The challenging conformational landscape of cysteamine…H₂O revealed by the strong interplay of rotational spectroscopy and quantum chemical calculations

Wentao Song¹, Assimo Maris¹, Charlotte N. Cummings², Luca Evangelisti¹, Nicholas R. Walker² and Sonia Melandri¹

¹ Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126, Bologna, Italy

² Chemistry- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne, NE1 7RU, U.K.

Abstract

A 1:1 molecular complex of cysteamine with water is shown to adopt a cage-like structure where cysteamine accepts a relatively strong hydrogen bond from water while also engaging in two additional weaker interactions (SH···O_w and CH···O_w). Experimental and theoretical approaches confirm this conformer as the global minimum on the potential energy surface. Fitting of key structural parameters to experimentally-determined moments of inertia yields consistent and accurate results for rotational and ¹⁴N nuclear quadrupole coupling constants which are shown to be challenging to calculate using *ab initio* methods. Comprehensive analysis of the intermolecular interactions and a thorough comparison with the properties of aminoethanol-water is presented, utilizing independent gradient models based on Hirshfeld partition, quantum theory of atoms-in-molecules and symmetry-adapted perturbation theory approaches. As expected, the OH group of aminoethanol is a stronger hydrogen bond donor than the SH group in cysteamine, while the CH...Ow interaction is a key determining factor of the conformational landscape in both cysteamine-water and aminoethanol-water complexes. The results show very clearly that the synergy between theoretical calculations and experimental results is not only desirable but mandatory to get the right answers in such complex conformational surfaces. The results are also a clear benchmark for the accuracy of different theoretical methods in assessing the structures and energy order of the conformations.

Index

Index2
Theoretical Methods4
Experimental Methods4
Rotational spectra4
Cysteamine molecular structure
Tables6
Table S1. Experimental transition frequencies (v), obs-calc. values (Δv) and the
experimental accuracy of CYS-W
Table S2. Experimental transition frequencies (v), obs-calc. values (Δv) and the
experimental accuracy of the ¹⁸ O and ³⁴ S isotopologue CYS-W
Table S3. Comparison of spectroscopic parameters for CYS-W: theoretical (MP2/aug-cc-
pVTZ), semiempirical (calculated from r_0) and experimental values
Table S4. Experimental and theoretical (MP2/aug-cc-pVTZ) NQC constants (MHz) for
CYS and AE
Table S5. Experimental spectroscopic parameters for CYS-W isotopologues (S-red, I ^r -rep.)
and derived Kraitchman's substitution coordinates (r_s) of O and S atoms compared to the
theoretical equilibrium values (r_e) and semi-experimental values (r_0)
Table S6. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-W8
Table S7. Experimental and theoretical (MP2/aug-cc-pVTZ) spectroscopic parameters for
AE-W
Table S8. Theoretical intermolecular binding and interaction energies (kJ·mol ⁻¹) for
CYS···W and the $g'Gg'$ -AE···W
Table S9. Experimental and theoretical rotational constants (MHz) of the five observed
conformers of CYS monomer
Table S10. Theoretical equilibrium structure (re, MP2/aug-cc-pVTZ) and fitted ro
parameters of CYS-gGt10
Table S11. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-gGg.11
Table S12. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-g'Gg.
Table S13. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-g'Gg'.
Table S14. Planar moment of inertia (uÅ ²) for five conformers of CYS, CYS-W, AE and
AE-W12
Figures13
Figure S1. Structures, relative energies, rotational constants (A/B/C in MHz) and total
dipole moments of the 39 non-equivalent conformers of cysteamine calculated at the
B3LYP- GD3(BJ)/Def2TZVP level
Figure S2. Structure of g'Gg-CYS-W (#A) showing theoretical (re, in brackets) and
adjusted (<i>r</i> ₀ , no brackets) structural parameters

	Figure S3. IGMH analysis results of the four most stable conformers of CYS-W. Three-
	dimensional isosurface and 2-D scatter plots17
	Figure S4. IGMH analysis results of AE-W #A (a) and AE-W #A' (b). Three-dimensional
	isosurfaces and 2-D scatter plots
Ref	erences
Ref	erences

Theoretical Methods

The Conformer-Rotamer Ensemble Sampling Tool (CREST) program was employed for conformational space exploration at the GFN2-xTB level of theory ¹. Geometry optimizations were performed using the GAUSSIAN 16 software (RevC.01 ²) at the B3LYP-GD3(BJ)/def2-TZVP and MP2/aug-cc-pVTZ level of calculations. The symmetry-adapted perturbation theory (DF-SAPT2+(3)\deltaMP2/aug-cc-pVTZ ³) was applied using the Psi4 package ⁴ to calculate the intermolecular interaction energy values and derive the corresponding electrostatic, exchange, induction, and dispersion components. Electron density was analyzed utilizing both independent gradient models based on Hirshfeld (IGMH) partition ⁵ and the quantum theory of atoms-inmolecules (QTAIM ⁶) as implemented in the Multiwfn program⁷. IGMH represents an advancement of the independent gradient model (IGM) ⁸⁻¹⁰. In this approach, the free-state atomic densities implemented in the IGM method are replaced by atomic densities deduced from the real molecular electron density using Hirshfeld partition. SAPT, IGMH and QTAIM calculations where applied to the molecular complexes optimized at the MP2/aug-cc-pVTZ level of calculation.

Experimental Methods

The experiment concerning CYS-W was conducted using two distinct spectrometers, namely the cavity-based Pulsed Jet Fourier Transform MicroWave (PJ-FTMW, 6 to 18 GHz) spectrometer at the University of Bologna, described elsewhere and updated with the FTMW++ set of programs ¹¹⁻ ¹⁴, and the Chirped Pulse Fourier Transform Microwave (CP-FTMW, 6.5 to 18.5 GHz) spectrometer at the Newcastle University¹⁵. In the cavity-based PJ-FTMW spectrometer, Helium was passed over the H₂O or H₂¹⁸O samples maintained at room temperature, with a backing pressure of P_0 (He) = 300 kPa, and then over CYS sample heated to T = 320 K. The gaseous mixture was subsequently expanded into the Fabry-Pérot cavity through a solenoid valve (General Valve, Series 9, nozzle diameter 0.5 mm) to reach a pressure of approximately 10^{-3} Pa. The rotational temperature of the sample in the supersonic expansion was estimated to be around 2 K. Each rotational transition is split by the Doppler effect, due to the molecular beam expansion in the coaxial arrangement of the supersonic jet and resonator axes. The rest frequency is evaluated as the arithmetic mean of the frequencies of the Doppler components. The estimated accuracy of frequency measurements is better than 3 kHz and transitions separated by more than 7 kHz are resolvable. In the case of the CP-FTMW, a specialized nozzle furnished with a heating reservoir, was employed for the containment of the CYS sample. CYS was heated to 323 K, and argon, either mixed with H₂O or $H_2^{18}O$ at room temperature, was utilized as a carrier gas to introduce it into the chamber. The pressure of argon was set to 300 kPa. In the frequency domain spectrum, an isolated line achieves a line width of 100 kHz, with an estimated accuracy of 10 kHz in the center frequencies of the lines at full width at half-maximum.

Rotational spectra

The initial measurements on the complex were conducted employing the cavity-based PJ-FTMW spectrometer ^{11–14}. The focus was primarily on the two most stable conformers (#A and #B) but only one was observed. Given their high relative energies, it is anticipated that the majority of other conformers would exhibit relatively low populations within the context of our experimental setup.

The recorded rotational transitions displayed the hyperfine structure resulting from the nuclear quadrupole coupling (NQC) effect of the ¹⁴N atom, as illustrated in Figure 2(b) and (c). Observations included a total of 50 transitions comprising μ_a , μ_b and μ_c R-type transition lines with $\mathcal{J}_{max}=4$, $K_a'_{max}=2$, $K_c'_{max}=4$. Moreover, the spectrum for the ³⁴S isotopologue was observed in natural abundance (4.25%).

Complementary information was obtained using the broadband CP-FTMW spectrometer at the University of Newcastle¹⁵. Because of the lower spectral resolution, primarily attributed to the perpendicular alignment of the jet plume and the axis of radiation propagation, only a minor portion of the observed transitions showed a resolved, albeit only partly, nuclear hyperfine structure, and for these transitions in the majority of cases, we could discern only three lines of blended hyperfine components (two of them are shown in Figure 1(b) and (c)). Several μ a, μ b and μ c R-type and μ b Q-type transition lines were observed ($J'_{max}=5$, $K_{a'max}=4$, $K_{c'max}=5$) and 41 new transitions were identified.

Finally, using enriched $H_2^{18}O$, the ¹⁸O isotopologue of CYS-W was detected with both PJ-FTMW and CP-FTMW; a total of 15 lines was detected. The portion of the broadband spectrum recorded with the CP-FTMW spectrometer is reported in Figure 2.

Cysteamine molecular structure

In order to obtain more information on the forces governing the structure of CYS and its complexes, we performed a structural fit on the five conformers of CYS monomer based on the experimental rotational constants reported by Song et. al.¹⁶ and the equilibrium structures calculated at the MP2/aug-cc-pVTZ level (all data reported in Table S9).

By applying the procedure described in the previous section we could obtain the r_e and r_0 parameters summarized in Tables S10-S13 of the supporting information.

The comparison of planar moment of inertia (Table S14) indicates that the experimental M_{aa} values of all 5 observed conformers exceed the calculated ones by about 2 uÅ², while M_{bb} and M_{cc} of them have no significant changes, which means that the structure of the molecule is expanded along the *a*-axis direction compared to theoretical (r_e) structure. By comparison of the theoretical equilibrium structures, we can classify the structures according to the *trans* or *gauche* orientation of the amino group. Indeed, the α (NCC) angle is significantly higher for Conf1-*gGt* and Conf5-*g'Gt* than Conf2-*gGg*, Conf3-*g'Gg* and Conf4-*g'Gg'* (116° vs 110°). As concerns the structural changes upon water complexation, we compare the geometries of CYS Conf3-*g'Gg* and CYS-W Conf #A. It is worth noting that the α (NCC) angle is expected to remain almost unchanged while structural fit suggests an increase of about 3.5°. The substantial disparity between the expected and observed values of the NQC constants can be attributed to this significant divergence.

Subsequently, we conducted a comparison between the experimental and theoretical monomer structures of AE. Upon analyzing the planar moment of inertia for both structures, we observed a phenomenon similar to that of CYS: the molecular skeleton exhibits a slight expansion along the *a*-axis compared to theoretical predictions.

Tables

Table S1. Experimental transition frequencies (ν), obs-calc. values ($\Delta \nu$) and the experimental accuracy of CYS-W.

J^{\prime}	K _a '	$K_{\rm c}$ '	F'	J	Ka	$K_{\rm c}$	F	v (MHz)	$\bigtriangleup v(\mathrm{MHz})$	Err.	J'	K _a '	$K_{\rm c}'$	F	J	Ka	$K_{\rm c}$	F	v (MHz)	$\Delta v(MHz)$	Err.
2	0	2	2	1	0	1	2	8073.393	0.000	0.005	3	0	3	3	2	1	2	3	11112.087	0.001	0.005
2	0	2	2	1	0	1	1	8073.434	0.002	0.005	3	0	3	2	2	1	2	1	11112.337	0.000	0.005
2	0	2	3	1	0	1	2	8073.571	0.001	0.005	3	0	3	3	2	1	2	2	11112.368	-0.004	0.005
2	0	2	1	1	0	1	0	8073.611	0.002	0.005	3	0	3	4	2	1	2	3	11112.391	0.001	0.005
2	0	2	1	1	0	1	1	8073.706	-0.002	0.005	3	0	3	2	2	1	2	2	11112.783	0.001	0.005
2	1	2	3	1	1	1	2	7634.665	-0.005	0.020	3	1	3	3	2	0	2	2	11739.200	-0.002	0.005
2	1	1	1	1	1	0	1	9144.694	0.003	0.005	3	1	3	4	2	0	2	3	11739.367	-0.001	0.005
2	1	1	2	1	1	0	1	9145.066	-0.005	0.005	3	1	3	2	2	0	2	1	11739.395	0.005	0.005
2	1	1	3	1	1	0	2	9145.096	0.002	0.005	3	1	3	2	2	0	2	2	11739.661	-0.004	0.005
2	1	1	1	1	1	0	0	9145.362	0.003	0.005	3	2	2	3	2	1	1	2	15272.193	0.007	0.020
2	1	2	2	1	0	1	2	8530.287	0.002	0.005	3	2	2	4	2	1	1	3	15272.427	-0.003	0.020
2	1	2	2	1	0	1	1	8530.324	0.000	0.005	3	2	2	2	2	1	1	1	15272.575	0.010	0.020
2	1	2	3	1	0	1	2	8530.574	0.003	0.005	4	0	4	4	3	0	3	3	14940.153	0.051	0.020
2	1	2	1	1	0	1	0	8530.672	0.002	0.005	4	0	4	5	3	0	3	4	14940.153	-0.028	0.020
2	1	2	1	1	0	1	1	8530.768	-0.001	0.005	4	0	4	3	3	0	3	2	14940.153	-0.020	0.020
2	1	1	1	1	0	1	0	10795.999	0.003	0.005	4	2	3	5	3	2	2	4	16522.221	0.020	0.020
2	1	1	1	1	0	1	1	10796.098	0.003	0.005	4	2	3	3	3	2	2	2	16522.221	0.006	0.020
2	1	1	3	1	0	1	2	10796.189	-0.002	0.005	4	0	4	3	3	1	3	2	14770.170	-0.011	0.020
2	1	1	2	1	0	1	2	10796.430	-0.004	0.005	4	0	4	5	3	1	3	4	14770.170	-0.033	0.020
2	1	1	2	1	0	1	1	10796.474	0.000	0.005	4	0	4	4	3	1	3	3	14770.170	0.006	0.020
2	2	1	2	1	1	0	1	11832.544	0.001	0.005	4	1	4	4	3	0	3	3	14992.047	-0.002	0.005
2	2	1	3	1	1	0	2	11832.770	0.002	0.005	4	1	4	3	3	0	3	2	14992.136	0.002	0.005
2	2	1	1	1	1	0	0	11833.145	0.000	0.005	4	1	4	5	3	0	3	4	14992.136	-0.003	0.005
2	2	0	1	1	1	1	0	12903.770	-0.006	0.005	4	1	3	3	3	2	2	2	15551.218	-0.003	0.005
2	2	0	3	1	1	1	2	12904.213	-0.002	0.005	4	1	3	5	3	2	2	4	15551.239	0.002	0.005
2	2	0	1	1	1	1	1	12904.345	0.001	0.005	4	1	3	4	3	2	2	3	15551.299	0.002	0.005
2	2	0	2	1	1	1	2	12904.397	0.004	0.005	4	2	3	4	3	1	2	3	18338.519	0.008	0.020
2	2	0	2	1	1	1	1	12904.621	0.001	0.005	4	2	3	5	3	1	2	4	18338.772	0.032	0.020
3	0	3	3	2	0	2	3	11569.083	-0.004	0.005	4	2	3	3	3	1	2	2	18338.772	-0.043	0.020
3	0	3	3	2	0	2	2	11569.264	0.000	0.005	4	2	3	5	4	1	4	5	7955.699	-0.024	0.020
3	0	3	4	2	0	2	3	11569.390	0.000	0.005	4	4	0	4	4	3	1	4	8009.922	0.011	0.020
3	0	3	2	2	0	2	2	11569.671	-0.003	0.005	4	4	0	3	4	3	1	3	8010.024	-0.005	0.020
3	1	3	2	2	1	2	1	11282.340	0.011	0.020	4	4	0	5	4	3	1	5	8010.024	0.019	0.020
3	1	3	3	2	1	2	2	11282.340	0.030	0.020	4	4	1	5	4	3	2	5	8554.494	-0.017	0.020
3	1	3	4	2	1	2	3	11282.340	-0.027	0.020	4	4	1	4	4	3	2	4	8554.494	-0.026	0.020
3	1	2	3	2	1	1	2	13455.823	0.001	0.005	4	4	1	3	4	3	2	3	8554.494	-0.015	0.020
3	1	2	4	2	1	1	3	13455.891	0.000	0.005	5	0	5	4	4	0	4	3	18337.379	-0.008	0.020
3	1	2	2	2	1	1	1	13455.964	-0.001	0.005	5	0	5	5	4	0	4	4	18337.379	0.029	0.020
3	1	2	3	2	1	1	3	13456.062	-0.004	0.005	5	0	5	6	4	0	4	5	18337.379	-0.019	0.020

3	2	1	4	2	2	0	3	13599.786	0.008	0.020	5	0	5	4	4	1	4	3	18285.452	0.025	0.020
3	2	1	2	2	2	0	1	13599.786	0.001	0.020	5	0	5	5	4	1	4	4	18285.452	0.049	0.020
											5	0	5	6	4	1	4	5	18285.452	0.012	0.020
											5	3	3	6	5	2	4	6	8398.277	-0.011	0.020
											5	3	3	4	5	2	4	4	8398.277	0.027	0.020

Table S2. Experimental transition frequencies (ν), obs-calc. values ($\Delta \nu$) and the experimental accuracy of the ¹⁸O and ³⁴S isotopologue CYS-W.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁸ C)																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J^{\prime}	Ka'	Ka	:' F	" .	J	Ka	Kc	F	v(MHz)	Δv (MHz)	Err.	J^{\prime}	Ka'	Kc'	F'	J	Ka	Kc	F	v(MHz)	$\Delta v(MHz)$	Err.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	2	2	1	1	0	1	2	7760.715	-0.001	0.005	3	0	3	3	2	1	2	2	10641.147	0.003	0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	2	2	1	1	0	1	1	7760.882	-0.004	0.005	3	0	3	4	2	1	2	3	10641.212	0.004	0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	2	3	1	1	0	1	2	7760.983	-0.004	0.005	2	2	1	1	1	1	0	1	11554.955	0.007	0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	2	1	1	1	0	1	1	7761.312	0.005	0.005	2	2	1	2	1	1	0	1	11555.233	0.001	0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	2	2	1	1	0	1	2	8257.350	-0.001	0.005	2	2	1	3	1	1	0	2	11555.336	0.004	0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	2	2	1	1	0	1	1	8257.520	-0.001	0.005	2	2	1	1	1	1	0	0	11555.652	-0.002	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1	2	3	1	1	0	1	2	8257.644	-0.010	0.005	2	2	0	1	1	1	1	0	12557.676	-0.002	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													2	2	0	3	1	1	1	2	12557.994	-0.003	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	³⁴ S																						
2 1 2 2 1 0 1 1 8417.886 0.003 0.005 3 0 3 4 2 1 2 3 10902.630 0.002 0.002 0.002 2 1 2 3 1 0 1 2 8418.172 -0.002 0.005 3 0 3 3 2 1 2 10902.630 0.000 0.002 0.002 2 0 2 2 1 0 1 1 7936.132 0.003 0.005 3 1 3 3 2 0 2 2 11570.104 0.000 0.002 2 0 2 3 1 0 1 2 7936.274 -0.004 0.005 3 1 3 4 2 0 2 3 11570.296 0.000 0.002 2 0 3 1 1 2 12758.519 -0.003 0.005 3 1 3 4 2 0 2 3 </th <th>J^{\prime}</th> <th>Ka' I</th> <th>Kc'</th> <th>F'</th> <th>J</th> <th>K</th> <th>a K</th> <th>Kc.</th> <th>F</th> <th>v(MHz)</th> <th>$\Delta v(MHz)$</th> <th>Err.</th> <th>J'</th> <th>Ka'</th> <th>Kc'</th> <th>F'</th> <th>J</th> <th>Ka</th> <th>Kc</th> <th>F</th> <th>v</th> <th>Δv(MHz)</th> <th>Err.</th>	J^{\prime}	Ka' I	Kc'	F'	J	K	a K	Kc.	F	v(MHz)	$\Delta v(MHz)$	Err.	J'	Ka'	Kc'	F'	J	Ka	Kc	F	v	Δv (MHz)	Err.
2 1 2 3 1 0 1 2 8418.172 -0.002 0.005 3 0 3 3 2 1 2 2 10902.630 0.000 0.00 2 0 2 2 1 0 1 1 7936.132 0.003 0.005 3 1 3 3 2 0 2 2 11570.104 0.000 0.00 2 0 2 3 1 0 1 2 7936.274 -0.004 0.005 3 1 3 4 2 0 2 3 11570.296 0.000 0.00 2 2 0 3 1 1 2 12758.519 -0.003 0.005	2	1	2	2	1	0		1	1	8417.886	0.003	0.005	3	0	3	4	2	1	2	3	10902.630	0.002	0.005
2 0 2 2 1 0 1 1 7936.132 0.003 0.005 3 1 3 3 2 0 2 2 11570.104 0.000 0.00 2 0 2 3 1 0 1 2 7936.274 -0.004 0.005 3 1 3 4 2 0 2 3 11570.296 0.000 0.00 2 2 0 3 1 1 2 12758.519 -0.003 0.005	2	1	2	3	1	0		1	2	8418.172	-0.002	0.005	3	0	3	3	2	1	2	2	10902.630	0.000	0.005
2 0 2 3 1 0 1 2 7936.274 -0.004 0.005 3 1 3 4 2 0 2 3 11570.296 0.000 0.00 2 2 0 3 1 1 2 12758.519 -0.003 0.005	2	0	2	2	1	0		1	1	7936.132	0.003	0.005	3	1	3	3	2	0	2	2	11570.104	0.000	0.005
2 2 0 3 1 1 1 2 12758.519 -0.003 0.005	2	0	2	3	1	0		1	2	7936.274	-0.004	0.005	3	1	3	4	2	0	2	3	11570.296	0.000	0.005
	2	2	0	3	1	1		1	2	12758.519	-0.003	0.005											
2 2 0 2 1 1 1 1 12758.945 0.003 0.005	2	2	0	2	1	1		1	1	12758.945	0.003	0.005											

Table S3. Comparison of spectroscopic parameters for CYS-W: theoretical (MP2/aug-cc-pVTZ), semiempirical (calculated from r_0) and experimental values.

	Theoretical	Somiompirical	Exporimontal	(Exp. –Theo)	(Exp. – Semiemp.)
	Theoretical	Sememphical	Experimental.	Exp.	Exp.
A(MHz)	3408.5978	3371.3468	3370.993(1)	-1.1%	0.0%
B(MHz)	2605.0957	2475.4091	2475.1442(8)	-5.3%	0.0%
C(MHz)	1802.7368	1719.8258	1719.8490(5)	-4.8%	0.0%
$\chi_{aa}(MHz)$	0.0760	-0.1300	-0.1311	158.0%	0.9%
$\chi_{bb}(MHz)$	-1.0213	-0.6783	-0.7580	-34.7%	10.5%
$\chi_{cc}(MHz)$	0.9452	0.8084	0.8891	-6.3%	9.1%

Table S4. Experimental and theoretical (MP2/aug-cc-pVTZ) NQC constants (MHz) for CYS and AE.

	Exp.	Theo.	Exp.	Theo.
	CYS-g'Gg ¹⁶	CYS-g'Gg	AE-g'Gg' ¹⁷	AE-g'Gg'.
χaa	1.743(2)	1.807	-1.819(4)	0.400
χbb	2.535(3)	2.533	1.935(4)	-1.368
χсс	-4.277(3)	-4.320	-0.116(4)	1.766

Table S5. Experimental spectroscopic parameters for CYS-W isotopologues (S-red, I^{r} -rep.) and derived Kraitchman's substitution coordinates (r_{s}) of O and S atoms compared to the theoretical equilibrium values (r_{e}) and semi-experimental values (r_{0}).

	CYS (³⁴ S)-W	MP2(<i>r</i> _e)	MP2(<i>r</i> ₀)	CYS-W(¹⁸ O)	$MP2(r_e)$	MP2(<i>r</i> ₀)
A (MHz)	3344.90(2) ^a	3387.23	3345.46	3301.0786(7)	3328.23	3300.36
B (MHz)	2425.919(4)	2549.49	2425.98	2370.567(2)	2503.86	2370.35
C (MHz)	1691.0349(6)	1772.13	1691.17	1652.1879(6)	1733.44	1652.08
DJ (kHz)	[5.27] ^b			[5.27]		
D _{JK} (kHz)	[-14.0]			[-14.0]		
D _K (kHz)	[16.3]			[16.3]		
d_1 (kHz)	[2.05]			[2.05]		
1.5χ _{aa} (MHz)	{0}°	0.32	0.00	-0.851(11)	-0.64	-0.86
0.25(xbb-xcc)	-0.452(6)	-0.53	-0.41	-0.329(3)	0.39	-0.29
(MHz)						
$N^{ m d}$	10			15		
$\sigma^{\rm e}$ (kHz)	2.4			2.8		
a (Å)	±1.415(1)	1.425	1.415(6)	±2.0711(7)	-2.011	-2.071(4)
<i>b</i> (Å)	±0.746(2)	-0.590	0.737(2)	±1.354(1)	-1.198	1.358(3)
<i>c</i> (Å)	±0.277(5)	-0.277	-0.301(6)	±0.212(7)	0.219	0.250(3)

^aStandard errors in parentheses in units of the last digit; ^bParameters in square brackets are fixed to the value of the parent species; ^cParameters in curly brackets are fixed to 0; ^dNumber of transitions in the fit; ^cStandard error deviation of the fit.

1 *1	Table S6. Theoretical equilibrium	structure (r_e) and fitted r	o parameters of CYS-W.
------	-----------------------------------	----------------------------------	------------------------

				re (N	/IP2/aug-cc	-pVTZ)	r 0				
				<i>d</i> e [Å]	<i>C</i> le [°]	<i>T</i> e [°]	d0 [Å]	<i>Q</i> 0[°]	70 [°]		
C1	N1			1.469							
C2	C1	N1		1.520	110.517			114(1)			
S4	C2	C1	N1	1.824	112.952	57.804		112.4(8)			
H1	N1	C1	C2	1.013	110.069	172.669					
H2	N1	H1	C1	1.016	106.637	-117.186					
H3	C1	C2	S 4	1.095	109.178	-66.333					
H4	C1	C2	S 4	1.092	108.645	176.182					
H5	C2	C1	N1	1.089	109.769	176.277					
H6	C2	C1	N1	1.088	111.151	-63.416					

H7	S 4	C2	C1	1.340	95.332	-89.347			
012	S 4	C2	C1	3.470	66.073	-85.966	3.583(7)	68.0(7)	-82.8(9)
H8	012	S 4	C2	0.981	72.025	59.805			
H9	012	H8	S 4	0.961	105.576	-157.270			

Table S7. Experimental and theoretical (MP2/aug-cc-pVTZ) spectroscopic parameters for AE-W.

EXP		MEA-H2O-2 ¹⁷	MEA-H2O-1 ¹⁷	MEA-H2O-3 ¹⁷
A/MHz		4886.463(2)	4796.948(4)	6154.586(1)
<i>B</i> /MHz		3356.059(2)	3352.678(4)	2322.1211(7)
C/MHz		2311.709(2)	2132.416(3)	2064.7071(6)
$\chi_{ m aa}/ m MHz$		-1.819(4)	-2.175(5)	0.842(3)
$\chi_{\rm bb}$ - $\chi_{\rm cc}/{ m MHz}$		2.051(7)	-0.79(1)	1.310(7)
rDSD//B3		Isomer 1 ¹⁷	Isomer 2 ¹⁷	Isomer 4 ¹⁷
A_0/MHz		4882	4765	6104
B_0/MHz		3334	3366	2307
C ₀ /MHz		2281	2162	2052
$\chi_{ m aa,0}/ m MHz$		-1.609	-2.318	0.825
$\chi_{bb,0}$ - $\chi_{cc,0}/MHz$		2.316	-0.825	1.523
B3LYP-D3(BJ)/def2-	#A	Isomer 1 ¹⁷	Isomer 2 ¹⁷	Isomer 4 ¹⁷
TZVP				
A _e /MHz	4882.10	4915	4754	5888
Be/MHz	3484.63	3444	3495	2458
Ce/MHz	2381.39	2337	2179	2153
$\chi_{aa,e}/MHz$	-2.368	-1.8	-2.6	0.75
$\chi_{bb,e}$ - $\chi_{cc,e}/MHz$	1.983	2.4	-0.9	1.9
$\Delta E_{\rm e}/{\rm kJ}~{\rm mol}^{-1}$	3.16	2.2	0	11.1
$\Delta E_0/\mathrm{MHz}$	3.56	2.5	0	8.7
MP2/aug-cc-pVTZ	#A	#A'	#D	#E
Ae/MHz	4911.60	4989.87	4819.47	6023.39
Be/MHz	3506.69	3435.52	3468.81	2493.80
Ce/MHz	2421.20	2357.10	2187.81	2194.33
$\chi_{\rm aa,e}/{ m MHz}$	-2.119	-1.446	-2.148	0.806
$\chi_{\rm bb,e}$ - $\chi_{\rm cc,e}/MHz$	1.778	2.372	-0.722	1.221
$\Delta E_{\rm e}/{ m MHz}$	0	0.24	0.07	5.92

Table S8. Theoretical intermolecular binding and interaction energies $(kJ \cdot mol^{-1})$ for CYS···W and the g'Gg'-AE···W.

	CYS-W #A	CYS-W #B	CYS-W #C	CYS-W #D	AE-W #A	AE-W #A'	AE-W #D
ΙΕ _{SAPTA}	-43.3	-39.5	-35.0	-36.7	-52.5	-51.5	-51.5
Electrostatic	-71.5	-65.1	-56.5	-68.8	-88.1	-88.3	-99.4
Induction	-24.1	-21.8	-19.0	-23.5	-29.0	-31.5	-35.3
Dispersion	-25.8	-21.6	-16.9	-23.4	-27.9	-30.7	-28.4

Exchange-	78.1	69.0	57.4	79.0	92.6	105.4	111.6
repulsion							

_		Α	В	С
gGt	Calc	11868.823	3347.1645	2897.0667
	Exp	11852.906	3310.634	2866.471
	Exp-calc	-16	-37	-31
	Exp-calc/Exp	-0.13%	-1.10%	-1.07%
gGg	Calc	11996.155	3414.5397	2937.5716
	Exp	12008.0185	3363.5781	2898.8592
	Exp-calc	11.8635	-50.9616	-38.7124
_	Exp-calc/Exp	0.10%	-1.52%	-1.34%
g'Gg	Calc	11879.984	3465.371	2921.2263
	Exp	11932.433	3394.998	2877.8302
	Exp-calc	52.449	-70.373	-43.3961
	Exp-calc/Exp	0.44%	-2.07%	-1.51%
g'Gg'	Calc	12015.301	3413.4884	2925.5367
	Exp	12042.9	3352.2284	2881.9906
	Exp-calc	27.599	-61.26	-43.5461
	Exp-calc/Exp	0.23%	-1.83%	-1.51%
g'Gt	Calc	11919.841	3339.3105	2858.5937
	Exp	11944.628	3292.205	2827.008
	Exp-calc	24.787	-47.1055	-31.5857
	Exp-calc/Exp	0.21%	-1.43%	-1.12%

Table S9. Experimental and theoretical rotational constants (MHz) of the five observed conformers of CYS monomer.

Table S10. Theoretical equilibrium structure (r_e , MP2/aug-cc-pVTZ) and fitted r_0 parameters of CYS-gGt.

					r _e			r_0	
				<i>d</i> e [Å]	<i>C</i> [°]	7e [°]	<i>d</i> ₀ [Å]	<i>Q</i> 0[°]	70 [°]
N									
C1	Ν			1.455					
C2	C1	Ν		1.527	115.882				
S	C2	C1	Ν	1.821	113.190	59.910	1.8351(6)	113.78(6)	59.3(1)
Н	Ν	C1	C2	1.014	110.170	63.448			
Н	Ν	Н	C1	1.015	106.531	118.455			
Н	C1	C2	S	1.092	108.841	-62.260			
Н	C1	C2	S	1.092	108.429	-178.159			
Н	C2	C1	Ν	1.091	110.298	-56.968			
Н	C2	C1	Ν	1.090	111.273	-176.656			
Н	S	C2	C1	1.339	96.059	67.023			

				re (N	IP2/aug-cc	-pVTZ)		r 0	
_				<i>d</i> e [Å]	<i>C</i> e [°]	<i>d</i> e [Å]	<i>C</i> ℓe [°]	<i>d</i> e [Å]	<i>C</i> e [°]
Ν									
C1	Ν			1.458			1.465(3)		
C2	C1	N		1.518	109.835		1.522(4)	110.4(1)	
S	C2	C1	Ν	1.822	113.080	-63.033	1.826(3)	113.6(1)	-63.0(1)
Н	Ν	C1	C2	1.012	110.703	179.533			
Н	Ν	Н	C1	1.015	107.111	118.930			
Н	C1	C2	S	1.092	108.281	178.951			
Н	C1	C2	S	1.098	107.455	117.326			
Н	C2	C1	Ν	1.090	109.639	53.503			
Н	C2	C1	Ν	1.088	108.695	-121.885			
Н	S	C2	C1	1.339	96.069	-68.208			

Table S11. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-gGg.

Table S12. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-g'Gg.

				re (MP2	2/aug-cc-pV	/TZ)		r 0	
				<i>d</i> e [Å]	<i>C</i> [°]	<i>T</i> e [°]	<i>d</i> ₀ [Å]	<i>Q</i> 0[°]	70 [°]
Ν									
C1	Ν			1.461			1.465(3)		
C2	C1	Ν		1.518	110.188		1.525(4)	110.5(2)	
S	C2	C1	Ν	1.822	113.151	-61.706	1.825(3)	113.5(2)	63.2(1)
Н	Ν	C1	C2	1.013	110.361	-169.057			
Н	Ν	Н	C1	1.014	106.421	118.471			
Н	C1	C2	S	1.092	108.231	-179.521			
Н	C1	C2	S	1.096	107.788	117.592			
Н	C2	C1	Ν	1.088	110.676	60.477			
Н	C2	C1	Ν	1.090	108.630	-121.361			
Н	S	C2	C1	1.337	96.110	76.405			

Table S13. Theoretical equilibrium structure (r_e) and fitted r_0 parameters of CYS-g'Gg'.

				re (MP2	<i>r</i> _e (MP2/aug-cc-pVTZ)			<i>r</i> 0			
				<i>d</i> _e [Å]	<i>C</i> ℓe [°]	<i>T</i> e [°]	$d_0 [m \AA]$	<i>C</i> {0[°]	<i>T</i> 0 [°]		
N											
C1	N			1.463							
C2	C1	Ν		1.520	109.950						
S	C2	C1	Ν	1.818	112.548	63.953	1.834(7)	113.9(7)	63(1)		
Н	Ν	C1	C2	1.012	110.802	-168.261					
Н	Ν	Н	C1	1.014	106.751	120.112					

Н	C1	C2	S	1.090	108.997	-54.338
Н	C1	C2	S	1.097	107.968	117.630
Н	C2	C1	Ν	1.089	110.228	-177.842
Н	C2	C1	Ν	1.091	107.894	-120.471
Н	S	C2	C1	1.340	93.946	-45.592

Table S14. Planar moment of inertia $(uÅ^2)$ for five conformers of CYS, CYS-W, AE and AE-W.

		Maa		M_{bb}		M_{cc}			
	re	r_0	<i>r</i> ₀ - <i>r</i> _e	re	r_0	<i>r</i> ₀ - <i>r</i> _e	re	r_0	<i>r</i> ₀ - <i>r</i> _e
gGt	141.43	143.16	1.74	33.02	33.15	0.13	9.56	9.49	-0.07
gGg	138.96	141.25	2.29	33.08	33.09	0.01	9.05	9.00	-0.05
g'Gg	138.15	141.06	2.91	34.85	34.55	-0.30	7.69	7.80	0.11
g'Gg'	139.37	142.08	2.71	33.38	33.28	-0.10	8.68	8.68	0.00
g'Gt	142.87	144.98	2.11	33.92	33.79	-0.14	8.47	8.52	0.05
CYS-W	163.0	174.1	11.02	117.3	119.8	2.49	31.0	30.1	-0.83
AE	81.6	83.4	1.83	27.2	27.1	-0.05	7.7	7.7	-0.01
AE-W	135.9	132.9	-3.01	95.1	85.7	-9.37	9.8	17.7	7.90

Figures

1 0 cm⁻¹ 3375/2574/1775 3.4 D

471 cm⁻¹ 3214/2583/1524 4.0 D

7 771 cm⁻¹ 10609/1086/1035 2.1 D

26 cm⁻¹ 3306/2598/1734 3.6 D

5 535 cm⁻¹ 8509/1158/1116 2.0 D

8 793 cm⁻¹ 4952/1548/1258 3.4 D

11 992 cm⁻¹ 3167/2708/1668 2.4 D

674 cm⁻¹ 3196/2602/1532 4.8 D

9 861 cm⁻¹ 4967/1527/1229 4.1 D

1154 cm⁻¹ 3005/2820/1794 1.4 D

16 1357 cm⁻¹ 3361/2436/1489 4.9 D

19 1500 cm⁻¹ 2978/2805/1752 2.2 D

22 1699 cm⁻¹ 6435/1442/1233 1.2 D

14 1209 cm⁻¹ 3099/2626/1513 1.3 D

17 1381 cm⁻¹ 3032/2637/1499 2.3 D

20 1515 cm⁻¹ 2963/2780/1679 1.7 D

23 1707 cm⁻¹ 6360/1438/1229 1.2 D

15 1248 cm⁻¹ 3084/2707/1603 1.6 D

18 1462 cm⁻¹ 3054/2800/1790 0.8 D

21 1696 cm⁻¹ 3041/2653/1514 2.4 D

1745 cm⁻¹ 3272/2163/1406 1.2 D

26 1796 cm⁻¹ 5824/1468/1279 2.0 D

27 1851 cm⁻¹ 4249/1539/1180 1.1 D

28 1912 cm⁻¹ 3236/2163/1401 0.9 D

31 1988 cm⁻¹ 3665/2060/1551 1.6 D

34 2196 cm⁻¹ 3891/1727/1426 3.9 D

29 1920 cm⁻¹ 3190/2054/1313 1.5 D

32 2080 cm⁻¹ 4059/1915/1477 1.0 D

35 2278 cm⁻¹ 4180/1601/1234 2.5 D

30 1926 cm⁻¹ 3269/2162/1417 1.3 D

33 2195 cm⁻¹ 4041/1671/1407 3.9 D

36 2411 cm⁻¹ 3600/1760/1390 4.1 D

Figure S1. Structures, relative energies, rotational constants (A/B/C in MHz) and total dipole moments of the 39 non-equivalent conformers of cysteamine calculated at the B3LYP- GD3(BJ)/Def2TZVP level.

Figure S2. Structure of g'Gg-CYS-W (#A). The parameters of *ab initio* equilibrium structure r_e are shown in square brackets and the parameters of pseudo- r_0 structure are shown without square brackets. The black values represent the fitted values and the orange values represent the derived values. Errors of fitted values are in parentheses. r_e (CH-O)=2.541Å, pseudo- r_0 (CH-O)=2.742 Å.

Figure S3. IGMH analysis results of the four most stable conformers of CYS-W. Three-dimensional isosurface and 2-D scatter plots. Isosurfaces are depicted at δg isovalue of $\delta g = 0.01$ a.u. (δg is a function of electron density gradient reflecting the interaction) and scatter plots are colored on a BGR scale corresponding to the $-0.05 < \text{sign}(\lambda_2) \ \rho < 0.05$ range. Essentially, IGMH employs the three-dimensional function to depict the interaction region between atoms.

Figure S4. IGMH analysis results of AE-W #A (a), AE-W #A' (b) and AE-W #D (c). Three-dimensional isosurfaces and 2-D scatter plots. Three-dimensional isosurface and 2-D scatter plots. Isosurfaces are depicted at δg isovalue of $\delta g = 0.01$ a.u. (δg is a function of electron density gradient reflecting the interaction) and scatter plots are colored on a BGR scale corresponding to the $-0.05 < \text{sign}(\lambda_2)$ $\rho < 0.05$ range. Essentially, IGMH employs the three-dimensional function to depict the interaction

region between atoms.

References

- Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. *Physical Chemistry Chemical Physics* 2020, 22 (14), 7169–7192.
- (2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian[~]16 Revision B.01. 2016.
- (3) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van Der Waals Complexes. *Chem Rev* 1994, 94 (7), 1887–1930.
- Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.; Gonthier, J. F.; James, A. M.; McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.; Pritchard, B. P.; Verma, P.; Schaefer, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.; Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. *J Chem Theory Comput* 2017, *13* (7), 3185–3197.
- (5) Lu, T.; Chen, Q. Independent Gradient Model Based on Hirshfeld Partition: A New Method for Visual Study of Interactions in Chemical Systems. *J Comput Chem* 2022, 43 (8), 539– 555.
- Bader, R. F. W. A Quantum Theory of Molecular Structure and Its Applications. *Chem Rev* 1991, *91* (5), 893–928.
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J Comput Chem 2012, 33 (5), 580–592.
- (8) Ponce-Vargas, M.; Lefebvre, C.; Boisson, J. C.; Hénon, E. Atomic Decomposition Scheme of Noncovalent Interactions Applied to Host-Guest Assemblies. *J Chem Inf Model* 2020, 60 (1), 268–278.
- (9) Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J. C.; Contreras-García, J.; Hénon, E. Accurately Extracting the Signature of Intermolecular Interactions Present in the NCI Plot of the Reduced Density Gradient versus Electron Density. *Physical Chemistry Chemical Physics* 2017, *19* (27), 17928–17936.
- (10) Lefebvre, C.; Khartabil, H.; Boisson, J. C.; Contreras-García, J.; Piquemal, J. P.; Hénon, E. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. *ChemPhysChem* 2018, 19 (6),

724-735. https://doi.org/10.1002/CPHC.201701325.

- (11) Caminati, W.; Evangelisti, L.; Feng, G.; Giuliano, B. M.; Gou, Q.; Melandri, S.; Grabow, J.-U. On the Cl… C Halogen Bond: A Rotational Study of CF 3 Cl–CO. *Physical Chemistry Chemical Physics* 2016, *18* (27), 17851–17855.
- (12) Caminati, W.; Millemaggi, A.; Alonso, J. L.; Lesarri, A.; López, J. C.; Mata, S. Molecular Beam Fourier Transform Microwave Spectrum of the Dimethylether–Xenon Complex: Tunnelling Splitting and 131Xe Quadrupole Coupling Constants. *Chem Phys Lett* 2004, *392* (1–3), 1–6.
- (13) Grabow, J.-U.; Stahl, W.; Dreizler, H. A Multioctave Coaxially Oriented Beam-Resonator Arrangement Fourier-Transform Microwave Spectrometer. *Review of scientific instruments* 1996, 67 (12), 4072–4084.
- (14) Balle, T. J.; Flygare, W. H. Fabry–Perot Cavity Pulsed Fourier Transform Microwave Spectrometer with a Pulsed Nozzle Particle Source. *Review of Scientific Instruments* 1981, 52 (1), 33–45.
- (15) Zaleski, D. P.; Stephens, S. L.; Walker, N. R. A Perspective on Chemistry in Transient Plasma from Broadband Rotational Spectroscopy. *Physical Chemistry Chemical Physics* 2014, *16* (46), 25221–25228.
- (16) Song, W.; Maris, A.; Rivilla, V. M.; Fortuna, F.; Evangelisti, L.; Lv, D.; Rodríguez-Almeida, L.; Jiménez-Serra, I.; Martín-Pintado, J.; Melandri, S. Micro-and Millimeter-Wave Spectra of Five Conformers of Cysteamine and Their Interstellar Search. *Astron Astrophys* 2022, 661, A129.
- (17) Xie, F.; Mendolicchio, M.; Omarouayache, W.; Indira Murugachandran, S.; Lei, J.; Gou, Q.; Eugenia Sanz, M.; Barone, V.; Schnell, M. Structural and Electronic Evolution of Ethanolamine upon Microhydration: Insights from Hyperfine Resolved Rotational Spectroscopy. *Angewandte Chemie International Edition* **2024**, e202408622.