immediate ignition can be considered as two simultaneous events, the 
following scenarios were taken into account for the quantitative 
assessment of resilience of the bunkering system under analysis: 

1. A minor LH2 release with immediate ignition (jet-fire), deemed as the 
first disruption event occurring at the start of system operation;

2. A BLEVE associated with a fireball following jet-fire impingement 
upon hydrogen tanks, considered as the escalation scenario occur
ring after 30 min (time to failure (TTF)).

It is important to underline that a TTF of 30 min aligns with the 
insulation material of the tank considered in the case study (i.e., 
aluminum-based MLI) as reported in [89]. However, different values 
shall be considered for other insulation materials. The latter can be 
estimated using specific models, such as those proposed in [90].

Fig. 7 reports the process accident model associated with the minor 
release of LH2 considered in the case study, along with the six safety 
barriers identified and selected for the system: the Release Prevention 
Barriers (RPBs), the Release Detection Barriers (RDBs), the Ignition 
Prevention Barriers (IPBs), the Escalation Prevention Barriers (EPBs), 
the Human Factor Barriers (HFBs), and the Management & Organiza
tional Barriers (M&OBs) [61]. These last two non-technical SBs affect all 
the other ones, as indicated in Fig. 7.

In Step 3 (see Fig. 4), the resilience attributes for each scenario were 
defined. As suggested in the description of the proposed methodology, 
this information was obtained by the application of FTA to the safety 
barriers involved in the system analyzed (i.e., RPBs, RDBs, IPBs, and 
EPBs, see Fig. 7). The FTs generated are shown in Figs. A.1-A.4 in the 
Appendix. It is noteworthy that no dedicated FTs were created for HFBs 
and M&OBs, as human and organizational factors influence all the other 
SBs and the possible failures can be directly incorporated into the FTs 
developed for the other SBs.

The absorption attribute can be defined though the FTs associated 
with part of the RPBs and the IPBs, since they reflect the preventive 
measures of the system (e.g., corrosion protection, overpressure pro
tection, sparks inhibitor protection, etc.), while the adaptation attribute 
can be defined through part of the FTs related to the RDBs and the EPBs. 
Indeed, adaptation reflects the mitigative barriers of the system associ
ated with the detection of the release (e.g., hydrogen release detection) 
and the mitigation of escalation phenomena (e.g., smoke and flame 
detection). The restoration attribute has the same role of the adaptation 
attribute but is approached from an external intervention perspective. 
This explains why its contributing elements cannot be defined through 
the FT analysis applied to the SBs of the system. Furthermore, the 
restoration attribute is site-specific, thus an in-depth knowledge of the 
system under investigation is necessary to determine its contributing 
elements.

A graphical representation of the resilience attributes, together with 
the DBN obtained in Step 4 of the procedure, is shown in Fig. 8 for the 
first disruption and in Fig. 9 for the escalation scenario identified in Step 
2. In the figures, absorption contributing elements are indicated in pink, 
adaptation contributing elements in blue and restoration contributing 
elements in orange. Different shades of colours are considered within the 
different groups of contributing elements. Marked colours represent the 
root causes of the resilience attribute trees, whereas muted colours 
represent the intermediate nodes leading to the top event intended as 
reduced performance of the resilience attributes. Actually, the FT 
analysis of the SB systems enables the identification of sequences of 
events that, starting from the root causes, culminate in the top event 
intended as the failure of the safety barrier itself.

Once resilience attributes are defined, they shall be quantified. 
Table 3 reports the occurrence probabilities assigned to the BEs of the 
resilience attributes.

The values were retrieved from specific literature sources [7,14,38,
55,61,91], from the OREDA database [75], and applying Human Reli
ability Analysis (HRA) [92]. More specifically, technical literature 

F. Tamburini et al.                                                                                                                                                                                                                              Reliability Engineering and System Safety 257 (2025) 110816 

10 



sources were adopted to determine the occurrence probability of tech
nological, organizational, and managerial BEs, while HRA was consid
ered to ascertain the probability of occurrence of human impact factors. 
The Standardized Plant Analysis Risk-HRA (SPAR-H) method was 
selected and three Performance Shaping Factors (PSFs): stress, training, 
and procedures were derived to calculate the Human Error Probability 
(HEP) [93]. When looking at the table, it should be remarked that the 
event labelled as “Vacuum PSV fails to open” has been assigned a spe
cific occurrence probability, lower than that of PSV failure.

Among the root nodes, the one labeled “Emergency maintenance” 
stands out as the only node not included in the FTs. This omission is due 
to its involvement in the restoration process as external action. A failure 
probability of 0.04 was assigned to it, based on recommendations from 
literature reports [55].

In Step 4 (see Fig. 4), the DBNs were constructed for each accidental 
event in the accident path selected in Step 2, quantified and lastly 
computed using GeNIe Modeler [77].

As mentioned above, the DBN obtained for the first disruption event 
(minor LH2 release with immediate ignition) is reported in Fig. 8, while 
that for the escalation scenario (BLEVE and fireball following jet-fire 
impingement on secondary equipment) is displayed in Fig. 9.

The node “First disruption / Escalation scenario” is characterized by 
states YES = 1 and NO = 0, indicating that both the first disruption 
(Fig. 8) and the escalation scenario (Fig. 9) certainly occurred. The same 
logic applies to node “Learning”, which is characterized by states YES = 1 
and NO = 0 in both the DBNs, indicating that past experience concerning 
the same system aids in improving future system recovery. The 
remaining root nodes of the two DBNs, resembling the root nodes 
“Contributing element”, are compiled with the marginal probabilities of 
the BEs acquired in the previous step (see Table 3). On the contrary, the 
non-root nodes “Contributing element” are characterized by CPTs ob
tained from the application of the Boolean “AND” and “OR” gates of the 
FT illustrated in Appendix (Figs. A.1-A.4).

The intermediate nodes “Absorption”, “Adaptation”, and “Restoration” 

in both the DBNs are instead characterized by states HIGH (H) and LOW 
(L), depending on the effectiveness of the safety barriers, i.e., of the 
performance of the resilience attributes resulting from the application of 
the FTA mentioned in Step 3. The CPTs associated with these resilience 
attributes were specified considering an equal distribution of the 
occurrence probability of the parent nodes as already described in 
Section 2.4.

Lastly, according to the resilience model proposed in the present 
study (see Section 2.3.1), the node “State of functionality” of DBN in Fig. 8
has four states, named S1, S2, S3, and S4, while the DBN in Fig. 9 has 
seven states, named S1, S2, S3, S4, S21, S31, and S41. The CPTs (see 
Section 2.4) of node “State of Functionality” are quantified based on the 
Markov chain rules described in Section 2.3.3, assuming the transition 
rates outlined in Table 4 and Table 5. It is noteworthy that different 
transition rates (H and L) were assumed based on the state of the system: 
i.e., its degradation rate at the analysis time.

In order to recall, an exponential distribution was considered to 
describe the transitions associated with the failure rates λ1 and λ1

1, a 
normal distribution was applied to define the transitions linked to the 
repair rates μ1, μ2, μ1

1, and μ1
2, and a constant distribution for the reli

ability degradation process associated with λ2. In the case of the normal 
distribution, a standard deviation value (δ) of 30 % with respect to the 
average value was considered, as suggested by [94].

For the sake of brevity, only the CPTs of the node “State of func
tionality” associated with the DBN in Fig. 8 (first disruption) are reported 
below in Table 6 (for the initial time step, t = 0) and Table 7 (for the 
subsequent time steps, t ≥ 1), based on the values of Table 4 and the 
Markovian rules presented in Table 1.

The two quantified DBNs were then computed for two different du
rations, assuming that each time step of the simulations represents one 
minute of operation. The first DBN (Fig. 8) considered 30 min of oper
ation, since this is the typical time after which the aluminum-based MLI 
considered for the hydrogen tanks fails due to the external heat caused 

Fig. 7. The process accident model developed for the considered case study.
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by the jet-fire [89]. The second DBN (Fig. 9) is simulated until the 
functionality of the system is restored to 1. In the analysis of the case 
study, the intention of achieving full recovery following replacement 

interventions was not considered. Actually, since the resilience model 
was applied to major accident scenarios rather than to process 
operability-related incidents (e.g., production outage due to system 

Fig. 8. The DBN model associated with the first disruption (minor LH2 release with immediate ignition) of the considered case study. Obtained with GeNIe 
Modeler [75].

Fig. 9. The DBN model associated with the escalation scenario (BLEVE and fireball following jet-fire impingement on secondary equipment) of the considered case 
study. Obtained with GeNIe Modeler [77].
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Table 3 
Failure probabilities of the basic events (BEs) considered in the examined case 
study.

Code BEs description Occurrence probability

X1 Inadequate purging 4.77 × 10–2

X2 BOG removal malfunction 4.10 × 10–5

X3 External fire 1.54 × 10–4

X4 Vacuum PSV fails to open 2.12 × 10–5

X5 Pressure shock in hose 4.77 × 10–2

X6 Inadequate inspection and testing procedures 2.00 × 10–2

X7 Error in manual inspection 9.82 × 10–3

X8 Defects 1.44 × 10–2

X9 Corrosion 2.00 × 10–3

X10 Adverse weather conditions 1.14 × 10–1

X11 Lighting 3.40 × 10–2

X12 Dropped objects 2.80 × 10–3

X13 Malfunction intervention 2.80 × 10–4

X14 Valve left open 4.77 × 10–2

X15 Valve opened during operation 4.77 × 10–2

X16 Inadequate control system 5.00 × 10–2

X17 Inadequate maintenance procedures 5.00 × 10–2

X18 Inadequate supervision 3.40 × 10–2

X19 Inadequate training 2.50 × 10–2

X20 ESD sensors failure 2.74 × 10–1

X21 Automatic ESD valves failure 1.17 × 10–1

X22 Delay in manual operation 4.77 × 10–2

X23 Manual ESD valves failure 2.11 × 10–2

X24 Hydrogen sensors failure 7.54 × 10–3

X25 Hydrogen alarm failure 2.52 × 10–3

X26 Pressure gauge failure 1.54 × 10–4

X27 Lightning protection issues 3.94 × 10–3

X28 Static sparks from operators 1.25 × 10–1

X29 Static sparks from equipment 3.31 × 10–3

X30 Electrical sparks 3.06 × 10–3

X31 Spark inhibitors protection issues 4.00 × 10–2

X32 Fire suppression system failure 5.58 × 10–2

X33 Firefighting actions failure 9.02 × 10–2

X34 Flame alarm failure 2.10 × 10–2

X35 Automatic ignition source detection failure 2.53 × 10–1

X36 Manual fire alarm failure 5.00 × 10–2

X37 Smoke alarm failure 2.10 × 10–2

X38 Smoke detection sensors failure 7.41 × 10–2

Table 4 
Transition rates of functionality associated with the first disruption.

Transition rates Unit H L

λ1 min-1 0.1 0.125
μ1 min-1 0.5 0
μ2 min-1 0.017 0
λ2 min-1 0.001 0.001

Table 5 
Transition rates of functionality associated with the escalation scenario.

Transition rates Unit H L

λ1
1 min-1 2 3.03

μ1
1 min-1 0.1 0

μ1
2 min-1 0.006 0

λ2 min-1 0.001 0.001

Table 6 
CPT of the node “State of functionality” of the DBN in Fig. 8 at t = 0.

First disruption YES NO

S1 1 1
S2 0 0
S3 0 0
S4 0 0
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unavailability), the main focus is on mitigating the accidental events 
preventing more severe consequences (i.e., extinguishing the jet-fire and 
mitigating the fireball respectively): therefore, repair and/or replace
ment processes are not assessed in the case study. It should also be 
remarked that repair/replacement timelines may also span months, 
making this type of analysis beyond the scope of the current application.
The GeNIe Modeler software [77] was used to analyze the DBNs within 
the specified time intervals. The output of the simulations, reported in 
Fig. 10-a), shows the states of system functionality considered in the case 
study. The dynamic resilience curve was then derived, based on Eq. (6), 
by adding the initial state (S1) of the system functionality and the final 
recovered functionality states of the system (S4 and S41), following the 
timeline of the two accidental events. The curve obtained is shown in 
Fig. 10-b).

The results of Step 5, in which the analysis of the findings is carried 
out, are included in the discussion section that follows.

5. Discussion

The present study proposes a systematic quantitative procedure 
based on Dynamic Bayesian Networks to assess the resilience of engi
neered systems in case of escalation scenarios (domino effect) by a dy
namic (time-dependent) and probabilistic approach. Given the 
increasing interest in the concept of the domino effect in the chemical 
and process industry, as well as in the Oil&Gas facilities, the proposed 
resilience escalation model represents a pivotal tool for the investigation 
of the functionality of systems following subsequent accidental events. 
This study fills gaps in the availability of systematic quantitative 
methods able to assess the resilience of engineered systems in the 
context of both well-established (e.g., refineries, petrochemical units, or 
chemical manufacturing complexes) and innovative infrastructure (e.g., 
cryogenic bunkering system). Furthermore, given the generic nature of 
the procedure, it can be customized and applied to a wider range of 
infrastructure (e.g., automotive infrastructure).

The application of the proposed method to the ship-to-ship LH2 
bunkering configuration considered in the illustrative case study 
demonstrated its ability in assessing resilience when cascading accident 
scenarios occur. Moreover, it proved the quality of the results addressing 
the identification of weaknesses, through the FTA applied to classify the 
resilience attributes, as well as in ensuring business continuity in in
dustrial systems.

When considering the results of the specific case study carried out, 
Fig. 10-b) shows the calculated resilience curve of the bunkering system 
considered. Two sharp declines of the curve are depicted, representing 
the functionality decrease of the system following the first disruption (i. 
e., the minor LH2 release with immediate ignition (jet-fire)) and the 
subsequent escalation scenario (i.e., the BLEVE and fireball following 
jet-fire impingement). The latter occurs when the first disruption is not 
adequately managed: in fact, once the jet-fire is detected, the adaptation 
and restoration abilities of the system attempt to recover and restore 
functionality over time. If these actions are successful after the first 
disruption, no subsequent events take place, and the dashed black line in 
the graph applies. The dashed line demonstrates a steady and uneventful 
recovery, returning to full resilience (intended as the jet-fire extinction 
and the system reconditioning) in approximately 55 min. Otherwise, if 
the jet-fire is not effectively handled, a potential chain of events (in the 
current case study, a BLEVE and fireball following hydrogen tank 
catastrophic rupture) can occur, leading to increased damage to the 
system and amplified recovery time (about 170 min), as indicated by the 
solid black line. A two-hour difference in recovery time is calculated 
between restoration up to S4 (if only the first disruption occurs) and S41 
(if the first disruption and the escalation scenario occur). An even higher 
time difference is expected in the case of equipment repair and/or 
replacement are addressed in the analysis, meaning that the system 
returns to a high functionality state (full recovery, state S1). In fact, 
while recovery from the first disruption (minor LH2 release with im
mediate ignition) requires only repair, recovery from the escalation 
scenario (BLEVE and fireball following jet-fire impingement on 

Fig. 10. a) Curves of functionality states of the examined case study (see Section 2.3 for the definition of the states); b) Dynamic resilience curve of the examined 
case study.
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secondary equipment) requires replacement of the equipment that has a 
completely different time scale (days up to months). However, as stated 
above, this was not accounted in the case study carried out, that focuses 
on resolving the accident by minimizing consequences on people, assets, 
and the surrounding environment.

Examining in more detail the two lowest resilience values (i.e., the 
two relative minimums in the resilience curve), after the first disruption, 
the system resilience decreases until it reaches a value of 0.012 at 11 
min, while the escalation scenario leads the system resilience to 0 in a 
few seconds: this means that the probability to be in a high functionality 
state (S1), or in a state in which the disruption is resolved, is close to 0. 
The reason for the more drastic decline after the escalation scenario is 
related to the latter, that exacerbates the compromised state of the 
system resulting from the first disruption. Furthermore, when the 
escalation scenario occurs, after 30 min from the first disruption, the 
probability of successful adaptation and restoration abilities of the sys
tem are 0.71 and 0.29, respectively, while the absorption ability is no 
more present (see curves S3, S4, and S2 in Fig. 10-a)) after 30 min.

Overall, Fig. 10 highlights the significant impact of the escalation 
scenarios on the system resilience and confirms the critical importance 
of safety measures and mitigation strategies aimed at preventing such 
escalations. It also highlights the importance of the robustness of 
emergency response plans and of the system inherent design to resist 
sequential failures. The difference between the two resilience curves in 
Fig. 10-b) underscores both the need to address singular incidents and to 
properly plan for the prevention and recovery from potential cascading 
effects that may critically affect the overall system resilience.

To further investigate the resilience of the LH2 bunkering system 
analyzed, a posterior analysis was carried out, assuming specific basic 
events as evidence. The aim was to observe how the system behaves and 
restores when subjected to continuous solicitations or threats by specific 
elements. The failure of the ESD system, of the hydrogen leak detection 
devices, and the malfunction of the sprinklers were thus presumed as 
persistent system faults (evidence). In other words, nodes “ESD”, 
“Detection of H2 leak”, and “X32” were set as follows: FAILURE = 1 and 
SUCCESS = 0, without considering in the analysis the occurrence 
probabilities of Table 3. The results obtained are reported in Fig. 11.

Under continuing system faults (evidence) affecting the adaptation 
attribute, the resilience curve (the dashed line in Fig. 11) tends to exhibit 
a lower capability to withstand disruptions. This is evident when 
comparing the resilience curves in case/not in case of evidence after 30 
min. In the case of evidence, the probability of restoration from the jet- 
fire is lower compared to scenarios where theoretically no specific 
failures are present. Specifically, a resilience value of approximately 0.2 
is observed in cases of evidence, in contrast to a value of 0.3 when no 
evidence is present. Additionally, restoration times result to be about 10 
min longer in case of persistent failures, both for the single disruption 
scenario (dashed black line) and the escalation scenario (continuous 
black line). Although no significant increases in time were identified in 
the specific case study analyzed, such results show the potential for 

longer restoration times depending on the severity of the failures 
affecting the engineered system under investigation. Longer times can 
be obtained also if the system is in a low (L) state at the analysis time 
(refer to Section 2.3.3), due to its intrinsic degradation rate.

Future applications of the proposed model to various complex sys
tems, such as Carbon Capture and Storage (CCS), shall allow the further 
assessment of the effectiveness and adaptability of the model across 
different contexts. This approach will help to strengthen the validation 
of the novel resilience model developed.

6. Conclusions

A novel quantitative model based on dynamic Bayesian network 
(DBNs) for the assessment of resilience of engineered systems in case of 
escalation scenarios caused by domino effects has been developed. The 
innovative resilience model has been then implemented into a system
atic step-by-step procedure capable of evaluating the ability of complex 
systems to recover and restore functionality following the impact of 
cascading accident events. The results obtained allows a significant 
advancement in the assessment of engineered system resilience, filling 
the gap in the availability of a systematic quantitative procedure able to 
account for domino effects in both conventional and innovative infra
structure contexts. By leveraging the DBN framework, the novel 
approach developed is able to address the intricate temporal system 
dynamics inherent in resilience assessment, providing a comprehensive 
understanding of how resilience evolves over time when multiple acci
dental scenarios occur. Moreover, it handles uncertainty by adopting a 
probabilistic perspective, allowing for a more robust evaluation of 
resilience in the face of unpredictable events and disturbances. In doing 
so, this methodology equips stakeholders and decision-makers with 
valuable insights into the capability of engineered systems to recover to 
high functionality states, empowering them to proactively manage risks 
and enhance system performance in the face of escalating scenarios.

The application of the procedure to a case study in the context of LH2 
bunkering operations demonstrated the systematic nature of the step-by- 
step procedure, along with the ability of the resilience model to effec
tively handle escalation scenarios. The results highlight that the resil
ience of the system is strongly affected when the escalation scenario 
occurs in a system that is already damaged by the first disruption event. 
Furthermore, adaptation and restoration parameters, and system design 
are crucial for recovery, emphasizing the need for redundant safety 
barriers and improvement in maintenance.

Overall, the application of the proposed methodology to specific 
cryogenic bunkering operations demonstrated the quality of the results 
achievable in supporting human safety, protecting assets and the envi
ronment, and ensuring the continued operation and success of industrial 
operations in an increasingly uncertain and interconnected reality.

Fig. 11. Comparison between the dynamic resilience curves of the examined case study in case (dashed line) or not (solid line) of evidence.
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Fig. A.1. Fault tree of the Release Prevention Barriers (RPBs).

Fig. A.2. Fault tree of the Release Detection Barriers (RDBs).
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Fig. A.3. Fault tree of the Ignition Prevention Barriers (IPBs).

Fig. A.4. Fault tree of the Escalation Prevention Barriers (EPBs).
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