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High level of circulating cell-free tumor DNA at diagnosis
correlates with disease spreading and defines multiple
myeloma patients with poor prognosis
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Multiple myeloma (MM) is a plasma cell (PC) disorder characterized by skeletal involvement at the time of diagnosis. Recently, cell-
free DNA (cfDNA) has been proven to recapitulate the heterogeneity of bone marrow (BM) disease. Our aim was to evaluate the
prognostic role of cfDNA at diagnosis according to disease distribution, and to investigate the role of the MM microenvironment
inflammatory state in supplying the release of cfDNA. A total of 162 newly diagnosed MM patients were screened using 18F-FDG
PET/CT and assessed by ultra low-pass whole genome sequencing (ULP-WGS). High cfDNA tumor fraction (ctDNA) levels were
correlated with different tumor mass markers, and patients with high ctDNA levels at diagnosis were more likely to present with
metabolically active paraskeletal (PS) and extramedullary (EM) lesions. Moreover, we demonstrated that microenvironment cancer-
associated fibroblast (CAFs)-mediated inflammation might correlate with high ctDNA levels. Indeed, a high cfDNA TF level at
diagnosis predicted a poorer prognosis, independent of R-ISS III and 1q amplification; the inclusion of >12% ctDNA in the current
R-ISS risk score enables a better identification of high-risk patients. ctDNA can be a reliable and less invasive marker for disease
characterization, and can refine patient risk.
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INTRODUCTION
The recent history of multiple myeloma (MM) has been marked by
remarkable advances in available treatments, which have ulti-
mately improved patient survival [1, 2]. Boosting and redirecting
the immune system against the tumor clone using monoclonal
antibodies, antibody-drug conjugates, CAR-T cells, and bispecific
antibodies led to deeper and long-term disease remissions [3, 4].
For this reason, monitoring of disease dynamics over time through
the measurement of residual bone marrow cells is rapidly gaining
attention, both in clinical trials and in daily practice, aiming at the
prompt prevention of any disease reappearance [5, 6].
However, a single bone marrow biopsy may not be fully

representative of the entire disease heterogeneity. Indeed, MM is
typically characterized by patchy bone marrow plasma cell
infiltration and nodular proliferation of plasma cells, giving rise
to the so-called focal lesions (FL) detected by imaging techniques,
such as PET/CT [7–9], and the propensity of the disease to spread
outside the bone marrow, frequently associated by a spatial
heterogeneity [10–12]. Moreover, since MRD negativity needs to
be confirmed over time, the invasiveness of bone marrow

sampling should not be neglected, as it may not be tolerable
when repeatedly performed [13].
For these reasons, in recent years, liquid biopsy has gained an

increasingly key role in disease characterization and disease
monitoring [14–17]. Circulating cell-free DNA (cfDNA) has already
been widely adopted as a surrogate marker for several indications
in cancer, including diagnosis, prognosis, and monitoring, by
preventing the invasiveness of tissue biopsies [18]; in MM, the role
of cfDNA is still under investigation.
cfDNA is the result of cell breakage owing to necrosis, apoptosis,

and secretion. Therefore, these small DNA fragments resume the full
set of information derived from both normal and tumor cells, thus
offering an easily accessible readout of the disease [19–22].
Moreover, the release of cfDNA by the neoplastic clone might be
conditioned by the tumor’s surrounding microenvironment [23],
suggesting that cfDNA can act either as an immune homeostasis
regulator or as a “cancer message deliverer” to other sites.
At present, cfDNA might represent a valuable opportunity both

to profile MM disease and possibly improve minimal residual
disease assessment by integrating information derived from
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cfDNA can be read alongside that provided by current standard
methods, such as BM biopsy profiling and imaging scans
performed by MRI or PET [24, 25].
This study aimed to investigate the biological role of cfDNA in

resuming MM disease at diagnosis, both quantitatively and
qualitatively, and the possibility of a multilevel minimal residual
disease assessment throughout the disease course, integrating
cfDNA analysis, BM MRD assessment, and PET imaging. Moreover,
we investigated the prognostic significance of cfDNA by assessing
its interaction with currently employed risk stratification methods
[26, 27]. Finally, we obtained insights into the role of the
inflammatory state of the MM microenvironment to provide a
possible explanation for the relationship between released cfDNA
and the diffuse distribution of the disease.

METHODS
Participant enrollment and clinical sample collection
A total of 162 newly diagnosed multiple myeloma patients were enrolled
in this study, for whom peripheral blood and bone marrow samples were
available (Fig. 1). Informed consent for treatment and sample procurement
by the Declaration of Helsinki was obtained for all cases included in the
study. The cohort was representative of an overall MM patient population,
as shown in Supplementary Tables 1, 2. All the chromosomal alterations
were assessed by FISH analyses. All radiographic imaging was performed
by 18F-FDG PET-CT (Supplementary Table 3). Informed consent for
treatment and sample procurement by the Declaration of Helsinki was
obtained for all cases included in the study (AIRC IG2018 “StreaMMing”
project approved by ethical committee EC n. 167/2019/Sper/AOUBO).

Ultra low-pass whole genome sequencing
Ultra low-pass WGS was performed both on cfDNA from plasma and on
gDNA derived from BM to identify the gDNA and cfDNA tumor fractions
and the grade of similarity between the two tissues. Whenever ctDNA is
mentioned in the text, reference is made to cfDNA tumor fraction.

Cell purification and cultures
BM mononuclear cells (BMMCs) were isolated from heparinized BM
aspirates via Ficoll–Hypaque gradient separation. Bone marrow stromal
cells (BMSCs) were obtained after the adhesion of BMMCs to polystyrene
flasks and cultured in DMEM with the addition of 1% penicillin/
streptomycin and 10% fetal bovine serum. Cancer-associated fibroblasts
(CAFs) were isolated from BMSCs through D7-FIB-conjugated (anti-

fibroblasts) microbeads and cultured with DMEM supplemented with 1%
penicillin/streptomycin (Euroclone) and 20% FBS. Total RNA was isolated
from 1 × 106 BMSCs and CAFs using the RNeasy Mini kit and reverse-
transcribed into total cDNA with the iScript cDNA Synthesis kit according
to the manufacturer’s instructions.

Immunofluorescence staining, adhesion assay, and human
cytokine array
BMSCs (1 × 105) were cultured onto microscope slides suitable for
microscopy until they reached the desired confluence. Fixation and
staining of IL-6 have been described more in detail in the Supplementary
files. MM1S were stained with Calcein-AM for 1 h, and then plated in
triplicate in 96-well on CAFs isolated from cfDNA low and cfDNA high
patients (ratio= MM1S:CAFs, 2:1). After 24 h, non-adherent cells were
washed away and the rate of adherent cells was evaluated reading
fluorescence at 495 nm by VICTOR™ X3 Multilabel Plate Reader. BM plasma
and cell lysates from fresh purified CAFs were analyzed using the Proteome
Profiler Human Cytokine Array Kit according to the manufacturer’s
instructions. Densitometric quantification of the resulting membranes
was performed using Kodak Molecular Imaging Software, and the average
pixel density of each protein was normalized to reference spots.

Bioinformatic and statistical analyses
FASTQ files were obtained and analyzed using MultiQC [28] to evaluate
experimental metrics. BAM files were generated by applying GATK best
practices for data preprocessing, including read mapping to the reference
genome. BAM files were then processed through IchorCNA [29]. CN values
were estimated from the average signal and corrected for the sample
ploidy obtained by BoBafit [30]. The cfDNA cutoff predictive for prognosis
in terms of PFS and OS has been determined through a receiving
operating characteristics (ROC) curve. Comparisons between patient
groups were performed using Pearson’s χ2 test or Fisher’s exact test for
categorical data and the Kruskal–Wallis test for continuous data. The %CV
(standard deviation/mean*100) was also used to assess variability. Survival
analyses have been defined according to Kaplan-Meier survival curves (PFS
event is defined as disease progression or death).

RESULTS
ctDNA quantitatively mimics the BM disease burden and
reflects the genomic complexity of neoplastic clones
As ctDNA can be more strictly related to MM tumor burden than
total cfDNA, we further investigated this parameter, by measuring
the abundance of CNVs carried by cfDNA, namely tumor fraction.

Fig. 1 Biological samples’ biobanking and timing of MRD monitoring by a trimodality approach. A specific biological samples’ biobanking
has been planned which includes bone marrow (BM) samples and peripheral blood (PB) samples at diagnosis for both CD138+ plasma cells
purification and cfDNA isolation, respectively. Moreover, a PET/CT scan has been performed at baseline. To monitor the disease, BM MRD and PET/
CT scans have been employed as conventional methods. PB has been collected monthly to isolate plasma for cfDNA. By this trimodality approach, a
total of 162 patients have been studied at baseline, and for 22 of them, we have monitored the disease after therapy. Created with BioRender.com.
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A wide range of ctDNA values was observed among patients
(ctDNA median: 3%, range: 0–99.5%). However, as opposed to
what we observed for total cfDNA, the comparison between
ctDNA and parameters related to MM tumor mass revealed a
significant correlation, particularly for b2-microglobulin (r= 0.48,
p value ≤0.001), albumin (r=−0.23, p value= 0.006) and total
BM plasma cells (r= 0.32, p value ≤0.001). Similarly, the gDNA
tumor fraction (describing the bone marrow neoplastic clone)
significantly correlated with the same tumor mass-related
markers (Fig. 2).
Recently, cfDNA has been reported to recapitulate the land-

scape of BM neoplastic clones’ molecular alterations (particularly
the mutation profile) in some representative patients [22]. Here, a
two-site analysis was employed to systematically compare the
CNV profiles derived from both BM gDNA and cfDNA, aiming at
the identification of the degree of similarity between the two
tissues (Fig. 2). A percentage of concordance was calculated, as
expressed by the ratio between the number of concordant
segments and the total segment number. We observed that most
patients displayed high concordance, as identified in both tissues
(46/62= 75.4%; concordance >75%), while a small proportion of
patients had slightly similar genomic profiles (16/62= 26.2%;
concordance <75%). However, we observed that the rate of
genomic profile concordance was directly related to the tumor
fraction percentage (median ctDNA between the abovementioned
subgroups= 12.06 vs. 3.99; r= 0.60; p= 3.63e−7; Supplementary
Fig. 1) and, consequently, dependent from the limit of detection of
the method (<3%). Nevertheless, it has been possible to observe

that 3 out of 16 patients with dissimilar genomic profiles had high
ctDNA (ranging from 12.07 to 23.98%).
In summary, ctDNA can quantitatively mimic the tumor burden,

similar to the tumor fraction of genomic DNA derived from bone
marrow, and overall reflects the BM neoplastic clone genomic
complexity, with restriction to clonal copy number alterations.

ctDNA can resume bone marrow neoplastic clone dynamics
As ctDNA can mirror the tumor burden dimension, we aimed to
confirm this observation in different clinical phases, namely in
preneoplastic phases, where BM tumor burden varies due to its
natural evolution, and in MM under treatment (Fig. 3).
SMM patients are commonly characterized by a reduced tumor

burden, as compared to that of the neoplastic phase. Indeed, the
ctDNA was significantly higher in MM patients than in SMM
patients (n= 162 vs. 7; median ctDNA: 11.40 vs. 4.22; p= 0.0024).
Moreover, ctDNA values were much higher in SMM patients who
already evolved to MM, than in nonevolved patients (n= 4 vs. 3;
median cfDNA tumor fraction: 4.22 vs. 1.0; p= ns) and, more
interestingly, also in patients who had a rapid progression to the
neoplastic phases (within 15 months), than those who displayed a
slow evolution dynamic (>20 months) (n= 2 vs. 2; median ctDNA:
9.70 vs. 2.85; p= ns) (Supplementary Fig. 2).
The ability of ctDNA to mimic the BM tumor burden was also

confirmed in a subgroup of 22 newly diagnosed MM patients,
whose ctDNA dynamics were monitored under therapy, through-
out a median of 15 months (range: 1–35), by 271 monthly
analyzed time-points. Overall, we observed a tumor fraction

Fig. 2 cfDNA tumor fraction as a surrogate of tumor mass index and proxy of genomic complexity. a Cartoon representing that cell-free
DNA included both DNA fragments from normal cells (total cfDNA) and fragments from tumoral cells (ctDNA). b Box plot representing cfDNA
tumor fraction (ctDNA TF) median amount in the blood as compared to median gDNA TF in the bone marrow: ctDNA TF is significantly lower
than gDNA TF; however, they are strictly correlated. c Correlation matrixes demonstrating that ctDNA is correlated to some MM tumor mass
markers, with significant correlation observed for b2-microglobulin, albumin, and total bone marrow plasma cells, similarly observed for the
gDNA tumor fraction. Conversely, the total cfDNA is less correlated with tumor mass since it can depend on other non-disease-related factors.
d Brick plot illustrating the comparison between the CNVs profiles derived both from BM gDNA and from cfDNA, by two-site analysis, to
investigate the degree of similarity between the two tissues. A percentage of concordance between cfDNAs and gDNAs clonal CNVs was
calculated, as expressed by the ratio between the number of concordant segments and the total segments’ number: most patients displayed
high concordance between CNVs, as identified in both tissues (46/62= 75.4%; concordance >75%), whereas a small proportion of patients
had slightly similar genomic profiles (16/62= 26.2%; concordance <75%).
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decrease during induction therapy (from 11 to 2% median tumor
fraction; p < 0.05; BM MRD negative at 6th month-time point with
sensitivity below 10−5 in 21/22 pts), even though some patients
displayed peaks of ctDNA release, randomly occurring along the
disease course. In general, after a plateau phase, reached
approximately under consolidation therapy (median ctDNA=
1.1%; BM MRD negative at 12th month-time point with sensitivity
below 10−5 in 22/22 pts), the ctDNA remained undetectable in
most patients, whereas in a small cohort of patients (3/22, all
having cfDNA TF >12% at diagnosis), it started to increase during
maintenance, up to 7% TF, within the 18th month of observation
(median ctDNA= 1.3%; BM MRD negative at 18th month-time
point with sensitivity below 10−5 in 20/22; Supplementary Fig. 3;
exemplary patients monitored in BM and PB are illustrated in
Supplementary Fig. 4 and Supplementary Tables 4, 5).
Therefore, even though more data on an enlarged cohort of

patients are needed, here we provide evidence that ctDNA can be
reliably employed as a quantitative surrogate marker of BM tumor
burden dynamics.

Identification of a ctDNA cut-off able to improve patient risk
stratification
Aiming at the employment of ctDNA as an index of tumor mass,
possibly correlated with patient prognosis, we approached a
statistical method to define a ctDNA cut-off, that is able to
discriminate patients with either high or low tumor fraction.
To this aim, a ROC cut point analysis was employed on 150 pts,

for whom clinical data were available, to identify the ctDNA value
(ranging from 0 to 99.5%), which best predicted the progression-
free survival. A cut-off of 12% tumor fraction was determined (p
value= 0.0000782; AUC= 0.585; Accuracy= 0.66; Sensitivity=
0.56; Specificity= 0.73), able to stratify patients into two distinct
categories: the first one including 38 patients, characterized by
high ctDNA values (range ctDNA= 12–95.5%), and the second
one including 112 patients, characterized by low tumor fraction
levels (range ctDNA= 0–12%) (Supplementary Fig. 5).
We observed that patients with high ctDNA more frequently

carried 1q amplification (p= 0.043) and had a low incidence of
t(11;14) (p= 0.028). To further assess the possible ctDNA
contribution to refining the patients’ risk of progression, an
interaction model between commonly employed risk scores
[23, 24] and ctDNA was explored. Patients with the high release
of ctDNA were consistently either ISS III or R-ISS III, and
progressively increasing median ctDNA values were measured in

patients with ISS and R-ISS risk scores increasing from I to III (p
value= 0.0019) (Supplementary Fig. 6). Therefore, an improved
risk definition was achieved by integrating the high-low ctDNA
values stratification to the R-ISS score levels, highlighting that
R-ISS I patients with high ctDNA (i.e., ≥12%) had a progression-free
survival time similar to that of R-ISS III patients (R-ISS I high ctDNA
vs. R-ISS III median PFS months: 17.5 vs. 10 months; p= ns) (Fig. 4).
Notably, R-ISS I patients with a high ctDNA carried more

frequently paraskeletal lesions, with an associated higher Deau-
ville score (presence of PS lesions: 60 vs. 9.7% of patients,
associated DS score= 5; 40 vs. 3.2%; p < 0.05), as compared to
R-ISS I patients with low ctDNA; moreover, according to a
multivariable logistic model, having a diffuse disease and being
R-ISS III stage-defined patients were the most significantly
associated factors with high ctDNA levels (odd ratios: PS DS
5= 20.5, p= 0.0022; R-ISS3= 13.3 p= 0.0005).
The impact on the progression of the ctDNA baseline amount

was further confirmed in survival analysis, showing that patients
with high ctDNA had a higher rate of progression than patients
with low ctDNA (median PFS: 21 months vs not reached CI:
2.17–30.75; p value= 0.00183) (Supplementary Fig. 7). Having high
ctDNA independently impacted PFS in a multivariable analysis
including R-ISS III and 1q amplification (HR= 2.59, 95% CI, 1.2 to
5.7; p= 0.01) (Supplementary Table 6).
Thus, a specific amount of released ctDNA, equal to 12%, can

distinguish MM patients with high versus those with low
measured cfDNA tumor fraction in peripheral blood; moreover, a
patient’s stratification, based both on the amount of ctDNA and
on the R-ISS score, can accurately define patients’ prognosis.

The higher propensity of disease spreading in patients with
high cfDNA tumor fraction
One of the possible reasons for the increased release of ctDNA
into peripheral blood can be the presence of multiple lesions
throughout the body, sometimes also associated with spatially
heterogeneous cases.
To investigate this aspect, we analyzed the whole-body PET/CT

scans at baseline in patients stratified according to ctDNA levels in
peripheral blood. Overall, we observed that patients with high
ctDNA showed a more appreciable BM involvement, as high-
lighted by an overall higher BM Deauville Score (DS), even
associated with higher BM SUV Max, as compared to patients with
low ctDNA (BM DS ≥4: 11/27 vs. 15/69, p= 0.05). More
interestingly, patients with high ctDNA levels had a higher
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propensity to disease spreading, particularly outside the BM.
Indeed, compared to patients with low levels of cfDNA tumor
fraction, they were mostly characterized by a greater incidence of
focal lesions (number of focal lesions, according to ImPetUS study,
≥4: 9/27 vs. 7/69, p= 0.003), characterized by higher metabolic
activity (focal lesions Deauville Score ≥4: 17/27 vs. 36/69, p= 0.03;
focal lesions SUV MAX: p= 0.096) and frequently associated with
hematogenous spread, with a higher prevalence of active
extramedullary lesions (4/27 vs. 3/69, p= 0.09; EM lesions DS ≥4:
4/27 vs. 3/69, p= 0.067; EM SUV MAX: p= 0.008). Moreover, they
also had both a higher prevalence of soft tissue infiltrations,
originating from bone lesions (paraskeletal lesions) (13/27 vs. 13/
69, p= 0.005; PM DS ≥4: 11/27 vs 10/69, p= 0.003; PM SUV MAX:
p= 0.007) and a higher prevalence of hypercalcemia (calcium
levels >10.5 mmol/L: 8/27 vs. 8/71, p= 0.036), than patients with a
low ctDNA (Supplementary Table 7). By a multivariate approach
we analyse the effects on PFS of this single PET/CT parameter and
of the ctDNA observing that both the presence of metabolically
active paraskeletal lesions (DS= 5) and of high ctDNA level
impacted the patients’ outcome (Supplementary Table 8).
Hence, through the detection of ctDNA levels in peripheral

blood, we have been able to identify patients characterized by a

higher disease spreading, particularly associated with the pre-
sence of paraskeletal lesions.

A CAF-mediated inflammatory state in patients with high
ctDNA release
We finally focused on the possibility that specific microenviron-
mental conditions might have an impact on the release of
different ctDNA levels into the bloodstream.
To investigate this aspect, the expression level of IL-6 in BM

stromal cells was observed by immunofluorescence (Fig. 5a–c).
To validate the differential expression of growth factors and
cytokines by BM stromal cells, we assessed the tumor
microenvironment inflammatory level in patients stratified
according to the amount of ctDNA (high vs. low). We observed
differential mRNA expression of growth factors and cytokines
(TGFβ, IL-6, and IGF1) both in BMSCs and, subsequently, in
cancer-associated fibroblasts (CAFs), which might represent the
main cell subpopulation responsible for inflammatory home-
ostasis in MM, among the two patient subgroups (Fig. 5d, e).
Interestingly, BMSCs from patients with high ctDNA were also
characterized by higher expression of cytokines such as CCL5
and SerpinE1, than those from patients with a low ctDNA

Fig. 4 Interaction model between risk scores and ctDNA to determine its contribution to patients' risk status definition. An improved risk
definition was achieved by integrating the high-low cfDNA tumor fraction stratification to the R-ISS score levels, highlighting that R-ISS I
patients with high ctDNA (i.e., ≥12%) had a progression-free survival time similar to that of R-ISS III patients (R-ISS I high ctDNA vs. R-ISS III
median PFS months: 17.5 vs. 10 months; p= ns). R_CO: variable cut-off >12% ctDNA tumor fraction.
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(p < 0.05) (Supplementary Fig. 8a). Data were also corroborated
by the analysis on high cfDNA CAFs lysates, confirming the
over-expression of MIF, SerpinE1, and IL17E, strictly associated
to the high tumor burden (p < 0.05), pinpointing CAFs as
potential source of SerpinE1 (Supplementary Fig. 8b).

Finally, after cell purity characterization by α-SMA and FAP
expression analysis (Supplementary Fig. 9), CAFs isolated from MM
patients with high ctDNA were co-cultured with MM plasma cells,
showing a greater protective capacity toward MM-PCs, than CAFs
isolated from patients with low ctDNA (Fig. 5f, g). The strict
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interaction between CAFs and MM-PCs was confirmed by an
adhesion assay, which highlighted the tight connection between
these two cell types (Fig. 5h).
Overall, based on gene expression and adhesion assay data, we

deemed soluble- and cell-mediated interactions between MM-PCs
and CAFs to be boosted in high ctDNA patients.

The cfDNA tumor fraction is highly informative, particularly
when the BM might be not fully representative of the disease
In the recent years, increasing evidence has suggested that cfDNA
can be considered a non-invasive source of genomic information,
particularly in the case of hypocellular BM aspirates, which might
prevent the attainment of the information needed.
Indeed, for a subgroup of 22 out of 160 patients (13.7%), FISH

analyses were not feasible due to low plasma cell enrichment
(plasma cell number <0.08 × 106). In 9 out of 22 patients (40.9%),
we were able to infer the CNV profile by ULP-WGS on both gDNA
and cfDNA, whereas in the remaining 13 (59.6%), only the gDNA
was informative and rich enough to permit the CNV calling.
Interestingly, cfDNA can also be used in SPC cases, whose BM

aspirates from the iliac crest are commonly not informative
enough and/or the cellularity is modest. Indeed, CNVs were
defined from cfDNA analysis in 4 out of 7 SPC cases (57.1%),
potentially avoiding the SPC biopsy. (Supplementary Fig. 10).
Therefore, in cases where BM aspirate is not informative, cfDNA

can provide suitable markers for disease monitoring while being
less invasive than BM aspirate. Moreover, in the case of cfDNA
analysis failure (e.g., when the tumor fraction is below the limit of
detection <3%), the CNV profile can be detected in gDNA
obtained from BM aspirates by ULP-WGS, as this approach
requires less material to be informative than the commonly
employed FISH panel.

DISCUSSION
In recent years, increasing attention has been devoted to the
possible introduction of less invasive methods for MM disease
characterization and prognostication, such as liquid biopsy, that
could be integrated within the current gold standard methods
(e.g., FISH on bone marrow) and, possibly, for minimal residual
disease monitoring. Emerging data suggest that a less invasive
biological source, such as cfDNA, could be suitable, particularly in
those patients where BM aspirate cellularity can be poor, or to
effectively guide decision-making at the bedside [31].
Previous works have reported that a high amount of total

cfDNA in RRMM patients was correlated with inferior PFS [20]. Our
data on NDMM demonstrate that only the tumor portion of total
cfDNA is effectively relevant for patients’ outcomes and can

quantitatively mimic the tumor clone’s features. Indeed, the cfDNA
tumor fraction in peripheral blood, also referred to as ctDNA, is
well correlated with the total BM plasma cell amount, as measured
both by morphology and by b2M. Conversely, the total amount of
cfDNA cannot reflect BM disease burden, as it can be influenced
by a plethora of external factors, not strictly related to myeloma
disease, that have not been considered in our analysis (con-
comitant cardiac failures, stress level, etc.) [32]. Moreover, the two-
site BM-PB genomic analysis demonstrates that cfDNA can
effectively be a proxy of the tumor molecular fingerprint, derived
from lesions with regionally different distributions. Indeed, in most
patients, the cfDNA CNV profile is superimposable to that derived
from BM, at least for clonal alterations, further supporting its
advantageous role in reflecting the BM neoplastic clone, both
quantitatively and qualitatively.
This evidence led us to further investigate the role of cfDNA

under therapy, when the tumor burden in BM tends to shrink. To
this aim, a subgroup of 22 patients, upfront treated with triplets
including anti-CD38 mAb, was monitored by a trimodal approach
(cfDNA-BM-PET/CT), up to the 18th month under lenalidomide
maintenance, demonstrating that in most cases, the ctDNA
released into the bloodstream reflected the amount of residual
BM disease, and confirming the PET scan results.
Due to the sequencing approach employed, we have been

unable to confidently infer a possible presence of spatial
heterogeneity, neither to effectively measure MRD by liquid
biopsy. Recent studies have highlighted the possibility of using
more performing methods, such as phased variant sequencing
[31], that could be readily adopted in the future to characterize
both CNAs and SNVs at higher sensitivity moving forward from a
punctual to a kinetic method of MRD determination, through
liquid biopsy. Our data support the possible upcoming develop-
ment of a new sequential MRD strategy, that employs peripheral
blood to assess the disease dynamics, unless a negative result is
obtained, performing BM aspirates just to confirm the disease
clearence [33]. In this setting, also the detection of M-proteins by
mass spectrometry seems currently to be an advantageous liquid
biopsy method to monitor MRD in peripheral blood. However, its
applicability is still limited to dedicated laboratories and is not yet
standardized [34].
Interestingly, we showed that the definition of high ctDNA

release, based on a 12% cut-off, has a clinical impact on patients’
outcomes. However, the prognostic impact of a single marker,
though significant, can just partially justify the observed outcome.
Indeed, recent evidences have suggested that both an increasing
number and a synergistic effect of different interacting parameters
can increase the sensitivity and reliability of risk determination
[35]. Here we show that the integration of ctDNA in patients’ risk

Fig. 5 Growth factors and cytokines differential expression in bone marrow microenvironment from MM patients with low vs high
cfDNA/ A CAFs-mediated inflammatory state in patients with high cfDNA release. a–c Immunofluorescence analysis, validation of increased
IL-6 expression (green) in BMSCs isolated from a representative MM patient with cfDNA low (a) vs cfDNA high (b) ones at different
magnifications. Cytoskeleton were labeled with phalloidin (red) and nuclei were stained using DAPI (blue). Results, expressed as mean
fluorescence intensity (MFI) percentage (c), suggest that the presence of high levels of IL-6 in the cfDNA high cases may promote a more
aggressive microenvironment. Original magnification ×20, ×40, ×63, scale bar= 25 μm. **p ≤ 0.0015. d, e qRT-PCR analysis of TGFβ, IL-6, and
IGF1 mRNA expression in bone marrow stromal cells (BMSCs) (d) and in related cancer-associated fibroblasts (CAFs) (e) isolated from MM
patients with cfDNA low (n= 8) and cfDNA high (n= 8), respectively. Data were expressed as mean ± SD. **p ≤ 0.0015; ***p ≤ 0.0008. f–h CAFs
isolated from cfDNA high MM patients have a greater protective capacity towards MM-PCs compared to CAFs isolated from cfDNA low ones.
Representative images of CAFs isolated from cfDNA low case co-cultured with MM1S (f) versus CAFs isolated from cfDNA high case co-
cultured with MM1S (g). CAFs were labeled with CFSE (green), and MM1S were labeled with Dil (red). Quantification of the interaction
between CAFs and MM cells, as measured by the percentage of Dil-positive MM cells that were in close proximity (within 50 μm) to CFSE-
positive CAFs. The cfDNA high case showed a higher percentage of MM cells in close proximity to CAFs compared to the cfDNA low case.
These results suggest that the presence of high levels of cfDNA in the cfDNA high case may promote a tighter interaction between CAFs and
MM cells, potentially contributing to disease progression in MM. Original magnification 40X, scale bar 25 μm. Results were validated with an
adhesion assay of MM1S (h) stained with Calcein-AM plated for 24 h on CAFs isolated from patients with cfDNA low (n= 6) and with cfDNA
high (n= 6). Data were expressed as mean ± SD. *p < 0.002 and **p < 0.005 by Wilcoxon signed-rank test. BMSCs bone marrow stromal cells,
CAFs cancer-associated fibroblasts.
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stratification scoring systems allows a more refined definition of
the individual risk of progression. This was particularly evident for
R-ISS I low-risk patients, whose risk definition was more accurately
defined by considering also the measure of released ctDNA
amount. Moreover, the logistic model suggested that not only
R-ISS III significantly correlates with ctDNA, but also the presence
of paraskeletal lesions (DS= 5), suggesting that ctDNA, through a
less invasive and relatively cheap method, might represent a
potential warning of both aggressive and diffused disease.
Although this study was not supported by TAC-guided biopsies
of single lesions, these findings can add a significant contribution
to the role of ctDNA as a proxy of the whole disease. These results
overall suggest that the risk of progression of MM patients is best
characterized by studying the disease at three levels (Fig. 6):
within the BM (R-ISS3 and cytogenetics), at the whole body level
(PS and EM lesions), and within peripheral blood (ctDNA), enabling
the assessment of a multilayer disease heterogeneity. Indeed, the
multivariate analysis demonstrates that having both metabolically
active paraskeletal lesions and high ctDNA impacted PFS;
however, data from ctDNA have the advantage to be more easily
available, as compared to those from PET/CT test, as well as less
invasive for the patient.
Overall, the different levels of released ctDNA might be the

consequence of a different turnover of plasma cells located in
differently distributed focal lesions, where either a high or a low
local inflammatory microenvironment might condition plasma
cells death. On top of that, our data indicate that BMSCs and CAFs
exhibit a more inflammatory, tumor-promoting state in high
ctDNA MM patients than in low ctDNA patients. BMSCs contribute
to the pro-inflammatory tumor microenvironment by expressing
key factors such as IL-1β, TNFα, LIF, and COX2, which support MM
proliferation [36]. CAFs assert their pivotal role within this vicious
cycle, actively shaping an inflamed neoplastic niche where IL-6, IL-
11, LIF, and CXCL5 orchestrate an inflammatory phenotype that
fuels cancer progression [37]. Future studies will focus on further
characterizing this subtype and its potential as a therapeutic
target in the tumor microenvironment. In particular, CAFs from
high ctDNA patients showed increased protection of MM cells and
more frequent direct interactions [38, 39]. This supportive
microenvironment likely contributes to aggressive disease pro-
gression in high ctDNA patients, showing a tight interaction
between CAFs and MM cells, possibly suggesting an active role of
cfDNA in immune system self-tolerance breakage, followed by the

establishment of a tumor-promoting microenvironment [23]. An
essential factor mediating the crosstalk between CAFs and MM
cells may be SerpinE1, also known as plasminogen activator
inhibitor-1 (PAI-1) [40]. SerpinE1 is an inhibitor of urokinase
plasminogen activator (uPA) and tissue plasminogen activator
(tPA), which are implicated in cancer progression and metastasis
[41]. Recent studies have found that MM CAFs secrete high levels
of SerpinE1, which promotes MM cell migration, drug resistance,
and angiogenesis. SerpinE1 expression in CAFs is driven by
inflammatory cytokines such as TGFβ and IL-6, which were
upregulated in BMSCs from high ctDNA patients in this study,
paving the way for crucial therapeutic implications [42]. Therefore,
CAFs in the high ctDNA microenvironment likely express high
levels of SerpinE1, which could, in turn, facilitate MM cell growth,
survival, and dissemination [43]. SerpinE1 can also induce DNA
damage and apoptosis resistance in cancer cells. The cytotoxic
DNA damage caused by SerpinE1 may directly contribute to the
release of tumor DNA into the circulation, driving the high ctDNA
levels associated with poor prognosis [38, 44]. Further analyses of
SerpinE1 expression and activity in primary CAFs from low vs. high
ctDNA MM patients could help validate the role of this pathway in
the aggressive high ctDNA phenotype [45]. Inhibition of SerpinE1
in coculture models may also reveal its necessity for MM cell
ctDNA release. Targeting the SerpinE1 axis could represent a novel
strategy to disrupt the tumor-promoting microenvironment and
reduce ctDNA levels in high-risk MM as already demonstrated in
other cancer models [46]. Recent studies have found that MM
CAFs secrete high levels of SerpinE1, which promotes MM cell
migration, drug resistance, and angiogenesis. SerpinE1 expression
in CAFs is driven by inflammatory cytokines such as TGFβ and IL-6,
which were upregulated in BMSCs from high ctDNA patients in
this study, paving the way for crucial therapeutic implications [42].
Therefore, CAFs in the high ctDNA microenvironment likely
express high levels of SerpinE1, which could, in turn, facilitate
MM cell growth, survival, and dissemination [43]. SerpinE1 can also
induce DNA damage and apoptosis resistance in cancer cells. The
cytotoxic DNA damage caused by SerpinE1 may directly
contribute to the release of tumor DNA into the circulation,
driving the high ctDNA levels associated with poor prognosis
[43, 44]. Further analyses of SerpinE1 expression and activity in
primary CAFs from low vs. high ctDNA MM patients could help
validate the role of this pathway in the aggressive high ctDNA
phenotype [45]. Inhibition of SerpinE1 in coculture models may

Fig. 6 MM patients’ risk definition by a trimodality approach. To best characterize the risk of progression of MM patients, the disease must
be studied at three levels: in the bone marrow (R-ISS3 and cytogenetics), in the whole body (paraskeletal and extramedullary lesions), and in
peripheral blood (ctDNA), enabling to face with the multilayer disease heterogeneity.
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also reveal its necessity for MM cell ctDNA release. Targeting the
SerpinE1 axis could represent a novel strategy to disrupt the
tumor-promoting microenvironment and reduce ctDNA levels in
high-risk MM as already demonstrated in other cancer models
[46].
In summary, we provided evidence showing that ctDNA can be

a reliable and low invasive marker for disease characterization.
Moreover, if evaluated along with both PET/CT and BM, it can
refine and/or better define the patients’ risk. In addition, the
analysis of ctDNA allows - with a single assay - both to capture the
patient’s whole genomic profile and to quantify the tumor
fraction, which is finally correlated with patients’ risk of progres-
sion. To conclude, this work highlights the relevance of cfDNA in
myeloma and further paves the way for the inclusion of peripheral
markers in patient risk stratification.
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