

PAPER • OPEN ACCESS

A comprehensive machine learning-based
investigation for the index-value prediction of 2G
HTS coated conductor tapes
To cite this article: Shahin Alipour Bonab et al 2024 Mach. Learn.: Sci. Technol. 5 025040

View the article online for updates and enhancements.

You may also like
Dynamic evolution of hyperuniformity in a
driven dissipative colloidal system
Ü Seleme Nizam, Ghaith Makey, Michaël
Barbier et al.

-

Prediction of the tensile force applied on
surface-hardened steel rods based on a
CDIF and PSO-optimized neural network
Zhongyang Zhu, Guangmin Sun, Cunfu
He et al.

-

Inequality and growth impacts of climate
change—insights from South Africa
Shouro Dasgupta, Johannes Emmerling
and Soheil Shayegh

-

This content was downloaded from IP address 137.204.63.244 on 21/01/2025 at 18:46

https://doi.org/10.1088/2632-2153/ad45b1
https://iopscience.iop.org/article/10.1088/1361-648X/abf9b8
https://iopscience.iop.org/article/10.1088/1361-648X/abf9b8
https://iopscience.iop.org/article/10.1088/1361-6501/aadebf
https://iopscience.iop.org/article/10.1088/1361-6501/aadebf
https://iopscience.iop.org/article/10.1088/1361-6501/aadebf
https://iopscience.iop.org/article/10.1088/1748-9326/ad0448
https://iopscience.iop.org/article/10.1088/1748-9326/ad0448

Mach. Learn.: Sci. Technol. 5 (2024) 025040 https://doi.org/10.1088/2632-2153/ad45b1

OPEN ACCESS

RECEIVED

16 November 2023

REVISED

5 April 2024

ACCEPTED FOR PUBLICATION

30 April 2024

PUBLISHED

13 May 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

A comprehensive machine learning-based investigation for the
index-value prediction of 2G HTS coated conductor tapes
Shahin Alipour Bonab1, Giacomo Russo2, Antonio Morandi2 and Mohammad Yazdani-Asrami1,∗
1 Propulsion, Electrification & Superconductivity group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ,
United Kingdom

2 Department of Electrical, Electronic, and Information Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna,
Italy

∗ Author to whom any correspondence should be addressed.

E-mail: mohammad.yazdani-asrami@glasgow.ac.uk

Keywords: artificial intelligence, neural network, n-value, superconductors, modelling

Abstract
Index-value, or so-called n-value prediction is of paramount importance for understanding the
superconductors’ behaviour specially when modeling of superconductors is needed. This
parameter is dependent on several physical quantities including temperature, the magnetic field’s
density and orientation, and affects the behaviour of high-temperature superconducting devices
made out of coated conductors in terms of losses and quench propagation. In this paper, a
comprehensive analysis of many machine learning (ML) methods for estimating the n-value has
been carried out. The results demonstrated that cascade forward neural network (CFNN) excels in
this scope. Despite needing considerably higher training time when compared to the other
attempted models, it performs at the highest accuracy, with 0.48 root mean squared error (RMSE)
and 99.72% Pearson coefficient for goodness of fit (R-squared). In contrast, the rigid regression
method had the worst predictions with 4.92 RMSE and 37.29% R-squared. Also, random forest,
boosting methods, and simple feed forward neural network can be considered as a middle accuracy
model with faster training time than CFNN. The findings of this study not only advance modeling
of superconductors but also pave the way for applications and further research on ML
plug-and-play codes for superconducting studies including modeling of superconducting devices.

1. Introduction

Superconductors are a type of materials that can carry high currents with no or much reduced (depending
on the DC or AC operating conditions) ohmic losses compared to conventional conductors. They also
exhibit distinctive magnetic properties like flux trapping and levitation capability. Due to these exceptional
properties, superconducting technology is an enabler for a variety of applications in the fields of energy
generation and transmission, transportation, biomedicine, among others. Today, it is acknowledged that the
macroscopic behavior of superconductors (such as the magnetic properties and the losses) can be
reproduced by numerical models that employ a nonlinear constitutive law relating the local electric field E to
the current density J [1–3] that is the well-known power law, written in equation (1),

E= E0

∣∣∣∣ JJC
∣∣∣∣n (1)

where E0 is a conventional parameter used as a criterion for the definition of the conventional critical current
density Jc (a value of 1 µVcm−1 is assumed), and the n (n-value, also known as index-value and power
exponent) is fundamental for reproducing the nonlinearity of superconductors’ behavior. The n-value is not
merely a convenient mathematical approximation, the power law can be regarded as the macroscopic
expression of the flux creep phenomena occurring in type II superconductors [4]. In particular, at a given

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ad45b1
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ad45b1&domain=pdf&date_stamp=2024-5-13
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-8316-4336
https://orcid.org/0000-0002-2011-8423
https://orcid.org/0000-0002-1845-4006
https://orcid.org/0000-0002-7691-3485
mailto:mohammad.yazdani-asrami@glasgow.ac.uk

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 1. Scaled E–J relations for different n-values.

temperature and applied magnetic field, the n-value is proportional to the activation energy for depinning of
the flux vortices; high n-values correspond to high depinning energy and therefore to weak creep. As a
consequence, the n-value closely relates to the vortex creep and the micro-structure of the film [5]. In fact,
the n-value is a dimensionless number that offers insights into the non-linear electric field response of
superconductors under an applied current. This parameter provides insights into the superconductor
material quality and characteristics, its micro-structure, and critical current surfaces. For instance, the
n-value depends on grain boundaries, defects, inhomogeneities, vortex creep/dynamics under Lorentz forces,
and the distribution of pinning centers. Higher n-values indicate sharp transitions from the superconducting
to the normal state, which is desirable for applications requiring high current densities [5]. Usually, both the
critical current Jc and the n-value are deduced from the fitting of the experimentally measured E–J curve.
The impact of the n-value on the E–J curve shape is shown in figure 1. Although for most superconductors
the n-value ranges from 20 to 40 (especially high temperature superconductors), curves for n-values of 2, 5,
and 10 are also included in figure 1 to exacerbate its impact on the steepness of the E-J transition.

The n-value importance for practical aspects of superconductors’ behavior was recently investigated,
showing its role in stability by affecting the quench velocity propagation and temperature [6–9]. Moreover,
lower n-values indicate a slow transition to the normal state, carrying significant implications for practical
applications. For instance, high-temperature superconducting (HTS) materials typically have n-values
around 20, whereas their low-temperature superconducting (LTS) counterparts boast values closer to 100.
While HTS offers enhanced magnet protection, operating it near the critical current threshold—around
90%—can lead to resistive voltages, resulting in energy losses and potentially harmful heating effects [10, 11].

In terms of industrial applications of superconducting materials and the importance of n-value, the use
of superconducting magnets is promising in the industries where strong, energy efficient, and reliable
magnetic fields are required. As an example, the designers of fusion devices are implementing both LTS and
HTS based magnets in their research and development projects to improve the design of these devices and
provide strong magnetic fields around 20 T. In line with definition of n-value which was mentioned earlier, a
higher n-value indicates a sharper transition from the superconducting state to the normal state. This means
that as the current or magnetic field strength approaches the critical value, the superconducting material
undergoes a rapid transition to the normal state. This can change the magnet protection implications in
terms of internal fault or quench occurrences. Depending on the application of these materials as of magnets
how rapid the magnet is needed to transit to normal state, the n-value should critically take into account by
the designers. To extract the n-value, the E–J curve is measured in characterization experiments at different
magnetic field conditions (magnitude and angle) and temperature, and then, value of n allowing the best
fitting of the measured data by means of equation (1) is found. As an example, Rimikis et al briefly cover
voltage-current characteristics of composite superconductors, essential for high-field magnet development
and n-values were investigated via four-point measurement [12]. However, in order to limit the number of
experiments needed for the precise characterization of the material an interpolation method for n-value over
a wide range of operating conditions in terms of magnetic field and angle is needed. Oh et al built upon the
Kramer model and introduced empirical equations for the critical current and the n-value, using the
principle of proportionality. Furthermore, they explored the relationship between these two terms in details
in [13, 14]. An alternative approach—based on the use of machine learning (ML) techniques—to the fitting

2

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 2. Overview of the ML modeling for n-value estimation.

of the experimental data has been proposed in very recent years which would drastically reduce
computational cost and other technical resources. The summary of the ML-based prediction process has
been illustrated in figure 2.

In the literature, researchers have rarely used intelligent techniques for modeling or the prediction of
parameters of superconductors. Russo et al developed artificial intelligence-based models for reconstructing
the critical current and index-value surfaces of HTS tapes. Their study demonstrated that artificial neural
network (ANN) has better accuracy than extra gradient boosting (XGBoost) and Kernel Ridge Regression
(KRR) models for critical current and n-value estimation [15]. Zhu et al address the prediction of critical
current and n-value in second-generation HTS conductors using a backpropagation neural network. The
network efficiently estimates Jc(B, θ, T) and n(B, θ, T), benefiting from shared hidden layers [16]. The
approach accommodates variations between manufacturers and batches, enhancing adaptability. The
method indicates a high accuracy accompanied by a fast prediction.

Although some efforts related to the use of ML techniques for the estimation of different parameters of
superconductors have been done in literature, there is a need for a comprehensive study on n-value
prediction of the superconductors using ML. In other words, there is a margin for improvement in the
n-value prediction accuracy, which is the founding reason for carrying out this study in the first place. In this
paper, a comprehensive investigation of different ML methods for n-value prediction has been carried out to
assess which method results in higher accuracy and faster response.

The main reason behind predicting the n-value for a sample using ML model is that the experiments only
cover a limited amount of test conditions like temperature and magnetic field. As these tests are done under
severely low temperatures, it is so expensive to do the tests for a desired condition. Therefore, the ML
methods are implemented to make models based on the experimental data, which can predict the n-value on
the conditions that no experiments have been done (unseen conditions by model). In this approach, only
conducting a preliminary set of tests on any superconducting sample is enough for generating the data that is
necessary for developing the ML model. Once the ML models are trained with those limited data, they can
predict n-value very fast without having access to the whole dataset or look-up tables. In other words, the ML
model does not need a training process after being created, and it can be integrated into any modeling or
experimental systems. This is what we call it, plug-and-play function. Subsequently, designers and
researchers can depend on the predictive capabilities of ML model for assessing the desired physical
conditions, which can save money and time for many companies that are using that type of superconductor.

Also, there are some pros of using AI modeling instead of traditional mathematical fitting. As the pattern
of n-value is extensively non-linear, the mathematical fitting methods that mostly are based on linear (or
polynomial regressions) are not able to capture this level of non-linearity. This is while the ML models by
using complex and innovative approaches can learn these complex patterns and predict the unseen
datapoints through extrapolation with significantly high accuracy. Another advantage of ML models is their
ability to handle vast amounts of data and input variables. In fact, more datapoints often lead to more robust
models which estimate with more accuracy. This is while in mathematical fittings, the increased complexity
that comes with larger datasets may result in lower accuracy as they may be limited by assumptions about the
data distribution. Another major benefit of the ML model is their ability to get retrained. This means that the

3

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

model can be trained with more data of even other superconductors to predict n-value of vast numbers of
superconductors (not only one sample.)

In the following, first in section 2, the data collection and the process for making it suitable for ML
models is described. In section 3, all the models that have been used in this study are briefly introduced and
explained. In section 4, a detailed explanation hyperparameter sensitivity analysis for the superior model and
the summary of the best identified values for other models are presented. Next, the results of tuned models
are compared in section 5. Then, in section 6, the detailed results of the superior model are presented for
different temperatures, field density, and field angle. Finally, a conclusion based on the results of the third
section is presented in section 7.

2. Data collection and preprocessing

For training and testing the aforementioned ML models, the open-access database of ‘HTS critical current
data’ provided by the Robinson Research Institute (Victoria University of Wellington, New Zealand) [17–19]
was used that can be found using this link (https://htsdb.wimbush.eu/dataset/3759315). This dataset
includes multiple data points for the n-value of various commercial HTS tapes, recorded under different
combinations of temperature, magnetic field amplitude, and orientation (i.e. the angle between the c-axis
and the field vector). The HTS tape dataset that was used in this study is the one of SuperOx GdBCO 2G HTS
for temperatures between 15 K and 85 K and the magnetic field between 0.01 T and 7 T. The n-value also
varies between 1.01 and 42.69. The reason for using the data related to one HTS sample exclusively is that it is
reasonable to assume that the n-value properties, as well as all other properties of any HTS tape, are sample
specific. However, it is specified that the ML models developed in this study can be updated with the
experimental dataset corresponding to another HTS tape if its n-valued prediction depending on the
operating conditions needs to be addressed. The effective application of such an approach that produces ML
models specific for unique HTS tapes was recently demonstrated with regard to FEM models’ validation
[20]. The raw dataset needs some techniques for preprocessing. First of all, the data points that have missing
information caused by sensor malfunction during experiments have to be removed. Then, the conditions
(either temperature or magnetic field conditions) that have a lot of missing data points should be removed as
they suffer from the lack of sufficient training data points. So, a dataset including the temperature, magnetic
field magnitude, and magnetic field orientation as the effective input parameters and the n-value as the target
value with 14 022 observations has been made for being used to develop the ML models. For carrying out
this step, the data needs to be split into distinct datasets for training, validating, and testing processes. The
splitting process ensures that the used ML model generalizes well to unseen data and provides reliable
performance metrics. This process can be done by randomly choosing the data points from the input dataset.
For this study, according to the common practice among data scientists, 20% of the input dataset was
randomly considered for the testing and validation process and 80% for training of the model. These rates
have been chosen as the increase in the training rate increases the chance of overfitting the model. Also, lower
training rates will result in lower accuracy of the model as it has not been well-trained with sufficient data
points to learn the way that the n-value is changing.

To assess the accuracy and reliability of the proposed ML models, their performance should be evaluated
by numeric metrics. These metrics/indexes provide a quantitative measure of a model’s performance, which
enables scientists to judge how well their model is functioning. Also, the effectiveness of models can be
compared, so that better solutions can be chosen through them. In this paper, some indexes have been
considered for the performance of models based on their robustness to clarify the model’s overall quality and
being well-known among ML researchers [21–24]:

MAE=

ns∑
k=1

|pk − yk|
ns

(2)

MARE=

ns∑
k=1

∣∣∣ (pk−yk)
yk

∣∣∣
ns

(3)

RMSE=

√√√√ ns∑
k=1

(pk − yk)
2

ns
(4)

R2 =

∑ns
k=1 (pk − p̄)2 −

∑ns
k=1 (pk − yk)

2∑ns
k=1 (pk − p̄)2

(5)

4

https://htsdb.wimbush.eu/dataset/3759315

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

In these equations, y is the predicted value, ȳ is the mean value of y, ns is the number of samples of the
training dataset, pk are the actual values, and pk is the mean value of pk. Equation (2) represents the mean
absolute error (MAE) which quantifies the average error of the model to predict each data point. Therefore,
it has the same unit as the predicted parameter.

Equation (3) reports the mean absolute relative error (MARE) between the predicted value and the actual
(real experimental) value of each data point in percent. This is a very useful tool to evaluate the accuracy of a
model as it does not have a unit.

Equation (4) represents the root mean squared error (RMSE) which has been widely adopted by data
scientists in recent decades. This index has been developed based on the logic to get the average value of
squared errors instead of the error value itself. This approach ensures that data points with substantial errors
exert a greater influence on the overall accuracy of metrics and consequently, on the model.

Equation (5) shows the R-squared, also known as the coefficient of determination and the goodness of
fit, which is a statistical metric employed in regression analysis for evaluating the degree of fit between the
predicted quantities by the regression model and the actual observed data. It operates on a scale from 0 to 1,
where higher values—closer to 1—signify a stronger fit. A higher R-squared value suggests a better fit of the
model to the data, indicating that a larger proportion of the variability in the dependent variable is accounted
for by the independent variables.

3. Modelling of different ML techniques

In this section, all the models and the indices that are used in this study are explained in detail. It should be
noted that the cascade-forward and feed-forward neural networks have been developed in the MATLAB
software package as the working frame for programming of the developed neural networks by our groups;
however, for the remaining ML models, although the programming of all of the models have been carried
out and administrated by our groups, the functions in the existing and open access libraries of the Python 3
(like SciKitLearn, XGBoost, etc) have been used.

3.1. Multilayer perceptron neural network (MLPNN)
Neural networks are a class of models that have been inspired by the structure and function of the human
brain’s neural system. The MLPNN, also known as the feed-forward neural network, is one of the most used
neural network methods by researchers due to its flexibility to both low- and high-complexity datasets
resulting in very high accuracy [25]. A MLPNN contains at least three layers, which are referred as input,
hidden, and output layers and within each layer, there are some computational units, which are known as
neurons. Each neuron consists of one weight factor for weighting the incoming data from up-hand layers to
lower the error and one bias factor to trim the result independent to the input data. In MLPNN, which
follows a forward approach (without feedback of next layers), the network updates itself at consecutive
cycles, which are known as epochs [26]. During each epoch, the data is provided from the input dataset and
goes through the network layers while the model tries to optimize the weight and bias factors of its neurons
using that data to reach a better learning of the pattern of the data [27]. Once the epoch finished, the network
tests itself by evaluating the error between the predicted and actual value and according to the amount of this
error, it changes the weight and bias factors through a feedback loop to reduce the error for next epoch. This
backward feeding of the network is known as backpropagation process. This process proceeds till the
network reaches to a saturate condition of error or stop at the pre-set error [28]. The fundamental
mathematical equation of this methodology is as follows:

yp = f 0

 n∑
j=1

ω0
i x

ifHj

(
n∑

i=1

ωH
ji xi

) (6)

where f 0 and fHj are representatives of the output layer and the hidden layer activation function, respectively.
By adding a bias factor to both the input and hidden layers, equation (2) turns into:

yp = f 0

ωb +
n∑

j=1

ω0
i x

ifHj

(
ω0
i +

n∑
i=1

ωH
ji xi

) (7)

where ωH
j and ωb demonstrate the respective weight from bias to the hidden and output layers [23].

The number of the hidden layers, setup of the neurons, training function and activation functions needs
to be optimized to reach the highest accuracy. Since there are a great number of possible combinations, it is

5

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 3. Schematic of FFNN and CFNN.

not possible to test all of them and by using a grid search approach for the hyperparameters in a reasonable
and common range in the literature, it has been tried to increase the overall performance and quality of the
model.

3.2. Cascade forward neural network (CFNN)
The CFNN is basically like MLPNN with the main difference being that the number of weight factors of each
neuron in the lower hand layers (the layers after input layer including all hidden layers and output layer)
increases in a cascade form. Therefore, unlike MLPNN, all the previous layers’ outputs are involved in the
parameters’ adjustment process [29, 30]. This is while in a MLPNN model, each layer receives information
only from the neurons in the preceding layer. For better understanding, a simple three-layer CFNN and
MLPNN models are taken as examples which contains an input, a hidden layer, and an output layer. In both
of these models, the neurons are interconnected and feed their next layer. So, the input layer only feeds the
hidden layer. This is while, in CFNN, the neurons of input layer directly involve in the results of neurons of
output layer by feeding the information to them. This more complex architecture results in more training
time. That said, the training process of the network becomes deeper than MLPNN which will result in higher
accuracy in some cases, especially for high non-linear datasets [31]. Helping for understanding of this
procedure, figure 3 demonstrates how both CFNN and FFNN methods are working.

With all the details provided, it is obvious that the fundamental equations of CFNN are very likely to
MLPNN and only needs some adjustments to add cascade weights. The related equation to this method can
be written as follows:

yp =
n∑

i=1

f iω0
i x

i + f 0

 n∑
j=1

ω0
i x

ifHj

(
n∑

i=1

ωH
jhxi

) (8)

where, f i represents the activation function of the output layer, and fHj signifies the activation function of the
hidden layer. When introducing bias to both the input layer and the hidden layers, equation (4) will undergo
some modifications:

yp =
n∑

i=1

f iω0
i x

i + f 0

ωb +
n∑

j=1

ω0
i x

ifHj

(
ω0
i +

n∑
i=1

ωH
jhxi

) (9)

where, ωH
j and ωb represent the weights associated with the connection from bias to the hidden layer and

from bias to the output layer, respectively [23].
For CFNN, the detailed range of hyperparameters and the process is provided in the hyperparameter

optimization section.

6

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

3.3. Decision tree regression (DTR)
Decision Tree (DT) is a type of supervised learning model that can be used for both classification and
regression tasks. This approach is based on a binary tree structure where nodes are split to form the decision
tree [32]. The algorithm of the decision tree involves dividing the dataset into smaller segments or classes and
presenting the outcome in a leaf node [33]. Essentially, the decision tree processes the dataset to create a
tree-shaped structure (branches) that facilitates prediction. This is why it is sometimes referred to as tree
structure regression [34]. DT comprises three distinct types of nodes: root nodes, interior nodes, and leaf
nodes. The root node, being the first node, branches into more nodes known as interior nodes. These
interior nodes represent the model’s data characteristics and decision criteria, while the leaf nodes indicate
the final prediction from the decision-making process [35]. Therefore, the hyperparameters that should be
optimized for this method are mostly for controlling the number and the conditions that each node or leaf is
created. For example, minimum sample of a leaf is a hyperparameter that defines how many samples are
needed at least to reach a leaf node (where the model does not go deeper).

3.4. Random forest regression (RFR)
Random forest is an ensemble learning technique that is capable of both classification and regression
processes. The method of learning in a random forest is built around the idea of combining multiple decision
trees that divide the input data using specific parameters in a tree-like arrangement. Every tree is formed
using a bootstrapped subset of the data, and at each node, the best subset and predictors are picked randomly
for splitting [34]. The final prediction is made by tallying the votes from the decision trees, and the output is
determined accordingly. One of the important privileges of this method is that the overfitting is unlikely [35,
36]. Same for decision tree, the hyperparameters of this method are for controlling of the subtrees such as
maximum depth, etc. A unique and important hyperparameter for this method is the number of trees that
the random forest creates to reach a decision. More trees generally mean more accuracy of prediction, but
after a certain point, the performance will not get affected by changing of this parameter.

3.5. Gradient boosting regression (GBR)
The GBR algorithm involves a sequence of regressions that are trained step by step, continually refining the
prediction of target values to rectify errors. Through iterative optimization of the regression’s output, GBR is
employed to solve the minimization problems. This leads to a gradual reduction of errors from prior
regressions [37]. The gradient boosting tree (GBR) Fn can be expressed as the summation of n number of
regressions:

Fn (xt) =
n∑

i=1

fi (xt) (10)

with each f i being a decision tree. This optimization is tackled using the steepest descent technique [38]. In
this research, the number of estimators varied between 103 and 106 to ensure the stability of results. As this
algorithm usually uses decision trees, the hyperparameters are for controlling the size of the trees.
Additionally, learning rate as a very important adjusts the speed of learning. Generally, lower amounts of the
learning rate result in higher accuracies but it can also increase the chance of overfitting. It is worth noting
that the other methods that are using the same approach of GBR have almost same hyperparameters.

3.6. Light gradient boosting regression (LightGBM)
LightGBM is a widely used boosting method that has fixed the drawback of GBR when handling large
datasets. The process incorporated gradient-based one-side sampling (GOSS) and exclusive feature bundling
(EFB) techniques to aid in training without compromising model accuracy and performance, as outlined by
[39]. The GOSS algorithm selectively excludes a significant portion of data instances with small gradients,
focusing solely on those that contribute significantly to information gain. Specifically, it starts by assigning
the top a × 100% instances with the largest gradients to a subset A. Then, for the remaining set Ac, which
constitutes (1− a) × 100% instances with smaller gradients, a new subset B is formed through random
sampling with a size of b × |Ac|. Finally, the variance gain Ṽj (d) is employed to split data instances which can
be expressed as follows [39, 40]:

Ṽj (d) =
1

n

(∑

xi∈Al
gi +

1−a
b

∑
xi∈Bi

gi
)2

njl (d)
+

(∑
xi∈Ar

gi +
1−a
b

∑
xi∈Br

gi
)2

njr (d)

 . (11)

In equation (11), n j
l(d) and n j

r(d) represent the left and right nodes, Al and Ar represent subsets of A, and
Bi and Br are the subsets of B. EFB, or EFB, serves to decrease the feature count by grouping features that do

7

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

not overlap within a sparse feature space. This results in enhanced model performance and computational
efficiency. Moreover, a leafwise tree growth approach is employed to lift the model performance and prevent
overfitting [40]. To more help for preventing overfitting condition in the model, a hyperparameter which is
called as minimum child samples, controls the least required number of datapoints for each of leaf nodes.
Another key hyperparameter is the maximum number of leaf nodes in each tree. Generally, more leaf nodes
mean that the model has deeper decision trees that makes it more robust. That said, it can potentially increase
the risk of overfitting. Also, if it is set to low value, the model will not demonstrate good performance.

3.7. Hist GBR (HGBR)
HGBR is an ML method that is used for regression problems and has been developed based on GBR. HGBR
is designed to expedite training on large datasets with lots of data points/observations. It employs
histogram-based strategies to speed up the creation of decision trees [41, 42]. Instead of dealing with
individual data points, HGBR operates with histograms that represent the values of features resulting in
enhanced computational efficiency [38, 43]. Same as for GBR, the number of estimators changed between
103 and 106. Since the model learns the pattern in an iterative manner, the number of maximum iterations
needs to be set to a reasonable value to let the model learn the pattern well. Rest of the hyperparameters are
same of other boosting methods.

3.8. Extreme gradient boosting regression (XGBoost)
XGBoost is an ML algorithm that can be used for regression problems. In terms of its architecture, it
evaluates the data by assessing the results of multiple subtrees to make a final evaluation. What makes the
XGBoost a n important ML technique compared with other traditional methods is its scalability, speed, and
robustness [44].

XGBoost incorporates a distinctive regularization term into its objective function, a crucial component
for mitigating overfitting and enhancing the model’s capacity to generalize. Additionally, it employs a
parallelized and optimized gradient boosting framework, a key reason for its remarkable speed compared to
conventional gradient boosting techniques. This acceleration is made possible through techniques such as
tree pruning and optimization, allowing XGBoost to efficiently handle extensive datasets [45].

The mathematical ensemble model of this method is as follows [46]:

ŷi =
K∑

k=1

f k (xi) , f k ∈ R (12)

where ŷi is the predicted n-value, k is the number of subtrees, f is the correlation mapping relationship
between the structure and weights of a tree in the subtree set, xi is the input vector, and R represents the
subtree set.

The objective function of XGBoost is composed of two main components: the first part quantifies the
error between the predicted values and the actual true (real) values of the model, while the second part is a
regularization term that manages the complexity of the model which can be mathematically represented as
follows [45]:

Y=
n∑

i=1

l(yi, ŷi)+
K∑

k=1

Ω(f k) . (13)

In this equation, the term
∑n

i=1 l(yi, ŷi) quantifies the summation of differences (i.e. errors) between the

predicted values of the model (ŷi) and the true (real) values (yi). The second term,
∑K

k=1Ω(f k) quantifies
the complexity of the tree model. This complexity term, also known as the regularization term, is vital for
preventing the model from overfitting and helps control the overall complexity of the model. This balance
between error minimization and model complexity regulation is a key feature of XGBoost, contributing to its
effectiveness in predictive modeling [15]. To facilitate a clearer comprehension of the XGBoost method’s
process, figure 4 has been provided. As this method is a member of the gradient boosting method family, its
hyperparameters are like other described methods of this family like GBR, LightGBM, etc.

3.9. CatBoost regressor
One of the accurate ML methods, which is a member of boosting methods, is CatBoost regression. Catboost
was developed based on [47] and can be used as both a classification and regression method. It can handle
various datasets, either small or large ones [48].

When it comes to comparing CatBoost and other GBR methods, the major distinction is that CatBoost
employs a random permutation approach. It computes and assigns an average classification value to samples
with similar category values and substitutes them with the specified permutation. As it has been exemplified
in [49] if a given permutation is [σ1, . . . , σn]

T
n , CatBoost replaces that with equation (14) [50, 51]:

8

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 4. A schematic of XGBoost and CatBoost regression methods.

X̂i
k =

∑n
j=1 I

[
Xi
j = Xi

k

]
.Yσj +βP∑n

j=1 I
[
Xi
j = Xi

k

]
β

(14)

where I is the indicator function, Xi
k is the ith subtype feature of the kth training sample, and P and β are the

foregoing value and weight of the foregoing parameter, respectively. Also, figure 4 demonstrates how this
technique works.

Regarding the hyperparameters of this method, it generally uses the same parameters as other boosting
methods. However, an important parameter that does not exist for other boosting methods is L2 leaf
regularization factor. This parameter applies L2 regularization to leaf scores to penalize large coefficients and
prevent more complex trees. Through this process, it prevents the overfitting condition of the model. More
information regarding L1 and L2 regularization will be provided in section 3.10.

3.10. Linear, Huber, Lasso, and Elastic Net regressions (ENR)
Linear regression is a statistical ML technique that is employed for analyzing and predicting numerical
variables through correlations. It is focused on determining how effectively one variable can be used to
predict another variable in a linear manner [52]. For this purpose, several predictors are utilized to forecast a
single dependent variable trying to find a simple linear equation that has the lowest error in predicting the
target value. Equation (11) represents the formula for the linear regression model,

y= b0 +Σ
p
i=1bixi+ ∈ (15)

where b0 is the intercept, p is the number of independent variables, bi are the coefficients of the independent
variables, xi is the independent variable, and ∈ is the random regression error [53].

There are other variations of linear regression including Huber regression (HR), Lasso regression, and
ENR, each incorporating unique regularization methods.

HR helps with the problem of outliers in regular linear regression by using a mix of squared and absolute
error in its calculations [54].

Lasso regression (LR), on the other hand, encourages simpler models by adding up the absolute values of
coefficients in the cost function. This also means it can automatically decide which features are more
important [52]. The lasso problem can be defined as:

minimize β,β0

 1

2Nj

Nj∑
i=1

(
yi −Σ

p
k=1xikβk

)2
+λΣ

p
k=1 |βk|

 (16)

9

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

where λΣp
k=1 |βk| is considered an L1 regularization term. Should we consider the squared value of βk in the

formula instead of |βk|, the term is known as the L2 regularization term [55].
ENR, though, balances things out by using both L1 (Lasso) and L2 (Ridge) regularizations. L1makes

coefficients sparse, while L2 prevents them from getting too large. This makes Elastic Net better at handling
situations where features are related, unlike just using Lasso. So, these methods make linear regression better
in different ways: Huber deals with strange values, Lasso picks features, and Elastic Net gets the best of both
L1 and L2, especially when features are connected [56].

Ridge regression introduces L2 regularization as a penalty term in the objective function of multiple
linear regression. This transforms the problem of finding the optimal coefficients into a constrained
optimization problem. By incorporating this L2 regularization, ridge regression encourages simpler
coefficient values, which, in turn, enhances the algorithm’s ability to generalize to new data. The objective
function for ridge regression is represented as follows [57, 58]:

J(θ) =
1

2

m∑
j=1

(
θXj − yj

)2
+λ||θ||2 (17)

where λ is the ridge parameter, yj is the actual value, and θTXj is the predicted value.
There are few hyperparameters for this family of algorithms. Most of these parameters are for directly

controlling the way model trains itself to reach the final regression. Also, some parameters such as alpha, L1,
and L2 ration are for controlling of the regularization factor of the model.

3.11. KRR
KRR is a technique used for handling complex data that cannot be effectively addressed through a simple
linear relationship. The primary difference between Ridge regression and KRR lies in the type of data they are
designed for. Ridge regression is primarily used for linear regression tasks, where the goal is to model
relationships between input features and a target variable using linear combinations. It uses the kernel trick
to transform the dataset into a higher-dimensional space, where it conducts a form of ridge regression [59].
What sets ridge regression apart from ordinary linear regression is its use of L2 regularization, which involves
adding a regularization term consisting of the squares of the model parameters. The objective function that
KRR tries to minimize is as follows [15]:

ObjKRR =

∑ns
i=1(yi − xi)

2

ns
+

m∑
i=1

β2
i . (18)

In this equation, yi is the predicted value, xi is actual value, ns is the number of data/observations,m is
the number of parameters, and β is the model parameter.

One of the most important parameters that should be optimized for this model is kernel. There are some
common kernels in the literature including radial basis function, polynomial, sigmoid, and linear. Alpha is
also another important parameter that controls the regularization factor of the KRR.

3.12. Non-linear regression (NLR)
Most of the datasets are very complex in a way that cannot result in good accuracy for simple regression
problems. Therefore, various non-linear methods, like polynomial regression, have been developed.

Polynomial regression involves fitting a polynomial function of a selected degree to the dataset. The
degree of the polynomial dictates the model’s complexity and its ability to capture the underlying patterns in
the data and should be tested to find the optimum number of degrees to result highest accuracy [58].

3.13. Support vector regression (SVR)
SVR is a supervised algorithm used for regression tasks. It works by focusing on a subset of the training data
and ignoring data that are close to the model’s predictions within a specific threshold ε [60, 61]. To solve
regression problems, SVR relies on choosing the right kernel and relevant parameters [62]. A notable
strength of SVR is its ability to handle high-dimensional spaces without relying heavily on the input space’s
dimensionality [63]. SVR employs a linear function, referred to as the SVR equation, to nonlinearly map the
input data into a higher-dimensional space. In equation (19), ϕ is the function that transfers data into higher
dimensional space and ω and b are weight and bias factors, respectively,

g(x) = ωϕ (x)+ b. (19)

The main goal is to identify a hyperplane that has the widest possible margin on both sides (figure 5)
while keeping the error or deviations of data points from the hyperplane as small as possible [35, 64]. In this

10

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 5. A schematic of SVR technique.

study, the same set of functions that was mentioned for KRR are used for choosing the best function for our
model. Another key hyperparameter is the epsilon that sets the amount of error that the model can ignore
during the process of finding of hyperplane and the support vectors. C is also the other crucial parameter
that highly affect the performance of the model as it changes the regularization term’s strength in the model.

3.14. K-nearest neighbor (KNN) regression
KNN is an ML technique that operates by determining the value of a new data point based on its proximity
to the K nearest training data points [65]. The KNN regression model operates by determining the distance
between a new observation and all the observations present in the training data [66]. The most common
distance metric used is the Euclidean distance, which is demonstrated in equation (20) [67]:

d
(
xi,xj

)
=

√√√√ p∑
k=1

(
xik − xjk

)2
. (20)

In this equation, p is the number of input features, xik is the value of kth input feature for the ith
observation. However, in some cases, Minkowski’s approach for evaluation of distance results more accuracy
for the final model. The related equation for this is as follows:

d
(
xi,xj

)
=
(
xi,xj

)
=
(
Σ

p
i=1

∣∣xik − xjk
∣∣n) 1

n . (21)

After the calculation process of all distances, the algorithm chooses the K neighbors that have the lowest
distances. Then, the mean value of those points will be considered as the prediction value [68]. Therefore, the
most important hyperparameters of KNN are related to the number of neighbors that the model considers to
make an estimation for a new datapoint along the method for distance calculation.

3.15. Adaptive boosting (AdaBoost)
AdaBoost is one of the most common ensemble ML methods that is used by researchers in the field of ML. It
is renowned for its capability to enhance the performance of weak learners and its resilience against
overfitting. Fundamentally, it trains a sequence of base learners on a given dataset while iteratively adjusting
the sample weights. During each iteration, it trains the weak sample on the updated data, and this process
repeats until a set number of iterations is completed or a desired level of accuracy is attained, which is shown
in figure 6. Then, it combines these base learners to form a powerful model. Also, to elevate the accuracy of
the final model, it weighs the samples with higher error [67, 69]. In terms of fundamental equations,
considering that the technique is using T sub-classifiers, the final prediction will be as follows [70]:

H(x) = sign

(
T∑

t=1

αtht (x)

)
(22)

where in equation (22), H(x) is the final prediction, ht (x) is the predicted value of sub-classifier t, and αt is
the weight factor that has been considered for that sub-classifier.

This model is also benefited from using loss function to update the weights of individual weak learners
that creates. Therefore, an important hyperparameter for this method is this function which is commonly
considered to be linear or exponential among the researchers.

11

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 6. A schematic of prediction process of AdaBoost.

4. Sensitivity analysis of hyperparameters

One of the most important steps of every ML modeling is the sensitivity analysis of the effective controlling
parameters, so-called hyperparameters [71]. These parameters are unique for each method; however, some
of them are common between the models. The reason that the sensitivity analysis of the hyperparameters is
an essential part of ML modeling is that the value of these parameters has direct impact on the accuracy of
the model while there is no definite rule to set them in a particular value. Even further, the range that these
parameters have influence on the model’s performance are highly dependent on the input dataset.

It is worth noting that the training process of an AI model includes considering initial values for the
model’s parameters, updating these parameters using the training dataset, and testing of the model with
testing dataset. The second and third stages should be repeated until the error of model against the training
set size reaches to a saturated condition like what has been illustrated in figure 7.

To do the sensitivity analysis on the hyperparameters of each implemented algorithm, a one-at-a-time
approach have been used, which is a very common method for sensitivity analysis of different ML
hyperparameters. This means that at each step, merely one parameter is variable, and the remaining
parameters do not change. First, an initial value for each of the hyperparameters is considered. Next, an
effective range for each hyperparameter, in which the performance of the model significantly changes, has to
be identified. Then, to further enhance the performance of the model, the value that resulted in the highest
accuracy of model is used for the next steps of analysis and remains unchanged. Referring to the details of
table 1, the best identified hyperparameters within the testing range that resulted in the highest accuracy are
reported. Also, at the front of each of the hyperparameters, the range in which they have been tested is
presented. It is worth noting that to make this table, all these parameters should be changed and tested to
check their effectiveness on the models’ performance, demanding a great deal of attention to reach the best
setup. This is because there are no generalized values for these parameters to implement for all cases of
studies and they are problem (dataset) dependent. To make it easier to understanding, the process of this
analysis has been summarized in figure 8.

Also, as an example, to reach the best setup for CFNN model, which is the most accurate model in this
paper, an exhaustive testing process on the five different number of hidden layers, the number of neurons in
each layer varying between 5 to 30, six different training functions, and 16 pair of activation functions has
been done. The training and testing of each selection of these hyperparameters have been repeated 50 times,
ensuring that the results are reproducible, and the model is performed in a stable manner. This resulted in
that a total number of 9800 different cases have been investigated merely for CFNN hyperparameter
sensitivity analysis process.

The details of the tuning of hyperparameters for all methods including their testing range and the best
value for each of parameters within the testing range are provided in table 1. The best values have been
provided to help the researchers have an insight into the values of these parameters and also enable them to
reproduce all developed models.

As CFNN model resulted in the highest accuracy amongst all other ML methods and is actually the
superior model of this paper, its sensitivity analysis process is explained in the following paragraph. Before
starting of the analysis, all of the hypermeters need an initial (default) value, so the analysis can be done step
by step.

First of all, the number of hidden layers, which most of the researchers consider to be equal to one due to
simplicity, undergoes the sensitivity analysis process. At this stage, the Levenberg–Marquardt (LM) and
tansig-purelin have been considered as the training function and the pair of activation function of CFNN
model, respectively. Then, the number of hidden layers varied between 1 and 5. The findings of this step of

12

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 7. Learning curve of (a) XGBoost and (b) CFNN model.

study demonstrated that the triple hidden-layer model is the best selection as it has the highest accuracy than
the others while has lower testing time than the models with 4 and 5 hidden layers. Also, in an entwine
approach for neurons analysis, the number of the neurons in each of the hidden layers varied between 1 to
40, and the results of best setup of the neurons considered as representative of the performance of that
number of layers. For the purpose of simplicity of the analysis, the number of neurons considered to be equal
in all hidden layers. For instance, [15 15 15] resulted in the best performance for triple layer model among all
possible conditions, and its results are nominated for triple layer model. According to table 2, it is evident
that the double layer model has better accuracy than rest of tested number of hidden layers. Also, the results
of neurons sensitivity analysis indicated that considering 30 neurons for each of the hidden layers in the
model is the best choice for this model.

Next, the training function of the model needs to be analyzed. To reach this matter, four popular
algorithms were selected, which are LM, Fletcher–Powell conjugate gradient (FPCG), resilient
backpropagation (RB), variable learning rate backpropagation (VLRB), scaled conjugate gradient (SCG),
and Polak–Ribiére conjugate gradient (PRCG). In terms of time, VLRB and FPCG have the shortest response
times, indicating they are the fastest among those listed, though VLRBs accuracy is significantly lower.

13

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 8. A schematic of the process of sensitivity analysis.

Although LM with 20.3 ms response time is not the fastest algorithm, it might be a good choice for
applications (like this work) where prediction accuracy is paramount and slightly longer response times are
acceptable.

Table 3 highlights that Levenberg-Marquardt algorithm is the superior option as it has only 0.517 RMSE
indicating the highest accuracy in predictions among the compared functions. A lower RMSE value means
the model’s predictions are closer to the actual values. In contrary, GDX with 3.717 has the lowest RMSE
amongst all tested training functions, suggesting that it performs significantly worse than the others in
accurately predicting outcomes. In terms of R-squared, LM with 0.9949 has the highest R-squared, which
shows that the model has perfectly fitted to the data. By contrast, VLRB has the lowest R-squared value with
0.8134, demonstrating that it is less effective at predicting variance in the data compared to others. In terms
of time, VLRB and FPCG have the shortest response times, indicating they are the fastest among those listed,
though VLRB’s accuracy is significantly lower. Although LM with 20.3 ms response time is not the fastest
algorithm, it might be a good choice for applications (like this work) where prediction accuracy is
paramount and slightly longer response times are acceptable.

Finally, for activation function, it was considered that the activation function between all layers except
between the last hidden layer and output layer to be same. This is a common way for activation function
sensitivity analysis as the total possible combinations are extensively great. The finding of this step of study
that has been summarized in table 4 demonstrated that logsig-purelin is the best pair of activation functions
(logsig places between input and hidden layer and the hidden layers themselves while purelin is between
hidden layer and output layer.)

5. Comparison between results of different methods

The models that are explained in section 3 of this paper are trained and tested using the respective datasets
for each process.

To enhance the accuracy of each proposed method, the best value of each hyperparameter of the effective
parameters is considered for the final modeling with each method. After obtaining the best hyperparameter
for each method, n-value prediction has been done for each ML technique separately, and then, prediction
results using different performance indexes R2, RMSE, MARE, and MAE of the models have been listed in
table 5. Furthermore, figure 9 visualizes the difference in the model’s accuracies in terms of all indexes which
was explained in section 2.

As can be seen in table 5, which has been sorted with respect to R2 value in descending order, the CFNN
model has the highest fitting capability to the real n-value of the superconductor with a 99.68% R-squared

14

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Table 1. The best hyperparameters of all ML models and the searched range for sensitivity analysis.

Method Hyper parameter Method Hyper parameter

CFNN n_layers= 3 (from 1 to 5)
n_neurons= 15 (from 5 to 30)
training_function= Levenburg–
Marquardt (LM) (other tested algorithms
are (SCG), (RB), (VLRB))
activation_function= Purelin—Logsig
(a pair consisting tansig, purelin, logsig,
and satlin)

SVR kernel= ‘rbf ’ (‘rbf ’, ‘linear’, ‘poly’,
‘sigmoid’)
C = 100 (logarithmic from 0.001 to
1000)
epsilon= 0.01 (logarithmic from 0.001
to 1)
degree= 3 (for ‘poly’ kernel)
shrinking= True (and False)
tol= 0.001 (logarithmic from 0.001 to
1000)
cache_size= 200
verbose= False (and True)

MLPNN n_layers= 3 (from 1 to 5)
n_neurons= 30 (from 5 to 30)
training_function= Levenburg–
Marquardt (other tested algorithms are
(SCG), (RB), (VLRB))
activation_function= Tansig—Purelin
(a pair consisting tansig, purelin, logsig,
and satlin)

KNNR n_neighbors= 10 (3–15)
weights= ‘uniform’
algorithm= ‘auto’
leaf_size= 30 (from 10 to 50)
metric= ‘minkowski’
metric_params= None

CatBoost iterations= 100 000 (logarithmic from
1000 to 10 000 000)
learning_rate= 0.001419
(autocorrection by code itself)
depth= 10 (from 2 to 15)
l2_leaf_reg= 3.0 (1–5)
border_count= 254

KRR alpha= 0.1 (logarithmic from 0.001 to
1000)
kernel= ‘poly’ (‘rbf ’, ‘linear’, ‘poly’,
‘sigmoid’)
gamma= None
degree= 3 (for ‘poly’ kernel)
coef0= 1
kernel_params= None

XGBoost n_estimators= 100 000 (logarithmic
from 1000 to 1000 000)
learning_rate= 0.1 (from 0.05 to 1)
max_depth= 3 (from 2 to 15)
min_child_weight= 1
subsample= 1.0 (and 0)
colsample_bytree= 1.0 (and 0)
gamma= 0 (and 1)
reg_alpha= 0 (and 1)
reg_lambda= 1 (and 0)
scale_pos_weight= 1 (and 0)

AdaBoost base_estimator= None
n_estimators= 1000 000 (logarithmic
from 1000 to 10 000 000)
learning_rate= 1.0 (from 0.5 to 1)
loss= ‘linear’ (and exponential)
random_state= None

HGBR learning_rate= 0.1 (from 0.05 to 1)
epsilon= 1.35
max_iter= 100 (from 100 to 10 000)
max_depth= None (to make it
unlimited)
min_samples_leaf= 20 (from 10 to 50)

HR epsilon= 1.35 (0.5 to 1.5)
max_iter= 100 (from 100 to 10 000)
alpha= 0.0001 (logarithmic from 0.0001
to 1000)
warm_start= False (and True)

RFR n_estimators= 1000 000 (logarithmic
from 1000 to 1000 000)
criterion= ‘mse’
max_depth= None (to make it
unlimited)
min_samples_split= 2
min_samples_leaf= 1
max_features= ‘auto’
bootstrap= True (and False)

LR alpha= 0.01 (logarithmic from 0.0001 to
1000)
fit_intercept= True (and False)
normalize= False (and True)
precompute= False (and True)
positive= False (and True)
s̀election= ‘cyclic’
max_iter= 1000 (logarithmic from 100
to 100 000)
tol= 1× 10−4

warm_start= False (and True)
random_state= None

(Continued.)

15

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Table 1. (Continued.)

Method Hyper parameter Method Hyper parameter

LightGBM n_round= 10 000 (logarithmic from
1000 to 1000 000)
learning_rate= 0.1 (from 0.05 to 1)
max_depth= None (to make it
unlimited)
num_leaves= 31 (from 10 to 50)
min_child_samples= 20 (from 10 to 50)
subsample= 1.0 (and 0)
colsample_bytree= 1.0 (and 0)
reg_alpha= 0.0 (and 1)
reg_lambda= 0.0 (and 1)

ENR alpha= 0.001 (logarithmic from 0.0001
to 1000)
l1_ratio= 0.5
fit_intercept= True (and False)
normalize= False (and True)
precompute= False (and True)
max_iter= 1000
tol= 0.0001
warm_start= False (and True)
positive= False (and True)
selection= ‘cyclic’
random_state= None

GBR n_estimators= 1000 (logarithmic from
1000 to 1000 000)
learning_rate= 0.1 (from 0.05 to 1)
max_depth= 3 (from 2 to 15)
min_samples_split= 2
min_samples_leaf= 1
subsample= 1.0 (and 0)
max_features= None (to make it
unlimited)
alpha= 0.9
max_leaf_nodes= None (to make it
unlimited)

Linear fit_intercept= True (and False)
normalize= False (and True)
copy_X= True (and False)
n_jobs= None

DTR criterion= ‘mse’
splitter= ‘best’
max_depth= None (to make it
unlimited)
min_samples_split= 2 (from 1 to 15)
min_samples_leaf= 1 (from 1 to 15)
min_weight_fraction_leaf= 0.0
max_features= None (to make it
unlimited)
random_state= None

RRB n_learners= 100 (logarithmic from
0.001 to 1000)
learning_rate= 0.1 (from 0.05 to 1)
loss= ‘ls’
max_depth= 4 (from 2 to 15)
alpha= 0.001
max_leaf_nodes= None (to make it
unlimited)
warm_start= False (and True)
tol= 0.0001 (logarithmic from 0.0001 to
1000)

NLR Degree= 7 (from 2 to 10)

Table 2. Performance of CFNN model with different number of hidden layers considering the best setup of neurons for each condition.

Number of
hidden layers Setup of neurons RMSE R-Squared Response time (ms)

1 [25] 0.919 023 0.9864 14.3
2 [30 30] 0.517 361 0.9949 20.3
3 [15 15 15] 0.524 021 0.9947 21.7
4 [30 30 30 30] 0.597 127 0.9940 218.1
5 [30 30 30 30 30] 0.577 445 0.9943 469.4

Table 3. Performance of CFNN model using different training functions.

Training function RMSE R-squared Response time (ms)

LM 0.517 0.9949 20.3
SCG 1.317 0.9779 63.2
RB 1.505 0.9695 15.6
VLRB 3.717 0.8134 14.9
FPCG 1.168 0.9820 15.3
PRCG 1.126 0.9834 17.3

16

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Table 4. Performance of CFNN model with different pairs of activation function.

Pair of activation function RMSE R-squared Response time (ms)

logsig—logsig 6.425 0.0859 29.6
logsig—purelin 0.496 0.9967 9.1
logsig—satlin 5.157 0.7982 23.6
logsig—tansig 0.501 0.9965 28.1
purelin—logsig 5.569 0.6471 13.4
purelin—purelin 4.972 0.6118 14
purelin—satlin 5.591 0.6435 16.6
purelin—tansig 4.958 0.6118 17.8
satlin—logsig 5.187 0.7827 13
satlin—purelin 0.74 0.9937 16
satlin—satlin 5.161 0.7981 16.3
satlin—tansig 0.778 0.9924 13.9
tansig—logsig 5.173 0.7916 26.6
tansig—purelin 0.517 0.9949 20.3
tansig—satlin 5.161 0.7961 17.1
tansig—tansig 0.56 0.9959 25.2

Note: The row that has been bolded represents the best results for each step of analysis for

each table with bold contents.

Table 5. The performance comparison of different ML models in terms of RMSE, R-squared, MAE, and MARE.

Method RMSE R-Squared MAE MARE (%) Test time (ms)

CFNN 0.495 800 0.996 751 0.315 800 1.432 800 9
MLPNN 0.645 409 0.996 045 0.360 700 1.604 500 11
CatBoost 0.545 725 0.992 218 0.319 717 1.754 850 52
XGBoost 0.563 300 0.991 709 0.392 526 2.034 177 28
HGBR 0.581 071 0.991 178 0.374 948 2.154 406 378
RFR 0.601 371 0.990 550 0.366 798 1.906 172 1600
LightGBM 0.604 361 0.990 456 0.365 310 2.496 930 2800
GBR 0.703 901 0.987 736 0.440 453 2.768 740 87
DTR 0.816 340 0.982 587 0.503 291 2.581 918 14
NLR 0.864 451 0.980 401 0.583 627 3.520 835 18
SVR 0.968 318 0.976 837 0.599 249 4.069 813 1400
KNNR 1.672 581 0.926 903 0.980 620 6.376 660 69
KRR 2.364 010 0.852 786 1.810 173 11.823 296 5300
AdaBoost 2.684 893 0.811 673 2.201 210 11.891 801 228
HR 4.862 069 0.379 983 3.622 299 18.917 729 15
LR 4.863 364 0.379 653 3.655 027 18.877 112 17
ENR 4.863 437 0.379 634 3.655 438 18.882 267 14
Linear 4.863 448 0.379 631 3.655 493 18.882 941 11
RRB 4.923 443 0.372 946 3.696 345 18.791 929 184

value. Moreover, it also has the lowest RMSE which proves that the prediction of the model based on CFNN
has low error.

Using the same logic, the second-best option for the n-value estimation for this type of superconductor is
MLPNN, which is a simpler version of ANN than CFNN. It is a very slight difference in terms of R2 value,
but the RMSE is about 30% higher than CFNN which means that it is not as very accurate as CFNN due to
its higher error. This is because there are quite a few points that have very large error in FFNN model.
Therefore, while the R-squared has not changed very much, the RMSE value soars. The figure 10 shows the
results of the three best ML models for n-value prediction. As a visual example, in figure 10, the FFNNmodel
is not fitted to the actual points, caused errors near 110%, whilst for CFNN model it never exceeds 12% for
the same temperature.

The XGBoost, HGBR, RFR, and LightGBM in the next places can be considered the alternative options
instead of ANN models as all of them still have very high fitting accuracy.

In contrast, the RRB and all the linear regression including Huber, Lasso, Elastic Net, and traditional
linear regression have the worst accuracies, making them a weak option for n-value estimation. These models
have almost more than 10 times RMSE than the CFNN model.

After checking the accuracy of all models, in the following, the predictability of the models for specific
temperatures will be proposed and then compared. Since there are 16 different temperatures that have been

17

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 9. The performance comparison of different ML models in terms of (a) RMSE and R-squared (b) MAE and MARE.

investigated in this study, so, for the purposes of making comparisons between models, a common
temperature should be chosen for all methods. Also, due to the importance of 77.5 K temperature in the
context of superconductors, which is the boil-off temperature of liquid Nitrogen, it is selected for reporting
the performance of the model in figure 10. As can be seen, ARE of most of these models is increased in higher
magnetic fields [11]. The results of the other 16 ML models for prediction on n-value of superconductors are
shown in the figure A1 in the appendix.

6. Detailed results of the best model: CFNN

In accordance with the discourse in section 5, a highly accurate model for predicting the n-value of this
superconductor has been established using the CFNN method. Consequently, this subsection is dedicated to

18

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 10. Actual and predicted n-values (right figures) and ARE (left figures) of 3 best ML models for T= 77.5 K.

19

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 11. Actual and predicted n-value for CFNN model in temperatures 20, 30, 40, 50, 65, and 75 K.

20

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure 12. Regression plot for proposed CFNN model for training, validation, and testing stages.

providing a comprehensive analysis of CFNNs results. As illustrated in figure 11, it becomes evident that the
model excels in n-value prediction under conditions of lower magnetic fields. Furthermore, the model
exhibits heightened accuracy in scenarios characterized by elevated temperatures.

Also, figure 12 demonstrates how the CFNN model is well-fitted to the training, validation, and testing
datasets. In this type of diagram, which is very common among ML researchers, data points are typically
scattered across a graph, and a straight line is fitted to these points in such a way that it minimizes the overall
distance between the line and the data points. The slope of the line indicates the change in the dependent
variable for a one-unit change in the independent variable. The vertical axis intercept represents the value of
the dependent variable when the independent variable is zero. The closer this line is to the x = y line, the
more accurately the model predicts. According to the line equations in figure 12, the lines are very close to
the ideal condition.

21

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

7. Conclusion

The n-value, an important parameter in superconductors characterization subject to significant variation
under different magnetic fields (including magnitude and angle of exposure to the wire) and temperature
conditions in superconductor materials, has been the focus of an investigation into n-value prediction
utilizing a range of ML methods. Within the findings of our paper, it became evident that the CFNN model
emerged as the most favored choice for this task, highlighting its achievement of the lowest RMSE at 0.4958
when compared to the alternative models. Additionally, the CFNN model demonstrated the highest
R-squared value among all the models, an impressive 99.6751%, indicating its robust training and excellent
adaptation to the training dataset. This high R-squared value serves as evidence that the model is adept at
predicting the n-value with a commendable level of accuracy. Consequently, the CFNN model offers a
promising avenue for precise n-value forecasting within the context of superconducting materials under
varying magnetic fields and temperature conditions.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

The authors would like to thank Dr. S C Wimbush, Dr. N M Strickland of Robinson Research Institutes for
providing openly accessible experimental data for index-value characteristics of HTS tapes on the public
website. Indeed, this work was not accomplishable without having access to such a comprehensive data set.

For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY)
license to any Author Accepted Manuscript version arising from this submission.

22

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Appendix

Figure A1. Actual and predicted n-values (right figures) and ARE (left figures) of different ML models for T = 77.5 K.

23

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure A1. (Continued.)

24

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure A1. (Continued.)

25

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure A1. (Continued.)

26

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure A1. (Continued.)

27

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

Figure A1. (Continued.)

ORCID iDs

Shahin Alipour Bonab https://orcid.org/0009-0002-8316-4336
Giacomo Russo https://orcid.org/0000-0002-2011-8423
Antonio Morandi https://orcid.org/0000-0002-1845-4006
Mohammad Yazdani-Asrami https://orcid.org/0000-0002-7691-3485

References

[1] Brandt E H 1998 Superconductor disks and cylinders in an axial magnetic field. I. Flux penetration and magnetization curves Phys.
Rev. B 58 6506–22

[2] Brandt E H 1996 Superconductors of finite thickness in a perpendicular magnetic field: strips and slabs Phys. Rev. B 54 4246
[3] Morandi A 2012 2D electromagnetic modelling of superconductors Supercond. Sci. Technol. 25 104003
[4] Yeshurun Y, Malozemoff A P and Shaulov A 1996 Magnetic relaxation in high-temperature superconductors Rev. Mod. Phys.

68 911–49
[5] Matsushita T, Matsuda A and Yanagi K 1993 Irreversibility line and flux pinning properties in high-temperature superconductors,”

Physica C 213 477–82
[6] Kim J H, Dou S X, Matsumoto A, Choi S, Kiyoshi T and Kumakura H 2010 Correlation between critical current density and

n-value in MgB2/Nb/Monel superconductor wires Physica C 470 1207–10
[7] Romanovskii V, Watanabe K and Ozhogina V 2009 Thermal peculiarities of the electric mode formation of high temperature

superconductors with the temperature-decreasing n-value Cryogenics 49 360–5
[8] Marchevsky M 2021 Quench detection and protection for high-temperature superconductor accelerator magnets Instruments 5 27
[9] Bykovskiy N, Bajas H, Dicuonzo O, Bruzzone P and Sedlak K 2023 Experimental study of stability, quench propagation and

detection methods on 15 kA sub-scale HTS fusion conductors in SULTAN Supercond. Sci. Technol. 36 034002
[10] Godeke A 2023 High temperature superconductors for commercial magnets Supercond. Sci. Technol. 36 113001
[11] Bruzzone P, Fietz W H, Minervini J V, Novikov M, Yanagi N, Zhai Y and Zheng J 2018 High temperature superconductors for

fusion magnets Nucl. Fusion 58 103001
[12] Rimikis A, Kimmich R and Schneider T 2000 Investigation of n-values of composite superconductors IEEE Trans. Appl. Supercond.

10 1239–42
[13] Oh S, Choi H, Lee C, Lee S, Yoo J, Youm D, Yamada H and Yamasaki H 2007 Relation between the critical current and the n value

of ReBCO thin films: a scaling law for flux pinning of ReBCO thin films J. Appl. Phys. 102 043904
[14] Oh S and Kim K 2006 A scaling law for the critical current of Nb3Sn stands based on strong-coupling theory of superconductivity

J. Appl. Phys. 99 033909
[15] Russo G, Yazdani-Asrami M, Scheda R, Morandi A and Diciotti S 2022 Artificial intelligence-based models for reconstructing the

critical current and index-value surfaces of HTS tapes Supercond. Sci. Technol. 35 124002
[16] Zhu L, Wang Y, Meng Z and Wang T 2022 Critical current and n-value prediction of second-generation high temperature

superconducting conductors considering the temperature-field dependence based on the back propagation neural network with
encoder Supercond. Sci. Technol. 35 104002

[17] Wimbush S C and Strickland N M 2017 A public database of high-temperature superconductor critical current data IEEE Trans.
Appl. Supercond. 27 1–5

[18] High-temperature superconducting wire critical current database (available at: https://htsdb.wimbush.eu/) (Accessed 27 October
2023)

[19] Strickland N M, Hoffmann C and Wimbush S C 2014 A 1 kA-class cryogen-free critical current characterization system for
superconducting coated conductors Rev. Sci. Instrum. 85 113907

28

https://orcid.org/0009-0002-8316-4336
https://orcid.org/0009-0002-8316-4336
https://orcid.org/0000-0002-2011-8423
https://orcid.org/0000-0002-2011-8423
https://orcid.org/0000-0002-1845-4006
https://orcid.org/0000-0002-1845-4006
https://orcid.org/0000-0002-7691-3485
https://orcid.org/0000-0002-7691-3485
https://doi.org/10.1103/PhysRevB.58.6506
https://doi.org/10.1103/PhysRevB.58.6506
https://doi.org/10.1103/PhysRevB.54.4246
https://doi.org/10.1103/PhysRevB.54.4246
https://doi.org/10.1088/0953-2048/25/10/104003
https://doi.org/10.1088/0953-2048/25/10/104003
https://doi.org/10.1103/RevModPhys.68.911
https://doi.org/10.1103/RevModPhys.68.911
https://doi.org/10.1016/0921-4534(93)90468-6
https://doi.org/10.1016/0921-4534(93)90468-6
https://doi.org/10.1016/J.PHYSC.2010.05.075
https://doi.org/10.1016/J.PHYSC.2010.05.075
https://doi.org/10.1016/J.CRYOGENICS.2009.04.005
https://doi.org/10.1016/J.CRYOGENICS.2009.04.005
https://doi.org/10.3390/instruments5030027
https://doi.org/10.3390/instruments5030027
https://doi.org/10.1088/1361-6668/acb17b
https://doi.org/10.1088/1361-6668/acb17b
https://doi.org/10.1088/1361-6668/acf901
https://doi.org/10.1088/1361-6668/acf901
https://doi.org/10.1088/1741-4326/aad835
https://doi.org/10.1088/1741-4326/aad835
https://doi.org/10.1109/77.828459
https://doi.org/10.1109/77.828459
https://doi.org/10.1063/1.2769285
https://doi.org/10.1063/1.2769285
https://doi.org/10.1063/1.2170415
https://doi.org/10.1063/1.2170415
https://doi.org/10.1088/1361-6668/ac95d6
https://doi.org/10.1088/1361-6668/ac95d6
https://doi.org/10.1088/1361-6668/ac88fc
https://doi.org/10.1088/1361-6668/ac88fc
https://doi.org/10.1109/TASC.2016.2628700
https://doi.org/10.1109/TASC.2016.2628700
https://htsdb.wimbush.eu/
https://doi.org/10.1063/1.4902139
https://doi.org/10.1063/1.4902139

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

[20] Russo G and Morandi A 2023 Evaluation of the performance of commercial high temperature superconducting tapes for dynamo
flux pump applications Energies 16 7244

[21] Yazdani-Asrami M, Sadeghi A, Seyyedbarzegar S and Song W 2022 DC electro-magneto-mechanical characterization of 2G HTS
tapes for superconducting cable in magnet system using artificial neural networks IEEE Trans. Appl. Supercond. 32 1–10

[22] Yazdani-Asrami M, Sadeghi A and Song W 2023 Ultra-fast surrogate model for magnetic field computation of a superconducting
magnet using multi-layer artificial neural networks J. Supercond. Nov. Magn. 36 575–86

[23] Ituabhor O, Isabona J, Zhimwang J T and Risi I 2022 Cascade forward neural networks-based adaptive model for real-time
adaptive learning of stochastic signal power datasets Int. J. Comput. Netw. Inf. Secur. 14 63–74

[24] Yazdani-Asrami M, Sadeghi A, Seyyedbarzegar S M and Saadat A 2022 Advanced experimental-based data-driven model for the
electromechanical behavior of twisted YBCO tapes considering thermomagnetic constraints Supercond. Sci. Technol. 35 054004

[25] Lee W, Park D, Bascuñán J and Iwasa Y 2022 Artificial intelligence methods for applied superconductivity: material, design,
manufacturing, testing, operation, and condition monitoring Supercond. Sci. Technol. 35 105007

[26] Ekonomou L, Fotis G P, Maris T I and Liatsis P 2007 Estimation of the electromagnetic field radiating by electrostatic discharges
using artificial neural networks Simul. Modelling Pract. Theory 15 1089–102

[27] Yazdani-Asrami M, Fang L, Pei X and Song W 2023 Smart fault detection of HTS coils using artificial intelligence techniques for
large-scale superconducting electric transport applications Supercond. Sci. Technol. 36 085021

[28] Yazdani-Asrami M, Taghipour-Gorjikolaie M, Song W, Zhang M, Chakraborty S and Yuan W 2021 Artificial intelligence for
superconducting transformers Transformers Mag. 8 22–30 (available at: www.transformers-magazine.com)

[29] Alzayed M, Chaoui H and Farajpour Y 2021 Maximum power tracking for a wind energy conversion system using cascade-forward
neural networks IEEE Trans. Sustain. Energy 12 2367–77

[30] Mohammadi M-R, Hemmati-Sarapardeh A, Schaffie M, Husein MM and Ranjbar M 2021 Application of cascade forward neural
network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery J. Pet. Sci. Eng.
205 108836

[31] Alipour Bonab S, Song W and Yazdani-Asrami M 2023 A new intelligent estimation method based on the cascade-forward neural
network for the electric and magnetic fields in the vicinity of the high voltage overhead transmission lines Appl. Sci. 13 11180

[32] Sadeghi A, Alipour Bonab S, Song W and Yazdani-Asrami M 2024 Intelligent estimation of critical current degradation in HTS
tapes under repetitive overcurrent cycling for cryo-electric transportation applicationsMater. Today Phys. 42 101365

[33] Hastie T, Tibshirani R and Friedman J 2009 The elements of statistical learning (https://doi.org/10.1007/978-0-387-84858-7)
[34] Breiman L, Friedman J H, Olshen R A and Stone C J 1984 Classification And Regression Trees (Routledge) (https://doi.org/

10.1201/9781315139470)
[35] Balogun A-L and Tella A 2022 Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia

using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression
Chemosphere 299 134250

[36] Breiman L 2001 Random forestsMach. Learn. 45 5–32
[37] Friedman J, Hastie T and Tibshirani R 2000 Additive logistic regression: a statistical view of boosting Ann. Statist. 28 337–407
[38] Zhang G, Shin S and Jung J 2023 Cascade forest regression algorithm for non-invasive blood pressure estimation using PPG signals

Appl. Soft Comput. 144 110520
[39] Guo X, Gui X, Xiong H, Hu X, Li Y, Cui H, Qiu Y and Ma C 2023 Critical role of climate factors for groundwater potential

mapping in arid regions: insights from random forest, XGBoost, and LightGBM algorithms J. Hydrol. 621 129599
[40] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T Y LightGBM: a highly efficient gradient boosting decision tree

(available at: https://github.com/Microsoft/LightGBM)
[41] Ong Y J, Zhou Y, Baracaldo N and Ludwig H 2020 Adaptive histogram-based gradient boosted trees for federated learning

(arXiv:2012.06670)
[42] Nhat-Duc H and Van-Duc T 2023 Comparison of histogram-based gradient boosting classification machine, random forest, and

deep convolutional neural network for pavement raveling severity classification Autom. Constr. 148 104767
[43] Guryanov A 2019 Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer)
pp 39–50

[44] Li L, Qiao J, Yu G, Wang L, Li H-Y, Liao C and Zhu Z 2022 Interpretable tree-based ensemble model for predicting beach water
qualityWater Res. 211 118078

[45] Chen T and Guestrin C 2016 XGBoost: a scalable tree boosting system (https://doi.org/10.1145/2939672.2939785)
[46] Cao W, Liu Y, Mei H, Shang H and Yu Y 2023 Short-term district power load self-prediction based on improved XGBoost model

Eng. Appl. Artif. Intell. 126 106826
[47] Dorogush A V, Ershov V and Yandex A G 2023 CatBoost: gradient boosting with categorical features support (arXiv:1810.11363)
[48] Prokhorenkova L, Gusev G, Vorobev A, V. Dorogush A and Gulin A 2017 CatBoost: unbiased boosting with categorical features

(arXiv:1706.09516)
[49] Rastgoo A and Khajavi H 2023 A novel study on forecasting the airfoil self-noise, using a hybrid model based on the combination

of CatBoost and arithmetic optimization algorithm Expert Syst. Appl. 229 120576
[50] Huang G, Wu L, Ma X, Zhang W, Fan J, Yu X, Zeng W and Zhou H 2019 Evaluation of CatBoost method for prediction of reference

evapotranspiration in humid regions J. Hydrol. 574 1029–41
[51] Lu C, Zhang S, Xue D, Xiao F and Liu C 2022 Improved estimation of coalbed methane content using the revised estimate of depth

and CatBoost algorithm: a case study from southern Sichuan Basin, China Comput. Geosci. 158 104973
[52] Bates D M andWatts D G 1988 Nonlinear Regression Analysis and Its Applications (Wiley) (https://doi.org/10.1002/9780470316757)
[53] Ezimand K and Kakroodi A A 2019 Prediction and spatio—temporal analysis of ozone concentration in a metropolitan area Ecol.

Indic. 103 589–98
[54] Feng Y and Wu Q 2022 A statistical learning assessment of Huber regression J. Approx. Theory 273 105660
[55] Czajkowski M, Jurczuk K and Kretowski M 2023 Steering the interpretability of decision trees using lasso regression—an

evolutionary perspective Inf. Sci. 638 118944
[56] Minaravesh B and Aydin O 2023 Environmental and demographic factors affecting childhood academic performance in Los

Angeles county: a generalized linear elastic net regression model Remote Sens. Appl. 30 100942
[57] Zheng Y, Ge Y, Muhsen S, Wang S, Elkamchouchi D H, Ali E and Ali H E 2023 New ridge regression, artificial neural networks and

support vector machine for wind speed prediction Adv. Eng. Softw. 179 103426

29

https://doi.org/10.3390/en16217244
https://doi.org/10.3390/en16217244
https://doi.org/10.1109/TASC.2022.3193782
https://doi.org/10.1109/TASC.2022.3193782
https://doi.org/10.1007/s10948-022-06479-z
https://doi.org/10.1007/s10948-022-06479-z
https://doi.org/10.5815/ijcnis.2022.03.05
https://doi.org/10.5815/ijcnis.2022.03.05
https://doi.org/10.1088/1361-6668/ac57be
https://doi.org/10.1088/1361-6668/ac57be
https://doi.org/10.1088/1361-6668/ac8773
https://doi.org/10.1088/1361-6668/ac8773
https://doi.org/10.1016/J.SIMPAT.2007.07.003
https://doi.org/10.1016/J.SIMPAT.2007.07.003
https://doi.org/10.1088/1361-6668/ace3fb
https://doi.org/10.1088/1361-6668/ace3fb
http://www.transformers-magazine.com
https://doi.org/10.1109/TSTE.2021.3094093
https://doi.org/10.1109/TSTE.2021.3094093
https://doi.org/10.1016/j.petrol.2021.108836
https://doi.org/10.1016/j.petrol.2021.108836
https://doi.org/10.3390/app132011180
https://doi.org/10.3390/app132011180
https://doi.org/10.1016/J.MTPHYS.2024.101365
https://doi.org/10.1016/J.MTPHYS.2024.101365
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1016/j.chemosphere.2022.134250
https://doi.org/10.1016/j.chemosphere.2022.134250
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1016/j.asoc.2023.110520
https://doi.org/10.1016/j.asoc.2023.110520
https://doi.org/10.1016/J.JHYDROL.2023.129599
https://doi.org/10.1016/J.JHYDROL.2023.129599
https://github.com/Microsoft/LightGBM
https://arxiv.org/abs/2012.06670
https://doi.org/10.1016/j.autcon.2023.104767
https://doi.org/10.1016/j.autcon.2023.104767
https://doi.org/10.1007/978-3-030-37334-4_4
https://doi.org/10.1016/J.WATRES.2022.118078
https://doi.org/10.1016/J.WATRES.2022.118078
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/J.ENGAPPAI.2023.106826
https://doi.org/10.1016/J.ENGAPPAI.2023.106826
https://arxiv.org/abs/1810.11363
https://arxiv.org/abs/1706.09516
https://doi.org/10.1016/J.ESWA.2023.120576
https://doi.org/10.1016/J.ESWA.2023.120576
https://doi.org/10.1016/j.jhydrol.2019.04.085
https://doi.org/10.1016/j.jhydrol.2019.04.085
https://doi.org/10.1016/j.cageo.2021.104973
https://doi.org/10.1016/j.cageo.2021.104973
https://doi.org/10.1002/9780470316757
https://doi.org/10.1016/j.ecolind.2019.04.059
https://doi.org/10.1016/j.ecolind.2019.04.059
https://doi.org/10.1016/j.jat.2021.105660
https://doi.org/10.1016/j.jat.2021.105660
https://doi.org/10.1016/j.ins.2023.118944
https://doi.org/10.1016/j.ins.2023.118944
https://doi.org/10.1016/j.rsase.2023.100942
https://doi.org/10.1016/j.rsase.2023.100942
https://doi.org/10.1016/J.ADVENGSOFT.2023.103426
https://doi.org/10.1016/J.ADVENGSOFT.2023.103426

Mach. Learn.: Sci. Technol. 5 (2024) 025040 S A Bonab et al

[58] Wang X, Wang X, Ma B, Li Q, Wang C and Shi Y 2023 High-performance reversible data hiding based on ridge regression
prediction algorithm Signal Process. 204 108818

[59] Welling M (available at: https://web2.qatar.cmu.edu/~gdicaro/10315-Fall19/additional/welling-notes-on-kernel-ridge.pdf)
(Accessed 25 October 2023)

[60] Cortes C, Vapnik V and Saitta L 1995 Support-Vector Networks Editor (Kluwer Academic Publishers)
[61] Drucker H, Burges C, Kaufman L, Smola A and Vapoik V 1996 Support vector regression machines Adv. Neural Inf. Process. Syst. 28

779–84
[62] Hsu C-W, Chang C-C and Lin C-J 2003 A practical guide to support vector classification (available at: www.csie.ntu.edu.tw/∼cjlin)
[63] Li Y, Huang X, Tang J, Li S and Ding P 2023 A steps-ahead tool wear prediction method based on support vector regression and

particle filteringMeasurement 218 113237
[64] Chen K, Liao Q, Liu K, Yang Y, Gao G and Wu G 2023 Capacity degradation prediction of lithium-ion battery based on artificial

bee colony and multi-kernel support vector regression J. Energy Storage 72 108160
[65] Keramat-Jahromi M, Mohtasebi S S, Mousazadeh H, Ghasemi-Varnamkhasti M and Rahimi-Movassagh M 2021 Real-time

moisture ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods
Measurement 172 108899

[66] Gou J, Xiong T and Kuang Y 2011 A novel weighted voting for K-nearest neighbor rule J. Comput. 6 833–40
[67] Sumayli A 2023 Development of advanced machine learning models for optimization of methyl ester biofuel production from

papaya oil: gaussian process regression (GPR), multilayer perceptron (MLP), and K-nearest neighbor (KNN) regression models
Arab. J. Chem. 16 104833

[68] Fix E and Hodges J L 1989 Discriminatory analysis. Nonparametric discrimination: consistency properties Int. Stat. Rev. 57 238
[69] Wen L, Li Y, Zhao W, Cao W and Zhang H 2023 Predicting the deformation behaviour of concrete face rockfill dams by combining

support vector machine and AdaBoost ensemble algorithm Comput. Geotech. 161 105611
[70] Freund Y and Schapire R E 1996 Experiments with a new boosting algorithm (available at: www.research.att.com/)
[71] Taylor R, Ojha V, Martino I and Nicosia G 2021 Sensitivity analysis for deep learning: ranking hyper-parameter influence 2021

IEEE 33rd Int. Conf. on Tools with Artificial Intelligence (ICTAI) (November 2021) (IEEE) pp 512–6

30

https://doi.org/10.1016/J.SIGPRO.2022.108818
https://doi.org/10.1016/J.SIGPRO.2022.108818
https://web2.qatar.cmu.edu/~gdicaro/10315-Fall19/additional/welling-notes-on-kernel-ridge.pdf
http://www.csie.ntu.edu.tw/%5B?%5Dcjlin
https://doi.org/10.1016/J.MEASUREMENT.2023.113237
https://doi.org/10.1016/J.MEASUREMENT.2023.113237
https://doi.org/10.1016/j.est.2023.108160
https://doi.org/10.1016/j.est.2023.108160
https://doi.org/10.1016/J.MEASUREMENT.2020.108899
https://doi.org/10.1016/J.MEASUREMENT.2020.108899
https://doi.org/10.4304/jcp.6.5.833-840
https://doi.org/10.4304/jcp.6.5.833-840
https://doi.org/10.1016/j.arabjc.2023.104833
https://doi.org/10.1016/j.arabjc.2023.104833
https://doi.org/10.2307/1403797
https://doi.org/10.2307/1403797
https://doi.org/10.1016/J.COMPGEO.2023.105611
https://doi.org/10.1016/J.COMPGEO.2023.105611
http://www.research.att.com/
https://doi.org/10.1109/ICTAI52525.2021.00083

	A comprehensive machine learning-based investigation for the index-value prediction of 2G HTS coated conductor tapes
	1. Introduction
	2. Data collection and preprocessing
	3. Modelling of different ML techniques
	3.1. Multilayer perceptron neural network (MLPNN)
	3.2. Cascade forward neural network (CFNN)
	3.3. Decision tree regression (DTR)
	3.4. Random forest regression (RFR)
	3.5. Gradient boosting regression (GBR)
	3.6. Light gradient boosting regression (LightGBM)
	3.7. Hist GBR (HGBR)
	3.8. Extreme gradient boosting regression (XGBoost)
	3.9. CatBoost regressor
	3.10. Linear, Huber, Lasso, and Elastic Net regressions (ENR)
	3.11. KRR
	3.12. Non-linear regression (NLR)
	3.13. Support vector regression (SVR)
	3.14. K-nearest neighbor (KNN) regression
	3.15. Adaptive boosting (AdaBoost)

	4. Sensitivity analysis of hyperparameters
	5. Comparison between results of different methods
	6. Detailed results of the best model: CFNN
	7. Conclusion
	 Appendix
	References

