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GENERALIZED ROOT SYSTEMS

IVAN DIMITROV AND RITA FIORESI

Abstract. We generalize the notion of a root system by relaxing the condi-
tions that ensure that it is invariant under reflections and study the resulting
structures, which we call generalized root systems (GRSs). Since both Kostant
root systems and root systems of Lie superalgebras are examples of GRSs,
studying GRSs provides a uniform axiomatic approach to studying both of
them. GRSs inherit many of the properties of root systems. In particular, ev-
ery GRS defines a crystallographic hyperplane arrangement. We believe that
GRSs provide an intrinsic counterpart to finite Weyl groupoids and crystal-
lographic hyperplane arrangements, extending the relationship between finite
Weyl groupoids and crystallographic hyperplane arrangements established by
Cuntz. An important difference between GRSs and root systems is that GRSs
may lack a (large enough) Weyl group. In order to compensate for this, we in-
troduce the notion of a virtual reflection, building on a construction of Penkov
and Serganova in the context of root systems of Lie superalgebras.

The most significant new feature of GRSs is that, along with subsystems,
one can define quotient GRSs. Both Kostant root systems and root systems
of Lie superalgebras are equivalent to quotients of root systems and all root
systems are isomorphic to quotients of simply-laced root systems. We classify
all rank 2 GRSs and show that they are equivalent to quotients of root systems.
Finally, we discuss in detail quotients of root systems. In particular we provide
all isomorphisms and equivalences among them. Our results on quotient of root

systems provide a different point of view on flag manifolds, reproving results
of Alekseevsky and Graev.
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Introduction

The idea of a root system can be traced back to Killing who used this notion
towards classifying simple complex Lie algebras, a project completed in full gener-
ality by Cartan. Since then root systems and various analogs and generalizations
have become an indispensable tool in Lie theory and beyond, e.g. roots of Kac-
Moody and Borcherds algebras [Ka2], roots of Lie superalgebras [Ka1], T -roots
(also known as restricted roots or Kostant roots1) [Ko], etc. The versatility of root
systems comes from their elegantly simple definition which yields a remarkably rich
algebraic and combinatorial structure. Two fundamental concepts related to a root
system Δ are its Weyl group and the hyperplane arrangement whose complement
consists of the Weyl chambers of Δ. The fact that the Weyl group acts simply
transitively on the Weyl chambers is crucial in studying the structure and repre-
sentations of the (complex) Lie algebra associated with Δ. The generalizations
of root systems mentioned above still admit analogs of the Weyl group and the
corresponding hyperplane arrangements. The interplay among root systems, Weyl
groups, and hyperplane arrangements allows natural generalizations of one of these
structures to be translated to the others.

In the last decade generalizations of Weyl groups and Weyl chambers have be-
come the focus of renewed interest in connection with studying Nichols algebras, see
[CL], and 3-fold flopping contractions in the context of the Minimal model program,
see [IW]. Below we provide a very short description of the structures discussed in
[CL] and [IW] insofar as they relate to the present work. For details on these con-
nections we refer the reader to the works cited above and the references therein. In
[Cu] M. Cuntz introduces the notion of crystallographic arrangement as a special
type of simplicial arrangement in R

n and establishes a relationship between crystal-
lographic arrangements and finite Weyl groupoids. Since finite Weyl groupoids were
classified by M. Cuntz and I. Heckenberger, see [CH], [Cu] and [CH] together pro-
vide a classification of crystallographic arrangements (at least up to equivalence).
In [IW] O. Iyama and M. Wemyss study hyperplane arrangements that correspond
to Kostant root systems (which they refer to as “intersection arrangements”).

Given a simplicial arrangement A, a set R of vectors orthogonal to the hyper-
planes in A (two mutually opposite vectors for each hyperplane) is usually referred
to as a root system associated toA. It is natural to require that the choice of normal
vectors to hyperplanes in A is done in some consistent way, so that R can be useful
in studying A. The definition of crystallographic arrangement is such a condition
on R. While the relationship between crystallographic arrangements and finite
Weyl groupoids is beautifully described in [Cu], the relationship between the root
system R and the crystallographic arrangement A is somewhat obscure. Indeed,
by definition, a crystallographic arrangement is a simplicial arrangement which ad-
mits a root system with a certain property but the corresponding root systems can
only be recovered from the classification of simplicial arrangements. Moreover, the
simplicial arrangements arising from Kostant root systems are crystallographic but
Kostant root systems themselves are not root systems of these arrangements in the
sense of [Cu]. This is due to the fact that, for Konstant root systems, multiples
of roots can be roots, e.g. both α and 2α can be Kostant roots. Starting with a

1The different terms used for these objects reflect the fact that they appear in different contexts.
We choose to refer to them as “Kostant roots” mainly because of our background in Lie theory
and the work [Ko].
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Kostant root system R and considering its corresponding crystallographic arrange-
ment A, the primitive roots in R, i.e., the roots whose fractions are not roots, form
a root system of A in the sense of [Cu]. However, removing nonprimitive roots from
R results in a loss of information about the Kostant root system; as pointed out by
N. Nabijou and M. Wemyss in [NW], roots which are multiples of other roots carry
important information in applications to curve counting.

Apart from their applications to intersection arrangements, Kostant root systems
have played a central role in Lie theory, e.g. in the study of flag varieties, cf.
[Al] and [Gr]. Another extension of the notion of root system is provided by the
root systems of Lie superalgebras which play for Lie superalgebras the same role
that root systems play for Lie algebras, see [Ka1] for details. (For an axiomatic
treatment of root systems of Lie superalgebras, see [Se].) These finite analogs of
root systems exhibit many properties of root systems. However, they both lack
enough reflections, which results in some crucial new phenomena, for example, two
different bases need not be connected by a chain of reflections. As a result, such a
root system may have different Dynkin diagrams with respect to different bases and
the question of determining which Dynkin diagrams are associated with isomorphic
root systems may be challenging.

The goal of this work is to provide an axiomatic framework which allows for a
uniform treatment of roots systems of simple Lie algebras, root systems of classical
Lie superalgebras, Kostant roots systems, and root systems which give rise to crys-
tallographic arrangements. More precisely, we start by defining a new structure,
which we call a generalized root system (GRS for short) and show that many of the
properties of root systems like existence of bases, highest roots, etc. carry through
to GRSs. In particular, GRSs give rise to crystallographic arrangements. We also
introduce the notion of a virtual reflection and show that any two bases of a GRS are
linked by a chain of virtual reflections. In the language of simplicial arrangements,
virtual reflections are the same as wall-crossings. The most remarkable property
of GRSs is that, unlike, root systems, GRSs allow for taking quotients. Indeed, a
Kostant root system is nothing but a quotient of a root system (and thus a GRS).
Moreover, while root systems of Lie superalgebra are not naturally GRSs, it turns
out that they are equivalent to quotients of roots systems (and hence equivalent to
GRSs). Equivalence between GRSs is a relation which is weaker than isomorphism
but is sufficient for studying and describing most combinatorial properties. Here is
a brief overview of the ideas and results of the paper.

A GRS is a finite subset R of a Euclidean vector space V such that, for α, β ∈ R,
the angle between α and β forces α+ β or α− β to belong to R as well. Namely,

〈α, β〉 < 0 implies α+ β ∈ R;
〈α, β〉 > 0 implies α− β ∈ R;
〈α, β〉 = 0 implies α+ β ∈ R, if and only if α− β ∈ R.

We also require that R spans V to avoid some technical issues, see Definition 1.1.
The dimension of V is then the rank of R. Two GRSs R′ and R′′ are isomorphic if
there is a conformal linear map between the corresponding Euclidean spaces V ′ and
V ′′ which is a bijection between R′ and R′′. For many combinatorial invariants of
GRSs the notion of isomorphism is too rigid and the weaker notion of equivalence
suffices: R′ and R′′ are equivalent if there is a vector space isomorphism between
V ′ and V ′′ which is a bijection between R′ and R′′.
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Most attributes of root systems carry over to GRSs: the notions of bases, positive
systems, strings of roots, etc. can be defined exactly as they are defined for root
systems, see Section 1. Moreover, most properties of root systems carry over to
GRSs: every GRSs admits a base, bases are in a bijection with positive systems,
every positive systems, considered as an ordered set, is a lattice, etc.

One important feature of root systems that does not carry over to GRSs is
invariance with respect to reflections. This distinction leads us to introduce the
notion of virtual reflection, see Definition 2.1. Namely, for a (primitive) root α ∈ R,
the virtual reflection σα along α is the permutation of R that reverses all α-strings
in R. Clearly, σα(α) = −α and σ2

α = idR. Note, however, that a virtual reflection
does not necessarily extend to a linear transformation of V . Nevertheless, virtual
reflections suffice to connect all bases of a GRS, i.e., any two bases of R are linked
by a chain of virtual reflections.

The main new feature of GRSs is that they admit quotients. Given a base S
of a GRS R and a subset I ⊂ S, we define the quotient GRS R/I as the image
of R under the projection πI : V � (span I)⊥. Remarkably, R/I is a GRS in
V/I := (span I)⊥, see Section 3.1 and Theorem 3.1 for details on the setup and the
proof of this fact. Moreover, taking quotients of root systems is functorial and the
fibres of πI possesses very nice properties, see Sections 3.3 and 3.4. In particular
Corollary 3.5 (along with Theorem 4.7) reproves central results in [Ko] and [DF] in
a more conceptual way.

Since Kostant root systems are, by definition, quotients of root systems and,
by Theorem 4.7, root systems of Lie superalgebras are equivalent to quotients of
root systems, we study quotients of root systems in detail. The main theorem,
Theorem 4.3, in this section realizes explicitly the virtual reflections on quotients
of root systems in terms of the corresponding Dynkin diagrams. Theorem 4.3 is
then used to discuss the isomorphism and equivalence classes of quotients of root
systems. In particular, we are able to recover the tables listed in [Gr]. Finally,
Theorem 4.6 shows that every root system is isomorphic to a quotient of a simply-
laced root system. Thus, when discussing properties of quotients of root systems,
it is sufficient to consider simply-laced root systems. This result parallels the well-
known fact that every root system is the folding of a simply-laced root system.
An important question related to Kostant root systems is the description of the
corresponding groupoids. This question was the subject of works by Howlett [Ho]
and Brink and Howlett [BH]. Even though we do not discuss the groupoids related
to GRSs, some results in the present paper to Kostant root systems are closely
related to results from [Ho] and [BH].

As a first step towards classifying GRSs, we classify (up to equivalence and
up to isomorphism) irreducible GRSs of rank 2, see Section 5. We organize the
equivalence classes of irreducible GRSs of rank 2, Theorem 5.2, according to the
largest multiplier of a root, i.e., the largest k ∈ Z such that there is a nonzero root
α for which kα also is a root. It turns out that, up to equivalence, there are 3 GRSs
with largest multiplier 1 (reduced GRSs), 8 GRSs with largest multiplier 2, 4 with
largest multiplier 3, and 1 GRS with largest multiplier 4. For each equivalence class
of GRSs we determine the isomorphism classes that it contains. It is remarkable
that every GRS of rank 2 is equivalent to a quotient of a root system as Theorem 5.5
shows. In the language of hyperplane arrangements, O. Iyama and M. Wemyss have
computed the rank 2 quotients of root systems, see [IW, Theorem 0.5]. A detailed



1466 IVAN DIMITROV AND RITA FIORESI

discussion of quotients of root systems (with a special attention on rank 2 quotients)
is carried out in [Gr].

The paper is organized as follows: In Section 1 we introduce the main defini-
tions and establish the elementary properties of GRSs which closely parallel the
properties of root systems. We also discuss in detail, including their Cartan matri-
ces, the reduced irreducible GRSs of rank 2. In Section 2 we define and study the
properties of virtual reflections. In Section 3 we define and study the properties
of quotients of GRSs. In Section 4 we study the properties of quotients of root
systems. In particular, we describe explicitly the virtual reflections in a quotient
of a root system Xl in terms of the Dynkin diagram Xl, see Theorem 4.3. This
result appears as the “wall crossing rule” in [IW, Theorem 0.1]. We then introduce
the graph Xl,k whose connected components represent the isomorphism classes of
rank k quotients of the root system Xl provided by Theorem 4.3. We also estab-
lish that the root systems of Lie superalgebras are equivalent to quotients of root
systems, Theorem 4.7, and that every root system is isomorphic to a quotient of
a simply-laced root system, Theorem 4.6. In Section 5 we classify (up to equiva-
lence and up to isomorphism) the irreducible GRSs of rank 2 and prove that every
such GRS is equivalent to a quotient of a root system. The proofs of these results
are somewhat lengthy and repetitive, so in this section we provide an outline of
the proof. The complete details are then presented in an appendix. These results
along with numerous illustrations appeared also in [Sp]. The final Section 6 is a
reference to the quotients of root systems. It contains a description of the quotients
of classical root systems and a table of the quotients of exceptional root systems.
In higher ranks this table coincides with a table in [CH]. The two tables differ in
lower ranks due to the existence of roots with multiples which are also roots. The
similarity between these tables is an evidence for Conjecture 5.8 which states that
every irreducible GRS of rank at least 2 is equivalent to a quotient of a root system.
A positive solution of Conjecture 5.8 will be a major step towards classifying all
GRSs. Indeed, it would provide a classification up to equivalence and would likely
yield a classification up to isomorphism too.2 The Appendix contains the proofs
omitted in Section 5.

1. Definitions and elementary properties

1.1. Definitions. We first define generalized root systems and introduce the nec-
essary notation and terminology.

Definition 1.1. A generalized root system (GRS for short) is a pair (R, V ), where
V is a finite dimensional Euclidean space and R ⊂ V is a nonempty finite set
satisfying the following properties:

(i) V = spanR;
(ii) If α, β ∈ R, then

(1.1)

⎧⎪⎨
⎪⎩
〈α, β〉 < 0 implies α+ β ∈ R,

〈α, β〉 > 0 implies α− β ∈ R,

〈α, β〉 = 0 implies α+ β ∈ R if and only if α− β ∈ R.

2Following the posting of a preliminary version of this text, M. Cuntz and B. Mühlherr have
proved Conjecture 5.8 [CM].
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We call the elements of R roots. The rank of (R, V ) is by definition the dimension
of V . The GRS (0, 0) is the trivial GRS.

When the space V is clear from the context, we will refer to the GRS (R, V ) by
the set R only.

If R is a GRS, then 0 ∈ R and R = −R. Indeed, if 0 �= α ∈ R, then 〈α, α〉 > 0
implies that 0 = α−α ∈ R. Moreover, 0, α ∈ R and 〈0, α〉 = 0 implies that −α ∈ R
since α ∈ R.

It is easy to see that the GRSs of rank 1 are the sets {0,±α,±2α, . . . ,±kα}.
A nonzero root α ∈ R is primitive if α = kα′ with α′ ∈ R and k ∈ Z>0 implies

k = 1. If α ∈ R is primitive and α, . . . , kα ∈ R but (k + 1)α �∈ R, we call k the
multiplier of α. The GRS R is reduced if every nonzero vector in R is primitive or,
equivalently, if, for every 0 �= α ∈ R, kα ∈ R with k ∈ R implies k = ±1.

If (R1, V1) and (R2, V2) are two GRSs, their sum is the GRS (R1 ∪ R2, V1 ⊕
V2), where V1 ⊕ V2 denotes the orthogonal direct sum of the Euclidean spaces V1

and V2. We say that (R, V ) is irreducible if it is not the sum of two nontrivial
GRSs. Every GRS (R, V ) decomposes as the sum of nontrivial irreducible GRSs
(R1, V 1), (R2, V 2), . . . , (Rs, V s) in a unique way, cf. Corollary 1.17.

By definition, the abelian group Q generated by R is the root lattice of R.
Let (R, V ) be a GRS with root lattice Q. If Q′ ⊂ Q a sublattice, R′ = R ∩ Q,

and V ′ := spanQ′, then (R′, V ′) is a GRS and we say that it is a subsystem of
(R, V ).

Example 1.2.

(i) Let W ⊂ V be a subspace and let Q′ := Q∩W . Then R′ = R∩Q′ = R∩W
is a GRS in W ′ := spanQ′ ⊂ W . Note that W ′ does not necessarily equal
W .

(ii) Let R = B2 = ±{α, β, β + α, β + 2α}, cf. Section 1.6, and let Q′ be the
lattice generated by 2α, β. Then R′ = ±{β, β + 2α} is a subsystem of R
and R′ = A1 ×A1. In this example the ranks of R and R′ coincide.

Two irreducible GRSs (R1, V1) and (R2, V2) are isomorphic if there is a conformal
linear isomorphism ϕ : V1 → V2 which is a bijection between R1 and R2; (R1, V1)
and (R2, V2) are equivalent if there is a vector space isomorphism ϕ : V1 → V2 which
is a bijection between R1 and R2. Two (not necessarily irreducible) GRSs (R1, V1)
and (R2, V2) are isomorphic (respectively, equivalent) if, for i = 1, 2, (Ri, Vi) is
the sum of the nontrivial irreducible GRSs (R1

i , V
1
i ), (R

2
i , V

2
i ), . . . , (R

s
i , V

s
i ) and

(Rj
1, V

j
1 ) is isomorphic (respectively, equivalent) to (Rj

2, V
j
2 ) for every j = 1, 2, . . . , s.

Since the spaces V1 and V2 are spanned by the GRSs R1 and R2 respectively, we
will often omit mentioning V1 and V2 and will write ϕ : R1 → R2. The notion of
isomorphism is natural and we will provide a more straightforward necessary con-
dition for isomorphism between GRSs in terms of their respective Cartan matrices,
cf. Section 1.2.

We denote isomorphism and equivalence between GRSs by ∼= and ≈ respectively.
It is clear that isomorphism implies equivalence, but the converse is not true as

Example 1.3 shows.

Example 1.3. Let {e1, e2} be the standard orthonormal basis of R2. One can check
easily that R1 = {0,±e1,±e2,±e1 ± e2} and R2 = {0,±e1,±( 45e2 + 3

5e1),±e1 ±
( 45e2 +

3
5e1)} are GRSs in R2. They are equivalent but not isomorphic.
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1.2. Bases and positive systems.

Definition 1.4. We say that S ⊂ R is a base of the GRS (R, V ) if

(i) S is a basis of V ;
(ii) Any element β ∈ R can be written as β =

∑
α∈S mαα with all mα ∈ Z�0

or all mα ∈ Z�0.

The elements of S are called simple roots. If β =
∑

α∈S mαα, the height of β with
respect to S is defined as htS(β) :=

∑
α∈S mα. When S is clear from the context,

we write just ht(β).

Note that the base S defines a partial order ≺S on R by α ≺S β if β − α =∑
α∈S mαα with mα ∈ Z�0 for every α ∈ S. When S is clear from the context, we

write ≺ instead of ≺S .

Definition 1.5. We say that R+ is a positive system of R if

(i) For α, β ∈ R+ and α+ β ∈ R, we have α+ β ∈ R+;
(ii) R = R+ ∪ −R+;
(iii) R+ ∩ −R+ = {0}.

We set R− := −R+. A root in R+ is indecomposable if it is not the sum of two
nonzero roots in R+.

If S is a base of R, we set

(1.2) R+(S) = {β ∈ R | β =
∑
α∈S

mαα with mα ∈ Z�0}.

It is immediate that R+(S) is a positive system.
Given ζ ∈ V \ (∪α∈R\{0}Hα) where Hα is the hyperplane orthogonal to α ∈ R,

we set

(1.3) R+(ζ) = {β ∈ R | 〈β, ζ〉 � 0}.
Clearly, R+(ζ) is a positive system.

GRSs exhibit properties analogous to those of root systems. Proposition 1.6 is
the analog of [Hu, Theorem 10.1’] and the proof of [Hu, Theorem 10.1’] works in
the setting of GRSs.

Proposition 1.6. If R is a GRS, then

(i) For any ζ ∈ V \(∪α∈R\{0}Hα), the indecomposable elements of R+(ζ) form

a base S(ζ) of R and R+(ζ) = R+(S(ζ)).
(ii) For any base S of R there exists ζ(S) ∈ V \ (∪α∈R\{0}Hα) such that S =

S(ζ(S)). In particular, R+(S) = R+(ζ(S)).

Corollary 1.7. Let α ∈ R be a primitive root. There exists a base S of R such
that α ∈ S.

Proof. Fix ζ ∈ V such that 〈ζ, α〉 = 0 but 〈ζ, β〉 �= 0 for β ∈ R\Zα. One checks
immediately that, for small enough x > 0, α is an indecomposable element of
R+(ζ + xα). Hence, by Proposition 1.6(i), α ∈ S(ζ + xα). �

Note that Proposition 1.6 guarantees that every GRS admits a base. Moreover,
it is true that every positive system R+ for R is of the form R+(S) for some base S
(equivalently, of the form R+(ζ) for some ζ ∈ V \(∪α∈R\{0}Hα), see Proposition 2.4.



GENERALIZED ROOT SYSTEMS 1469

Definition 1.8. If S is a base of R, the Cartan matrix of the pair (R,S) is the

matrix C = (cαβ), where cαβ = 2〈α,β〉
〈α,α〉 .

It is immediate from the definitions that the diagonal entries of the Cartan
matrix C of a pair (R,S) equal 2 and the off-diagonal entries are nonpositive real
numbers. Moreover, as in the case of Kac-Moody algebras, cαβ = 0 implies cβα = 0.
However, the off-diagonal entries of C need not be integer.

The notions of isomorphism and equivalence extend naturally to bases: We say
that two triples (R1, V1, S1) and (R2, V2, S2) are isomorphic (respectively, equiva-
lent) if there is an isomorphism (respectively, an equivalence) of GRSs ϕ : V1 → V2,
cf. Section 1.1, which is a bijection between S1 and S2. When discussing isomor-
phisms or equivalences between bases, we will usually suppress V1, V2, R1 and R2 in
the notation and will speak of isomorphisms and equivalences between S1 and S2.
Note that the bases S and −S are isomorphic and, in particular, their respective
Cartan matrices coincide.

If S1 and S2 are isomorphic bases, then their respective Cartan matrices coincide.
However, unlike root systems, a GRS may have bases which are not equivalent (and
hence not isomorphic either) to each other. In particular, a GRS may have different
Cartan matrices with respect to different bases. Conversely, nonisomorphic GRSs
may have the same Cartan matrices: the root system B2 and the nonreduced root
system BC2 have the same Cartan matrix.

Deciding whether two GRSs are equivalent is easier than deciding whether they
are isomorphic. Proposition 1.9 is straightforward but will be very useful in deciding
whether two GRSs are isomorphic.

Proposition 1.9. Let ϕ : R1 → R2 be an equivalence and let S be a base of R1.
Then S and ϕ(S) are equivalent and ϕ is an isomorphism if and only if the Cartan
matrices corresponding to (R1, S) and (R2, ϕ(S)) coincide.

Assuming that we can decide whether two GRSs R1 and R2 are isomorphic (or
equivalent), the question whether two bases S1 of R1 and S2 of R2 are isomorphic
(or equivalent) reduces to deciding whether two bases of the same GRS, say R2, are
isomorphic (or equivalent). Indeed, for S1 and S2 to be isomorphic (or equivalent),
R1 and R2 must be such. Assume that ϕ : R1 → R2 is an isomorphism (or
equivalence). Since S1 and ϕ(S1) are isomorphic (or equivalent), we conclude that
S1 and S2 are isomorphic (or equivalent) if and only if the bases ϕ(S1) and S2 of
R2 are isomorphic (or equivalent).

1.3. Strings and the highest root. Throughout this subsection S is a fixed base
of the GRS R and R+ := R+(S). Below we record several properties of GRSs which
are analogous to properties of root systems.

Proposition 1.10. Assume that β′, β′′ ∈ R satisfy β′ ≺S β′′. There exists a
sequence of roots

β′ = β0, β1, . . . , βk = β′′

such that βi − βi−1 ∈ S for every 1 � i � k.

Proof. Assume not. Pick a pair β′ =
∑

α∈S b′αα and β′′ =
∑

α∈S b′′αα for which
the statement above fails and such that htβ′′ − htβ′ =

∑
α∈S(b

′′
α − b′α) is minimal.

Consider the set J := {α ∈ S | b′α < b′′α}. Then the choice of β′ and β′′ implies
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that, for every α ∈ J , β′ +α �∈ R and β′′ −α �∈ R. Hence, for every γ ∈ J , we have
〈β′, γ〉 � 0 and 〈β′′, γ〉 � 0. Combining these we obtain

0 � 〈β′′, γ〉 = 〈β′, γ〉+
∑
α∈J

(b′′α − b′α)〈α, γ〉,

implying that ∑
α∈J

(b′′α − b′α)〈α, γ〉 � 0.

Multiplying this inequality by b′′γ − b′γ and summing over all γ ∈ J , we obtain

btBb � 0, where b := (b′′α − b′α)α∈J and B := (〈α, γ〉)α,γ∈J . Since B is a positive-
definite matrix, we conclude that b = 0, i.e., that β′′ = β′, contradicting the choice
of β′ and β′′. �

Remark 1.11. As an immediate consequence of Proposition 1.10, we conclude that
the Hasse diagram of the poset R is connected and its edges can be labeled by the
elements of S.

Corollary 1.12.

(i) If β ∈ R+ \ {0}, then β − α ∈ R+ for some α ∈ S.
(ii) Let β ∈ R+. Then β can be written as a sum of simple roots β = α1+· · ·+αk

in such a way that each partial sum α1 + · · · + αi for 1 � i � k is also a
root.

Proof. Apply Proposition 1.10 to the pair of roots 0, β. �

Corollary 1.13. Let α �= 0, β ∈ R and let k < s be integers such that β + kα and
β + sα belong to R. Then β + tα ∈ R for every integer t in the interval [k, s].

Proof. Apply Proposition 1.10 to the pair of roots β + kα, β + sα. �

Corollary 1.13 implies that the set of integers k such that β + kα ∈ R is a
subinterval of Z, i.e., it is of the form [−p, q]∩Z. The set of roots β−pα, . . . , β+qα
is called the α-string through β. If β − α �∈ R, then the α-string through β is
of the form β, . . . , β + 	αβα for some 	αβ ∈ Z�0. If R is a root system and α
and β belong to a base of R, then 	αβ = −cαβ , the corresponding entry of the
Cartan matrix. However, for GRSs, 	αβ and −cαβ do not have to coincide as the
examples of Section 1.6 show. Indeed, for the GRS from Section 1.6(i) we have
	αβ = 1, while cαβ can take any real value in the interval (−2, 0); similarly, in
Section 1.6(ii), 	αβ = 2, while cαβ can take any real value in the interval (−4, 0).

Proposition 1.14. If R is irreducible, then there exists a unique maximal with
respect to S root θ. Moreover, if θ =

∑
α∈S kαα, then kα > 0 for every α ∈ S.

Proof. The proof is analogous to the proof of Lemma A in [Hu, Section 10.4]. �

The unique maximal root θ above is called the highest root with respect to S.

1.4. The support of a root. For the rest of this section S is a fixed basis of R
with corresponding positive system R+. Given β ∈ R, we define the support of
β =

∑
α∈S kαα as

supp β := {α ∈ S | kα �= 0}.
A subset I ⊂ S is connected if I cannot be decomposed as the disjoint union
I = I ′ � I ′′ where I ′′ is orthogonal to I ′.



GENERALIZED ROOT SYSTEMS 1471

Proposition 1.15. Assume that S = S′ � S′′ with S′ ⊥ S′′. Then R = R′ ∪ R′′,
where R′ ⊂ spanS′ and R′′ ⊂ spanS′′.

Proof. Let S′ = {α′
1, . . . , α

′
s} and S′′ = {α′′

1 , . . . , α
′′
t }. If β = β′ + β′′ ∈ R+, where

β′ ∈ spanS′, β′′ ∈ spanS′′, we first show that β′, β′′ ∈ R by induction on htβ. The
case when htβ = 0 is trivial. If htβ > 0, then there is α ∈ S such that β − α ∈ R.
Assume that α = α′

j ∈ S′. Then the induction assumption applies to β−α′
j . Hence

β′ − α′
j , β

′′ ∈ R. Moreover, 〈β′′, β〉 = 〈β′′, β′ + β′′〉 > 0, implying that β′ ∈ R. The
assumption that both β′ and β′′ are nonzero, along with 〈β′, β′′〉 = 0, β′, β′′ ∈ R
and β′ − β′′ �∈ R, implies that β �∈ R. This completes the proof. �
Corollary 1.16. If β ∈ R, then supp β ⊂ S is connected.

Proof. Assume to the contrary that supp β = S1�S2 with S1 ⊥ S2 and set R̃ := R∩
span(S1�S2). Then R̃ is a subsystem of R which, by Proposition 1.15, decomposes

as R̃ = R̃1 ∪ R̃2. On the other hand β ∈ R̃ while β �∈ R̃1 ∪ R̃2 unless S1 or S2 is
empty. �
Corollary 1.17. Every GRS decomposes uniquely as the sum of irreducible GRSs.

Remark 1.18. The following partial converse of Corollary 1.16 holds: if I ⊂ S is
connected, then

∑
α∈I α ∈ R. We omit the elementary proof of this fact since we

will not need it.

1.5. The poset R+. The fixed base S of R defines a partial order on the root
lattice Q and, as a consequence, on any subset of Q by λ ≺ μ if μ−λ =

∑
α∈S kαα

with kα ∈ Z�0. Recall that a partially ordered set (poset for short) is a lattice if
any two elements x, y have a supremum, also called join and denoted by x∨ y, and
an infimum, also called meet and denoted by x ∧ y.

Proposition 1.19. The poset R+ is a lattice. Moreover, if β′ =
∑

α∈S k′αα and
β′′ =

∑
α∈S k′′αα, then β′ ∧ β′′ =

∑
α∈S min(k′α, k

′′
α)α.

Proof. For β′ =
∑

α∈S k′αα and β′′ =
∑

α∈S k′′αα, set β :=
∑

α∈S min(k′α, k
′′
α)α. To

prove that β = β′ ∧ β′′ it suffices to show that β ∈ R. Assume to the contrary that
β �∈ R. We can also assume that the pair β′, β′′ is chosen so that

∑
α∈S |k′α − k′′α|

is minimal among all β′, β′′ for which β defined as above does not belong to R.
Set γ′ := β′ − β =

∑
k′
α>k′′

α
(k′α − k′′α)α and γ′′ := β′′ − β =

∑
k′′
α>k′

α
(k′′α − k′α)α.

If α ∈ S is such that k′α > k′′α, then 〈β′, α〉 � 0 since otherwise β′ − α ∈ R and the
pair β′ − α, β′′ corresponds to the same element β, contradicting the choice of β′

and β′′. As a consequence we conclude that 〈β′, γ′〉 � 0. Similarly, 〈β′′, γ′′〉 � 0.
Furthermore, 〈β′, β′′〉 � 0 because β′ − β′′ �∈ R and 〈γ′, γ′′〉 � 0 because the
supports of γ′ and γ′′ are disjoint. These inequalities lead to

0 < 〈β+γ′+γ′′, β+γ′+γ′′〉 = 〈β′+γ′′, β′′+γ′〉 = 〈β′, β′′〉+〈β′, γ′〉+〈β′′, γ′〉+〈γ′, γ′′〉 � 0.

This contradiction proves that β ∈ R, i.e., that β′ ∧ β′′ =
∑

α∈S min(k′α, k
′′
α)α.

To prove that β′ ∨ β′′ exists, consider the set X := {γ ∈ R | β′ ≺ γ, β′′ ≺ γ}.
Since X contains the highest root, it is not empty. The first part of the statement
implies that the meet of X is given by the formula

∧X =
∑
α∈S

min{kγα | γ ∈ X}α,

where, for γ ∈ X, we write γ =
∑

α∈S kγα α. The formula for ∧X shows that it is
an upper bound of {β′, β′′} and hence it is the join of β′ and β′′. �
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Remark 1.20.

(i) Note that, in general, β′∨β′′ �=
∑

α∈S max(k′α, k
′′
α)α. The reason is that the

support of every root is connected, while the set {α ∈ S | max(k′α, k
′′
α) �= 0}

is not necessarily connected. For example, in the root system A3 with basis
{α1, α2, α3}, we have α1 ∨ α3 = α1 + α2 + α3.

(ii) It is clear that R− is also a lattice. However, in R− we have β′ ∨ β′′ =∑
α∈S max(k′α, k

′′
α)α, while β′ ∧ β′′ does not necessarily equal∑

α∈S min(k′α, k
′′
α)α.

(iii) Combining Proposition 1.19 and (ii) above, we conclude that R itself is a
lattice. However, in R neither of the explicit formulas for β′∧β′′ and β′∨β′′

holds.
(iv) Proposition 3.4 identifies some sublattices of R which are interesting on

their own.

The first named author learned the following property of GRSs from Etan Ossip
while working on [DGOPW]. Proposition 1.21 and its proof inspired the idea for
Proposition 1.19 and its proof. We thank Etan Ossip for generously allowing us to
use his idea.

Proposition 1.21. Let α, β, γ, γ + α + β ∈ R but α + β �∈ R. If γ + α �= 0, then
γ + β ∈ R.

Since we will not use Proposition 1.21 in the rest of the paper, we refer the reader
to [DGOPW] for the proof.

1.6. Reduced GRSs of rank 2. To illustrate the basic definitions and properties
so far, we provide the classification of all reduced GRSs of rank 2 and their bases.
Every reduced reducible GRS of rank 2 is isomorphic to the root system A1×A1, so
we assume that R is a reduced irreducible GRS of rank 2 and fix a basis S = {α, β}
of R. Denote the Cartan matrix of R with respect to S by

C =

(
2 a
b 2

)
,

where a := cα,β = 2〈α,β〉
〈α,α〉 and b := cβ,α = 2〈β,α〉

〈β,β〉 .

The α-string through β contains at most 4 elements. Indeed, if β, . . . , β+4α ∈ R
then either 〈β, β + 2α〉 > 0 or 〈β + 2α, β + 4α〉 > 0, implying that 2α ∈ R, which
is impossible. Similarly, the β-string through α contains at most 4 elements. We
consider three cases for these strings.

(i) Both the α-string through β and the β-string through α contain two elements.
Then the assumptions on R imply that none of the vectors β+2α, 2β, 2β+α, 2β+2α
belongs to R. Applying Corollary 1.12, we conclude that R+ = {0, α, β, α+β} and
R = {0,±α,±β,±(α+ β)}.

There are six bases of R: S1 = S, S2 = {−α, α+β}, S3 = {α+β,−β}, and their
opposites. Since opposite bases are isomorphic and their Cartan matrices coincide,
we will focus on S1, S2, and S3. The Cartan matrices of R with respect to S1, S2,
and S3 are as follows:

C1 =

(
2 a
b 2

)
, C2 =

(
2 −2− a

− (2+a)b
a+b+ab 2

)
, C3 =

(
2 − (2+b)a

a+b+ab

−2− b 2

)
.
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Since 〈α, β〉 < 0, 〈α, α + β〉 > 0, and 〈β, α + β〉 > 0, the parameters a, b above
satisfy the inequalities −2 < a < 0 and −2 < b < 0. For a = b = −1, R is the root
system A2.

Applying Proposition 1.9, we conclude that the GRSs corresponding to the pairs
of parameters (a′, b′) and (a′′, b′′) are isomorphic if and only if these pairs belong
to the same orbit of the action of the group generated by

(a, b) �→
(
−2− a,− (2 + a)b

a+ b+ ab

)
, and (a, b) �→

(
− (2 + b)a

a+ b+ ab
,−2− b

)
.

A generic orbit consists of 6 elements.
The linear transformations ϕ21 and ϕ31 defined by

ϕ21(α) = −α, ϕ31(α) = α+ β,
ϕ21(β) = α+ β, ϕ31(β) = −β

provide equivalences S1 ≈ S2 and S1 ≈ S3. Hence all bases of R are equivalent
among themselves.

The matrices C1 and C2 coincide if and only if a = −1. Hence S1 and S2 may
be isomorphic only if a = −1. One checks easily that, for a = −1, ϕ21 is, in fact,
an isomorphism. Similarly, S1

∼= S3 if and only if b = −1 and S2
∼= S3 if and only

if a = b. In particular, S1
∼= S2

∼= S3 if and only if a = b = −1, i.e., R is the root
system A2.

(ii) The α-string through β contains two elements. Then the assumptions on R
imply that the vectors α, β, β + α, β + 2α belong to R, while β + 3α, 2β, 2β + 2α
do not belong to R. Since neither β + (β + 2α) nor β − (β + 2α) belongs to R,
we conclude that 〈β, β + 2α〉 = 0. This in turn implies that 〈2β + α, β + 2α〉 > 0,
proving that 2β+α �∈ R since otherwise β−α = (2β+α)− (β+2α) ∈ R. Applying
Corollary 1.12, we conclude that R = {0,±α,±β,±(β + α),±(β + 2α)}. Since
neither (β + 2α) + α, nor (β + 2α) = β is a root, we conclude that 〈β + 2α, β〉 = 0.

In particular, b := 2〈β,α〉
〈β,β〉 = −1.

There are eight bases of R: S1 = S, S2 = {−α, β + 2α}, S3 = {α + β,−β},
S4 = {α + β,−(β + 2α)}, and their opposites. As in case (i) above, we will focus
on S1, S2, S3, and S4. The Cartan matrices of R with respect to S1, S2, S3, and
S4 are as follows:

C1 =

(
2 a
−1 2

)
, C2 =

(
2 −4− a
−1 2

)
,

C3 =

(
2 a
−1 2

)
, C4 =

(
2 −4− a
−1 2

)
.

Since 〈α, β〉 < 0 and 〈α, 2α+β〉 > 0, the parameter a above satisfies the inequal-
ity −4 < a < 0. For a = −2, R is the root system B2. Applying Proposition 1.9, we
conclude that the GRSs corresponding to the parameters a′ and a′′ are isomorphic
if and only if a′ + a′′ = −4.

The linear transformations ϕ21, ϕ31, and ϕ41 defined by

ϕ21(α) = −α, ϕ31(α) = α+ β, ϕ41(α) = α+ β,
ϕ21(β) = 2α+ β, ϕ31(β) = −β, ϕ41(β) = −2α− β

define equivalences S1 ≈ S2, S1 ≈ S3, and S1 ≈ S4. Hence all bases of R are
equivalent among themselves.
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Moreover, ϕ31 and ϕ41 ◦ ϕ−1
21 provide isomorphisms S1

∼= S3 and S2
∼= S4. The

matrices C1 and C2 coincide if and only if a = −2. Hence S1 and S2 may be
isomorphic only if a = −2. For a = −2, the linear transformation ϕ21 is, in fact,
an isomorphism. In particular, S1

∼= S2
∼= S3

∼= S4 if and only if a = −2, i.e., R is
the root system B2.

(iii) The α-string through β contains three elements. Then the assumptions
on R imply that the vectors α, β, β + α, β + 2α, β + 3α belong to R, while β +
4α, 2β + 2α, 2β + 4α, 3β + 3α do not belong to R. Since neither β + (β + 2α)
nor β − (β + 2α) belongs to R, we conclude that 〈β, β + 2α〉 = 0. This in turn
implies that 〈β, β + 3α〉 < 0, proving that 2β + 3α ∈ R. The fact that neither
2β + 4α nor 3β + 3α belongs to R shows that 2β + 3α is the highest root. Hence
R = {0,±α,±β,±(β + α),±(β + 2α),±(β + 3α),±(2β + 3α)}.

Arguing as above, we also obtain that 〈β + α, β + 3α〉 = 0. This equation along
with 〈β, β + 2α〉 = 0 implies that a = −3, b = −1 and thus R is isomorphic to
the root system G2. In particular, it admits 12 bases which are isomorphic among
themselves.

2. Virtual reflections

Definition 2.1. Given a nonzero α ∈ R, we define the virtual reflection σα to be
the following permutation of R: if α is primitive, then σα reverses all α-strings; if α
is not primitive, then σα := σα′ , where α = kα′ and α′ is primitive. More precisely,
if α is primitive, then for any α-string β, . . . , β + qα, we define

σα(β + iα) := β + (q − i)α.

Note that σα(α) = −α and σ2
α = idR.

If R is a root system, then σα is the reflection along α. In general σα cannot be
extended to a linear transformation of V ; even when it can be extended to a linear
transformation, it is not necessary a reflection, see Proposition 2.8.

Remark 2.2.

(i) As far as we are aware, the idea of virtual reflections was first introduced
by Penkov and Serganova in the context of Lie superalgebras to deal with
the problem that the Weyl group is too small to act transitively on the set
of Borel subalgebras containing a fixed Cartan subalgebra.

(ii) In principle, we may define the virtual reflection along any root α to be the
permutation of R reversing the α-strings. However, with such a definition
the virtual reflections along α and 2α need not coincide, which we find
undesirable.

(iii) It is tempting to define the Weyl group of R as the subgroup of the symmet-
ric group of R generated by all σα. If R is a root system, then this group
is isomorphic to the Weyl group but we do not know whether it plays an
important role for a general GRS R.

(iv) Virtual reflections are invariants of equivalence, i.e., if ϕ : R1 → R2 is an
equivalence, then ϕ ◦ σα = σϕ(α) ◦ ϕ for any α ∈ R1\{0}.

(v) If α ∈ S, β ∈ R+, and β − α �∈ R, then σα(β) = β + 	αβα.
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Proposition 2.3. Let S be a base of R and let α ∈ S. Then σα(S) is a base of R
and

R+(σα(S)) = σα(R
+) = (R+\Z>0α) ∪ (Z<0α ∩R).

Proof. We first note that if β ∈ R+ is not proportional to α, then the α-string
through β is contained in R+. Hence

σα(R
+) = (R+\Z>0α) ∪ (Z<0α ∩R).

Proposition 1.6 implies that R+(S) = R+(ζ) for some ζ. Let ξ ∈ V be determined

by 〈α, ξ〉 = 1 and 〈α′, ξ〉 = 0 for α′ ∈ S\{α}. Then ζ̃ := ζ − 〈ζ, α〉ξ satisfies

〈ζ̃, α〉 = 0 and 〈ζ̃, α′〉 > 0 for every α′ ∈ S\{α}.

Then, for small enough ε > 0, the vector ζ ′ := ζ̃ − εξ yields

R+(ζ ′) = (R+\Z>0α) ∪ (Z<0α ∩R) = σα(R
+).

In particular, σα(R
+) is a positive system.

To complete the proof it remains to show that S(ζ ′) = σα(S). Clearly σα(S) ⊂
σα(R

+), so it suffices to prove that the elements of σα(S) are indecomposable
as elements of σα(R

+). First, −α = σα(α) clearly is indecomposable. Next, let
β �= α ∈ S. Then σα(β) = β + kα for some k ∈ Z�0. Assume to the contrary that

(2.1) β + kα = β′ + β′′

for some β′, β′′ ∈ σα(R
+) = (R+\Z>0α) ∪ (Z<0α ∩ R). First, β′ and β′′ cannot

both belong to Z<0α ∩ R. Next, if β′ ∈ R+\Z>0α and β′′ ∈ Z<0α ∩ R, equation
(2.1) implies that β′ belongs to the α-string through β, which contradicts the fact
that β + kα is the end point of this string. Finally, if both β′ and β′′ belong to
R+\Z>0α, then the decomposition of each of them as a combination of elements of
S will contain an element other than α, making (2.1) impossible. �

Proposition 2.4. Let R+ ⊂ R be a positive system. Then R+ = R+(S) for some
base S of R.

Proof. Let S be a base for which the cardinality of R+\R+(S) is minimal. If R+ �=
R+(S), then there exists α ∈ S\R+ (otherwise R+(S) ⊂ R+ and hence R+(S) =
R+). Then #(R+\R+(σα(S))) < #(R+\R+(S)), contradicting the choice of α. �

Combining Propositions 1.6 and 2.4, we obtain the following result.

Corollary 2.5. The correspondence S ←→ R+(S) is a bijection between the bases
of R and the positive systems of R.

Proposition 2.6. Let S be a base of R with R+ = R+(S). If I ⊂ S, then the set

P := (R+\R+
I ) ∪ (−R+

I )

is a positive system of R whose base contains the set −I.

Proof. Verifying that P is a positive system is straightforward. To show that the
set −I is contained in the base of P , it suffices to show that, for every α ∈ I, the
element −α is indecomposable in P . We omit this simple argument. �
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Proposition 2.7. Let S′ and S′′ be two bases of R. There exists a sequence of
bases

S′ = S0, S1, . . . , Sk = S′′

and roots αi ∈ Si for 0 � i � k − 1 such that Si+1 = σαi
(Si).

Proof. Induction on #(R+(S′′)\R+(S′)), the case #(R+(S′′)\R+(S′)) = 0 being
tautologically true. If #(R+(S′′)\R+(S′)) > 0, consider α0 ∈ S′\R+(S′′) and set
S1 := σα0

(S′). Then #(R+(S′′)\R+(S1)) < #(R+(S′′)\R+(S′)). Applying the
induction assumption to the pair S1, S

′′ completes the proof. �

Proposition 2.8. Let S be a base of R and let α ∈ S. The following statements
hold:

(i) If σα is the restriction of a linear transformation ϕ of V , then ϕ is an
equivalence between S and σα(S).

(ii) If σα is the restriction of an isometry ϕ of V , then ϕ is the reflection about
α and is an isomorphism between S and σα(S).

Proof. The only nontrivial statement is that any isometry extending σα is the
reflection about α. Indeed, such ϕ satisfies ϕ2 = idV and ϕ(α) = −α. Let β ∈
S\{α} decompose as β = cα+β̄ with respect to the decomposition V = Rα⊕(Rα)⊥.
Then the fact that σα preserves the α-string through β implies that ϕ(β̄) = β̄,
proving that ϕ is the reflection about α. �

3. Quotients

3.1. Definition. Let (R, V ) be a GRS and let S be a base of R. Fix a subset
I ⊂ S and set VI = span I. The orthogonal decomposition V = VI ⊕ V ⊥

I defines
the projection πI : V −→ V ⊥

I . Define

(3.1) RI = R ∩ VI , R⊥
I = πI(R) ⊂ V ⊥

I .

Clearly, (RI , VI) is a GRS which is a subsystem of (R, V ). However, in general,
R⊥

I �⊂ R. The goal of this section is to show that (R⊥
I , V

⊥
I ) is a GRS and to describe

its bases. We call (R⊥
I , V

⊥
I ) the quotient of (V,R) with respect to I. Note that

(R⊥
I , V

⊥
I ) depends on I but not on S as long as I is a subset of some base of R.

Accordingly, in what follows we will sometimes use the more functorial notation
R/I, V/I, S/I, etc. in place of R⊥

I , V
⊥
I , πI(S)\{0}, etc.

3.2. Main theorem about quotients.

Theorem 3.1. In the notation above (R/I, V/I) is a GRS with a base S/I.

Proof. First we note that S/I satisfies the conditions of Definition 1.4 with respect
to R/I and V/I, so we only need to prove that (R/I, V/I) is a GRS. We proceed
by induction on the cardinality of I.

Start with the case when I = {α} consists of a single element. To simplify
notation, for any ν ∈ V , we denote πI(ν) ∈ V/I by ν̄. In particular, ν = πI(ν) =

ν − 〈ν,α〉
〈α,α〉 α.

Let β, γ ∈ R̄. First we show that 〈β, γ〉 < 0 implies that β̄ + γ̄ ∈ R̄. Indeed,
assume that 〈β, γ〉 < 0. Then

〈β, γ〉 = 〈β, γ〉 − 〈α, β〉〈α, γ〉/〈α, α〉 < 0.
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If 〈β, γ〉 < 0 then β + γ ∈ R and hence β̄ + γ̄ = πI(β + γ) ∈ R̄. If, on the other
hand, 〈β, γ〉 � 0, then

0 � 〈β, γ〉 < 〈α, β〉〈α, γ〉/〈α, α〉,

implying that either 〈α, β〉 > 0 and 〈α, γ〉 > 0 or 〈α, β〉 < 0 and 〈α, γ〉 < 0. Assume
first that 〈α, β〉 > 0 and 〈α, γ〉 > 0. Hence β − α ∈ R. Let 	 be the largest integer
such that β − 	α ∈ R. Since β − (	+1)α �∈ R, while β − (	− 1)α ∈ R, we conclude
that 〈β − 	α, α〉 < 0. Consequently, 	 > 〈α, β〉/〈α, α〉 and

〈β − 	α, γ〉 = 〈β, γ〉 − 	〈α, γ〉 < 〈β, γ〉 − 〈α, γ〉〈α, β〉/〈α, α〉 = 〈β, γ〉 < 0.

Hence β − 	α + γ ∈ R and thus β + γ = πI(β − 	α + γ) ∈ R̄. In the case when
〈α, β〉 < 0 and 〈α, γ〉 < 0 we arrive at the conclusion that β + γ ∈ R̄ in a similar
way.

The proof that 〈β, γ〉 > 0 implies that β̄ − γ̄ ∈ R̄ is similar and we omit it.
Finally, we need to prove that 〈β, γ〉 = 0 implies that either both β ± γ belong

to R̄ or both β ± γ do not belong to R̄.
Let 〈β, γ〉 = 0. Assume first that 〈β, γ〉 > 0. Then β − γ ∈ R, and hence

β − γ ∈ R̄, so it remains to show that β + γ ∈ R̄. From the equation

〈β, γ〉 = 〈β, γ〉 − 〈α, β〉〈α, γ〉/〈α, α〉 = 0,

we conclude that

〈α, β〉〈α, γ〉/〈α, α〉 > 0.

This in turns implies that either 〈α, β〉 > 0 and 〈α, γ〉 > 0 or 〈α, β〉 < 0 and 〈α, γ〉 <
0. Repeating the argument above, we arrive at the conclusion that β̄ + γ̄ ∈ R̄.

The case when 〈β, γ〉 < 0 is dealt with analogously, so it remains to consider the
case when 〈β, γ〉 = 0. We will show then that β + γ ∈ R̄ implies β − γ ∈ R̄ and
vice versa, i.e., β − γ ∈ R̄ implies β + γ ∈ R̄. Assume β + γ ∈ R̄. Then there is an
integer s such that β + γ + sα ∈ R. Note that

〈β, γ〉 = 〈β, γ〉 − 〈α, β〉〈α, γ〉/〈α, α〉 = 0

along with 〈β, γ〉 = 〈β, γ〉 = 0 implies that 〈α, β〉 = 0 or 〈α, γ〉 = 0. Say, 〈α, β〉 = 0.
Then

〈β + γ + sα, β〉 = 〈β, β〉 > 0

and thus (β+γ+sα)−β = γ+sα ∈ R. Since 〈γ+sα, β〉 = 0 and β+(γ+sα) ∈ R,
we have β − (γ + sα) ∈ R, proving that β − γ = πI(β − (γ + sα)) ∈ R̄. The fact
that β − γ ∈ R̄ implies β + γ ∈ R̄ is proved analogously. This completes the proof
that (R/I, V/I) is a GRS when I is a singleton.

Assume now that I consists of more than one element and let J ⊂ I be a
singleton. Let πĪ : V/J → V/I be the orthogonal projection determined by the
set Ī := I/J ⊂ S/J . Since πI = πĪ ◦ πJ , the pair (R/I, V/I) is the quotient of
(R/J, V/J) with respect to Ī ⊂ S/J . Moreover, (R/J, V/J) is a GRS because J is
a singleton and hence (R/I, V/I) is the quotient of a GRS with respect to Ī whose
cardinality is one less than the cardinality of I. Thus, by induction, (R/I, V/I) is
a GRS. �
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3.3. Functoriality. We record an important property of quotients of GRSs. Its
proof is immediate and we omit it.

Proposition 3.2. Let R be a GRS and with a base S. If I ⊂ J ⊂ S, then
(R/I)/(J/I) ∼= R/J .

3.4. The fibres of πI . For ν ∈ R/I, denote the fibre of ν under πI by Rν , i.e.,
Rν = π−1

I (ν).

Proposition 3.3. Let I ⊂ S and let R+ = R+(S). If ν ∈ R/I is nonzero, then
Rν ⊂ R+ or Rν ⊂ R−.

Proof. If γ′ =
∑

α∈S c′αα and γ′′ =
∑

α∈S c′′αα are two elements of Rν , then c′α = c′′α
for every α ∈ S\I. Moreover, there is α0 ∈ S\I such that c′α0

= c′′α0
�= 0. Since the

sign of c′α0
(respectively, of c′′α0

) determines whether γ′ (respectively, γ′′) belongs
to R+ or R−, we conclude that γ′ and γ′′ both belong to R+ or both belong to R−,
proving that Rν ⊂ R+ or Rν ⊂ R−. �

Note that Rν is a poset with the order inherited from R. Moreover the edges of
the Hasse diagram of Rν are labeled by elements of I, cf. Remark 1.11.

Proposition 3.4. If ν �= 0, then Rν is a lattice. Moreover, if β′ =
∑

α∈S k′αα and
β′′ =

∑
α∈S k′′αα, then β′ ∧ β′′ =

∑
α∈S min(k′α, k

′′
α)α and β′ ∨ β′′ =∑

α∈S max(k′α, k
′′
α)α.

Proof. The observation that if Rν ⊂ R−, then −Rν = R−ν ⊂ R+ and γ′ ≺ γ′′ is
equivalent to −γ′′ ≺ −γ′ implies that it suffices to consider the case Rν ⊂ R+.

Assume Rν ⊂ R+. Let

β′ =
∑
α∈S

k′αα and β′′ =
∑
α∈S

k′′αα ∈ Rν .

The explicit formula in Proposition 1.19 for the meet of β′ and β′′ in the poset R+

implies that it belongs to Rν , proving that it is also the meet of β′ and β′′ in Rν .
Next we prove that β′ ∨ β′′ exists and equals

∑
α∈S max(k′α, k

′′
α)α. Applying

Proposition 2.6, we define a positive system P whose basis contains −I. Using
that πI = π−I and the formula for P , we conclude that Rν ⊂ P . The orders on
Rν inherited from the orders on R corresponding to R+ and P are opposite to
each other. In particular, the meet of β′ and β′′ with respect to P becomes their
join with respect to R+. This completes the proof that β′ ∨ β′′ exists and equals∑

α∈S max(k′α, k
′′
α)α. �

We end the discussion of the set Rν by an immediate corollary of Proposition 3.4
which is useful for some applications.

Corollary 3.5. If ν ∈ R/I then the Hasse diagram of Rν is connected. If, in
addition, ν �= 0, then Rν contains a smallest and a largest element.



GENERALIZED ROOT SYSTEMS 1479

3.5. Bases of R/I.

Proposition 3.6. A subset T of R/I is a base of R/I if and only if there exists a
base S of R such that I ⊂ S and T = πI(S)\{0} = S/I.

Proof. The fact that S/I is a base of R/I follows from Theorem 3.1.
Assume that T is a base of R/I and for every ν ∈ T , let β(ν) be the smallest

element of Rν . Set S := I ∪ {β(ν) | ν ∈ T}. The base T determines the positive
system (R/I)+ of R/I. Let P = R+

I ∪ π−1
I ((R/I)+\{0}). It is easy to verify that

P is a positive system in R containing S.
We claim that the elements of S are indecomposable in P . Assume to the

contrary that there is α ∈ S such that α = γ′ + γ′′ for some nonzero γ′, γ′′ ∈ P .
If α ∈ I, then 0 = πI(α) = πI(γ

′) + πI(γ
′′) implies that γ′, γ′′ ∈ RI , which

is impossible because α is a simple root of RI and hence it is indecomposable
in R+

I . If, on the other hand, α = β(ν) for some ν ∈ T , then the equation
ν = πI(β(ν)) = πI(γ

′) + πI(γ
′′) and the fact that ν is indecomposable in (R/I)+

imply that πI(γ
′) = ν and γ′′ ∈ RI (or vice versa). This leads to the equation

β(ν) = γ′ + γ′′ in which γ′ ∈ Rν and γ′′ ∈ R+
I , contradicting the assumption that

β(ν) is the smallest element of Rν .
Clearly the cardinality of S equals the rank of R and S consists of elements

indecomposable in P , proving that S is the base associated to P . By construction,
I ⊂ S and T = S/I. �
Corollary 3.7. There is a bijection between the bases of R/I and the bases of R
containing I.

4. Quotients of root systems I: Structure and properties

4.1. Notation. In this section we follow [Bo] for the notation and labeling of roots
in a root system. We refer to root systems as Xl, where X = A,B,C,D,E, F,G
and l takes values according to X. In each root system Xl we fix an ordered base
Σ = {α1, . . . , αl} labeled as in [Bo]. If J ⊂ {1, . . . , l}, we denote the projection
π{αj |j∈J} by πJ and let XJ

l be the quotient GRS Xl/{αj | j ∈ Jc} where Jc is

the complement of J in {1, . . . , l}. We denote by ΣJ the base πJc(Σ) of XJ
l , i.e.,

ΣJ = {πJc(αj) | j ∈ J}. The reason for using J in the notation of the quotient
by {αj | j ∈ Jc} is that the rank of XJ

l equals the cardinality of J . For brevity

of notation we sometimes write the set J as a list, e.g. F 2,4
4 denotes the quotient

F4/{α1, α3}.
Calculating the equivalence class of every quotient of a root system is not a

difficult problem. The quotients of the infinite series Al, Bl, Cl, Dl are calculated
explicitly in [DR]. Generating the list of all equivalence classes of quotients of the
exceptional root systems is a tedious but straightforward process. Indeed, the GRS
XJ

l is equivalent to the set obtained from a list of the roots of Xl by ignoring the
coordinates corresponding to Jc. Here is an example.

Example 4.1. Consider the root system F4. The list of positive roots of F4 with
respect to Σ is as follows:

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1) (1, 1, 0, 0) (0, 1, 1, 0)
(0, 0, 1, 1) (1, 1, 1, 0) (0, 1, 2, 0) (0, 1, 1, 1) (1, 1, 2, 0) (1, 1, 1, 1)
(0, 1, 2, 1) (1, 2, 2, 0) (1, 1, 2, 1) (0, 1, 2, 2) (1, 2, 2, 1) (1, 1, 2, 2)
(1, 2, 3, 1) (1, 2, 2, 2) (1, 2, 3, 2) (1, 2, 4, 2) (1, 3, 4, 2) (2, 3, 4, 2).
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Ignoring the first and the third coordinates of each of these vectors and listing
each resulting vector only once we obtain the following GRS which is equivalent to
(F 2,4

4 ,Σ2,4):

R = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(2, 0),±(1, 2),±(2, 1),±(2, 2),±(3, 2)}

with base S = {(1, 0), (0, 1)}.
Computing the Euclidean structure of F 2,4

4 requires an additional calculation
which we omit here and record the result:

‖ᾱ2‖2 = 1, ‖ᾱ4‖2 =
3

2
, 〈ᾱ2, ᾱ4〉 = −1.

Two natural questions arise:

(i) For what J ′, J ′′ are the GRSs XJ′

l and XJ′′

l isomorphic (or equivalent)?
(ii) Given α ∈ ΣJ , can we describe the base σα(Σ

J) of XJ
l ?

To clarify the second question, we note that, by Proposition 3.6, any base of
XJ

l is a quotient of a base of Xl containing the set {αj | j ∈ Jc}. In particular
ΣJ = {πJc(αj) | j ∈ J} is such a quotient. On the other hand, all bases of Xl

are conjugate under the action of the Weyl group of Xl. Hence, after conjugating,
we find that σα(Σ

J ) is isomorphic to ΣJ′
for some index set J ′. So, the second

question is whether we can describe explicitly such a set J ′. In Theorem 4.3 we
provide an explicit description of such a set, answering the second question above.
Theorem 4.3 also provides a description of the virtual reflection σαj

from Section 2
for GRSs which are quotients of root systems. Finally, this result also means that
XJ

l is isomorphic to XJ′

l , providing a partial answer (a necessary condition) of the
first question.

4.2. Kostant’s theorem. Let g be a complex simple Lie algebra with a Cartan
subalgebra h ⊂ g, roots Δ, and a base S of Δ. Given a subset I ⊂ S, let s′ ⊂ g de-
note the semisimple subalgebra of g generated by the root spaces of g corresponding
to I. Set hs := h ∩ s′, s := s′ + h, and let ts := cs(s

′) be the centralizer of s′ in s.
Then

(4.1) h = hs ⊕ ts,

where the direct sum is orthogonal, and s = s′ ⊕ ts. As an s-module, g decomposes
as

(4.2) g = ⊕ν∈Δ/Igν ,

where gν = {X ∈ g | [t,X] = ν(t)X for every t ∈ ts} with ν ∈ Δ/I = Δ⊥
I ⊂

(h∗s)
⊥ = t∗s . Kostant [Ko], proved that, for ν �= 0, gν is an irreducible k-module.

4.3. Main theorem. We modify slightly the notation above to fit our setting. Let
g be a complex simple Lie algebra of typeXl with a Cartan subalgebra h ⊂ g. Given
an index set J ⊂ {1, 2, . . . , l} and an element j ∈ J , set I := Jc and K := I ∪ {j}.
Let s′ and k′ denote the semisimple subalgebras of g generated by the root spaces
of g corresponding to the roots indexed by I and K respectively. Note that, unlike
Section 4.2, I denotes a set of indices instead of a set of roots. In order to simplify
the notation, we will sometimes use I in place of {αi | i ∈ I} ⊂ S.
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Let hs, hk, ts, and tk be defined as in Section 4.2. Combining the decompositions
(4.1) with respect to s and k and switching to the respective dual spaces, we obtain
the orthogonal decomposition

(4.3) h
∗ = h

∗
s ⊕ Cᾱ⊕ t

∗
k ,

where ᾱ := πI(αj).
Let ϑ be the unique diagram automorphism of k′ with the property that, for

every k′-module W , we have Wϑ � W ∗, where Wϑ is the k′-module on which the
action of k′ is twisted by ϑ. More precisely, the underlying vector space of Wϑ is
W and, for X ∈ k′, we define the twisted action of X on v ∈ W by

X ·ϑ v := ϑ(X) · v.

Clearly, ϑ is an involution. More explicitly, if k′ is simple, then ϑ �= id if and
only if k′ is of type Al, D2l+1, or E6; if k

′ is of type Al, D2l+1, or E6, then ϑ the
unique diagram automorphism of order 2. If k′ is semisimple, that ϑ is described
as above on each simple ideal of k′ (equivalently, on each component of the Dynkin
diagram of k′). Extend ϑ to an involution of k by setting ϑ(t) := −t for every t ∈ tk.
This ensures that Wϑ � W ∗ for every k-module W . The involution ϑ induces an
involution ϑ∗ on h∗.

Example 4.2. Figure 1 illustrates the three involutions ϑ corresponding to Xl =
E8 and J = {1, 6, 8}, i.e., the first one corresponds to K = {1, 2, 3, 4, 5, 7}, the
second – to K = {2, 3, 4, 5, 6, 7}, and the third – to K = {2, 3, 4, 5, 7, 8}. The
respective subalgebras k′ are isomorphic to D5 ×A1, D6, and D4 ×A2.

1 3 4 5 6 87

2

7

2

4 5 6 81 3 1 3 5 6 87

2

4

Figure 1. The three involutions ϑ corresponding to E1,6,8
8

If Δ are the roots of g, we define V := span
R
Δ, and let VI , Vϑ(I), and VK be the

subspaces of V spanned by roots corresponding to I, ϑ(I), andK respectively. Then
ϑ∗ restricts to an involution, still denoted by ϑ∗ of V . Clearly ϑ∗ : V → V respects
the orthogonal decomposition V = VK ⊕ V ⊥

K . Furthermore, the restrictions of ϑ∗

to both VK and V ⊥
K are isometries: the former because ϑ was initially defined as

a diagram automorphism of k′ and the latter because it equals −idV ⊥
K
. Combining

these facts, we conclude that ϑ∗ : V → V is an isometry.
Since V ⊥

I = V ⊥
K ⊕ R ᾱ and V ⊥

ϑ(I) = V ⊥
K ⊕ Rϑ∗(ᾱ), we have the isometry ϕ :

V ⊥
I → V ⊥

ϑ(I) defined as

(4.4) ϕ := −ϑ∗ :

{
V ⊥
I → V ⊥

ϑ(I),

ν + t ᾱ �→ ν − t ϑ∗(ᾱ).

Remarkably, ϕ is an isomorphism between the GRSs XJ
l and X

ϑ(J)
l and an iso-

morphism between the bases σαj
(ΣJ) and Σϑ(J) of XJ

l and X
ϑ(J)
l respectively, as

Theorem 4.3 states.
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Theorem 4.3. In the notation above, ϕ is an isomorphism of GRSs

ϕ : (XJ
l , V

⊥
I , σαj

(ΣJ)) → (X
ϑ(J)
l , V ⊥

ϑ(I),Σ
ϑ(J)).

4.4. Proof of Theorem 4.3. We begin with some background on representations
of Lie algebras.

Let W be a semisimple finite-dimensional k-module. It decomposes as

W = ⊕λ∈suppW Wλ,

where Wλ := {w ∈ W | t · w = λ(t)w for every t ∈ tk} and suppW = {λ ∈ t∗k |
Wλ �= 0}. If w ∈ Wλ, then the twisted action of t ∈ tk on w is given by

t ·ϑ w = ϑ(t) · w = λ(ϑ(t))w = ϑ∗(λ)(t)w,

i.e., w ∈ Wϑ
ϑ∗(λ). Hence

Wϑ = ⊕λ∈suppW Wϑ
ϑ∗(λ) and suppWϑ = ϑ∗(suppW ).

On the other hand,

W ∗ = ⊕λ∈suppW (Wλ)
∗ = ⊕λ∈suppW W ∗

−λ

shows that suppW ∗ = − suppW . Using that Wϑ ∼= W ∗ we conclude that
ϑ∗(suppW ) = − suppW .

Next we consider the module W above as a module over s and s̃ := ϑ(s). Assume
that, as an s̃-module W decomposes as

W = ⊕μ∈supps̃ W Wμ with supps̃ W ⊂ t
∗
s̃ .

Then Wϑ considered as a module over s decomposes as

Wϑ = ⊕μ∈supps̃ W Wϑ
ϑ∗(μ),

i.e., supps W
ϑ = ϑ∗(supps̃ W ). Recalling that Wϑ ∼= W ∗ and that, as an s-module,

W ∗ decomposes as

W ∗ = ⊕μ∈supps W W ∗
−μ,

we conclude that

(4.5) − supps W = supps W
∗ = supps W

ϑ = ϑ∗(supps̃ W ).

We are now ready to prove Theorem 4.3.
We have already noted that ϕ : V ⊥

I → V ⊥
ϑ(I) is an isometry. To prove that ϕ is

a bijection between XJ
l and X

ϑ(J)
l , we apply the discussion above to the k-module

g. Indeed, by definition, XJ
l = supps g and X

ϑ(J)
l = supps̃ g, and (4.5) implies that

XJ
l = −ϑ∗(X

ϑ(J)
l ). Since ϑ∗ is an involution, we conclude that ϕ is a bijection

between XJ
l and X

ϑ(J)
l .
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To complete the proof, we need to show that ϕ is a bijection between σαj
(ΣJ )

and Σϑ(J). Let Σ = {α1, α2, . . . , αl}. Then ΣJ = {πI(αk) | k ∈ J}. Recall that
ᾱ = πI(αj). The definition of σαj

implies that

σαj
(ΣJ) = {−ᾱ} ∪ {πI(αk) + ikᾱ | k �= j ∈ J},

where, for k �= j, αk, . . . , αk + ikαj is the αj-string through αk in Δ. On the other
hand, ϑ(J) is obtained from J by replacing j by ϑ(j) and ϑ(I) is obtained from I
by replacing ϑ(j) by j, i.e., ϑ(J) = (J\{j}) ∪ {ϑ(j)} and ϑ(I) = (I\{ϑ(j)}) ∪ {j}.
(If ϑ(j) = j, then ϑ(J) = J and ϑ(I) = I.) Hence

Σϑ(J) = {α̃ := πϑ(I)(αϑ(j))} ∪ {πϑ(I)(αk) | k �= j ∈ J}.

Note first that

ϕ(−ᾱ) = ϑ∗(ᾱ) = ϑ∗(πI(αj)) = πϑ(I)(αϑ(j)) = α̃.

Next we show that, for k �= j ∈ J ,

(4.6) ϕ(πI(αk) + ikᾱ) = πϑ(I)(αk).

Let p1 : Δ/I → Δ/K and p2 : Δ/ϑ(I) → Δ/K be the natural projections. Then
the diagram

Δ

Δ/I Δ/ϑ(I)

ΔK

πI

πK

πϑ(I)

p1 p2

commutes. Note that the ᾱ-string through πI(αk) is the fibre p−1
1 (πK(αk)) and

the α̃-string through πϑ(I)(αk) is the fibre p−1
2 (πK(αk)). The definition of ϕ shows

that ϕ(p−1
1 (πK(αk))) = p−1

1 (πK(αk)), and by linearity ϕ maps the end points of
the first string into the end points of the second string. Finally, as ϕ(−ᾱ) = α̃, it
maps the right end of the first string onto the left end of the second string, proving
(4.6). The proof is complete. �

4.5. The graph Xl,k. For the rest of the section we fix notation expanding on the
notation from Section 4.3. Given a root system Xl, a set J ⊂ {1, 2, . . . , l}, and an
element j ∈ J , we let I := Jc = {1, 2, . . . , l}\J and K = I ∪ {j}. Then we denote
by ϑJ,j the permutation of {1, 2, . . . , l} defined by

ϑJ,j(i) =

{
ϑ(i) if i ∈ K,

i if i �∈ K,

where ϑ is the diagram automorphism defined in Section 4.3.
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Define the graph Xl,k which records the isomorphisms between rank k quotients
of the root system Xl provided by Theorem 4.3. Namely, the vertices of Xl,k are
the rank k quotients of Xl, i.e., the GRSs {XJ

l | #J = k}. The distinct vertices

XJ′

l and XJ′′

l are linked by an edge if J ′′ = ϑJ′,j′(J
′) for some j′ ∈ J ′. Note that

we do allow loops at vertices Xl,k, i.e., we do not assign an edge of the graph to
ϑJ,j if J = ϑJ,j(J).

Example 4.4. Revisiting Example 4.2 in which Xl = E8, and J = {1, 6, 8}, on
Figure 1 we have displayed ϑJ,1, ϑJ,6, and ϑJ,8. Note that ϑJ,1 �= id{1,2,3,4,5,7} but
ϑJ,1(J) = J ; ϑJ,6 = id{2,3,4,5,6,7} and thus ϑJ,6(6) = J ; finally, ϑJ,8(8) = J ′ :=
{1, 6, 7}.

The graph Xl,k carries the information about the “action” of ϑJ,j on J . Namely,
if J ′ and J ′′ are vertices of Xl,k linked by and edge, then J ′\J ′′ = {j′}, J ′′\J ′ = {j′′}
and J ′′ = ϑJ′,j′(J

′), J ′ = ϑJ′′,j′′(J
′′). Moreover, if j ∈ J is such that there is no

edge between J and another vertex J ′ with J\J ′ = {j}, then J = ϑJ,j(J).

Example 4.5.
(i) The graph F4,2 is displayed in Figure 2.

44 4

4

2.3

44

1.2 1.4 3,4

2,41.3F F F

F F F

Figure 2. The graph F4,2

From the graph we recover

ϑ{1,2},1(F
1,2
4 ) = F 1,2

4 , ϑ{1,2},2(F
1,2
4 ) = F 1,2

4 ,

ϑ{1,3},1(F
1,3
4 ) = F 2,3

4 , ϑ{1,3},3(F
1,3
4 ) = F 1,3

4 ,

ϑ{1,4},1(F
1,4
4 ) = F 1,4

4 , ϑ{1,4},4(F
1,4
4 ) = F 1,4

4 ,

ϑ{2,3},2(F
2,3
4 ) = F 1,3

4 , ϑ{2,3},3(F
2,3
4 ) = F 2,4

4 ,

ϑ{2,4},2(F
2,4
4 ) = F 2,4

4 , ϑ{2,4},4(F
2,4
4 ) = F 2,3

4 ,

ϑ{3,4},3(F
3,4
4 ) = F 3,4

4 , ϑ{3,4},4(F
3,4
4 ) = F 3,4

4 .
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Theorem 4.3 implies that the GRSs in each connected component are isomorphic
among themselves, i.e., F 1,3

4
∼= F 2,3

4
∼= F 2,4

4 . It is not clear, however, whether GRSs
in different connected components are isomorphic or not. As we will establish
in Theorem 5.5, among the GRSs in the three components above there are no
equivalences and, in particular, the 6 quotients of F4 result in 4 nonisomorphic
GRSs.

The next natural question is whether the bases Σ1,3,Σ2,3,Σ2,4 of the GRS
R = F 1,3

4
∼= F 2,3

4
∼= F 2,4

4 are isomorphic. Noticing that the highest root of R in
each of these bases has coordinates (2, 4), (3, 4), (3, 2) respectively, we conclude that
the three bases are pairwise inequivalent and, as a consequence, they are pairwise
nonisomorphic.

(ii) The connected component of E7,3 that contains E1,4,5
7 is displayed in Figure 3.

This component represents a rank 3 GRS R with 28 nonzero roots, see Table 1.
A simple but cumbersome calculation, which we omit here, shows that the bases of
R corresponding to the vertices of E7,3 are pairwise inequivalent.

E
2,4,6

7
E

77E
2,3,6

E
1,4,7

7

E
3,5,6

7
E 7

3,4,5

7

E

E
7

7E7

1,4,5

7
EE E

2,3,5

3,4,73,5,7

4,6,7

4,5,7

4,5,6

7

Figure 3. Connected component of E7,3 containing E1,4,5
7
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4.6. Quotients of simply-laced root systems.

Theorem 4.6. Every root system is isomorphic to a quotient of a simply-laced root
system.

Proof. We have:

(i) Bl
∼= D1,2,...,l

l+2 ;

(ii) Cl
∼= D2,4,...,2l

2l ;

(iii) F4
∼= E1,3,4,6

7
∼= E1,6,7,8

8 ;

(iv) G2
∼= E2,4

6
∼= E1,3

7
∼= E7,8

8 .

The isomorphisms (i) and (ii) are established in Section 6.1, and (iii) and (iv) are
straightforward calculations. Note that, for Bl and Cl, we have listed just one of
many ways these are quotients of DN for an appropriate N , while for F4 and G2

we have listed all ways in which they are quotients of El. �

4.7. Lie superalgebras. We complete the discussion of quotients of root systems
by showing that the root systems of the contragredient superalgebras sl(m|n), m �=
n, gl(m|m), osp(m, 2n), D(2, 1;α), F(4), and G(3) are equivalent to quotients of
root systems. Let g denote one of the Lie superalgebras above and let t ⊂ g be a
toral subalgebra. Under the action of t, g decomposes as

(4.7) g = ⊕ν∈R gν ,

where gν = {x ∈ g | [t, x] = ν(t)x for every t ∈ t}. Assume further that cg(t) =
m := g0. Extending the results of Kostant [Ko], in [DF], we studied the properties
of the decomposition (4.7) and the set of Kostant roots R. In particular, we proved
that each gν is an irreducible m-module. A crucial step in the proof was the fact
that, for g �= D(2, 1;α),G(3),F(4), the root system of g is equivalent to a quotient
of a root system of a simple Lie algebra. The cases g = D(2, 1;α),G(3),F(4) were
dealt with separately in the Appendix of [DF]. It turns out, however, that the root
systems of D(2, 1;α),G(3),F(4) also are equivalent to quotients of root systems,
as shown in Theorem 4.7. This observation allows for a uniform treatment in [DF]
of all contragredient superalgebras, making the rather technical Appendix thereof
unnecessary.

Theorem 4.7. Let g be one of the Lie superalgebras sl(m|n), m �= n, gl(m|m),
osp(m, 2n), D(2, 1;α), F(4), or G(3) and let Δ be the root system of g. Then Δ is
equivalent to a quotient of a root system.

Proof. We have:

(i) Am+n−1 or A2m−1 if g = sl(m|n), m �= n, or g = gl(m|m), respectively;

(ii) B1,2,...,m,m+2,m+4,...,m+2n
m+2n if g = osp(2m+ 1, 2n);

(iii) D1,2,...,m,m+2,m+4,...,m+2n
m+2n if g = osp(2m, 2n);

(iv) D1,2,3
4 if g = D(2, 1;α);

(v) E1,5,6,7
7 if g = F(4);

(vi) E1,3,8
8 if g = G(3).

The equivalences (i)–(iii) follow from the lists of quotients of root systems of types
Al, Bl, Cl, and Dl provided in [DR], while the equivalences (iv)–(vi) can be estab-
lished by a straightforward but somewhat tedious direct calculation which we omit
here. �
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5. GRSs of rank 2

In this section we classify all irreducible GRSs of rank 2 and describe their bases
and Cartan matrices. We have already carried out this for the reduced GRSs of
rank 2 in Section 1.6. We also show that every GRS of rank 2 is equivalent to a
quotient of a root system.

5.1. Multipliers of primitive roots. The first step in the classification is to find
a bound on the multipliers of primitive roots in an irreducible GRS of rank at
least 2.

Theorem 5.1. Let R be an irreducible GRS of rank at least 2. Then α ∈ R implies
5α /∈ R.

Proof. Assume to the contrary that there is a string α, 2α, 3α, . . . , kα ∈ R with k �
5. Without loss of generality we may assume that α is primitive and (k+1)α �∈ R.
Let β ∈ R be a root which is neither orthogonal nor parallel to α. Replacing R
by its subsystem R ∩ span{α, β} we may further assume that the rank of R equals
2; furthermore, replacing β by another root in the rank 2 GRS R, we assume that
S = {α, β} is a base of R.

Let β, β+α, . . . , β+ 	α be the α-string through β and let i be the largest integer
such that 〈β + (i − 1)α, α〉 < 0. Then β + (i + 1)α = (β + (i − 1)α) + 2α ∈ R
and 〈β + (i + 1)α, α〉 > 0. Since −kα ∈ R, we obtain that (β + (i + 1)α) − kα =
β + (i + 1 − k)α ∈ R, concluding that i + 1 − k � 0, or i � k − 1. Similarly,
(β + (i− 1)α) + kα = β + (i− 1 + k)α ∈ R, implying that 	 � i− 1 + k � 2k − 2.
In other words, the α-string through β consists of at least 2k − 1 roots.

Consider the roots β + α and β + (	 − 1)α. Their difference (	 − 2)α does not
belong to R because 	 − 2 � 2k − 4 > k. Thus 〈β + α, β + (	 − 1)α〉 � 0 and,
consequently, 〈β, β+(	− 1)α〉 < 0, 〈β+α, β+ 	α〉 < 0, and 〈β, β+ 	α〉 < 0. Hence
2β+(	− 1)α, 2β+ 	α, 2β+(	+1)α ∈ R. Starting with 2β+(	− 1)α, 2β+ 	α, 2β+
(	 + 1)α ∈ R and repeating the argument above we conclude that the α-string
through 2β + 	α contains at least 2k− 1 roots and there are at least three roots of
the form 4β+ jα. Consequently, the α-string through such a root 4β+ jα contains
at least 2k − 1 roots and we can continue to get roots of the form 8β + jα, etc.
However, this process must terminate because R is a finite set by the definition of
a GRS. This contradiction completes the proof. �

5.2. List of irreducible GRSs of rank 2. Up to equivalence, there are 16 irre-
ducible GRSs of rank 2. The list below is organized by the maximal multiplier of
a root. We describe the GRSs in terms of a basis {x, y} of the Euclidean space V
containing the GRS R. The vectors x and y are not necessarily roots. The GRSs
denoted by (1)(i)–(1)(iii) are the reduced GRSs discussed in Section 1.6.

(1) (i) R = {0,±x,±y,±(x + y)}, where 〈x, y〉 < 0, 〈x + y, x〉 > 0, and
〈x+ y, y〉 > 0. This is a two-parameter family of isomorphism classes
of GRSs, see Section 1.6.

(ii) R = {0,±x,±y,±(y+ x),±(y+2x)}, where 〈y, y+2x〉 = 0. This is a
one-parameter family of isomorphism classes of GRSs, see Section 1.6.

(iii) R = {0,±x,±y,±(y + x),±(y + 2x),±(y + 3x),±(2y + 3x)}, 〈x, 2y +
3x〉 = 0 and 〈y, y+2x〉 = 0. This is the root system G2, see Section 1.6.
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(2) (i) R = {0,±x,±2x,±y,±y ± x}, where x ⊥ y, ‖y‖ > ‖x‖. This is a
one-parameter family of isomorphism classes of GRSs.

(ii) R = {0,±x,±2x,±y,±2y,±y ± x}, where x ⊥ y. This is a one-
parameter family of isomorphism classes of GRSs.

(iii) R = {0,±x,±2x,±y± 1
2x,±y± 3

2x}, where ‖y‖ = 3
2‖x‖ and |〈x, y〉| <

1
2‖x‖2. This is a one-parameter family of isomorphism classes of GRSs.

(iv) R = {0,±x,±2x,±y ± 1
2x,±y ± 3

2x,±2y}, where x ⊥ y and
√
3
2 ‖x‖ <

‖y‖ < 3
2‖x‖. This is a one-parameter family of isomorphism classes of

GRSs.
(v) R = {0,±x,±2x,±y,±y ± x,±y ± 2x,±2y}, where x ⊥ y and ‖y‖ =√

2‖x‖.
(vi) R = {0,±x,±2x,±y ± 1

2x,±y ± 3
2x,±2y,±2y ± x}, where x ⊥ y and

‖y‖ =
√
3
2 ‖x‖.

(vii) R = {0,±x,±2x,±y,±y±x,±y±2x,±2y,±2y±x}, where x ⊥ y and
‖y‖ = ‖x‖.

(viii) R = {0,±x,±2x,±y ± 1
2x,±y ± 3

2x,±y ± 5
2x,±2y,±2y ± x}, where

x ⊥ y and ‖y‖ =
√
5
2 ‖x‖.

(3) (i) R = {0,±x,±2x,±3x,±y,±y ± x,±y ± 2x}, where x ⊥ y and ‖y‖ =
2‖x‖.

(ii) R = {0,±x,±2x,±3x,±y,±y ± x,±y ± 2x,±2y}, where x ⊥ y and√
2‖x‖ < ‖y‖ < 2‖x‖. This is a one-parameter family of isomorphism

classes of GRSs.
(iii) R = {0,±x,±2x,±3x,±y± 1

2x,±y± 3
2x,±y± 5

2x,±2y}, where x ⊥ y

and ‖y‖ =
√
15
2 ‖x‖.

(iv) R={0,±x,±2x,±3x,±y,±y±x,±y±2x,±2y,±2y±x,±2y±2x,±3y},
where x ⊥ y and ‖y‖ = ‖x‖.

(4) R = {0,±x,±2x,±3x,±4x,±y,±y±x,±y±2x,±y±3x,±2y}, where x ⊥ y

and ‖y‖ =
√
6‖x‖.

5.3. Classification theorem.

Theorem 5.2. Every irreducible GRS of rank 2 is isomorphic to a GRS from one
of the 16 families in the list above.

Idea of proof of Theorem 5.2. Let R be an irreducible GRS of rank 2 and let α ∈ R
be a primitive root with a largest multiplier among the multipliers of primitive roots
in R. Fixing a base S = {α, β} of R, we are then able to use the properties of GRSs
to arrive at the list above. The arguments in all cases are similar and carrying
out the full classification is somewhat tedious. We provide the full argument in
Section 7. Here we limit ourselves to the case when R admits a root with multiplier
equal to 4 which we present below. �

As an illustration of the type of arguments we use in proving Theorem 5.2, we
prove Proposition 5.3.

Proposition 5.3. Let R be an irreducible GRS of rank 2 which admits a primitive
root with multiplier 4. Then

R = {0,±x,±2x,±3x,±4x,±y,±y ± x,±y ± 2x,±y ± 3x,±2y},
where x ⊥ y and ‖y‖ =

√
6‖x‖.
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Proof. Assume x ∈ R is a primitive root whose multiplier is 4, i.e., x, 2x, 3x, 4x ∈ R
but 5x �∈ R. Let S = {x, β} be a base of R containing x. We will carry out the
proof in two steps: we will prove first that if the x-string through β contains a root
orthogonal to x, then R is the GRS described above, and then we will prove that
the assumption that the x-string through β does not contain a root orthogonal to
x leads to a contradiction.

(i) There is a root y ⊥ x in the x-string through β. Since 〈y ± x, x〉 ≷
0, we conclude that y, y ± x, y ± 2x, y ± 3x ∈ R. First we prove that
y ± 4x �∈ R. Assume, to the contrary, that y + 4x ∈ R (the case when
y − 4x ∈ R is dealt with in a similar way). Since (y + 4x) − (y − x) �∈ R,
we have 〈y + 4x, y − x〉 � 0, implying that 〈y + 4x, y − 2x〉 < 0 and hence
2y+2x ∈ R. As above, 2y+2x ∈ R leads to 2y, 2y±x, 2y±2x, 2y±3x ∈ R.
Since (2y + 2x) − (2y − 3x) �∈ R, we have 〈2y + 2x, 2y − 3x〉 � 0. Hence
〈2y+3x, 2y−3x〉 < 0 and 4y = (2y+3x)+(2y−3x) ∈ R. Since y, 2y, 4y ∈ R,
we conclude that 3y ∈ R and Theorem 5.1 implies that ky �∈ R for k � 5. If
the x-string through 3y contains elements other than 3y, it would contain
at least 7 elements and, repeating the argument above we would have 6y ∈
R, contradicting Theorem 5.1. In particular 3y + x �∈ R, implying that
〈2y−3x, y+4x〉 � 0. Thus 〈y−2x, y+3x〉 = 1

2 〈2y−3x, y+4x〉 � 0 and since
2y+x = (y+3x)+(y−2x) ∈ R, we conclude that 5x = (y+3x)−(y−2x) ∈ R.
This contradiction completes the proof that y ± 4x �∈ R.

So far we have established that the x-string through β is y − 3x, y −
2x, y − x, y, y + x, y + 2x, y + 3x; in particular, β = y − 3x. As above,
we conclude that 2y ∈ R. Let R′ be the subsystem of R obtained by
intersecting R with the lattice generated by x and 2y. If R′ is reducible,
then the x-string through 2y consists of 2y alone; if R′ is irreducible, the
argument above shows that the x-string through 2y is 2y−3x, 2y−2x, 2y−
x, 2y, 2y + x, 2y + 2x, 2y + 3x. Next we show that the latter is impossible.
Indeed, assuming that 2y, 2y ± x, 2y ± 2x ∈ R, we repeat the argument
above to conclude that 3y, 4y ∈ R and 3y+ ix �∈ R for i �= 0. Since neither
the sum nor the difference of 2y−3x and y+2x is a root, we conclude that
〈2y − 3x, y+ 2x〉 = 0. Similarly, 〈2y− 3x, y + x〉 = 0. These two equations
contradict each other, proving that the x-string through 2y consists of 2y
alone. Finally, Corollary 1.12 implies that

R = {0,±x,±2x,±3x,±4x,±y,±y ± x,±y ± 2x,±y ± 3x,±2y}.

The equation ‖y‖ =
√
6‖x‖ follows from the fact that neither the sum nor

the difference of the roots y+3x and y− 2x is a root and thus 〈y+3x, y−
2x〉 = 0.

(ii) Assume that there is no root y ⊥ x in the x-string through β. For
brevity we will refer to the roots of the form kβ + ix for some i ∈ Z as
roots at level k. In the arguments above we have essentially established the
following properties of roots at level k:

– If there is a single root at level k, then it is orthogonal to x;
– If there is more than one root at level k, then there are at least 7 roots

at level k;
– If there are exactly 7 roots at level k, then one of them is orthogonal

to x;
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– If there are at least 8 roots at level k, then there are at least 7 roots
at level 2k.

If R does not contain a root orthogonal to x at levels 1, 2, 4, 8, . . ., etc.,
then R contains at least 8 roots at each of them, making R infinite. Assume
l is the smallest integer such that there is a root orthogonal to x at level
2l. Denote this root by 2y and consider the subsystem R′ of R obtained by
intersecting R with the lattice generated by x and 2y. By the first part of
the proof,

R′ = {0,±x,±2x,±3x,±4x,±2y,±2y ± x,±2y ± 2x,±2y ± 3x,±4y}

and 2‖y‖ =
√
6‖x‖. The roots of R at level 2l−1 form a single x-string and

2y is the sum of two roots (in fact several pairs of roots) at level 2l−1. Hence
y ± 1

2x, y ± 3
2x, y ± 5

2x, y ± 7
2x ∈ R. The inequality 〈2y − 3x, y + 7

2x〉 < 0

implies that 3y + 1
2x ∈ R. This means that there are at least 8 roots at

level 3× 2l−1 and hence there are at least 7 roots at level 3× 2l. However,
roots at level 3× 2l belong to the lattice generated by 2y and x and hence
they belong to R′. The explicit form of R′ shows that it contains no roots
at level 3× 2l. This contradiction completes the proof.

�

5.4. GRSs of rank two are equivalent to quotients of root systems. In the
rest of this section we use the notation introduced in Section 4 according to which
F 2,4
4 denotes the quotient F4/{1, 3}. We can now revisit Example 4.1.

Example 5.4. In Example 4.1 we established that F 2,4
4 is equivalent to the GRS

R = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(2, 0),±(1, 2),±(2, 1),±(2, 2),±(3, 2)}.

The largest multiplier of a primitive root in R equals 2, hence R is equivalent to
one of the GRSs (2)(i)–(2)(viii). Since R contains 17 roots, we conclude that R is
equivalent to the GRS (2)(v). An explicit equivalence is provided by the assignment
(1, 0) �→ y and (0, 1) �→ x− y.

There is an additional observation we can make in Example 5.4. Since the
equivalence class (2)(v) contains a unique isomorphism class, we can conclude that

F 2,4
4 is actually isomorphic to the GRS (2)(v). In other words, we can recover the

Euclidean structure in the vector space spanned by R: (1, 0) ⊥ (1, 1) and ‖(1, 0)‖ =
√
2‖(1, 1)‖ which leads to ‖(0, 1)‖ =

√
3
2‖(1, 0)‖ and 〈(1, 0), (0, 1)〉 = −‖(1, 0)‖2.

This, of course, agrees with the calculation of the Euclidean structure of F 2,4
4 but

we did not need to perform any calculations to arrive at it.

Calculating explicitly all rank 2 quotients of exceptional root systems (there are
71 of them) and using the list from [DR], we arrive at the following remarkable
result.
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Theorem 5.5. Every irreducible GRS of rank 2 is equivalent to a quotient of a
root system.

List. Here is the exhaustive list of equivalence classes of rank 2 quotients of root
systems:

(1) (i) Ai,j
l for 1 � i < j � l, D1,l−1

l , D1,l
l , Dl−1,l

l , E1,6
6 ;

(ii) B1,2
l , Ci,l

l for 1 � i < l, D1,2
l , Di,j

l for 2 � i � l − 2 and l − 1 � j � l,

E1,2
6 , E1,3

6 , E2,6
6 , E5,6

6 , E1,7
7 , E6,7

7 ;

(iii) E2,4
6 , E1,3

7 , E7,8
8 , F 1,2

4 , G1,2
2 ;

(2) (i) Bi,i+1
l for i � 2, B1,j

l for j � 3, D1,j
l for 3 � j � l − 1, Di,i+1

l for

2 � i � l − 2, E1,5
6 , E2,3

6 , E2,5
6 , E3,6

6 , E1,2
7 , E2,7

7 ;

(ii) Bi,j
l for i � 2 and j � i + 2, Ci,j

l for j < l, Di,j
l for i � 2 and

i+ 2 � j � l − 2, E1,6
7 , E1,8

8 , F 1,4
4 ;

(iii) E1,4
6 , E3,4

6 , E3,5
6 , E4,5

6 , E4,6
6 , E2,3

7 , E2,6
7 , E3,7

7 , E5,6
7 , E5,7

7 ;

(iv) E1,5
7 , E2,4

7 , E2,5
7 , E1,2

8 , E1,3
8 , E2,8

8 ;

(v) E1,4
7 , E3,4

7 , E3,6
7 , E1,7

8 , E6,7
8 , E6,8

8 , F 1,3
4 , F 2,3

4 , F 2,4
4 ;

(vi) E4,6
7 , E1,6

8 , F 3,4
4 ;

(vii) E1,5
8 , E2,5

8 ;

(viii) E1,4
8 , E3,4

8 , E3,7
8 , E5,7

8 ;

(3) (i) E3,5
7 , E4,5

7 , E4,7
7 ;

(ii) E2,3
8 , E2,7

8 , E3,8
8 ;

(iii) E2,4
8 , E2,6

8 , E5,6
8 , E5,8

8 ;

(iv) E4,6
8 , E4,7

8 ;

(4) E3,5
8 , E3,6

8 , E4,5
8 , E4,8

8 .

It is natural to ask whether every irreducible GRS of rank two is isomorphic to
a quotient of a root system. The answer is obviously negative - there are equiv-
alence classes of GRSs of rank two whose isomorphism classes depend on one or
two continuous parameters, while there are only countably many quotients of root
systems. In Example 5.6 we analyze which isomorphism classes of the GRSs in the
equivalence class (1)(i) are quotients of root systems.

Example 5.6. As noted in the list following Theorem 5.5, the GRSs in the equiva-
lence class (1)(i) are equivalent to the quotients Ai,j

l . A straightforward calculation

shows that the Cartan matrices of Ai,j
l , 1 � i < j � l and of the isomorphisms

classes of (1)(i) are respectively

[
2 −2 i

j

−2 l+1−j
l+1 2

]
and

[
2 a

b 2

]
,−2 < a, b < 0.

Proposition 1.9 implies that a (1)(i) GRS is isomorphic to a quotient Ai,j
l if and

only if the entries of its Cartan matrix are rational. In particular, the isomorphism
classes of quotients of roots systems are dense (in the obvious sense) in the equiva-
lence class (1)(i). We note that the Cartan matrices of the remaining quotients of
roots systems equivalent to (1)(i) also have rational entries.
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In contrast to the equivalence class (1)(i), the equivalence class (3)(ii) contains a
one-parameter family of isomorphism classes of GRSs but there is a unique isomor-
phism class of quotients (with 3 inequivalent bases producing 3 different Cartan
matrices).

5.5. A word on classifying irreducible GRSs. The question of classifying all
irreducible GRSs, either up to equivalence or up to isomorphism, remains open.
One may hope that the classical approach through Dynkin diagrams can be ap-
plicable. More precisely, one can define an analog of a Dynkin diagram for a pair
(R,S) as follows: The nodes are the elements of S and encode the corresponding
rank one subsystems. The edge between two nodes encodes the irreducible rank 2
subsystem corresponding to these nodes. (If two simple roots are orthogonal, there
is no edge between them.) Unfortunately, this construction does not determine the
equivalence class of R, as Example 5.7 shows.3

Example 5.7. Let (R,S) = (D1,2,3
4 ,Σ1,2,3 = {ᾱ1, ᾱ2, ᾱ3}). Then

R+ = {0, ᾱ1, ᾱ2, ᾱ3, ᾱ1 + ᾱ2, ᾱ2 + ᾱ3, ᾱ1 + ᾱ2 + ᾱ3, ᾱ1 + 2ᾱ2 + ᾱ3}.

All rank 1 subsystems are reduced, ᾱ1 ⊥ ᾱ3, and the rank 2 subsystems corre-
sponding to the pairs (ᾱ1, ᾱ2) and (ᾱ2, ᾱ3) are both equivalent to the GRS (1)(i).
Hence the “Dynkin diagram” proposed above is equivalent to the Dynkin diagram
of the root system A3, however R and A3 are not equivalent.

On the other hand, the “Dynkin diagram” of R is not isomorphic to the Dynkin
diagram of A3 since ‖ᾱ1‖2 = ‖ᾱ3‖2 = 2 but ‖ᾱ2‖2 = 3/2.

We do not know whether the analogs of Dynkin diagrams proposed above de-
termine isomorphism classes of GRSs. However, even if they do, carrying out the
complete classification will be difficult due to the large number of possible edges
– up to equivalence, there are 16 irreducible GRSs of rank 2 and some of them
represent families of isomorphism classes. Moreover, most of the rank 2 irreducible
GRSs admit several inequivalent bases, leading to a very large number of possible
edges. (In the classical case, there are only 3 types of edges corresponding to the
root systems A2, B2, and G2.) Moreover, inequivalent bases of R will produce
different graphs and identifying which graphs correspond to the same GRS will
require more work. Based on the classification of rank 2 GRSs and the similarities
between Table 1 and the table in [CH], we make Conjecture 5.8.

Conjecture 5.8. Every irreducible GRS of rank at least 2 is equivalent to a quotient
of a root system.

A positive answer to Conjecture 5.8 along with the descriptions of all quotient
of root systems in Section 6 leads to a classification of all GRSs up to equivalence.

Remark 5.9. Following the posting of a preliminary version of this text, M. Cuntz
and B. Mühlherr have proved Conjecture 5.8 [CM].

3We thank C. Paquette for pointing out Example 5.7.
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6. Quotients of root systems II: Lists and isomorphisms

In this section we provide a complete list of all quotients of root systems and
discuss the corresponding graphs Xl,k as well as the isomorphisms and equivalences
between quotients of root systems. We continue to use the notation introduced in
Section 4.1.

6.1. Quotients of classical roots systems. The quotients of the classical root
systems were calculated in [DR]. Below we summarize these results and determine
the isomorphism and equivalence classes of Xl for each classical Xl.

Quotients of Al. Let J = {1 � j1 < j2 < . . . < jk � l}. For 1 � s � k + 1,
set ls := js − js−1, where j0 := 0 and jk+1 := l+1 and let L(J) = (l1, l2, . . . , lk+1).
Then

AJ
l = {0, δs − δt | 1 � s �= t � k + 1} and ΣJ = {δs − δs+1 | 1 � s � k},

where

(6.1) 〈δs, δt〉 =
{
1/ls if s = t,

0 if s �= t.

It is clear that AJ′

l ≈ AJ′′

l for any #J ′ = #J ′′ = k. A quick calculation shows

that AJ′

l
∼= AJ′′

l if and only if the sequence L(J ′′) is a permutation of the sequence
L(J ′).

For 1 � s � k, ϑJ,js(js) = js−1 − js + js+1 and hence

L(ϑJ,js(J)) = (l1, . . . , ls−1, ls+1, ls, ls+2, . . . , lk+1),

proving that AJ′

l and AJ′′

l belong to the same connected component of the graph
Al,k if and only if the sequence L(J ′′) is a permutation of the sequence L(J ′).

Comparing with the above, we conclude that AJ′

l
∼= AJ′′

l if and only if AJ′

l and AJ′′

l

belong to the same connected component of Al,k.

Turning to bases, we see that ΣJ′

l ≈ ΣJ′′

l for any #J ′ = #J ′′ = k, while

ΣJ′

l
∼= ΣJ′′

l if and only if L(J ′) = L(J ′′) or L(J ′) = wo(L(J
′′)), where wo is the

longest element of the symmetric group on k + 1 elements, i.e., the permutation
that reverses sequences of length k + 1.

In summary: All vertices of Al,k belong to the same equivalence class of GRSs;
the isomorphism classes of GRSs are exactly the connected components of Al,k;
all bases ΣJ are equivalent among themselves; and isomorphism classes of bases
correspond to the orbits of the group generated by wo (isomorphic to Z2) acting on
sequences of length k + 1 whose elements add up to l + 1.

Quotients of Bl. Let J = {1 � j1 < j2 < . . . < jk � l}. For 1 � s � k, set
ls := js − js−1, where j0 := 0 and let L(J) = (l1, l2, . . . , lk). Then

BJ
l = {0,±δs ± δt,±δs | 1 � s < t � k} ∪ {±δ2s | ls � 2} and

ΣJ = {δs − δs+1, δk | 1 � s � k − 1},

subject to (6.1).

It is clear that BJ′

l ≈ BJ′′

l if and only if 1 appears the same number of times

in L(J ′) and L(J ′′). A quick calculation shows that BJ′

l
∼= BJ′′

l if and only if the
sequence L(J ′′) is a permutation of the sequence L(J ′) or L(J ′′) is proportional to
a permutation of L(J ′) and neither of them contains 1.
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For 1 � s � k − 1, ϑJ,js(js) = js−1 − js + js+1 and ϑJ,jk(jk) = jk. Hence

(6.2) L(ϑJ,js(J)) =

{
(l1, . . . , ls−1, ls+1, ls, ls+2, . . . , lk) for 1 � s � k − 1,

(l1, . . . , ls−1, ls, ls+1, ls+2, . . . , lk) for s = k,

proving that BJ′

l and BJ′′

l belong to the same connected component of Bl,k if and
only if the sequence L(J ′′) is a permutation of the sequence L(J ′). Comparing with

the above, we conclude that BJ′

l and BJ′′

l may be isomorphic even if they do not

belong to the same connected component of Bl,k. For example, B2,6
10

∼= B6,9
10 because

the corresponding sequence L(J ′′), namely (6, 3), is proportional to a permutation
of the sequence L(J ′), namely (2, 4), and neither contains 1.

Turning to bases, we see that ΣJ′

l ≈ ΣJ′′

l for any #J ′ = #J ′′ = k, while

ΣJ′

l
∼= ΣJ′′

l if and only if L(J ′) = L(J ′′) or L(J ′) and L(J ′′) are proportional
and neither contains 1. Note that, if L(J ′) and L(J ′′) are proportional and L(J ′)
contains 1 (implying that L(J ′′) does not), then there is a conformal linear map

between the respective Euclidean spaces which is a bijection between ΣJ′

l and ΣJ′′

l .

However it is not a bijection between BJ′

l and BJ′′

l , so it is not an isomorphism

between ΣJ′
and ΣJ′′

.
In summary: There are k + 1 equivalence classes of vertices of Bl,k depending

on the number of times 1 appears in the respective sequences L(J); there are
isomorphism classes of GRSs that consist of more than one connected component
of Bl,k; all bases ΣJ are equivalent among themselves; and isomorphism classes of
bases are described above.

Quotients of Cl. As in the case of Bl, let J = {1 � j1 < j2 < . . . < jk � l}.
For 1 � s � k, set ls := js − js−1, where j0 := 0 and let L(J) = (l1, l2, . . . , lk).
Then

CJ
l =

{
{0,±δs ± δt,±2δs | 1 � s < t � k} if jk = l,

{0,±δs ± δt,±δs,±2δs | 1 � s < t � k} if jk < l

and

ΣJ =

{
{δs − δs+1, 2δk | 1 � s � k − 1} if jk = l,

{δs − δs+1, δk | 1 � s � k − 1} if jk < l,

subject to (6.1). Following [DR], we refer to the cases jk = l and jk < l as Type I
and Type II respectively.

It is clear that CJ′

l ≈ CJ′′

l if and only if J ′ and J ′′ are of the same type. If

J ′ and J ′′ are of Type I, then CJ′

l
∼= CJ′′

l if and only if the sequence L(J ′′) is a

permutation of the sequence L(J ′); if J ′ and J ′′ are of Type II, then CJ′

l
∼= CJ′′

l if
and only if L(J ′′) is proportional to a permutation of L(J ′).
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As in the case of Bl, for 1 � s � k−1, ϑJ,js(js) = js−1−js+js+1, ϑJ,jk(jk) = jk,

and Bl, L(ϑJ,js(J)) is given by (6.2), proving that CJ′

l and CJ′′

l belong to the same
connected component of Cl,k if and only if the sequence L(J ′′) is a permutation of
the sequence L(J ′). As a consequence, in Type I, the connected components of Cl,k
are isomorphism classes. In Type II, as in the case of Bl, C

J′

l and CJ′′

l may be
isomorphic even if they do not belong to the same connected component of Cl,k.

Turning to bases, we see that the two types are exactly the equivalence classes
of bases. Moreover, ΣJ′

l
∼= ΣJ′′

l if and only if L(J ′) = L(J ′′) in Type I and L(J ′)
and L(J ′′) are proportional in Type II.

In summary: There are two equivalence classes of vertices of Cl,k and two equiva-
lence classes of bases ΣJ depending on their types; in Type II there are isomorphism
classes of GRSs that consist of more than one connected component of Cl,k; and
isomorphism classes of bases are described above.

Quotients of Dl. As in the cases of Bl and Cl, let J = {1 � j1 < j2 < . . . <
jk � l}. For 1 � s � k − 1, set ls := js − js−1, where j0 := 0. Unlike the cases Bl

and Cl, set

lk :=

{
l − jk−1 if jk−1 � l − 2 < jk,

jk − jk−1 otherwise,

and let L(J) = (l1, l2, . . . , lk). Then

DJ
l =

{
{0,±δs ± δt | 1 � s < t � k} ∪ {±2δs | ls � 2} if jk � l − 1,

{0,±δs ± δt,±δs | 1 � s < t � k} ∪ {±2δs | ls � 2} if jk � l − 2

and

ΣJ =

⎧⎪⎨
⎪⎩
{δs − δs+1, δk−1 + δk | 1 � s � k − 1} if jk−1 = l − 1, jk = l,

{δs − δs+1, 2δk | 1 � s � k − 1} i fjk−1 � l − 2 < jk,

{δs − δs+1, δk | 1 � s � k − 1} if jk � l − 2,

subject to (6.1). We refer to the cases jk � l− 1 and jk � l− 2 as Type I and Type
II respectively.

It is clear that DJ′

l ≈ DJ′′

l if and only if J ′ and J ′′ are of the same type and 1

appears the same number of times in L(J ′) and L(J ′′). Further, DJ′

l
∼= DJ′′

l if and

only if DJ′

l ≈ DJ′′

l and L(J ′′) is proportional to a permutation of L(J ′). Note that,
in Type I, l1 + . . .+ lk = l implies that L(J ′′) is proportional to a permutation of
L(J ′) if and only if L(J ′′) is a permutation of L(J ′).
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Computing ϑJ,js(js) is more complicated. Here is the result.

(i) If s � k − 2, then ϑJ,js(js) = js−1 − js + js+1.
(ii) If s = k − 1, then

(a) jk � l − 2 =⇒ ϑJ,jk−1
(jk−1) = jk−2 − jk−1 + jk;

(b) jk−2 + 2 � jk−1 � l − 2 < jk =⇒ ϑJ,jk−1
(jk−1) = jk−2 − jk−1 + l;

(c) jk−2+1 = jk−1 � l−2 < jk =⇒ ϑJ,jk−1
(jk−1) =

{
l if jk= l − 1,

l − 1 if jk= l;

(d) jk−1 = l − 1, jk = l =⇒ ϑJ,jk−1
(jk−1) = jk−2 + 1.

(iii) If s = k, then
(a) jk � l − 2 =⇒ ϑJ,jk(jk) = jk;

(b) jk = l − 1 =⇒ ϑJ,jk(jk) =

{
l if l − jk−1 is odd,

l − 1 if l − jk−1 is even;

(c) jk−1 � l − 2, jk = l =⇒ ϑJ,jk(jk) =

{
l − 1 if l − jk−1 is odd,

l if l − jk−1 is even;

(d) jk−1 = l − 1, jk = l =⇒ ϑJ,jk(jk) = jk−2 + 1.

Despite the complicated formulas for ϑJ,js(js), the formula for L(ϑJ,js(J)) is very
similar to (6.2), namely

L(ϑJ,js(J)) =

⎧⎪⎨
⎪⎩
(l1, . . . , ls−1, ls+1, ls, ls+2, . . . , lk) if 1 � s � k − 1 or

s = k, jk−1 = l − 1, jk = l,

(l1, . . . , ls−1, ls, ls+1, ls+2, . . . , lk) otherwise,

proving that DJ′

l and DJ′′

l belong to the same connected component of Cl,k if
and only if the sequence L(J ′′) is a permutation of the sequence L(J ′). As a
consequence, in Type I, the connected components of Dl,k are isomorphism classes.

In Type II, as in the cases of Bl and Cl, D
J′

l and DJ′′

l may be isomorphic even if
they do not belong to the same connected component of Dl,k.

Turning to bases, we see that there are three equivalence classes of bases. More-
over, ΣJ′

l
∼= ΣJ′′

l if and only if ΣJ′

l ≈ ΣJ′′

l and

(i) L(J ′) = L(J ′′) or L(J ′) = τ (L(J ′′)) if jk−1 = l− 1, jk = l and τ transposes
the last two coordinates of a sequence;

(ii) L(J ′) = L(J ′′) if jk−1 � l − 2 < jk;
(iii) L(J ′) and L(J ′′) are proportional if jk � l − 2.

In summary: The equivalence classes of vertices of Dl,k depend on the type of
the corresponding index set J and the number of times 1 appears in L(J); there are
three equivalence classes of bases ΣJ ; there are isomorphism classes of GRSs that
consist of more than one connected component of Dl,k; and isomorphism classes of
bases are described above.

6.2. Quotients of exceptional roots systems. Table 1 summarizes the infor-
mation about all quotients of exceptional root systems of rank at least 2. The
reason for not including quotients of rank 1 is that, up to isomorphism, every GRS
of rank 1 is determined by its cardinality, cf. Section 1.1. Moreover, the number
of nonzero roots of Xj

l for 1 � j � l is twice the coefficient of αj in the highest
root of Xl. Thus all the information about the rank 1 quotients of root systems is
contained in the expressions of the highest roots of the respective root systems in
terms of simple roots.
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Table 1: Quotients of exceptional root systems

k Xl N Name J or Jc |R| − 1

2

G2 1 G2,2 G2 12

F4 4

FI
4,2 12 12

FII
4,2 13, 23, 24 16

FIII
4,2 14 16

FIV
4,2 34 18

E6 5

EI
6,2 12,13, 26, 56 8

EII
6,2 14, 34, 35, 45, 46 12

EIII
6,2 15, 23, 25, 36 10

EIV
6,2 16 6

EV
6,2 24 12

E7 9

EI
7,2 12, 27 10

EII
7,2 13 12

EIII
7,2 14, 34, 36 16

EIV
7,2 15, 24, 25 14

EV
7,2 16 12

EV I
7,2 17, 67 8

EV II
7,2 23, 26, 37, 56, 57 12

EV III
7,2 35, 45, 47 16

EIX
7,2 46 18

E8 11

EI
8,2 12, 13, 28 14

EII
8,2 14, 34, 37, 57 22

EIII
8,2 15, 25 20

EIV
8,2 16 18

EV
8,2 17, 67, 68 16

EV I
8,2 18 12

EV II
8,2 23, 27, 38 18

EV III
8,2 24, 26, 56, 58 20

EIX
8,2 35, 36, 45, 48 24

EX
8,2 46, 47 28

EXI
8,2 78 12

3

F4 2
FI

4,3 123, 124 26

FII
4,3 134, 234 32

E6 3

EI
6,3 123, 126, 136, 156, 256 16

EII
6,3 124, 125, 134, 135, 234, 236, 245, 246, 356, 456 20

EIII
6,3 145, 146, 235, 345, 346 22

E7 7

EI
7,3 123, 127, 137, 267, 567 20

EII
7,3 124, 126, 156, 157, 234, 237, 256, 257, 367 24

EIII
7,3 125, 135, 245, 247 26

EIV
7,3 134, 136 26
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Table 1 (Continued): Quotients of exceptional root systems

k Xl N Name J or Jc |R| − 1

EV
7,3 145, 147, 235, 236, 246, 345, 347, 356, 357, 456,

457, 467
28

EV I
7,3 146, 346 32

EV II
7,3 167 18

E8 8

EI
8,3 123, 128, 138, 278 28

EII
8,3 124, 127, 134, 137, 234, 238, 267, 268, 378, 567,

568, 578
34

EIII
8,3 125, 126, 135, 136, 156, 158, 245, 248, 256, 258 36

EIV
8,3 145, 148, 157, 235, 237, 257, 345, 348, 367, 368 40

EV
8,3 146, 147, 346, 347, 357, 457, 467, 468 46

EV I
8,3 167, 168 32

EV II
8,3 178, 678 26

EV III
8,3 236, 246, 247, 356, 358, 456, 458, 478 42

4

F4 1 F4,4 F4 48

E6 2

EI
6,4 1234, 1236, 1256, 1356, 2456 30

EII
6,4 1235, 1245, 1246, 1345, 1346, 1456, 2345, 2346,

2356, 3456
34

E7 4

EI
7,4 1234, 1237, 1267, 1367, 1567, 2567 36

EII
7,4 1235, 1236, 1245, 1247, 1256, 1257, 1345, 1347,

1356, 1357, 2345, 2347, 2367, 2456, 2457, 2467,
3567, 4567

42

EIII
7,4 1246, 1456, 1457, 1467, 2346, 2356, 2357, 3456,

3457, 3467
46

EIV
7,4 1346 48

E8 6

EI
8,4 1234, 1238, 1278, 1378, 2678, 5678 50

EII
8,4 1235, 1237, 1245, 1248, 1267, 1268, 1345, 1348,

1367, 1368, 1567, 1568, 1578, 2345, 2348, 2378,
2567, 2568, 2578, 3678

58

EIII
8,4 1236, 1256, 1258, 1356, 1358, 2456, 2458, 2478 60

EIV
8,4 1246, 1247, 1257, 1346, 1347, 1357, 1456, 1458,

1478, 2346, 2347, 2356, 2358, 2367, 2368, 2457,
2467, 2468, 3456, 3458, 3478, 3567, 3568, 3578,

4567, 4568, 4578, 4678

66

EV
8,4 1457, 1467, 1468, 2357, 3457, 3467, 3468 72

EV I
8,4 1678 48

5

E6 1 E6,5 all rank 5 quotients of E6 50

E7 2

EI
7,5 67, 56, 45, 34, 24, 12 60

EII
7,5 57, 47, 46, 37, 36, 35, 27, 26, 25, 23, 17, 16, 15,

14, 12
66
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Table 1 (Continued): Quotients of exceptional root systems

k Xl N Name J or Jc |R| − 1

E8 3

EI
8,5 678, 567, 456, 345, 245, 234, 134 82

EII
8,5 578, 568, 478, 467, 458, 457, 378, 367, 356, 348,

347, 346, 278, 267, 256, 248, 247, 246, 178, 167,
156, 145, 138, 137, 136, 135, 124, 123

92

EIII
8,5 468, 368, 358, 357, 268, 258, 257, 238, 237, 236,

235, 168, 158, 157, 148, 147, 146, 128, 127, 126,
125

100

6

E6 1 E6,6 E6 72

E7 1 E7,6 all rank 6 quotients of E7 92

E8 2

EI
8,6 78, 67, 56, 45, 34, 24, 13 126

EII
8,6 68, 58, 57, 48, 47, 46, 38, 37, 36, 35, 28, 27, 26,

25, 23, 18, 17, 16, 15, 14, 12
136

7
E7 1 E7,7 E7 126

E8 1 E8,7 all rank 7 quotients of E8 182

8 E8 1 E8,8 E8 240

Table 1 contains the following columns:

Column 1. the rank k of the quotient;
Column 2. the root system Xl whose quotients are discussed;
Column 3. the number of connected components of the graph Xl,k;
Column 4. the column “name” which contains a label for each connected com-

ponent of Xl,k;
Column 5. the column denoted “J or Jc” which contains all quotients of Xl

that belong to the respective component of Xl,k. We list each set
J (or Jc) as a k-digit (or l − k-digit) number and separate all sets
J belonging to the same component by commas. For example, the
connected component of F4,2 which contains F 1,3

4 is denoted by FII
4,2

and contains the sets {1, 3}, {2, 3}, and {2, 4} which is reflected by
the third row of the table reading 13, 23, 24. In order to save space
and improve readability, for k � 5 we encode the complements Jc of
the sets J . Since the unique quotient of Xl of rank l is Xl itself, so
we record “Xl” instead of writing 12 . . . l for J . Finally, since El,l−1

is connected, we do not list all J in this case;
Column 6. the column denoted |R| − 1 which contains the number of nonzero

roots in the GRS R corresponding to the respective component of
Xl,k.

6.3. Isomorphisms and equivalences between quotients of root systems.
In this section we list all isomorphisms and equivalences between quotients of two
root systems, one of which is exceptional. Since the information presented in this
section is sufficient to deduce when two quotients of a classical root system are
isomorphic or equivalent, we will not comment on this case. Furthermore, when a
quotient of an exceptional root system is isomorphic or equivalent to a quotient of
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a classical root system, we will list just one quotient of a classical root system as
an example.

Rank 2. Recall that Theorem 4.3 implies that each connected component ofXl,k

consists of quotients of Xl which are isomorphic among themselves. Theorem 5.5
lists all equivalences between rank 2 quotients of root systems. Comparing the lists
provided by Theorem 5.5 with Table 1, we notice that, for exceptional Xl, each
connected component of Xl,2 represents a different equivalence class of a rank 2
GRS. Theorem 5.5 implies the following statement.

Proposition 6.1. The equivalences between rank 2 quotients of root systems (when
at least one of them is exceptional) are:

(i) EIV
6,2 ≈ A2 ≈ (1)(i);

(ii) EI
6,2 ≈ EV I

7,2 ≈ B2 ≈ (1)(ii);

(iii) EV
6,2 ≈ EII

7,2 ≈ EXI
8,2 ≈ FI

4,2 ≈ G2 ≈ (1)(iii);

(iv) EIII
6,2 ≈ EI

7,2 ≈ B1,3
3 ≈ (2)(i);

(v) EV
7,2 ≈ EV I

8,2 ≈ FIII
4,2 ≈ B2,4

4 ≈ (2)(ii);

(vi) EII
6,2 ≈ EV II

7,2 ≈ (2)(iii);

(vii) EIV
7,2 ≈ EI

8,2 ≈ (2)(iv);

(viii) EIII
7,2 ≈ EV

8,2 ≈ FII
4,2 ≈ (2)(v);

(ix) EIX
7,2 ≈ EIV

8,2 ≈ FIV
4,2 ≈ (2)(vi).

Turning to the question of isomorphisms, first we note that since each of the
equivalence classes of GRSs (1)(iii), (2)(v), and (2)(vi) contains a unique isomor-
phism class of GRSs, cf. Section 5.2, we have the isomorphisms

(6.3) EV
6,2

∼= EII
7,2

∼= EXI
8,2

∼= FI
4,2

∼= G2, EIII
7,2

∼= EV
8,2

∼= FII
4,2, EIX

7,2
∼= EIV

8,2
∼= FIV

4,2 .

Note that the isomorphisms (6.3) also follow from the isomorphisms provided by
Theorem 4.6. In fact, Theorem 4.6 implies also

(6.4) EV
7,2

∼= EV I
8,2

∼= FIII
4,2 .

Moreover, these are almost all the isomorphisms between equivalence classes listed
in Proposition 6.1.

Proposition 6.2. Among the equivalences listed in Proposition 6.1, the isomor-
phisms are provided by (6.3), (6.4), and EIV

6,2
∼= A2.

Proof. The proof is carried out by an explicit calculation which we omit here. �

Rank 3. The isomorphisms provided by Theorem 4.6 imply the following iso-
morphisms of rank 3 quotients:

(6.5) EIV
7,3

∼= EV II
8,3

∼= FI
4,3 and EV I

7,3
∼= EV I

8,3
∼= FII

4,3.

Comparing the cardinality of different rank 3 quotients in Table 1, we see that the
only possible equivalencies other that (6.5) are EIII

7,3 ≈ EIV
7,3 and EII

6,3 ≈ EI
7,3. A

direct calculation shows that EIII
7,3 �≈ EIV

7,3 and EII
6,3 ≈ EI

7,3 but EII
6,3 �∼= EI

7,3. With
some additional work one can prove the following result.
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Proposition 6.3. The isomorphisms between rank 3 quotients of root systems
(when at least one of them is exceptional) are:

(i) EI
6,3

∼= D3,5,8
8 ;

(ii) EV II
7,3

∼= C3;

(iii) EIV
7,3

∼= EV II
8,3

∼= FI
4,3;

(iv) EV I
7,3

∼= EV I
8,3

∼= FII
4,3.

In addition, we have one equivalence which is not an isomorphism:

(v) EII
6,3 ≈ EI

7,3.

Rank greater than 3. The information provided by Table 1 allows us to
conclude that the only equivalence between rank greater than 3 quotients of root
systems (when at least one of them is exceptional) is the isomorphism

EIV
7,4

∼= EV I
8,4

∼= F4

provided by Theorem 4.6.

7. Appendix: Proof of Theorem 5.2

Below we provide the details of the proof of Theorem 5.2 that we omitted in
Section 5.

Let R be an irreducible GRS of rank 2. Throughout this section we fix a primitive
root x ∈ R with a largest multiplier m among the multipliers of primitive roots in
R and a base S = {x, β} of R. If γ ∈ R, we define the level of γ as the coefficient
of β in the decomposition of γ as a linear combination of β and x. The roots at
any level form a single x-string, e.g. the roots at level 1 are exactly the roots in the
x-string through β.

The proof of Theorem 5.2 is carried out by classifying separately the irreducible
GRSs of rank 2 with a fixed largest multiplier m. Theorem 5.1 implies that 1 �
m � 4. The GRSs with m = 1 and m = 4 are classified respectively in Section 1.6
and Proposition 5.3. Below we consider the cases m = 3 and m = 2.

7.1. GRSs with largest multiplier m = 3. We have x, 2x, 3x ∈ R but 4x �∈ R.
We consider two cases, depending on whether there is a root y orthogonal to x at
level 1.

7.1.1. There is a root y ⊥ x at level 1. Since R is irreducible, β �= y and hence
y ± x ∈ R. Next, 〈y + x, 3x〉 > 0 and 〈y − x, 3x〉 < 0 imply that y − 2x ∈ R and
y+2x ∈ R. Since 4x = (y+2x)−(y−2x) �∈ R, we conclude that 〈y+2x, y−2x〉 � 0.

Here are two subcases:

Case A. 〈y + 2x, y − 2x〉 = 0. In this case ‖y‖ = 2‖x‖. Since 4x = (y + 2x) −
(y − 2x) �∈ R, we have 2y = (y + 2x) + (y − 2x) �∈ R. Next we notice that

〈y − x, y + 3x〉 = ‖y‖2 − 3‖x‖2 = ‖x‖2 > 0.

This inequality implies that y+3x �∈ R because otherwise 4x = (y+3x)−(y−x) ∈ R
which is false. Similarly, y − 3x �∈ R. Since none of the vectors 2y, y ± 3x belongs
to R, Corollary 1.12 implies that

R = {0,±x,±2x,±3x,±y,±y ± x,±y ± 2x}
and ‖y‖ = 2‖x‖, i.e., R is the GRS (3)(i).
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Case B. 〈y + 2x, y − 2x〉 < 0. Then 2y = (y + 2x) + (y − 2x) ∈ R. Denote by

R′ the subsystem of R obtained by intersecting R with the lattice generated by x
and 2y. We have two possibilities for R′:
(i) R′ is reducible. Since R′ is reducible, 2y is the only root of R at level 2.

Thus R contains the roots of the GRS (3)(ii). To prove that R coincides
with the GRS (3)(ii), we first show that 3y �∈ R and y ± 3x �∈ R. First, if
3y ∈ R, Corollary 1.12 implies that 3y is not the only root at level 3 and thus
3y ± x ∈ R. But then 〈3y + x, y〉 > 0 would imply that 2y + x ∈ R which
is false. Second, if we assume that y + 3x ∈ R, the fact that none of the
vectors (y + 3x)± (y − x) and (y + 3x)± (y − 2x) belongs to R would imply
that y + 3x ⊥ y − x and y + 3x ⊥ y − 2x which is impossible, proving that
y + 3x �∈ R. Similarly, y − 3x �∈ R. This shows that

R = {0,±x,±2x,±3x,±y,±y ± x,±y ± 2x,±2y}.

To prove that R is isomorphic to a GRS (3)(ii), it remains to establish that√
2‖x‖ < ‖y‖ < 2‖x‖. The first inequality follows from the fact that (y +

2x) − (y − x) = 3x ∈ R while (y + 2x) + (y − x) = 2y + x �∈ R and hence
〈y + 2x, y − x〉 > 0. The second inequality is true by assumption.

(ii) R′ is irreducible. Since R′ is irreducible, 2y is not the only root of R at level
2 and thus 2y ± x, 2y ± 2x ∈ R. Note that 4y �∈ R because otherwise y would
have multiplier 4, which is impossible. Then (2y+2x)± (2y− 2x) �∈ R implies
that 2y + 2x ⊥ 2y − 2x, i.e., ‖y‖ = ‖x‖. Moreover,

〈2y + 2x, y − 2x〉 = 2‖y‖2 − 4‖x‖2 < 0

shows that 3y = (2y + 2x) + (y − 2x) ∈ R. So far we have shown that R
contains the roots of the GRS (3)(iv). To prove that R coincides with the
GRS (3)(iv), it suffices to show that 4y, 3y ± x, 2y ± 3x, y ± 3x �∈ R and then
apply Corollary 1.12. First, as noted above, 4y �∈ R since otherwise y would
have multiplier 4. Second, if R contains roots other than 3y at level 3, it would
contain both 3y + 2x and 3y − 2x. However,

〈3y + 2x, 3y − 2x〉 = 9‖y‖2 − 4‖x‖2 > 0

would imply 4x ∈ R which is false. Third, if we assume that 2y + 3x ∈ R,

〈2y + 3x, y − x〉 = 2‖y‖2 − 3‖x‖2 < 0

would imply 3y+2x ∈ R which we showed is impossible. Finally, the assump-
tion y + 3x ∈ R and

〈y + 3x, 2y − x〉 = 2‖y‖2 − 3‖x‖2 < 0

lead again to 3y+2x ∈ R. This completes the proof that in this case R is the
GRS (3)(iv).
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7.1.2. There is no root in R at level 1 perpendicular to x. In analogy to the similar
case in the proof of Proposition 5.3 we can make the following observations about
roots at level k � 1 in R:

– there is a single root at level k, then it is orthogonal to x;
– there are more than one roots at level k, then there are at least 5 roots at

level k;
– there are exactly 5 roots at level k, then one of them is orthogonal to x;
– there are at least 6 roots at level k, then there is at least one root at level

2k.

Consider the roots in R at levels 1, 2, 4, 8, . . ., etc. If none of them is orthogonal
to x, then each of these levels contains at least 6 roots, which is impossible since R
is a finite set. Assume than l � 1 is the smallest integer such that there is a root
orthogonal to x at level 2l. Denote this root by 2y and consider the subsystem R′ of
R obtained by intersecting R with the lattice generated by x and 2y. We consider
two cases for R′:

Case A. R′ is reducible. Then R′ (and hence R) contains the roots ±x,±2x,
±3x, 2y and does not contain the roots 2y ± x. In particular, the only root of R
at level 2l is 2y. The level 2l−1 roots in R are exactly the roots in the x-string
through β′′ for some β′′ ∈ R with β′′ − x �∈ R. Note that {x, β′′} is a basis of
the subsystem R′′ obtained by intersecting R with the lattice generated by x and
β′′. Moreover R′ and R′′ consist of the roots of R at levels divisible by 2l and 2l−1

respectively. In particular, R′ ⊂ R′′ and 2y ∈ R′′, which implies that 2y = 2β′′+sx
for some integer s. Thus β′′ = y − s

2x. Since y �∈ R, we conclude that s is odd,

which in turn implies that y± 1
2x, y±

3
2x, y±

5
2x are all the roots in R at level 2l−1

and 〈y − 3
2x, y + 5

2x〉 = 0, i.e., that ‖y‖ =
√
15
2 ‖x‖. So far we have showed that

R contains the roots of the GRS (3)(iii). Next we show that R contains no other
roots.

First we show that l = 1. Indeed, if l > 1, then R contains at least 6 roots at level
2l−2 because R contains no roots orthogonal to x. Corollary 1.12 implies that there
are roots at level 3 × 2l−2. However, 3y �∈ R because otherwise y = 3y − 2y ∈ R
is a root at level 2l−2 orthogonal to x. In short, at level 3 × 2l−2 there are roots
in R but none of them is orthogonal to x, which implies that there are at least
6 roots at this level. A simple argument, similar to the one used to show that
y ± 1

2x, y ±
3
2x, y ±

5
2x belong to R, shows that R contains either

at level 2l−2 : 1
2y −

11
4 x, 1

2y −
7
4x,

1
2y −

3
4x,

1
2y +

1
4x,

1
2y +

5
4x,

1
2y +

9
4x,

at level 3× 2l−2 : 3
2y −

9
4x,

3
2y −

5
4x,

3
2y −

1
4x,

3
2y +

3
4x,

3
2y +

7
4x,

3
2y +

11
4 x

or

at level 2l−2 : 1
2y −

9
4x,

1
2y −

5
4x,

1
2y −

1
4x,

1
2y +

3
4x,

1
2y +

7
4x,

1
2y +

11
4 x,

at level 3× 2l−2 : 3
2y −

11
4 x, 3

2y −
7
4x,

3
2y −

3
4x,

3
2y +

1
4x,

3
2y +

5
4x,

3
2y +

9
4x.

In the former case

〈1
2
y − 11

4
x,

3

2
y +

7

4
x〉 = 3

4
‖y‖2 − 77

16
‖x‖2 =

3

4

15

4
‖x‖2 − 77

16
‖x‖2 = −8‖x‖2 < 0
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implies that 2y − x = ( 12y − 11
4 x) + ( 32y + 7

4x) ∈ R, contradicting the assumption

that 2y is the only root at level 2l. Analogously, in the latter case we would obtain
2y + x = ( 12y +

11
4 x) + ( 32y − 7

4x) ∈ R. This completes the proof that l = 1.
To complete the proof that R is the GRS (3)(iii), it remains to show that R

contains no roots at level 3. Indeed, if R contains roots at level 3, it would contain at
least 6 roots at level 3, namely 3y± 1

2x, 3y±
3
2x, 3y±

5
2x. But then 〈3y+ 5

2x, y+
3
2x〉 >

0 would imply that 2y+x = (3y+ 5
2x)−(y+ 3

2x) ∈ R which is false. This completes
the proof that if R′ is reducible, then R is the GRS (3)(iii).

Case B. R′ is irreducible. Section 7.1.1 implies that R′ is one of the root systems
(3)(i), (3)(ii), or (3)(iv) (with 2y in place of y). We will show that none of these
options is possible.
(i) R′ is (3)(i) or (3)(ii). Then R contains the roots ±x,±2x,±3x, 2y, 2y ±

x, 2y ± 2x and ‖y‖ � ‖x‖. Since R contains no roots orthogonal to x at
level 2l−1, R must contain the vectors y± 1

2x, y±
3
2x, y±

5
2x. The inequalities

〈2y−2x, y+ 5
2x〉 = 2‖y‖2−5‖x‖2 < 0 and 〈2y−2x, y+ 3

2x〉 = 2‖y‖2−3‖x‖2 < 0

imply that 3y − 1
2x and 3y + 1

2x belong to R (and thus 3y �∈ R). As a

consequence, R contains at least 6 roots at level 3 × 2l−1. In particular, R
contains the roots 3y ± 1

2x, 3y ± 3
2x, 3y ± 5

2x. Since 〈3y − 5
2x, 3y + 5

2x〉 =

9‖y‖2 − 25
4 ‖x‖2 > 0, we conclude that 5x = (3y + 5

2x)− (3y − 5
2x) ∈ R which

is absurd. This proves that R′ cannot be the GRS (3)(i) or (3)(ii).
(ii) R′ is (3)(iv). In this case R′ (and thus R) contains the vectors 2y + x and

4y + 2x. One proves as above that y + 1
2x and 3y + 3

2x belong to R, which is

impossible since the root y + 1
2x would have multiplier 4.

7.2. GRSs with largest multiplier m = 2. We have x, 2x ∈ R but 3x �∈ R.
We consider two cases, depending on whether there is a root y orthogonal to x at
level 1.

7.2.1. There is a root y ⊥ x at level 1. In this case β = y − sx for some s > 0 and
hence R is contained in the lattice generated by y and x. Thus every level of roots
contains a root orthogonal to x. Since m = 2, 3y �∈ R which implies that R has no
roots at levels 3 and above. Moreover, 〈y, y± 3x〉 > 0 implies that y± 3x �∈ R since
otherwise we would have ±3x = (y ± 3x) − y ∈ R. Finally, we note that y ⊥ 2x
implies that y+2x ∈ R if and only if y− 2x ∈ R. After these preliminary remarks,
we consider two cases for R depending on whether y ± 2x ∈ R.

Case A. y ± 2x �∈ R. Consider the following alternatives for R.
(i) 2y �∈ R. In this case Corollary 1.12 implies that R consists of the roots

of the GRS (2)(i). The inequality ‖y‖ > ‖x‖ follows from the fact that 2x =
(y+x)−(y−x) ∈ R but 2y = (y+x)+(y−x) �∈ R and hence 〈y+x, y−x〉 > 0.

(ii) 2y ∈ R but 2y ± x �∈ R. Since R contains no roots at level 3, we conclude
that R is isomorphic to a GRS (2)(ii).

(iii) 2y, 2y±x ∈ R. Since neither (2y−x)+(y+x) = 3y ∈ R nor (2y−x)−(y+x) =

y − 2x ∈ R, we conclude that 〈2y − x, y + x〉 = 0 and thus ‖x‖ =
√
2‖y‖.

Then 〈2y − 2x, y + x〉 = 2‖y‖2 − 2‖x‖2 < 0 implies that 2y − 2x �∈ R since
otherwise 3y − x = (2y − 2x) + (y + x) would be a root at level 3. Similarly,
2y + 2x �∈ R. This proves that R = {0,±x,±2x,±y,±y ± x,±2y,±2y ± x}
with ‖x‖ =

√
2‖y‖, which is the GRS (2)(v) with x and y switched.
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Case B. y ± 2x ∈ R. Since 3x = (y+2x)−(y−x) �∈ R, we have 〈y+2x, y−x〉 � 0.
Hence 〈y + 2x, y − 2x〉 < 0 and thus 2y = (y + 2x) + (y − 2x) ∈ R. Consider the
following alternatives for R.
(i) 2y±x �∈ R. Since neither (y+2x)−(y−x) = 3x nor (y+2x)+(y−x) = 2y+x

is a root, we have 〈y + 2x, y − x〉 = 0, i.e., ‖y‖ =
√
2‖x‖. This proves that R

is the GRS (2)(v).
(ii) 2y ± x ∈ R. Since neither (2y − x) − (y + 2x) = y − 3x nor (2y − x) + (y +

2x) = 3y + x is a root, we have 〈2y − x, y + 2x〉 = 0, i.e., ‖y‖ = ‖x‖. Then
〈2y − 2x, y + 2x〉 < 0, which implies that 2y − 2x �∈ R because otherwise
3y = (2y − 2x) + (y + 2x) ∈ R. This proves that R is the GRS (2)(vii).

7.2.2. There is no root in R at level 1 perpendicular to x. We consider the following
cases depending on the roots of R at level 2.

Case A. R contains no roots at level 2. Observe first that there are exactly 4
roots at level 1, say y ± 1

2x, y ±
3
2x. Thus R = {0,±x,±2x,±y ± 1

2x,±y ± 3
2x}.

Since neither (y+ 3
2x)+(y− 3

2x) = 2y nor (y+ 3
2x)−(y− 3

2x) = 3x belongs to R,

we conclude that 〈y+ 3
2x, y−

3
2x〉 = 0, i.e., ‖y‖ = 3

2‖x‖. Moreover, 〈y± 1
2x, x〉 ≶ 0

because otherwise there would be more than 4 roots at level 1. The inequalities
〈y ± 1

2x, x〉 ≶ 0 are equivalent to − 1
2‖x‖2 < 〈x, y〉 < 1

2‖x‖2. This proves that R is
isomorphic to a GRS (2)(iii).

Case B. There is exactly one root at level 2 of R. Denote this root by 2y. Then

2y ⊥ x. As above, R contains the vectors y± 1
2x, y±

3
2x. Assuming that y+ 5

2x ∈ R

we would arrive at 2y+x = (y− 3
2x)+(y+ 5

2x) ∈ R which is false. Hence y+ 5
2x �∈ R

and, similarly, y − 5
2x �∈ R. Note also that there are no roots of R at level 3.

Indeed, otherwise R would contain 3y ± 1
2x, 3y ± 3

2x. This is impossible since, for

z := y+ 1
2x, the z-string through 0 contains the roots z and 3z but does not contain

2z, contradicting Corollary 1.13. Finally, noting that 3x = (y+ 3
2x)− (y− 3

2x) �∈ R

while 2y = (y + 3
2x) + (y − 3

2x) ∈ R and 2x = (y + 3
2x) − (y − 1

2x) ∈ R while

2y + x = (y + 3
2x) + (y − 1

2x) �∈ R we conclude that

〈y + 3

2
x, y − 3

2
x〉 < 0 and 〈y + 3

2
x, y − 1

2
x〉 > 0.

These inequalities are equivalent to
√
3
2 ‖x‖ < ‖y‖ < 3

2‖x‖. This completes the
proof that R is the GRS (2)(iv).

Case C. Level 2 ofR contains both a root orthogonal tox and roots not ortho-
gonal to x. Denote the root at level 2 orthogonal to x by 2y. Then R contains

the roots ±x,±2x, y ± 1
2x, y ± 3

2x, 2y, 2y ± x. Let R′ be the subsystem of R ob-
tained by intersecting R with the lattice generated by x and 2y. By the results of
Section 7.1.1, R′ is isomorphic to a GRS (2)(i), (2)(ii), (2)(v), or (2)(vii).

If R′ is isomorphic to one of the GRSs (2)(ii), (2)(v), or (2)(vii), then 4y ∈ R.
Since 〈4y, y− 3

2x〉 > 0, we conclude that 3y+ 3
2x ∈ R which is a contradiction with

the assumption that m = 2 because y + 1
2x, 2y + x, 3y + 3

2x all belong to R.
It remains to study the case when R′ is a GRS (2)(i). We consider two cases

depending on whether y + 5
2x ∈ R.

(i) y + 5
2x �∈ R. Then y − 5

2x �∈ R since otherwise 〈2y, y − 5
2x〉 > 0 would imply

that y + 5
2x = 2y − (y − 5

2x) ∈ R. Moreover, R contains no roots at level 3.

Indeed, otherwise R would contain the roots 3y± 1
2x, 3y±

3
2x which, as above,

is a contradiction with the assumption m = 2 because y + 1
2x, 2y + x, 3y+ 3

2x
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all belong to R. Noting that neither (2y + x) + (y − 3
2x) = 3y − 1

2x nor

(2y+ x)− (y− 3
2x) = y+ 5

2x belongs to R, we conclude that 2y+ x ⊥ y− 3
2x.

This implies that ‖y‖ =
√
3
2 ‖x‖, proving that R is the GRS (2)(vi).

(ii) y+ 5
2x ∈ R. Note first that y± 7

2x �∈ R since otherwise 〈y± 7
2x, y±

1
2x〉 > 0 would

imply that ±3x = (y± 7
2x)− (y± 1

2x) ∈ R. Moreover, as above, R contains no

roots at level 3 since otherwise y+ 1
2x would have multiplier 3. Finally, the fact

that neither (y+ 5
2x)+(y− 1

2x) = 2y+2x nor (y+ 5
2x)−(y− 1

2x) = 3x belongs

to R, we conclude that y + 5
2x ⊥ y − 1

2x. This implies that ‖y‖ =
√
5
2 ‖x‖,

proving that R is the GRS (2)(viii).
Case D. R contains no roots orthogonal to x at levels 1 and 2. There are at

least 4 roots at level 1 of R. Denote by z the root at level 1 such that 〈z, x〉 < 0 and
〈z + x, x〉 > 0. Then R contains the roots z − x, z, z + x, z + 2x, 2z, 2z + x, 2z + 2x
as well as 2z+3x or 2z−x depending on whether 〈2z+x, x〉 < 0 or 〈2z+x, x〉 > 0.
In what follows we will assume that 〈2z + x, x〉 < 0 and hence 2z + 3x ∈ R. The
other case is dealt with in a similar way.

The assumption that m = 2 implies that neither 3z nor 3z+3x is a root. Hence,
R has at most 2 roots at level 3, which implies that either there are no roots at
level 3 in R or there is exactly one root 3y at level 3 of R and 3y ⊥ x.

(i) There are no roots at level 3 of R. We make the following observations:
(1) z + 4x �∈ R because 〈z + 4x, z + x〉 = 〈z + x, z + x〉 + 3〈x, z + x〉 > 0

but (z + 4x)− (z + x) = 3x �∈ R;
(2) 〈2z+3x, z − x〉 = 0 because neither 3z− 2x = (2z +3x) + (z− x) nor

z + 4x = (2z + 3x)− (z − x) belongs to R;
(3) z + 3x ∈ R since 〈2z + 2x, z − x〉 = 〈2z + 3x, z − x〉 − 〈x, z − x〉 > 0;
(4) 〈z+3x, z〉 = 0 because (z+3x)+2z = 3z+3x �∈ R implies 〈z+3x, 2z〉 �

0 and (z + 3x)− z = 3x �∈ R implies 〈z + 3x, z〉 � 0;
(5) z− 2x ∈ R because 〈z+3x, 2z+ x〉 = 〈z+3x, z〉+ 〈z+3x, z+x〉 > 0;
(6) 〈z − 2x, z + x〉 = 0 because (z − 2x) + (2z + 2x) = 3z �∈ R implies

〈z − 2x, 2z + 2x〉 � 0 and (z − 2x) − (z + x) = −3x �∈ R implies
〈z − 2x, z + x〉 � 0.

The equations

〈2z + 3x, z − x〉 = 0, 〈z + 3x, z〉 = 0, 〈z − 2x, z + x〉 = 0

from (2), (4), and (6). above imply that 〈x, x〉 = 〈x, z〉 = 〈z, z〉 = 0. This
contradiction proves that there are no GRSs in this case.

(ii) There is a unique root 3y at level 3 of R. A simple argument, similar
to the one used in Section 7.1.2(A), shows that R contains either

y − 5

3
x, y − 2

3
x, y +

1

3
x, y +

4

3
x, 2y − 4

3
x, 2y − 1

3
x, 2y +

2

3
x, 2y +

5

3
x

or

y − 4

3
x, y − 1

3
x, y +

2

3
x, y +

5

3
x, 2y − 5

3
x, 2y − 2

3
x, 2y +

1

3
x, 2y +

4

3
x.

Since the latter case is obtained from the former by replacing x by −x, it
suffices to consider only the former one.
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First we show that y + 7
3x �∈ R. Indeed, if we assume that y + 7

3x ∈ R,

the fact that (y+ 7
3x)+ (y− 2

3x) = 2y+ 5
3x ∈ R and (y+ 7

3x)− (y− 2
3x) =

3x �∈ R implies that 〈y + 7
3x, y − 2

3x〉 < 0. This in turn implies that

3y + x = (y + 7
3x) + (2y − 4

3x) ∈ R which is false.

Similarly, y− 8
3x �∈ R. Indeed, since neither (2y+ 2

3x)+(y− 5
3x) = 3y−x

nor (2y+ 2
3x)−(y− 5

3x) = y+ 7
3x belongs to R, we have 〈2y+ 2

3x, y−
5
3x〉 = 0.

Thus 〈2y + 2
3x, y −

8
3x〉 < 0 and the assumption y − 8

3x ∈ R would lead to

the false conclusion that 3y − 2x = (y − 8
3x) + (2y + 2

3x) ∈ R.
Next we note that there are no roots at level 4. Indeed, if there are

roots at level 4, then 4y− 5
3x, 4y−

2
3x, 4y+

1
3x, 4y+

4
3x belong to R. This,

however, contradicts Corollary 1.13 because y + 1
3x, 2y + 2

3x, 4y + 4
3x ∈ R

but 3y+ x �∈ R. As a consequence, neither 2y+ 8
3x nor 2y− 7

3x belongs to
R since otherwise there will be at least 5 roots at level 2 and hence at least
one root at level 4.

Finally, since neither 4y + 1
3x = (2y + 5

3x) + (2y − 4
3x) nor 3x = (2y +

5
3x)−(2y− 4

3x) belongs to R, we conclude that 2y+ 5
3x ⊥ 2y− 4

3x, implying

that ‖y‖ =
√
5
3 ‖x‖.

Consider the vectors x′ := y+ 1
3x and y′ := 1

2y−
5
6x. It is a straightfor-

ward calculation that R is the GRS (2)(viii) when written in terms of the
vectors x′ and y′.

This completes the proof of Theorem 5.2.
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