
A two-stage online inertia estimation: Identification of primary frequency
control parameters and regression-based inertia tracking
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A B S T R A C T

In recent years, power system inertia has significantly decreased and has become more variable due to the
massive integration of converter-interfaced renewable energy sources. Real-time awareness of the inertia present
in the system is essential for operators to take preventive actions and mitigate potential instability risks. Online
inertia tracking methods based on field data have been used to accomplish this task. However, most existing
methods are disturbance-based and few have proven effective under normal operating conditions. In addition,
some methods require prior knowledge of the primary frequency control dynamics, which are usually unknown,
especially in presence of power converters. To overcome these limitations, this paper proposes a two-stage online
inertia estimation method. The first stage estimates the primary frequency control parameters. The second stage
uses a regression-based approach to track the inertia in real time. A sensitivity analysis of the parameters of the
regression model is used to determine the conditions under which the primary frequency control parameters
must be updated. The performance of the method is validated using the IEEE 39-bus benchmark network under
normal operating conditions and under the occurrence of large disturbances. The algorithm is also tested in the
presence of converter-interfaced sources controlled in both grid-following and grid-forming modes. Real-time
tests validate the applicability of the method.

1. Introduction

1.1. Motivation

The last decade has seen a significant increase in the deployment of
renewable energy sources and energy storage systems, most of which are
connected to the grid through power electronic converters [1]. As the
number of these converter-interfaced sources (CISs) increases, the
overall system inertia decreases, affecting the stability of the power
system. To mitigate these effects, the use of storage systems controlled to
provide virtual inertia has been proposed [2,3], usually mimicking the
behaviour of synchronous generators. As a consequence, inertia has
become a parameter strongly dependent on the number of CISs con-
nected to the system and the characteristics of their controllers.

In this context, the effective inertia estimation becomes a critical
issue. The main aspects are the following.

– The inertia is no longer solely dependent on a physical parameter as
in conventional generation but can also depend on the characteristics
of the power converters. It depends on the converter control mode (e.
g., grid-following, grid-forming), the implemented strategy (e.g.,
droop control, virtual synchronous machine), and the control pa-
rameters [4].

– The amount of inertia in the system varies significantly over time due
to the variability of the CISs connected to the system. The unpre-
dictability of renewable energy increases the impact of this
variability.

– System operators can use the information on the effective inertia
trend to take preventive measures to increase the stability and
resilience of the system. Such measures may include the use of syn-
chronous condensers or increasing frequency regulation reserves.

– In addition, system operators themselves may require power plants
to provide certain levels of inertia to ensure stability margins, even if
they are inverter-based [5]. Inertia estimation algorithms can help to
verify the compliance with such requirements.
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1.2. Literature review

There are several ways to classify inertia estimation methods ac-
cording to their characteristics [6− 10]: state (static or dynamic); time
horizon of interest (online, offline, forecast); type of data (large distur-
bance data, ambient data, micro disturbance data); method employed
(model based, measurement based).

Static methods [11,12] rely on operating schedules or full system
monitoring, often dependent on the availability of synchronous gener-
ator data. However, they may not be suitable for power systems with
limited observability and a high penetration of distributed resources
providing inertial response. Dynamic methods, on the other hand,
overcome the disadvantages of static methods by directly analysing the
dynamic behaviour of the system. This allows for a more accurate and
up-to-date characterization of the inertia. For this reason, most of the
methods proposed in recent literature are dynamic.

Offline methods [13,14], also known as post-mortem, typically
analyse large disturbance events and are based on historical data,
whereas online methods monitor inertia in real time using readily
available measurements. A key advantage of offline methods is the
ability to perform data processing and inertia estimation without
concern for computational time. Online methods [15− 27] offer the
advantage of real-time (or close to real-time) awareness of the system
state, allowing system operators to make adaptive adjustments based on
current conditions. Another useful resource comes from predictive
methods [12,28− 30]. By using such methods, operators can take pre-
ventive actions to maintain system stability margins based on expected
future conditions.

In terms of data type, large disturbance-based methods [13− 18] rely
on events that produce large frequency variations, such as faults, con-
nection/disconnection of large generators or loads, etc. The accuracy of
these methods typically depends on precise knowledge of the distur-
bance characteristics (size, timing). Moreover, the inertia information
cannot be updated in real time. In contrast, ambient data-based esti-
mation methods [19− 25] use measurements obtained under normal
operating conditions, taking advantage of the normal fluctuations of
load and generation in the system. This feature makes them more flex-
ible to adapt to changes in the network topology. Typically, methods
based on ambient measurements also work with large perturbations, but
not vice versa. Microperturbation-based methods [26,27] use a probe
signal with known characteristics. This approach requires additional
equipment, which increases the complexity of the implementation.

Considering the above characteristics, continuous awareness of the
system inertia level is provided by dynamic online methods based on
field data. This paper focuses on an inertia estimation method with these
characteristics. In terms of the method employed, model-based methods
[15,16,19,20,26] use dynamic models of varying complexity and adopt
optimization algorithms, Kalman filters, state-space models, and trans-
fer functions to estimate inertia and other parameters. These methods
suffer from parameter uncertainties and the accuracy of the estimation
depends on the models used. In contrast, measurement-based methods
[17,21− 24,27] do not require complex model representations and often
use only the swing equation. However, they are susceptible to mea-
surement noise.

The methods proposed in [18,25] are difficult to categorize as purely
measurement based. Both methods are based on the swing equation but
do not require the definition of model parameters. The method proposed
in [18] is capable of tracking inertia with high accuracy. However, it
depends on the accurate estimation of the rate of change of power
(RoCoP) and frequency. In particular, the frequency is estimated using
the frequency divider formula, which is based on the augmented matrix
of the network and the knowledge of the generator impedances. In [25],
a regression model is constructed from the swing equation, based on the
dynamic regression extension and mixing (DREM). The model is based
on a steam turbine unit and includes a single-pole transfer function to
represent the dynamics of the primary frequency control (PFC). The
method is tested during small disturbances associated with rescheduling
events and shows good performance. The main limitation for the
application of this approach lies in the assumption that the parameters
of the PFC dynamics characterisation are known. To overcome this
limitation, an extension of the method has been preliminarily proposed
in [31]. The extension consists in estimating the unknown PFC param-
eters by means of a least-squares optimisation (LSO). In addition, a
one-zero two-pole transfer function provides a more generalised model
of PFC dynamics, enabling the representation of various types of power
plants. In [31], the optimisation is based on an iterative procedure using
a dynamic Simulink model, which makes the process slow.

1.3. Contributions of the paper and organization

In this paper, the inertia estimation technique proposed in [31] is
improved with the following features:

Nomenclature

General
t, k Time, discrete time-step
s Laplace variable
Ts Sampling period
I Identity matrix
S Apparent power
ω, f , fLSO, f0 Angular frequency, frequency, optimisation frequency,

nominal frequency
p∗, pe, pPFC Power setpoint, electrical power, power due to primary

frequency control action
J,H,Hn, HdP Moment of inertia, inertia constant, nominal inertia,

RoCoP-based inertia

LSO-DREM procedure
Hc, HLSO Control inertia, optimisation inertia
G(s) Transfer function of the primary frequency control
R Droop constant
τ, τz, τp Time constants of G(s)

J Objective function
tw Time window for the optimisation
N Number of samples within tw
H Lag operator
td Time delay for H
x, x1, x2 Vector and variables of the regressor
ξ1,2,3 Coefficients of the regressor
λ Learning rate
α Filter parameter
εH Threshold for ΔH
tH Time duration of εH
εP Threshold for disturbance detection
e Parametric error

Auxiliary symbols
γ(t), Γ(s) Relationship between frequency and electrical power
a1,2 , b1,2,3 , h1,2,3 , k1,2,3 , r1,2,3 Auxiliary variables to define γ(t) and

Γ(s)
A, B, Z, ∂ Vectors, matrices and variables of known quantities for the

regression construction
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– The PFC dynamics are represented using an analytical formulation.
This allows the optimisation phase of the algorithm to be signifi-
cantly accelerated, increasing computational efficiency.

– A sensitivity analysis is performed to evaluate the influence of the
DREM parameters on the estimator’s performance. This analysis
made it possible to establish a criterion indicating the need to update
the PFC parameters. This improvement allows the automation of the
entire estimation process, making it suitable for the practical use. It
also provides useful insights into the DREM characteristics for this
application.

The proposed LSO-DREM procedure is tested on the IEEE 39-bus
system. The tests consider load variations under normal operating
conditions, load and generation steps in different inertia conditions, and
the impact of CISs controlled in both grid-following and grid-forming
modes. The performance of the LSO-DREM procedure is compared
with the results obtained using the algorithm proposed in [18].
Real-time simulations are performed to validate the implementation.

The paper is organised as follows. Section 2 describes the applica-
tion. Section 3 presents the methodology of the inertia estimation al-
gorithm, including the optimisation and the regression procedures. In
Section 4 the sensitivity analysis is performed and the criterion for
updating the PFC parameters is defined. The results of the scenarios
simulated on the IEEE 39-bus system are presented in Section 5. The
real-time implementation of the algorithm is included here. Finally,
Section 6 concludes the paper.

2. Application description

Fig. 1 shows the inertia estimation process. The inputs to the algo-
rithm are measurements of system frequency f̃ and total electric power
injected by generators p̃e, and the output is the estimated inertia of the
power system, denoted as Ĥ. Throughout the paper, the tilde (ũ) refers to
measured quantities, while the hat (û) refers to estimated quantities.

The optimisation stage identifies the parameters of the PFC dynamics
(developed in Section 3.2) and the regression stage tracks the inertia

value in real time (developed in Section 3.3). A control block checks the
PFC parameters are up-to-date. Whenever it detects a change in the
dynamics, a request to update the parameters is sent to the optimiser.
The main contributions of this paper are those marked in the orange
blocks, and the details of the algorithm are shown in Fig. 2.

The DREM method uses a regression and gradient algorithm to es-
timate inertia. However, as mentioned above, the parameters of the
primary frequency control are needed to construct the regression model.
To solve this problem, the optimisation stage estimates these parameters
(τ̂, τ̂z, τ̂p). The dynamic behaviour of the primary frequency control is
represented by an analytical form, in which the frequency variation is
expressed as a function of the electrical power variation and the PFC
parameters. Optimisation-based PFC identification follows the following
steps:

(a) frequency variation Δf̃ and electrical power variation Δp̃e are
measured over time window tw when a disturbance occurs;

(b) frequency variation Δf is evaluated by using the analytical
expression;

(c) the difference between Δf̃ and Δf is minimised and the PFC pa-
rameters are obtained.

The DREM stage constantly tracks the inertia, while the optimisation
stage is started only when it is necessary to update the PFC parameters,
which are determined by the following conditions:

– ΔH condition: A control value (Ĥc) is estimated by a parallel gradient
algorithm with different regression parameters. Estimated inertia Ĥ
and control value Ĥc diverge only if the PFC parameters do not
correspond to the real dynamics of the system (details are given in
Section 4.2). If the difference between these two values exceeds a
threshold (εH), the optimisation stage must be performed to estimate
new PFC parameters. To avoid activating this condition during the
transient state of the estimator, it is required that the threshold be
exceeded for a certain time interval (tH).

Fig. 1. Scheme of the inertia estimation for a generic power system.
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– Δp condition: To ensure the accuracy of the PFC parameters, the
optimisation is performed when a significant disturbance occurs. The
LSO is therefore executed when Δp is greater than a tolerance (εP).

3. Mathematical formulation

Section 3.1 briefly recalls the swing equation and introduces the
general representation of the primary frequency control. Section 3.2
derives the analytical expression of the PFC dynamics and illustrates the
optimisation procedure. Section 3.3 constructs the regression model
from the swing equation based on the DREM procedure.

3.1. Swing equation

The swing equation of a generator expressed in per unit (pu) is given
by [32]:

2Hω̇ =
Δp
ω , (1)

where the damping has been neglected [6,9]; ω is the angular frequency
and ω̇ its time derivative; and Δp is the power unbalance.

The power unbalance can be expressed as

Δp = p∗ + pPFC − pe, (2)

where p* is the power setpoint; pPFC is the primary frequency control
action; and pe is the electrical power. Eq. (2) represents the actual un-
balance between the load and the mechanical power, which accounts for
the deviation from the set point due to the action of the governor. The
whole power system behaviour can be represented by the aggregated
swing equation (ω=f in pu):

ḟ =
1

2H
p∗ + pPFC − pe

f
. (3)

While pe and f can be measured, direct measurement of p* and pPFC is
not possible. If the aggregated droop constant is known, the steady-state
value of pPFC can be derived. However, in the case of synchronous
generators, the dynamic behaviour of pPFC depends on that of the
turbine-governor system, which is often unknown to the system oper-
ator. Similarly, for CISs, the dynamics of pPFC depend on the charac-
teristics of the source and the control system, which are also unknown.

3.2. Identification of PFC dynamic parameters

This section outlines the process implemented to determine the dy-
namics of the primary frequency control. This is one of the two main
contributions of the paper.

In general, pPFC can be represented in the Laplace domain as

Fig. 2. Block diagram of the proposed LSO-DREM inertia estimation algorithm.

J.D. Rios-Peñaloza et al. Sustainable Energy, Grids and Networks 40 (2024) 101561 

4 



pPFC(s) = −
1
R

G(s)
(
f − f0

)
, (4)

where R is the droop constant and f0 is the nominal frequency. The
transfer function G(s) represents the dynamics of the PFC. G(s) tends to 1
when s goes to zero, therefore the steady-state contribution of the PFC is
equal to − Δf/R.

For small disturbances the frequency is close enough to its nominal
value. Hence, (3) can be expressed as

sΔf(s) =
1

2H
(ΔpPFC − Δpe). (5)

The dynamic model used for the PFC dynamic identification can be
derived from (4) and (5) as

Δf(s) = Δpe(s)⋅
− 1

2Hs + 1
R G(s)

. (6)

The dynamic model with one pole and one zero proposed in [33] is
suitable for application in analyses that focus on the frequency dynamics
of the system [34]. However, this low-order model assumes the shape of
the frequency response, as a result of a load disturbance, is mostly
affected by the action of reheat steam turbine generators. The
second-order function obtained by adding a second pole offers a more
general representation of the system dynamics, allowing different types
of generators to be assessed, such as those driven by hydraulic turbines
[32]. Therefore, in this paper the aggregated PFC dynamics are repre-
sented with one zero and two pole transfer function G(s):

G(s) =
1

1 + τs⋅
1 + τzs
1 + τps

, (7)

where τ, τz and τp are the corresponding time constants and represent the
PFC parameters to be estimated. G(s) represents both governor and
turbine dynamics. Then (6) can be rewritten as

Δf(s) = Γ(s)⋅Δpe(s), (8)

where the transfer function Γ(s) is defined as:

Γ(s) = −
1

2Hs + 1
R⋅ 1

1+τs⋅
1+τzs
1+τps

. (9)

This transfer function represents the dynamic relationship between
frequency and electrical power. However, in order to use the frequency
and power measurements, it is necessary to express the relationship in
the time domain. This is achieved by applying the convolution theorem
to (8):

Δf(t) = γ(t) ⊗ Δpe(t), (10)

where ⊗ is the convolution operator and γ(t) is the inverse Laplace
transform of Γ(s). It characterises the time domain representation of the
PFC dynamics. The derivation of γ(t) is detailed in Appendix A, and its
final form is

γ(t) = − R⋅(k1e− r1 t + k2e− r2 t + k3e− r3 t), (11)

where k1,2,3 and r1,2,3 are functions of H, R, τ, τz and τp.
To estimate τ, τz and τp, a parameter identification process is per-

formed based on a least-squares optimisation technique. The objective
function to be minimised is the difference between the measured fre-
quency variation and the analytical formulation resulting from (10)–
(11):

J = min ‖Δf̃ − Δf‖2. (12)

The optimisation is performed over a time window tw that is appro-
priately sized to include the entire PFC action. For the implementation,
the equations must be discretised. If Ts is the sampling period of the
measurements, then (10)–(12) are expressed as

Δf(k) = Δp̃e(k) ⊗ γ(k), (13)

γ(k) = − R⋅
(
k1e− r1kTs + k2e− r2kTs + k3e− r3kTs

)
, (14)

J = min
∑N

k=1
(Δf̃(k) − Δf(k))2

, (15)

where k is the discrete time step and N is the number of samples within
the time window tw. An estimated frequency deviation, denoted in the
following as Δ f̂ LSO, is obtained from the solution of the optimisation
problem.

The LSO procedure is illustrated in Fig. 3. In addition to estimating τ̂,
τ̂z and τ̂p, the optimisation also estimates the inertia (ĤLSO). Since (11) is
a linear combination of exponential functions, (12) is evaluated using a
recursive convolution scheme, which drastically reduces the computa-
tion time. However, real-time tracking of inertia is not efficient using
this method alone, as the optimisation requires a significant disturbance
to obtain accurate results.

3.3. Dynamic regression extension and mixing

To achieve real-time inertia tracking, the method used in this paper is
based on the DREM procedure. To keep the paper self-contained, the
mathematical formulation of the DREM is given in Appendix B. In this
section, only those aspects relevant to the LSO-DREM algorithm are
presented.

The DREM constructs a linear regression based on (3), which can be
rewritten as

ḟ =
1
H

(
1
2

pPFC − pe

f

)

+
p∗

H

(
1
2f

)

. (16)

Once pPFC is known, the unknown parameters are H and p*. To match
the number of equations to the number of unknown parameters, the
regression is extended by applying a dynamic operator to the original
regressor. The extension is obtained by applying the lag operator H :

[H (⋅)](t) = (⋅)(t − td), (17)

Fig. 3. Flowchart of the least-squares optimisation.
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where td is the time delay. This operation gives a second regression
equation:

H

(
ḟ
)
=

1
H

⋅H
(

1
2

pPFC − pe

f

)

+
p∗
H

⋅H
(

1
2f

)

. (18)

For the practical implementation of the regression expressed in Eqs.
(16) and (18), a filter is used to avoid the derivative operator applied to
the frequency. Further details are given in Appendix B. Combining the
two regression Eqs. (16) and (18) gives a regression of general form:

A = B x, (19)

where A is a 2×1 vector and B is a 2×2 matrix, both composed of known
quantities; x¼[x1,x2] is the vector of variables to be estimated, i.e. x1 =

1/H and x2 = p∗/H in (18).
The mixing procedure then decouples the regressions, allowing the

two unknown parameters to be estimated independently. The final form
of the regression is:

Z = ∂⋅x, (20)

where Z is a 2×1 vector and ∂ is a scalar, both of which are known
quantities.

Parameters x̂1 and x̂2 can be estimated from (20) using the gradient
algorithm [35]. The discretised law describing the update of x̂1 and x̂2 is

Δx̂i(k+1) = λi∂[Zi − ∂x̂i(k)]Ts i = 1, 2, (21)

where λi is the learning rate of the gradient algorithm for each process.
For simplicity, the same value of λ is used for all processes in this paper.

The variables of interest are derived from the estimated parameters
as

Ĥ = (x̂1)
− 1

p̂∗
= Ĥ⋅x̂2.

(22)

The DREM procedure is shown in Fig. 4. The focus is on the inertia, so
the estimation of p* is not considered. To reduce the effects of transients
during the estimation, the DREM output is saturated (Hmax and Hmin)
and filtered. The purpose of the saturation is only to avoid unrealistic
values and it has no effect on the performance of the algorithm.

The two parameters that determine the behaviour of the DREM are
time delay td, and learning rate λ. In Section 4.2 a sensitivity analysis is
performed to assess their impact.

4. Sensitivity analysis

4.1. Preliminary results

The performance of the LSO and the DREM procedures is first tested
separately on the simplified system of Fig. 5. The equivalent system is
simulated using a 10 GW synchronous generator driven by a steam
turbine (as in [36]). The nameplate inertia constant (Hn) is 6 s and the
droop is 5 %.

To test the optimisation performance, a 200 MW (0.02 pu) load step

is simulated. Typically, the dynamics of the primary frequency response
are on the sub-minute timescale. Therefore, the LSO is performed over a
60 s time window. The estimated parameters of Ĝ(s) are given in Table 1
and the correspondence between Δf̃ and Δ f̂ LSO is shown in Fig. 6. The
real-time tracking of the inertia performed by the DREM is shown in
Fig. 7, and the results are given in Table 2 along with the LSO estimated
inertia. After the initial transient following the disturbance, the esti-
mation algorithm stabilises at a constant value.

4.2. Sensitivity analysis

A sensitivity analysis of the DREM procedure is carried out to pro-
pose a criterion to determine when the PFC parameters must be updated
(e.g., due to the connection of other sources that modify the PFC dy-
namic characteristics of the system). This allows the integration between
the two algorithms, which is the second main contribution of the paper.

Firstly, it is of interest to evaluate the performance of the DREM
when either the inertia or the PFC dynamics change. Two scenarios are
defined.

▪ Scenario A – Variation of the inertia constant: the inertia of the
equivalent system is changed to 5 s. The PFC dynamics are the
same as in the base case.

▪ Scenario B – Variation of the PFC dynamics: the PFC dynamics
are changed by varying the time constants of the governor. The
inertia is the same as in the base case (i.e., 6 s).

The performance of the DREM is assessed for both cases using the
parameters from Table 1. A 200 MW load step at t=0 s is introduced and
the estimated inertia for both scenarios is shown in Fig. 8. For scenario
A, the estimated inertia is 4.928 s (1.44 % error), and for scenario B it is
6.537 s (7.72 % error). These results show that the DREM is accurate
when the PFC dynamic parameters are up-to-date. However, its accu-
racy decreases when these dynamics change without the parameters

Fig. 4. Scheme of the dynamic regression extension and mixing procedure.

Fig. 5. Simplified test system for the sensitivity analysis of regression-
based estimation.

Table 1
LSO and DREM Parameters.

LSO τ τz τp

Value 0.288
1.650

10.149

DREM λ td

Value 109 2 s
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being updated.
To further explore the characteristics of DREM, the influence of time

delay td and learning rate λ are examined, considering the base case and
the two scenarios previously described. To avoid the numerical diver-
gence of Ĥ,Hmin and Hmax are set to 0 and 10 s, respectively. These limits
do not affect the performance of the algorithm.

4.2.1. Influence of the time delay
The time delay should be within the inertial response window of the

system. Fig. 9 illustrates the effect of td on the estimated inertia. The
shaded area indicates a ±5 % error margin. The blue dots indicate those
estimates where parametric error ê is large, making the estimate
unreliable.

In both the base case and Scenario A (PFC dynamics have not
changed since the optimisation), the estimated inertia is not signifi-
cantly affected by the choice of td. However, in Scenario B the effect is
significant. For values of td greater than 2 s, the error is large. This
dependence of the estimated inertia for different td values when the PFC
dynamics change is used as a criterion to determine the need to update
the PFC parameters. For this purpose, a parallel gradient algorithm with
different td is used to estimate the control inertia Ĥc (see Fig. 2).

4.2.2. Influence of the learning rate
The learning rate determines the convergence speed of the gradient

algorithm. Large values make the estimation procedure faster, but too
large values can cause overshooting and increase the sensitivity to noise.

Fig. 6. Comparison between frequency measured (Δf̃) and estimated by the
LSO

(
Δ f̂ LSO

)
.

Fig. 7. Real-time inertia tracking with the DREM procedure.

Table 2
Estimated Inertia by LSO and DREM.

Ĥ error

LSO 5.940 1.00 %
DREM 6.008 0.13 %

Fig. 8. Estimated inertia for Scenarios (a) A and (b) B.

Fig. 9. Effect of time delay on estimated inertia. Estimation errors for different
values of td for (a) the base case; (b) Scenario A; (c) Scenario B.

Fig. 10. Effect of the learning rate on the estimated inertia. Estimation errors
for different values of λ for (a) the base case; (b) Scenario A; (c) Scenario B.
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Fig. 10 illustrates the effect of λ on the estimated inertia.
For the base case and Scenario A the estimation error is minimal for a

wide range of λ values (5⋅104–1015). However, for scenario B, the in-
fluence of λ becomes significant. The errors are large for several values
of λ, making the estimation unreliable in these conditions.

The algorithm is stable for a wide range of λ values as long as the PFC
parameters are updated. This dependence could also be used as a cri-
terion for updating the PFC parameters.

5. Test cases

To evaluate the algorithm performance, the 10-generator 39-bus
IEEE system shown in Fig. 11 is implemented in Matlab/Simulink [36].
The injected active power is measured for each generator and the fre-
quency is obtained from a phase-locked loop (PLL) module connected to
the bus of generator 1.

The system inertia constant Hn is calculated using:

Hn =
∑

i
Hi⋅Si

/
∑

i
Si, (23)

for all i-th generators effectively connected to the grid. When all syn-
chronous generators are connected to the system, this value is 4.208 s.
The PFC and LSO-DREM parameters are given in Table 3.

For the performance tests, generators no. 4, 7, and 8 of Fig. 11
(marked in red) are operated to vary the dynamics of the system. In the
first case, these generators are disconnected. In the second case, they are
replaced by CISs with the power converters controlled in either grid-
following or grid-forming mode. In the grid-following mode, the
inverter controls the active and reactive power to follow a reference. In
the grid-forming mode, the frequency is controlled by implementing a
virtual synchronous machine (VSM) technique with damping [37], and
the voltage is controlled with a droop control strategy. The LSO-DREM
algorithm is also tested under normal operating conditions, consid-
ering load and frequency variations.

5.1. Disconnection of synchronous generators

This scenario simulates a sequence of disturbances and the discon-
nection of the three generators 4, 7, and 8. This test illustrates the al-
gorithm operation. The result provided by the algorithm is compared to
the estimated inertia based on the method proposed in [18] (designed as
ĤdP as it is a by-product of the RoCoP estimation).

The estimated values of the inertia constant and the control variables
of interest are shown in Fig. 12 including the control value Ĥc. The
inertia is first estimated after a disturbance at t=5 s. At t=100 s, the
three generators are disconnected, causing the change in the PFC dy-
namics. The algorithm detects the change in inertia and the ΔH condi-
tion is activated due to the change in the PFC dynamics. At t=300 s, a
disturbance is detected and recorded for the time window tw. Optimi-
sation is then triggered, and the PFC parameters are updated. Finally,

after a disturbance at t=550 s, the inertia is estimated with the new PFC
parameters. The accuracy of the algorithm is tested at three times, as
shown in Fig. 12:

A: before the generators are disconnected;
B: after the disconnection but before updating the PFC parameters;
C: after updating the PFC parameters.
When the generators are disconnected the system inertia constant Hn

increases to 4.509 s, even though the total moment of inertia decreases,
as shown in Table 4. This increase occurs because the base power, which
acts as the denominator in (23), decreases.

Table 4 compares the inertia constants estimated by using the
different methods and their corresponding relative errors. It shows that
the considered methods are sufficiently accurate in estimating the
inertia. The RoCoP-based method has the important advantage of
working without the need for parameter updates. However, this method
relies on the accurate estimation of the rotor frequency of each generator
due to its dependence on the second derivative of the frequency. For the
calculation of the inertia constants given in Table 4 the rotor frequency
values were assumed to be known. However, the RoCoP-based method
did not work correctly using the PLL measurement; instead, the LSO-
DREM works well with the frequency measured at a single point in the
system, which is a major advantage.

5.2. Normal operating conditions

The algorithm is tested under normal operating conditions. Fig. 13(a)
shows the system frequency caused by the load variation. Fig. 13(b)
shows the comparison between the estimated inertia and Hn. The mean
value of the estimated inertia in the last 200 s (to neglect the initial
transient) is 4.267 s, giving an error of 1.41 %.

5.3. Algorithm performance with unchanged PFC dynamics

Although the DREM does not use the value of ĤLSO directly in the
estimation process, it is correlated with the values of τ̂, τ̂z and τ̂p. To
evaluate such dependency, the algorithm is tested in the presence of a
highly variable load. The three generators are disconnected at t=160 s
changing the PFC dynamics. The results are shown in Fig. 14. In this
scenario, the difference between Ĥ and Ĥc is small and not persistent.
Therefore, the condition ΔH is not satisfied and the optimiser is not
triggered. Nevertheless, the DREM is able to track the change in system
inertia.

As long as Ĥ and Ĥcdo not diverge, the accuracy of the inertia esti-
mated by the proposed algorithm is adequate. However, a periodic
estimation of the PFC parameters could be performed independently of
the activation of the ΔH condition.

Fig. 11. IEEE 39-bus test system.

Table 3
LSO-DREM parameters.

LSO

Parameter τ τz τp tw

Value ①① 0.356 1.564 9.738 60 s
②② 0.363 1.590 9.842

DREM

Parameter λ td

Value 109 1 s

Control

Parameter td εH tH εP

Value 3 s 0.25 s 60 s 15 MW

①: Base case;②: After the generation disconnection.

J.D. Rios-Peñaloza et al. Sustainable Energy, Grids and Networks 40 (2024) 101561 

8 



5.4. Converter interfaced sources

To evaluate the impact of converters, the three generators no. 4, 7,
and 8 of Fig. 11 are replaced by CISs controlled in either grid-following
or grid-forming mode. A 250 MW load step is introduced at t=0 s. The
frequency of the system and the estimated inertias are shown in Fig. 15
and in Table 5.

For the grid-following case the inertia is Hn,GFL=3.782 s, considering
the contribution of the CIS zero in (23). The estimated value is 3.781 s,
resulting in a negligible error.

The grid-forming inverters are designed with the same inertia con-
stant as the synchronous generators they replace. However, the primary
response of the grid-forming inverters is faster than that of the syn-
chronous generators [18,38], resulting in a lower frequency deviation
and a lower rate of frequency change compared to the case without CIS.

Fig. 12. Performance of the LSO-DREM algorithm in the case of synchronous generator disconnection: (a) estimated inertia and (b) control block values.

Table 4
Estimated inertia constant.

Hn LSO LSO-DREM RoCoP

ĤLSO error Ĥ error ĤdP error

A 4.208 (Sb=18.6 GVA)
J = 1.586 MJ s2

4.231 0.55 % 4.197 0.26 % 4.011 4.68 %

B 4.509 (Sb=15.6 GVA)
J = 1.425 MJ s2

6.17 % 4.438 1.58 % 4.449 1.32 %
C 4.491 0.40 % 4.517 0.18 % 4.516 0.16 %

Fig. 13. (a) Frequency variation and (b) estimated inertia under normal
operating conditions.

Fig. 14. Estimated inertia when the PFC dynamics are not updated after generator disconnection.
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The droop effect of the GFM converters results in a higher effective
inertia [39− 41], as shown in Fig. 15. In this case, the nominal inertia is
Hn,GFM=4.209 s as for the base case. However, this nominal value does
not consider the inertia due to the above-mentioned droop action. An

error for this would not be relevant for the present analysis and, there-
fore, it is not shown in Table 5. Future work should consider this aspect.

5.5. Real-time implementation

A real-time test was performed using an Opal-RT 4510 simulator.
The aim of this simulation is to validate the approach and confirm

that the LSO-DREM algorithm can handle real-time computational tasks.
The implementation is shown in Fig. 16. In the proposed algorithm,

the regression must run continuously while the optimisation is triggered
only when required. For the real-time simulation, the optimisation is
built into an executable file. The optimisation stage is executed asyn-
chronously on the development computer (host). When executed, it
writes the estimated PFC parameters into a text file. The regression al-
gorithm then reads this file periodically (e.g., every 60 s). Similarly, the
disturbance data required for the optimisation is written into a text file,
which is read by the optimiser when it runs.

For the real-time simulation the system was divided into three sub-
systems: the power system (generators, transformers, lines, loads); the
generator controls (governors and exciters); and the inertia estimation
algorithm. A scenario similar to that described in Section 5.1 is simu-
lated and the real-time results are shown in Fig. 17. The behaviour of the
DREM without the output filter is also shown.

The estimated inertia values and the computation times required for
a simulation of 800 s are given in Table 6. The time step is 2 ms. The
main computation burden at each step of the simulation is the power
system computation (an average time of 1.84 ms). The inertia estima-
tion subsystem takes about 91.5 μs. This shows that the algorithm is well
suited for a real-time implementation. Moreover, since the LSO-DREM
algorithm relies solely on frequency and active power measurements,
its resource consumption is not affected by the complexity or size of the
system, making it scalable.

6. Conclusions

This paper presents a novel online inertia estimation algorithm
consisting of two stages: an optimisation-based parameter identification
and a regression-based inertia estimation. The optimisation stage esti-
mates the parameters that characterise the dynamics of the primary
frequency control (PFC). These parameters are then used by the
regression stage to track the inertia constant of the system. A gradient
algorithm is used to solve the regression.

The inertia estimation is based on the dynamic regression extension
and mixing method already documented in the literature. However,
such a method depends on the dynamic parameters of the primary fre-
quency control, which are usually unknown. To overcome this problem,
the integration of a parameter identification stage is here proposed. This
allows the implementation of a fast optimisation stage where the dif-
ferences between the measured frequency response during a disturbance
and the frequency response derived from the analytical formulation are

Fig. 15. Effect of CIS on (a) frequency and (b) system inertia. CIS are controlled
in grid-following (GFL) or grid-forming (GFM) mode.

Table 5
Estimated inertia constant with converter-interfaced sources.

Hn LSO LSO-DREM

ĤLSO error Ĥ error

GFL 3.782 3.765 0.45 % 3.781 0.00 %
GFM 4.209† 5.055 – 4.986 –

†This value does not consider the inertia effect provided by the droop action of
GFM converters. Therefore, the error is not reported in this case.

Fig. 16. Test of the LSO-DREM approach using a real-time simulator.

Fig. 17. Estimated inertia - Real-time results.
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minimised. This analytical approach results in a highly efficient opti-
misation process that takes less than a second to determine the optimal
set of parameters that accurately describe the PFC dynamics.

A sensitivity analysis was performed to evaluate the impact of two
factors on the algorithm performance: the time delay of the operator (td)
and the learning rate of the gradient algorithm (λ). When the PFC pa-
rameters are updated, the estimated inertia does not depend signifi-
cantly on these two factors. However, when the PFC parameters are not
updated, e.g., when a set of generators is disconnected, the estimated
inertia is different for different values of td or λ. This property is used to
decide when the PFC parameters need to be updated. In particular, a
control gradient algorithm using a different td estimates the inertia in
parallel with the main gradient algorithm. If the difference between the
estimated values exceeds a threshold, the optimisation stage is triggered.

The performance of the proposed approach has been tested using the
IEEE 39-bus benchmark network, under normal load variations, under
large disturbances, and in the presence of converter-interfaced sources
controlled in both grid-following and grid-forming modes. The change
in the effective inertia when converter-interfaced sources are connected
to the power system can be successfully identified. The results of the

real-time simulations confirm the applicability of the algorithm, which
is characterised by low computational times.

The influence of measurement noise, which is of particular interest
for the estimation under normal load variations, is beyond the scope of
this paper, but deserves specific investigation as well as the development
of a method capable of identifying the individual contributions to the
inertia from conventional generation, virtual inertia, and rotating loads.

CRediT authorship contribution statement

Fabio Tossani: Writing – review & editing, Software, Methodology,
Formal analysis, Conceptualization. Fabio Napolitano: Writing – re-
view & editing, Methodology, Conceptualization. Andrea Prevedi:
Writing – review & editing, Software, Methodology, Conceptualization,
Formal analysis. Juan Diego Rios Peñaloza: Writing – original draft,
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Appendix

A. Inverse Laplace Transform of PFC Dynamics

A rearrangement of the expression for Γ(s) in (9) yields:

Γ(s) = − R⋅
1 + a1s + a2s2

1 + b1s + b2s2 + b3s3, (24)

where

a1 = τ + τp; a2 = ττz;

b1 = 2HR + τz; b2 = 2HRa1; b3 = 2HRa2.
(25)

The term (-R) is omitted for simplicity and will be reintroduced later. The transfer function Γ′(s) can be rewritten as

Γ́ (s) =
1 + a1s + a2s2

(s + r1)(s + r2)(s + r3)
. (26)

The roots of (26) are

r1 = −
h3

3
̅̅̅
23

√
b3

+

̅̅̅
23

√
h2

3b3h3
+

b2

3b3
,

r2 =

(
1 − i

̅̅̅
3

√ )
h3

6
̅̅̅
23

√
b3

−

(
1 + i

̅̅̅
3

√ )
h2

3
̅̅̅
43

√
b3h3

+
b2

3b3
,

r3 =

(
1 + i

̅̅̅
3

√ )
h3

6
̅̅̅
23

√
b3

−

(
1 − i

̅̅̅
3

√ )
h2

3
̅̅̅
43

√
b3h3

+
b2

3b3
,

(27)

Table 6
Real-time results.

Computational times

Subsystem Resource usage Step-time

Minimum Maximum Average

Power system 91.83 % 1831.55 μs 1846.49
μs

1836.63 μs

Generation
controls

0.16 % 2.93 μs 3.68 μs 3.21 μs

DREM 4.57 % 91.23 μs 92.04 μs 91.50 μs

Inertia estimation

Hn Ĥ Error

A 4.208 s 4.250 s 1.00 %
B 4.509 s 4.570 s 1.35 %
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in which the following auxiliary variables have been defined as

h1 = 9b1b2b3 − 2b2
3
− 27b3

2
,

h2 = 3b1b3 − b2
2
,

h3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h1
2
+ 4h2

3
√

+ h1
3

√

.

(28)

To find the inverse Laplace transform (ILT) of Γ′(s), it is rearranged as

Γ́ (s) =
1

(s + r1)(s + r2)(s + r3)
+ a1

s
(s + r1)(s + r2)(s + r3)

+a2
s2

(s + r1)(s + r2)(s + r3)
.

(29)

The ILT of the first term is [42]:

L − 1
{

1
(s + r1)(s + r2)(s + r3)

}

=
e− r1 t

(r1 − r2)(r1 − r3)

+
e− r2 t

(r1 − r2)(r3 − r2)
+

e− r3 t

(r1 − r3)(r2 − r3)
.

(30)

Considering also the second and third terms (time derivatives of the first term), and reintroducing the term (-R), we obtain the ILT of Γ(s):

γ(t) = − R
[

1 − r1a1 + r1
2a2

(r1 − r2)(r1 − r3)
e− r1 t +

1 − r2a1 + r2
2a2

(r1 − r2)(r3 − r2)
e− r2 t

+
1 − r3a1 + r3

2a2

(r1 − r3)(r2 − r3)
e− r3 t

]

.
(31)

The final form can be generalised as

γ(t) = − R⋅(k1e− r1 t + k2e− r2 t + k3e− r3 t). (32)

B. Dynamic Regression Extension and Mixing

The DREM method constructs a linear regression based on (3). Assuming that pPFC is known, the unknown parameters are H and p*. Eq. (3) is
repeated here in a rearranged form for convenience:

ḟ =
1
H

(
1
2

pPFC − pe

f

)

+
p∗

H

(
1
2f

)

. (33)

The regression equation is constructed by applying a filter F = α/(s + α) to (3), where α>0 is a parameter of the filter. This filtering technique is
employed to avoid a direct derivative action applied to f [43]. Defining the unknown parameters as

x1 =
1
H
; x2 =

p∗

H
, (34)

and the three filtered coefficients as

ξ1 = F

[
1
2

pPFC − pe

f

]

=
α

s + α

(
1
2

pPFC − pe

f

)

;

ξ2 = F

[
1
2f

]

=
α

s + α

(
1
2f

)

;

ξ3 = F [ḟ ] =
αs

s + α (f),

(35)

the regression takes the form

ξ3 = x1⋅ξ1 + x2⋅ξ2. (36)

1) Extension
As there are two unknown parameters but one equation, the regressor is extended by applying a dynamic operator H to (36). The delay operator is

used because of its recognised efficiency in engineering applications [25]. It has the form:

[H (⋅)](t) = (⋅)(t − td), (37)

where td is the time delay. By combining the original regression and its extension, the matrix form is obtained:
[

ξ3
ξ́ 3

]

⏟̅̅ ⏞⏞̅̅ ⏟
A

=

[
ξ1 ξ2
ξ́ 1 ξ́ 2

]

⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅ ⏟
В

[
x1
x2

]

⏟̅̅⏞⏞̅̅⏟
x

, (38)
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where ξ́ 1,2,3 are the coefficients modified by H .
2) Mixing
To decouple the regression, the mixing procedure consists of multiplying (38) by the adjoint (adj) of matrix B. Since adj(В)⋅В = ∂⋅I, where ∂ is the

determinant of B and I is the identity matrix, the regression takes its decoupled final form:

Z = ∂⋅x, (39)

where Z is defined as

Z = adj(В)⋅A. (40)

For a complete mathematical description of the DREM, the reader is referred to [25,44].

Data availability

Data will be made available on request.
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