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Abstract

The aim of this systematic review was to identify clinical decision support algorithms (CDSAs) proposed
for assisted reproductive technologies (ARTs) and to evaluate their effectiveness in improving ART cycles
at every stage vs traditional methods, thereby providing an evidence-based guidance for their use in ART
practice. A literature search on PubMed and Embase of articles published between 1 January 2013 and 31
January 2024 was performed to identify relevant articles. Prospective and retrospective studies in English
on the use of CDSA for ART were included. Out of 1746 articles screened, 116 met the inclusion criteria.
The selected articles were categorized into 3 areas: prognosis and patient counseling, clinical management,
and embryo assessment. After screening, 11 CDSAs were identified as potentially valuable for clinical
management and laboratory practices. Our findings highlight the potential of automated decision aids to
improve in vitro fertilization outcomes. However, the main limitation of this review was the lack of
standardization in validation methods across studies. Further validation and clinical trials are needed to
establish the effectiveness of these tools in the clinical setting.
ª 2024 THEAUTHORS. PublishedbyElsevier Inc onbehalf ofMayoFoundation forMedical Education andResearch. This is anopenaccess article under
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T he global demand for assisted repro-
ductive technologies (ARTs) has
increased substantially, although de-

livery rates from these procedures remain
moderate, with about 25% success per autolo-
gous embryo transfer and 30% for frozen-
thawed transfers, according to the European
IVF Monitoring Consortium for the European
Society of Human Reproduction and Embry-
ology.1 Despite this, cumulative live birth rates
improve with multiple cycles, but repeated
treatment and extended duration can exert
emotional and financial strains.2,3

Assisted reproductive technology is a com-
plex process, involving various techniques
such as ovarian stimulation (OS), in vitro
fertilization (IVF), and embryo cryopreserva-
tion. Recently, the use of clinical decision
Mayo Clin Proc Digital Health n December 2
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support algorithms (CDSAs) and artificial in-
telligence (AI), including machine learning
(ML), has become prominent. These tools are
designed to aid clinicians and patients in mak-
ing informed decisions by managing and inter-
preting vast, complex data sets.4,5 When
validated, they hold potential to enhance clin-
ical prognosis, diagnosis, and treatment.
Furthermore, they can empower patients in
making informed decisions by reducing uncer-
tainty, thereby fostering a new era of personal-
ized medical care.4,6,7 However, the misuse or
misinterpretation of these systems can lead to
inappropriate interventions or misinformed
patient expectations. Overall, despite the pro-
liferation of such tools, their actual benefit in
improving ART outcomes remains to be fully
established.6,8e10 This review aimed to
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ARTICLE HIGHLIGHTS

CLINICAL DECISION SUPPORT SYSTEMS IN INFERTILITY
critically evaluate these tools and categorize
them based on evidence.
d In recent years, several clinical decision support algorithms for

assisted reproductive technologies have been proposed with the

promise to improve treatment outcomes.

d Automated decision aids may be promising to enhance IVF

outcomes, whereas the lack of standardization in validation

methods across studies is a key limitation.
METHODS
A systematic review was performed to identify
CDSA, AI applications, algorithms, mathemat-
ical models, and calculators that have been
proposed to support physicians and embryol-
ogists at different steps of ART, namely predic-
tion of outcomes, patients profiling, treatment
optimization and personalization, embryo
evaluation, and laboratory management. The
protocol for this systematic review has been
registered with the international prospective
register of systematic reviews PROSPERO
(CRD42024499571). The systematic review
was conducted according to the PRISMA
guidelines.11
Search Strategy
We searched PubMed and Embase for articles
published from 1 January 2013 to 31 January
2024. Prospective and retrospective studies in
English on the use of CDSA for ART were
included. Specific keywords included the
following: assisted reproduction, medically assis-
ted reproduction, in vitro fertilization, IVF, em-
bryo culture, AI, ML, prediction models,
automated algorithm, calculator, deep learning,
automatic detection, automated data processing,
time-lapse, and ultrasound. Inclusion and
exclusion criteria are documented with the pa-
tient/population, intervention, comparison
and outcomes framework (Table 1). To sup-
plement the database searches, we hand-
TABLE 1. Patient/Population, Intervention, Comparison
Conducted.

Population Individuals or couples undergoing m

Intervention Computer-based decision aid syste
outcomes at any stage

Comparison Nonautomated systems (eg, huma

Outcomes i. Implantation rate
ii. Clinical pregnancy rate
iii. Live birth rate

Study type Inclusion criteria: interventional stu
studies, and descriptive studies

Exclusion criteria: case reports, edit

Date From 1 January 2013 to 31 January

Language English
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searched bibliography of included articles
along with screening similar articles.
Selection of Studies and Data Extraction
After automated deletion of duplicates, 2 re-
searchers (C.B. and R.S.) independently
screened titles and/or abstracts of the studies
retrieved. Additional sources were screened
to identify studies that potentially met the in-
clusion criteria. The full text of these poten-
tially eligible studies was retrieved and
independently assessed for eligibility by 2
members of the review team. Any disagree-
ment between them over the eligibility of
any study was resolved through discussion
with a third reviewer (M.B.). Prospective and
retrospective studies and randomized
controlled trials were considered eligible for
inclusion. Case reports and abstract only re-
ports were excluded. Two collaborators (D.C.
and D.F.) extracted the data using the stan-
dardized tables developed by the authors to
ensure consistency. Studies comparing auto-
mated models vs humans were further
and Outcomes Model of the Systematic Review

edically assisted reproduction procedures

ms designed to improve assisted reproductive technology

n observation/nonautomated decision-making systems)

dies, prospective and retrospective studies, observational

orials, letters to the editors, abstracts only

2024
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Records removed automatically
(n=33)

Reports excluded
(n=1537)

Reports excluded:
Out of scope (n=80)

Weak evidence (n=13)

Titles/ abstracts screened
(n=1746)

Full-text articles assessed
for eligibility

(n=209)

Studies included in qualitative synthesis
(n=116)

Records identified through
database searching: PubMed

(n=1769)

Records identified through
hand searching

(n=10)
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FIGURE 1. Study flow chart according to PRISMA guidelines.
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evaluated for statistical significance. Results
were considered significant when P<.05.
RESULTS
The literature research identified 1746 articles
that were further screened with the 2 progres-
sive selection steps to identify articles that met
the inclusion criteria (Figure 1). A total of 116
studies were included in the final analysis
(Figure 1). Articles identified were divided ac-
cording to the different stages of ART
(Table 2).6,8e10,12e123
Evidence in favor of CDSA in ART
We identified 11 automated tools that have re-
ported efficacy for patient prognosis and coun-
seling and clinical management as follows:.

d CDSA for patient prognosis and counseling:
Mayo Clin Proc Digital Health n December 2024
1. A noninvasive early presumption diag-
nosis method for pelvic endometriosis
with a diagnostic penetrance of 90%.12

2. A calculator to estimate the ovarian
oocyte reserve based on the anti-Mülle-
rian hormone (AMH), and/or antral folli-
cle count, and based on previous
response to OS able to identify patients
with potential poor or suboptimal
response to OS according to the Bologna
or POSEIDON criteria.13,124

3. Artificial intelligence for sperm count with
evaluation of motility and morphology to
classify patients as normal, hypospermic,
and azoospermic based on published
criteria60,61,125 and to assess DNA
fragmentation.126

4. A noninvasive tool to diagnose polycystic
ovary syndrome (PCOS) based on body
mass index (BMI, calculated as the weight
;2(4):518-532 n https://doi.org/10.1016/j.mcpdig.2024.08.007
www.mcpdigitalhealth.org
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TABLE 2. CDSA to Support for Prediction, Decision-Making, and Management of
Patients at Different ART Stages.

CDSA No. of articles identified References

Prediction of treatment success
based on patient
characteristics/patient
prognosis

51 6,8,10,12-59

Sperm analysis 11 43,60-69

Decision-making and
counseling to support OS at
various stages

9 8,9,32,70-75

Prediction of embryo quality/
laboratory management and
embryo selection

50 22,39,76-123

CLINICAL DECISION SUPPORT SYSTEMS IN INFERTILITY
in kilograms divided by the height in me-
ters squared), upper limit of menstrual
cycle length, serum AMH levels, and
basal androstenedione levels.14

5. A predictive model to estimate outcomes
based on data from pretreatment (ie,
before starting the first cycle of IVF)
and posttreatment (ie, before starting
the second cycle of IVF in those couples
whose first complete cycle was
unsuccessful).6

d CDSA for clinical management:
6. A ML model to evaluate gonadotropin

starting dose based on candidate’s
characteristics.9,70

7. A ML model to predict the day of oocyte
trigger.8

8. An algorithm to estimate the optimal
number of oocytes to be fertilized based
on the day of transfer, the number of
viable blastocysts obtained, and the
number of blastocysts needed to obtain
1 live birth.15

9. A CDSA to manage clinical decisions
regarding the following: (1) continuation
of stimulation and (2) in case of discontin-
uation,whether to trigger or cancel the cy-
cle or (3) in case of continuation of OS,
whether to determine the days to follow-
up and the need for dosage adjustment.32
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BMI, Habits, Number of previous
treatments, Presumptive diagnosis of
infertility and estimate of IVF cycle
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Male Sperm Production &
Endocrinological profile

Female Ovarian Reserve &
Endocrinological profile.

Estimate of oocytes yield, including
the risk for OHSS
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on the findings of this review. BMI, body mass index; C
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10. A calculator to estimate blastulation rate
of metaphase II (MII) oocytes and to
predict the chance of pregnancy.40

11. A calculator of treatment success rates
based on the patient’s age, the number
of blastocysts to be transferred in
sequence, and the preimplantation diag-
nosis of aneuploidies.16

All the above-mentioned CDSAs require
further validation through prospective studies.
However, the tools identified may be consid-
ered in the ART programs given the estab-
lished benefit compared with human
decision only.
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Gonadotropins starting
dose

Day of oocyte maturation
triggering

ET timing & predict
successuful Implantation

COH with FOI calculation

Em
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yo
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gy

Number of MII
oocytes

Fertilization Rate

Blastulation rate

Embryo quality
evaluation

Number of
oocytes

urney for which clinical decision support algorithms have been proposed based
OH, controlled ovarian hyperstimulation; ET, embryo transfer; FOI, follicle-to-
stimulation syndrome.
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TABLE 3. Predictive Calcu

Type of cycle

Patients using own gamete

Donor IVF programs

Gestational carrier IVF
programs

IVF, in vitro fertilization; SART,
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Automated Tools for ART
The implementation of predictive tools in ART is
indeed expected to yield various positive out-
comes. First, patients can expect more accurate
prognostic predictions, thus setting more real-
istic expectations. Second, clinicians will benefit
from streamlined decision-making processes
leading to optimized treatment strategies and
improved patient outcomes.

The use of automated technologies in repro-
ductive medicine is increasingly shaping how
treatments are tailored and delivered (Table 2,
Figure 2). Most of the studies identified evaluated
the efficiency of automatedmodels without direct
comparison with human performance
(Supplemental Table 1, available online at
https://www.mcpdigitalhealth.org/), whereas a
few made a direct comparison (Supplemental
Table 2, available online at https://www.
mcpdigitalhealth.org/). Further, we discuss the
different tools and their advantages for each step
of the ART journey. For each step, we also
mention the studies that reported a significant
advantage of automated tools vs humans.

1. Algorithms and AI in ART: Algorithms
are crucial in ART for making treatment
decisions by integrating various factors
such as age, ovarian reserve, and genetic
lators for IVF Programs.

Calculator Variable

SART IVF success estimator Age, previous
specific tre

Boston IVF success rates
calculator

Age, infertility
previous IV

SART donor egg calculator Age of the d
recipient’s
treatment

FertilityIQ donor egg IVF
success

Age of the d
recipient’s
number of
transferred

SART gestational carrier IVF
calculator

Gestational c
intended p
treatment

FertilityIQ gestational carrier
IVF success rate calculator

Gestational c
intended p
the numbe
transferred

Society for Assisted Reproductive Technology.
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markers to recommend personalized stra-
tegies.10,79,127 AI systems further enhance
this potential by analyzing extensive data
to predict outcomes and continually
refine treatment approaches through ML.

2. CDSA: These systems combine AI and clin-
ical expertise to provide real-time decision
support, helping clinicians to optimize
treatment protocols based on comprehen-
sive patient profiles.4

3. Predictive calculators: Using mathematical
models, these calculators estimate the success
likelihood of ART procedures, factoring in
patient-specific variables such as age and
BMI. This approach supports clinicians in
creating more accurate and personalized treat-
ment plans.

These technologies not only streamline
clinical processes but also empower patients
by providing clearer insights into their
treatment options, enhancing the transpar-
ency and personalization of care in ART.
This shift toward data-driven clinical
decision-making will ultimately improve
the accuracy and effectiveness of infertility
treatments, thereby promising better out-
comes for patients navigating these chal-
lenging processes.
s considered Link

IVF cycles, and
atment details

https://w3.abdn.ac.uk/clsm/
SARTIVF/tool/ivf1

diagnosis, and
F outcomes

https://www.bostonivf.com/
search/?q¼donation

onor, the
age, and other
variables

https://www.sartcorsonline.
com/

onor, the
age, and the
embryos

https://www.fertilityiq.com/

arrier’s age, the
arent’s age, and
specifics

https://www.sartcorsonline.
com/

arrier’s age, the
arent’s age, and
r of embryos

https://www.fertilityiq.com/
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Tools for Patient Prognosis and Counseling
The integration of automated technologies in
reproductive medicine has the potential to
enhance treatment outcomes through personal-
ized protocols and optimization ofOSprocesses:

d Algorithms and calculators use patient-
specific factors to predict treatment out-
comes effectively. The Pregnancy Probability
Calculator from the Institute for Reproduc-
tive Health at Georgetown University uses
variables such as age, BMI, and diagnosis
to predict pregnancy success.128

d Age-related predictive models estimate the
chances of live birth based on age and other
factors; for example, the Fertility Potential
Calculator from the Society for Assisted
Reproductive Technology.129

d Clinical conditions and diagnostic algo-
rithms use comprehensive data to diagnose
conditions like PCOS, using criteria such
as the Rotterdam criteria.14,17

Predictive models in ART show potential in
forecasting pregnancy and live birth rates but
require larger, more diverse data sets for
improved accuracy and generalizability. AI
models analyze patient data such as age, hormone
levels, and medical history to predict ART suc-
cess, enabling customized treatment plans and
realistic expectations for patients. However, these
models are often limited by the homogeneity of
the trainingdata. Two studies evaluating the value
of AI in predicting miscarriages and implantation
rate reported significant improvement of AI pre-
diction vs human prediction.6,130

AI algorithms can predict conditions such as
endometriosis by analyzing questionnaire re-
sponses and various data sources with a 90% pre-
dictive capacity.12 Noninvasive diagnosis of
conditions suchasPCOSuseAI algorithmsanalyze
ultrasound images and hormonal profiles with
higher accuracy and earlier than traditional
methods.14

AI is also used to evaluate sperm parameters
and DNA fragmentation, crucial for understand-
ingmale fertility issues and improving treatment
plans. Tools such as the YO Home Sperm Test
leverage smartphone technology for quick and
accurate assessments.60,61,125,126 Despite these
advancements, ethical concerns and the need
for robust, transparent models remain signifi-
cant challenges.
Mayo Clin Proc Digital Health n December 2024;2(4):518-532 n ht
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AI and Algorithms to Optimize Clinical
Management
Artificial intelligence has the potential to opti-
mize personalized treatment plans by refining
OS protocols and medication dosages, thereby
enhancing ART outcomes. Additionally, wear-
able devices and AI applications facilitate
continuous patient monitoring and timely
interventions.

d Artificial intelligence in OS optimization
tailor OS protocols by analyzing factors
such as ovarian reserve markers and hor-
mone levels to optimize the gonadotropin
dosage and timing.9,13

d Mathematical models for ovarian response
prediction predict responses based on vari-
ables such as AMH levels and antral follicle
count, aiding in personalizing treatment
plans and optimizing resource allocation.

d Algorithms for cycles personalization iden-
tify personalized medication dosages during
OS enhance follicular development and
minimize risks associated with poor or
excessive responses.131

Leveraging AI in personalized IVF treat-
ment plans can streamline the workflow in
the clinics and offer transparency and realistic
expectations for couples. Personalized treat-
ment plans can not only maximize oocyte
yield but also minimize the risk of ovarian hy-
perstimulation syndrome, and it can enhance
scheduling precision for IVF cycles. However,
the successful integration of these tools re-
quires careful clinician oversight to ensure
clinical appropriateness and address chal-
lenges related to data quality, interpretability,
and generalizability.
Automated Technologies in Embryo
Assessment
In embryo selection, AI enhances the accuracy
of identifying viable embryos by analyzing im-
ages and assessing quality and viability,
although performance varies across clinics
and patient populations. Tools such as Early
Embryo Viability Assessment use AI to
improve success rates by selecting the most
viable embryos.

d Artificial intelligence in embryo quality
assessment, like those developed by Kragh
tps://doi.org/10.1016/j.mcpdig.2024.08.007 523
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and Karstoft,132 enhance embryo selection
by analyzing morphologic data to predict
viability, improving accuracy and consis-
tency in embryo selection.

d Time-lapse imaging applies mathematical
models to time-lapse data to analyze mor-
phokinetic parameters, aiding in embryo
viability assessment and timing for
transfer.133,134

d Artificial intelligenceeassisted sperm anal-
ysis enhances the accuracy and efficiency
of sperm analysis, which is crucial for select-
ing sperm with the best fertilization
potential.

Although AI has not yet fully replaced hu-
man expertise in ART laboratories, its integra-
tion has significantly enhanced the precision
and consistency of embryo quality assess-
ments. Despite advancements, ongoing model
training and validation are essential owing to
subjective variability in embryo assessment
and differing clinic practices. Continued
research and development, along with the cre-
ation of standardized data sets, are essential for
maximizing the potential of AI in this field.
Automated Technologies for Patient
Empowerment
The integration of AI, algorithms, and calcula-
tors into reproductive medicine facilitates a
more tailored and efficient approach to treat-
ment, potentially increasing the likelihood of
success in ART procedures (Tables 2 and 3).
The main advantages for the patients are as
follows:

d Personalized treatment: Algorithms and cal-
culators consider individual patient factors
to customize treatment protocols, thereby
increasing efficacy.

d Improved ovarian response: AI-assisted
optimization leads to better oocyte yield
and fewer adverse effects.

d Informed decision-making: Treatment
outcome calculators provide patients with
personalized prognostic information, aiding
in informed decision-making and opti-
mizing treatment planning.

Overall automated systems can improve
transparent communication of predicted treat-
ment outcomes, thereby providing patients
with realistic expectations and aiding in
Mayo Clin Proc Digital Health n December 2
informed decision-making. However, inte-
grating AI in IVF programs has shown promise
in enhancing fertility treatments. Clinicians
must educate patients about AI’s role to
improve transparency, manage expectations,
and prevent dissatisfaction. Transparency en-
sures patients are aware of the technologies
in their treatment, whereas informed consent
requires patients to understand and agree to
the use of AI tools, knowing their benefits
and limitations. Proper education fosters trust
in both the treatment process and the clini-
cians. Patients should be made aware that AI
effectiveness depends on high-quality data,
and although it can improve success probabil-
ities, it does not guarantee positive outcomes.
Patients should also be informed about data
privacy and ethical considerations. Clinicians
should explain how AI is applied at specific
IVF stages, emphasizing that AI supports,
not replaces, fertility specialists’ expertise.

Therefore, patients should receive compre-
hensive information about AI use in treatment.
Questions should be encouraged and any con-
cerns should be addressed. Providing bro-
chures, videos, personalized sessions, and
group discussions can help patients under-
stand AI role in IVF and share experiences, ul-
timately building trust and confidence in using
advanced technologies in fertility treatments.

Implementation in the Clinics
Although these technologies offer significant
advantages, their implementation in clinical
settings requires careful validation to ensure
accuracy and effectiveness. The integration of
AI tools enhances clinical interventions when
combined with human expertise. The synergy
between AI capabilities and clinicians’ efforts
leads to precise execution of each intervention
step, transparent follow-up processes, and the
development of detailed, strategic plans for
achieving cumulative results over time.

Currently, AI-based diagnostics for assess-
ing embryo quality and predicting pregnancy
outcomes are not comparable with the accu-
racy of invasive prenatal diagnostics or nonin-
vasive fetal evaluations conducted through
human ultrasound. Furthermore, the use of
AI raises concerns, particularly regarding the
need to preserve data privacy. To this purpose,
a combination of stringent protocols (ie, Gen-
eral Data Protection Regulation Compliance;
024;2(4):518-532 n https://doi.org/10.1016/j.mcpdig.2024.08.007
www.mcpdigitalhealth.org
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Health Insurance Portability and Account-
ability Act Guidelines; California Consumer
Privacy Act Regulations; ISO 27001 Stan-
dards) and advanced technologies must be
applied. The key technologies are as follows:

d Data encryption: Data are encrypted both in
transit and at rest. This means that any data
being transferred over networks or stored in
databases are converted into a secure code
that can only be decrypted by authorized
users. Encryption standards such as
advanced encryption standard and Secure
Sockets Layer/Transport Layer Security are
commonly used to safeguard sensitive
information.

d Access controls: Strict access controls are
implemented to ensure that only authorized
personnel can access sensitive data. This in-
cludes multifactor authentication, role-based
access control, and regularly updated access
permissions. These measures help in
limiting data access to only those individuals
who need it for their specific role.

d Anonymization and deidentification: To pro-
tect personal information, AI tools often ano-
nymize or deidentify data. This process
removes or obfuscates personal identifiers,
making it difficult to trace the data back to
an individual. Techniques include data mask-
ing, pseudonymization, and aggregation.

d Data minimization: AI systems are designed
to collect only the minimum amount of data
necessary for their function. This principle
of data minimization reduces the risk of
exposure by limiting the volume of sensitive
data being handled.

d Secure data storage: Data are stored in secure
environments with robust physical and
cybersecurity measures. This includes secure
servers, data centers with restricted access,
and cloud storage solutions that comply
with industry standards such as ISO 27001.

d Regular audits and adherence: Regular secu-
rity audits and adherence checks are conduct-
ed to ensure adherence to data protection
regulations such as General Data Protection
Regulation, Health Insurance Portability and
Accountability Act, and California Consumer
Privacy Act. These audits help identify and
mitigate potential vulnerabilities.

d User consent and transparency: AI tools
ensure that users are informed about data
Mayo Clin Proc Digital Health n December 2024;2(4):518-532 n ht
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collection and use practices through clear
privacy policies and consent forms. Users
are given control over their data, including
options to opt-out of data collection or
request data deletion.

d Incident response plans: Robust incident
response plans are in place to quickly
address any data breaches or security inci-
dents. These plans include protocols for
detecting, reporting, and mitigating the
impact of data breaches.

Using these advanced privacy-preserving
techniques and adhering to strict regulatory
standards, AI tools can ensure the confidenti-
ality and security of sensitive data, thereby
maintaining user trust and adherence with
legal requirements.

DISCUSSION
This systematic review focused on the trans-
formative impact of AI and CDSA for the diag-
nosis and treatment of infertility by
significantly enhancing personalized medical
approaches based on patient predicted out-
comes. Table 3 illustrates the predictive capa-
bilities of AI in various stages of ART, from
calculating success rates to evaluating embryo
quality.

Artificial intelligence technologies use vast
data sets to analyze variables such as genetic
profiles and lifestyle factors, offering insights
for diagnosis and treatment.4,135 Artificial in-
telligence algorithms exceldwhen adequately
trained on evidence-based pathologiesdin
identifying subtle variations in medical imag-
ing.12,91 Artificial intelligence technologies
are also a valuable tool for treatment
decision-making. They assist in optimizing
infertility treatment protocols by analyzing
patient-specific factors such as BMI and hor-
mone levels, thus personalizing medication
dosages and timing.10 Moreover, AI enhances
embryo assessment by analyzing morphoki-
netic and genetic data to select embryos with
the highest potential for successful preg-
nancy.136 Artificial intelligence’s objective
analysis helps in reducing human error in em-
bryo selection, thereby improving the chances
of successful implantations.

Artificial intelligence and CDSA have the
potential to provide personalized treatment
plans that potentially reduce the number of
tps://doi.org/10.1016/j.mcpdig.2024.08.007 525
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treatment cycles required, lessening the
emotional and financial burden on couples. AI
is based on learning from the training sets,
which is subjective to variability, and that the
outcome is simply bound to the different vari-
ables examined in the testing process.

Furthermore, AI is expected to improve im-
aging technologies, integrate genomic data for
better predictions, and facilitate remote ART ser-
vices through telemedicine, enhancing patient
accessibility and treatment outcomes. Ethical
considerations, including ensuring data privacy
and obtaining patient consent, are crucial for
responsible AI use in clinical settings.

Artificial intelligence is significantly
advancing the field of reproductive medicine
by providing more accurate diagnoses and
personalized treatment options. Although AI
and ML models offer promising advancements,
a critical review of their efficacy, limitations, and
overall impact is necessary to understand their
real-world applicability and potential for
improving ART outcomes. In particular, studies
evaluating the application of AI should consider
the following critical aspects:

d Data quality and quantity: The effectiveness
of AI/ML models depends heavily on the
quality and quantity of data available. Incon-
sistent or incomplete data can lead to inac-
curate predictions.

d Generalizability: Models trained on specific
data sets may not perform well when
applied to different populations or clinical
settings. This raises concerns about the
generalizability of the results.

d Interpretability: Many AI/ML models, partic-
ularly deep learning models, operate as
“black boxes,” making it difficult to under-
stand how decisions are made. This lack of
transparency can be a barrier to clinical
acceptance and patient trust.

d Ethical and legal concerns: The use of patient
data in AI/ML models raises ethical and legal
questions about privacy, consent, and data se-
curity. Depending on specific country body
laws different countries may interpretate the
AI/ML integration in the clinical practice as
issue to persecute or value to encourage. How-
ever, the use of AI/ML remains the doctor’s legal
responsibility. In fact, in several countries, it is
not possible to transfer that responsibility
from doctor to AI/ML tools.
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Notably, the Federal Drug Administration
now regulates CDSA systems as medical de-
vices, emphasizing the importance of reliable
predictions in clinical decision-making.5 The
use of AI and CDSA will not replace physi-
cians and embryologists, but it will help
enhance efficiency and quality of work,
thereby increasing access to care, reducing
costs, and waiting times.137
CONCLUSION
In conclusion, the advent of automated tech-
nologies is transforming the field of infertility
diagnosis and treatment. Algorithms have the
potential to expedite and enhance the accuracy
of diagnosis, guide personalized treatment,
and improve overall patient care. As in some
specific medical applications, AI continues to
evolve.138,139 In the near future, we can expect
further advances that will bring new hope to
couples struggling with infertility, to help
achieve their dream of starting a family.140

Indeed, automated tools may enable re-
searchers and clinicians to gain deeper insights
into the complex dynamics of fertility. By inte-
grating diverse data sets and simulating
various scenarios, these models promise to
enhance diagnostic penetrance, optimize treat-
ment strategies, and improve treatment out-
comes for infertile couples.

Overall, the validated use of AI, mathemat-
ical models, algorithms, and calculators in the
clinical management of infertile couples dur-
ing OS yields significant advantages. These
tools prove invaluable not only in subsequent
steps of IVF procedures but also during labo-
ratory/embryology management and embryo
transfer. However, further research and valida-
tion studies are essential to continually refine
and broaden the applications of these tools
in both clinical and laboratory settings.
Indeed, at the current stage, it is not possible
to draw any conclusions from the results of
this review owing to the lack of standardiza-
tion in validation methods across studies.
Further validation and clinical trials are
needed to establish the effectiveness of these
tools in the clinical setting.

With ongoing advancements, the integra-
tion of AI, mathematical models, algorithms,
and calculators promises to further enhance
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the precision and efficacy of medical and
embryologic protocols, thereby leading to
improved treatment outcomes and heightened
success rates in ART. In the foreseeable future,
a superalgorithm that integrates all computer
and AI tools that have been clinically validated
could be adopted in the ART clinics by fertility
experts and embryologists, leading to signifi-
cant benefits for all patients involved.
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