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Efficient Project Scheduling with Autonomous
Learning Opportunities

Alessandro Hill
DEI, University of Bologna, alessandro.hill@unibo.it

Thomas W. M. Vossen
Leeds School of Business, University of Colorado Boulder, vossen@colorado.edu

We consider novel project scheduling problems in which the experience gained from completing selected

activities can be used to accelerate subsequent activities. Given a set of potential learning opportunities,

our model aims to identify the opportunities that result in a maximum reduction of the project makespan

when scheduled in sequence. Accounting for the impact of such learning opportunities causes significant

complications, due to the cyclic nature of the learning relations and their interference with the precedence

network.

We propose additive and subtractive algorithms that iteratively reschedule the project using an enhanced

topological sorting algorithm. Learning opportunities are integrated, activated and potentially deactivated

in each step by maintaining the acyclicity of the combined precedence and learning network. To illustrate

the challenges that arise in this setting, we first consider the special case where activities can learn from

at most on other activity. Subsequently, we extend our approach to the general case that admits multiple

learning opportunities. We show that our approaches guarantee the construction of an optimal solution in

polynomial time.

In a computational study using 340 small and large resource-unconstrained PSPlib instances, we analyze

the model behaviour under various scenarios of learning intensity and learning opportunity. We demonstrate

that significant project speedups can be obtained when proactively accounting for learning opportunities.

Key words : project management; scheduling; autonomous learning

1. Introduction

The critical role of effectively scheduling activities when managing projects has long been

established, and numerous theoretical contributions have supported the growth and adap-

tation of formal project management tools in practice. As organizations increasingly orga-

nize their processes through projects (Hall 2012), the importance of project scheduling

is only bound to grow further. However, the increasing variety and novel applications of
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project management also present new challenges and opportunities to improve project

scheduling decisions that are not well understood.

In particular, we explore how to take advantage of learning opportunities when schedul-

ing activities in a resource-unconstrained project. It is well-known that experience can lead

to increased efficiency and that actively managing learning can lead to improved project

performance. While the active management of learning within projects can extend to the

deliberate learning that explicitly considers investments and resources allocated to learning

(Cao et al. 2024), we concentrate on strategically accounting for the autonomous learning

from experience (Biskup 2008) that may occur during project execution. The impact of

learning effects has been studied for certain scheduling problems without resource con-

straints, such as single-machine scheduling problems (Lee et al. 2010, Qian and Steiner

2013, Bai et al. 2018); their impact on project scheduling decisions, however, has received

little attention. To the best of our knowledge, this also holds for resource-constrained

project scheduling (RCPSP), where learning effects can be incorporated as a special case of

the multi-mode RCPSP (Peteghem and Vanhoucke 2015). However, the inherent complex-

ity of the RCPSP makes it hard to isolate the impact and understand the complications

of incorporating learning effects.

To capture learning opportunities, we express the well-known project scheduling problem

(without resource constraints) using an Activity-On-Node network. We extend this with

a so-called learning network, whose arcs present a novel optional precedence relationship

that allows us to model learning effects. Any arc pi, jq in the learning network signifies

that activity j can learn from activity i. Specifically, the duration of activity j can be

reduced provided that it starts after activity i has been completed. We propose an efficient

polynomial time algorithm for minimizing the makespan when such learning opportunities

are present, and show that strategically accounting for learning opportunities can have a

significant impact on project completion times.

Consequently, the main contributions of our paper can be summarized as follows:

• We propose a new approach to account for the impact of learning in project schedul-

ing. Our approach relies on a novel type of precedence relationship to capture learning

opportunities, which is distinct from other forms of generalized precedences that have been

proposed in the literature.
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• We establish an efficient algorithm to minimize the makespan when accounting for the

impact of learning effects, and highlight its differences with organic learning approaches

that do not explicitly account for learning opportunities during the scheduling phase.

• We capture and delineate the potential benefits of learning using an extensive com-

putational study based on a comprehensive set of instances and a broad set of learning

parameters.

The remainder of this paper is organized as follows. Section 2 surveys and reviews

related work, while Section 3 introduces our model setup and notation. To illustrate the

challenges that arise in our setting, Section 4 first considers the case where activities have

at most one learning opportunity and describes the key ideas behind our approach for

minimizing the makespan. In Section 5, we extend this approach to the more general setting

where activities have multiple learning opportunities. Section 6 reports the computational

analysis for both our optimization model and related approaches, which is followed by a

summary of key insights and conclusions in Section 7.

2. Related Literature

Project scheduling has a long history, dating back to the development of the critical

path method in the 1950s (Kelley Jr 1961). Project scheduling problems are defined by a

given collection of activities and their durations, together with precedence requirements

between those activities. When the objective is to minimize makespan, project sched-

ules can be determined efficiently using a topological ordering of the activities. Similarly,

the project scheduling problem can also be solved in polynomial time when the objec-

tive is to maximize the net present value or some other weighted function of the activity

start times (Möhring et al. 1999). However, the research literature has predominantly

focused on resource-constrained project scheduling problems (RCPSPs), where activities

require the use of limited resources during their execution (Johnson 1967). RCPSPs are

computationally challenging, and we refer to Hartmann and Briskorn (2010, 2022) and

Schwindt et al. (2015) for a comprehensive survey of RCPSP variants and corresponding

algorithmic approaches. Exact mathematical programming formulations have been studied

since Pritsker et al. (1969), and time-indexed RCPSP formulations (Artigues 2017) have

shown strong theoretical and computational performance. Over the last decade, however,

constraint programming (CP) approaches have emerged as the dominant exact solution
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methods for the RCPSP, and we refer to Laborie et al. (2018) for a review of CP methods

for the RCPSP.

Ever since the seminal work by Ebbinghaus (1885) it is well-known that the acquisition

of skills can be described by a learning curve. This concept spawned a vast body of research

on the effects of learning for more than 140 years (Yelle 1979). In particular, production

processes can become more efficient due to experience gains over time (Wright 1936). This

also extends to scheduling problems, and the impact of learning effects has been studied

extensively for machine scheduling problems (Bai et al. 2018, Lee et al. 2010, Qian and

Steiner 2013). We refer to Biskup (2008) and Heuser et al. (2022) for an overview of

scheduling problems that incorporate learning, and to Glock et al. (2019) for a more general

review of applications that involve learning in production and operations management.

We believe that in many cases the addition of practical features such as setup times, time

constraints or multiple modes - in contrast to our work - significantly increases the complex-

ity of the resource-unconstrained PSP and, therefore, many relevant model extensions are

studied in a resource-constrained setting. Research that considers the impact of learning for

project scheduling problems almost exclusively focuses on the RCPSP. Van Peteghem and

Vanhoucke (2015) incorporate learning effects through both reduced resource utilization

and altered job durations using the discrete time/cost trade-off problem (DTCTP). The

DTCTP is closely related to the RCPSP but restricted to a single non-renewable resource,

and each job can be executed in one of multiple predefined modes. These modes are used to

represent the execution of a job consuming increased amounts of resources at augmented

speed, following an underlying (resource) learning curve. Korytkowski and Malachowski

(2019) consider the estimation of activity durations when learning impacts project per-

formance, and use these estimates in a multi-skill variant of the RCPSP. Using an IT

project as an example, they show that accounting for learning effects improves estimation

of project durations. Hill et al. (2021) use CP to solve hard RCPSP instances of different

sizes where learning impacts activity durations. While our work uses the same approach

as theirs to account for learning effects, we prove that the makespan can be minimized

efficiently in the absence of resource constraints. This in turn can be useful to obtain strong

lower bounds for constraint programming approaches. A recent paper by Cao et al. (2024)

also considers RCPSPs with deliberate learning. In contrast to the autonomous learning we
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consider, their model explicitly accounts for investments and resources allocated to learn-

ing. For this setting, the authors propose heuristic solution methods that are evaluated

using a case study.

Our approach also relates to other streams of research in project scheduling. First, we

introduce a novel conditional precedence relationship to capture learning opportunities.

As such, our research extends previous work that considers generalized precedence rela-

tionships for project scheduling problems. Generalized precedence relationships were intro-

duced in Elmaghraby and Kamburowski (1992), and further considered by Reyck et al.

(1999) and De Reyck and Herroelen (1999) for RCPSPs. Möhring et al. (2004) consider

project scheduling problems with and/or precedence relations, which also allows the possi-

bility that activities can start when at least one of its predecessors has finished. However,

the combination of conditional relationships together with a reduction in activity durations

in our setting is different from previous approaches.

In addition, our work is related to the literature on project crashing (Babu and Suresh

1996, Hochbaum 2016) which considers the tradeoff between completion time and costs

when scheduling projects. Similarly, project fast tracking is another technique to reduce

project completion times by allowing certain (subparts of) activities to be completed in

parallel when they would ordinarily be done sequentially (Vanhoucke 2008, Vanhoucke

and Debels 2008). In our model, however, project completion times are reduced through

sequencing that accounts for lower activity durations for the activities that learn without

considering costs. In that regard, our approach is also different from project scheduling

models that consider sequence-dependent setup costs (Dodin and Elimam 1997).

Finally, we note that our model can also be interpreted as a certain multi-mode project

scheduling model. Multi-mode project scheduling models have been used in resource-

constrained settings to allow an activity to be executed in one of several modes which

differ in duration and resource-consumption. This concept has typically been considered to

model the trade-off between duration and resource consumption (Hartmann and Briskorn

2022). While the impact of learning on activity durations in our model could be rep-

resented by using separate modes, our model setup would also require mode-dependent

precedences. As existing approaches for multi-mode project scheduling commonly define

identical precedences for all modes of a job, they are generally ill-equipped to handle the

sequence-dependent activity durations that arise when incorporating learning effects.



Hill and Vossen: Efficient Project Scheduling with Autonomous Learning Opportunities
6

3. Project Scheduling with Learning Opportunities

We consider a directed acyclic graph GA “ pV,Aq. Nodes in the set V represent activities

that need to be completed, while the arcs pi, jq P A represent precedences. Each activity

j P V has a duration dj. We assume that GA includes a unique source node s (ds=0) and a

unique sink node t (dt=0).

In addition, let L be a given collection of learning opportunities that can be represented

by the directed graph GL “ pV,Lq. Each learning opportunity pi, jq P L implies that activity

j can learn from activity i, that is, the duration of activity j is reduced if activity i is

completed before or at the start time of activity j. For each learning opportunity pi, jq P L,

we refer to i as the teacher and j as the learner.

In our most general case, each learner activity can have multiple teachers and we define

Lj to be the set of arcs in GL that end at activity j. To express the reduction in activity

durations that occur due to learning, we use the functions

ljpLq “ ljpLXLjq, @j P V,L Ď L.

We assume that ljpHq “ 0 and that ljpLq ă dj. In addition, we also assume that ljpLq is

monotone non-decreasing in L. This allows us to capture a wide range of learning curve

models, which are typically characterized by the fact that experience improves performance

(Glock et al. 2019).

We will first consider the special case where |Lj| ď 1 for each j P V, that is, there is at

most one learning opportunity for each activity j. Hence, the indegree of each node in GL

is at most one. When considering this situation, we omit the argument in the learning

function and simply use lj p0 ă lj ă djq to express the reduction in the duration of activity

j when activity i is completed before or at the start time of activity j.

Finally, we use GA`L “ pV,A Y Lq to represent the combined network containing both

precedences and learning opportunities. We also use GA
CL “ pV,ACLq to represent the tran-

sitive closure of GA, and further assume that pi, jq P L implies that pi, jq R ACL (no free

learning) and that pj, iq R ACL (no impossible learning). In Table 1, we summarize the

notation used throughout this paper.
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Table 1 The symbols and abbreviations used in this paper.

Symbol Explanation

V Set of activities.

s Source (start) activity.

t Sink (terminal) activity.

A Set of precedences.

ACL Transitive closure of A.

L Set of learning opportunities.

Lj Learning opportunities in L for activity j P V (PSP-ML).

GA Digraph induced by A.

GL Digraph induced by L.
GA`L Digraph induced by A and L.
dj Duration of activity j P V.

ljpLq Learning benefit for activity j P V and learning opportunities L Ď Lj

(PSP-ML).

lj Learning benefit for activity j P V (PSP-SL).

4. Project Scheduling with a Single Learning Opportunity

To illustrate the challenges that arise in project scheduling problems that involve learning

and highlight the key ideas behind our approach, we first consider project scheduling

problems when there is at most one learning opportunity for each activity. To establish a

formal problem statement, we start by considering the case where L “ H. This corresponds

to the classical project scheduling problem (PSP), where the minimum makespan can be

determined by finding a longest path in GA. Throughout this work, we will use variables

uj ě 0 to represent the completion time of activity j for all j P V. A natural (dual) linear

programming (LP) formulation for the PSP is as follows:

zD “ min ut ´us

s.t. uj ´ui ě dj, @pi, jq P A.

Here, we can set us “ 0 without loss of optimality. Given that GA is acyclic, a simple way to

solve the problem is to consider a topological ordering (numbering) of its nodes. Specifically,

let TopoSort be a bijective function that topologically orders the nodes of GA, that is,

TopoSortpV,Aq : t1, . . . , |V |u Ñ V. For a given topological ordering of the precedence graph

TopoSortpV,Aq, τpkq will represent the node that is ordered at kth position. Furthermore,
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this ordering has the property that there exists no arc pτpk1q, τpkqq in GA if k1 ą k. To derive

an optimal schedule, we can apply the following Bellman equations for a given ordering τ :

uτp1q “ 0,

uτpkq “ max
i:pi,τpkqqPA

ui ` dτpkq, @k P 2, . . . , |V |.

We observe that the resulting schedule is also optimal regarding the completion time of

each individual activity j P V, in that there exists no schedule where j has a completion

time that is strictly less than uj.

In the project scheduling problem with a single learning opportunity (PSP-SL), we

extend the PSP by considering the impact of learning. Similar to the PSP, the aim is to

find a longest path. In addition, however, we aim to identify an optimal subset L Ď L of

learning opportunities. For a given set of learning opportunities L, we define the set of all

learner activities as VpLq “ tj P V : DiPVpi, jq P Lu. Then the following (dual) formulation

can be used to determine a longest path:

zDpLq “ min ut ´us

s.t. uj ´ui ě

$

&

%

dj, j R VpLq;

dj ´ lj, j P VpLq,
@pi, jq P AYL.

Its corresponding primal formulation equals

zP pLq “ max
ÿ

pi,jqPAYL:jRVpLq

djxij `
ÿ

pi,jqPAYL:jPVpLq

pdj ´ ljqxij

s.t.
ÿ

i:pi,jqPAYL

xij ´
ÿ

i:pj,iqPAYL

xij “

$

’

’

&

’

’

%

´1, j “ s;

1, j “ t;

0, otherwise,

@j P V,

xij ě 0 @pi, jq P AYL.

Each continuous variable xij is associated with the constraint for arc pi, jq in the dual

formulation above. Observe that the dual formulation will be infeasible if GA`L contains

a cycle given the assumption that dj ´ lj ą 0 for all j P Vzts, tu. In that case, the primal

is unbounded and we have zP pLq “ 8. The overall problem is therefore to determine a set
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of learning opportunities such that the longest path is minimized. We can formulate the

resulting problem as

PSP-SL : z “ min
LĎL

zP pLq. (1)

While it is possible to derive a mathematical programming formulation for PSP-SL by

replacing the inner maximization by a minimization problem (that is, replacing zP pLq by

zDpLq), the constraints in zDpLq) depend on the active learning opportunities in L. As

a result, it appears “big-M” constraints together with corresponding binary variables are

needed to account for the conditional nature of these constraints in the inner dual problem,

which can make it hard to establish efficient solution procedures.

We observe, however, that it is possible to characterize optimal solutions to PSP-SL

through a modified set of Bellman equations. Let variables u0
j and u1

j represent the com-

pletion time of job j P V in the cases that j does not learn and that j learns, respectively.

Then the recursive equations are as follows:

us “ 0, (2a)

u0
j “ max

i:pi,jqPA
ui ` dj, @j P V, (2b)

u1
j “ maxpu0

j ´ lj, ui ` dj ´ ljq, @pi, jq P L, (2c)

uj “

$

&

%

u0
j , j R VpLq;

minpu0
j , u

1
jq, j P VpLq.

, @j P V. (2d)

The following proposition shows that solutions satisfying these Bellman equations provide

an optimal solution to PSP-SL.

Proposition 1. Let pu˚, u0,˚, u1,˚q be a solution that satisfies the Bellman conditions

(2), and let

L˚
“ tpi, jq P L : u1,˚

j ă u0,˚
j u.

Then, L˚ is an optimal solution to PSP-SL.

Proof. As a first step, we observe that AYL˚ is acyclic. To understand this, suppose

that AYL˚ includes a directed cycle C Ď AYL˚. We can partition the arcs in this cycle into

two sets: C0 “ tpi, jq P C : j R VpL˚qu and C1 “ tpi, jq P C : j P VpL˚qu. For an arc pi, jq P C0 we
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have uj ě ui ` dj and for an arc pi, jq P C1 we have uj ě ui ` dj ´ lj. Then, the aggregation

of these inequalities gives

ÿ

jPVpCq

uj ě
ÿ

iPVpCq

ui `
ÿ

jPVpCq

dj ´
ÿ

jPVpCqXVpL˚q

lj,

which can be rewritten as
ÿ

jPVpCqXVpL˚q

lj ě
ÿ

jPVpCq

dj.

This yields a contradiction because we assume dj ą lj for all j P VpLq.

Next, we show that the Bellman equations (2) are sufficient to solve PSP-SL, that is,

u˚
t “ min

LĎL
zP pLq.

Suppose there exists some L̂ Ď L such that zP pL̂q ă u˚
t and let û be an optimal solution to

zDpL̂q. We show that u˚
j ď ûj holds for all j P V by induction. Because AY L̂ is acyclical,

we first determine a topological ordering τ “ TopoSortpV,A Y L̂q of the nodes in V. We

observe that u˚
0 “ ûτp1q “ 0 (assuming that s “ 0). Now, consider some k ą 0 and suppose

that u˚
τpk1q

ď ûτpk1q for all k1 ă k. We can separate two cases in which the activity τpkq is

either a learner or not in L̂:

Case 1: τpkq R VpL̂q.

In this case, we have ûτpkq “ maxpi,τpkqqPA ûi ` dτpkq. However,

u˚
τpkq “ minpu0,˚

τpkq
, u1,˚

τpkq
q ď u0,˚

τpkq
“ max

pi,τpkqqPA
u˚
i ` dτpkq.

Given that u˚
i ď ûi for all i such that pi, τpkqq P A, we have that u˚

τpkq
ď ûτpkq.

Case 2: τpkq P VpL̂q.

In this case, we have ûτpkq “ maxpi,τpkqqPAYL ûi ` dτpkq ´ lτpkq. However,

u˚
τpkq “ minpu0,˚

τpkq
, u1,˚

τpkq
q ď u1,˚

τpkq
“ max

pi,τpkqqPAYL
u˚
i ` dτpkq ´ lτpkq.

Again we have u˚
τpkq

ď ûτpkq, given that u˚
i ď ûi for all i such that pi, τpkqq P AY L̂.

This implies that z˚ “ u˚
t ď ût “ zP pL̂q, which completes the proof. ■

As a result, solving PSP-SL amounts to determining a solution to these modified Bellman

equations. Observe that these general optimality conditions do not rely on topological

sorting since no topological ordering exists for cyclic graphs GA`L. Furthermore, the max-

min nature of equations (2) significantly complicates the problem and it is not obvious how

to efficiently formulate it as a linear program. In the remainder of this section, we propose

an efficient iterative approach to find a solution to these modified Bellman equations.
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Figure 1 Precedence network GA (left), learning network GL (center), and combined network GA`L (right) for

an example project with 8 activities, 9 precedences (solid arcs), and 6 learning opportunities (dashed

arcs).

4.1. An Example Project

To describe our approach and the key algorithmic techniques behind it, we will use the

following example project. Consider an instance of PSP-SL with activity set V “ ts “

1, ..,8 “ tu. The precedence network GA, the learning network GL and the combined network

GA`L are as shown in Figure 1. Activity durations (dj) and learning effects (lj) are displayed

beside the corresponding activity nodes of GA and GL, respectively. We emphasize that GL

is not acyclic due to its unique directed cycle p2´ 4´ 3´ 2q, and, therefore, also GA`L is

not.

An optimal schedule for the corresponding PSP (without learning opportunities; i.e.,

L “ H) is given in Figure 2 (left). The unique longest (critical) path p1 ´ 2 ´ 5 ´ 6 ´ 8q

yields a project makespan of 10 time periods. When considering the learning opportunities

from Figure 1 in this instance, the optimal makespan reduces to 6 time periods which we

will prove later. The corresponding schedule is shown in Figure 2 (right). Only 3 of the

6 learning opportunities are active and the optimal set of active learning opportunities

equals L˚ “ tp3,6q, p4,3q, p4,5qu.

We emphasize that this example aims to illustrate the learning mechanism, rather than

a specific application. As an example application, one could consider planning for an

apartment building construction project. Activities would represent tasks such as flooring,

plumbing, and paint jobs, learning opportunities would naturally be obtained when work-

ers get acquainted with the specifics of the building such as floor plans, materials used and

the chosen finishing.

4.2. Optimization Strategies

In this section, we develop efficient algorithms for PSP-SL. We first explain the challenges

connected to the presence of cycles in learning networks. To understand the complications
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Figure 2 The optimal project schedule for the PSP without learning opportunities (left), and when considering

learning opportunities in the PSP-SL (right).

these cycles introduce, we start by considering single-pass and multi-pass methods that

might result in a sub-optimal solution. Afterwards, we extend these approaches and show

that an iterative strategy can be used to solve the problem to optimality in polynomial

time.

4.2.1. Topological Ordering for the Acyclic Case As a first step, we consider the

special case of PSP-SL where GA`L is acyclic. Given a set of learning opportunities L, we

can use Algorithm 1 to derive an optimal schedule based on a topological ordering of the

nodes in GA`L.

Algorithm 1 TopoSortOpt(V,A,L)
1: τ Ð TopoSortpV,AYLq Ź Compute topological ordering of GA`L

2: uτp1q Ð 0 Ź Schedule first activity in ordering (τp1q “ s)

3: for k Ð 2, . . . , |V | do Ź Iteratively schedule subsequent activities

4: u0
τpkq

Ð maxpi,τpkqqPA ui ` dτpkq

5: u1
τpkq

Ð maxpi,τpkqqPAYL ui ` dτpkq ´ lτpkq

6: uτpkq Ð

$

’

&

’

%

u0
τpkq

, τpkq R VpLq

minpu0
τpkq

, u1
τpkq

q, τpkq P VpLq

7: L Ð tpi, jq P L : u1
j ă u0

ju Ź Identify active learning opportunities

8: return pu,Lq Ź Return schedule and active learning opportunities

Lemma 1. Algorithm 1 (TopoSortOpt) computes an optimal project schedule for

PSP-SL in Op|V | ` |A| ` |L|q if the digraph GA`L is acyclic.
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Proof. Optimality follows because the schedule produced by algorithm will satisfy the

modified Bellman equations (2) by construction, while the complexity of the topological

sorting procedure is well-known (see, for example, Ahuja et al. 1988). ■

Algorithm 1 uses the modified Bellman equations (2) to generalize the well-known exact

method for the PSP described in Section 4 and returns both a vector u of optimal activity

completion times and a set of active learning opportunities L.

In general, however, GA`L can be cyclic even if GL is acyclic. To see this, consider the

example project in Figure 1 with a modified set of learning opportunities L “ tp7,4q, p6,7qu.

Because all nodes in GL have an indegree of at most one the structure of GL can be charac-

terized as a directed pseudo-forest, that is, the disjoint union of pseudo-arborescences. A

pseudo-arborescence is an arborescence with at most one additional arc forming a directed

cycle. The structure of GA`L, however, is more complicated and – to the best of our knowl-

edge – does not appear to have an intuitive structural characterization.

The TopoSortOpt method (Algorithm 1) highlights that the key challenge in solving

PSP-SL arises when the learning network GA`L contains cycles. Algorithm 1 cannot be

used for the cyclic case since no topological ordering of GA`L exists. However, every possi-

ble reduction of the set of learning opportunities that eliminates all cycles might be used

to calculate an approximate schedule using TopoSortOpt. When we consider the instance

outlined in Section 4.1, for example, GA`L becomes acyclic when removing learning oppor-

tunity p3,2q, and Algorithm 1 returns the optimal schedule with makespan 6, depicted in

Figure 2 (right). Eliminating the unique cycle by removing p2,4q or p4,3q on the other hand

instead results in a larger makespan. In general, there could be a large number of cycles

and an exponential number of such possible reductions. Therefore, it is not clear a-priori

which acyclic subgraph of GA`L should be considered.

4.2.2. Organic Learning To establish efficient procedures for determining an optimal

set of active learning opportunities, we first observe that learning can occur without its

consideration during the actual scheduling phase. Beneficial learning opportunities can

be identified in an a posteriori fashion. In this section, we explore approaches that take

advantage of such organic learning in an iterative way. To this end, we show that selected

learning opportunities can be enforced if respecting the acyclic property. At the same time,

these approaches highlight the inherent limitations of organic learning and illustrate the

challenges that arise in project scheduling problems that involve learning.
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Proposition 2. Let L1 Ď L be a set of learning opportunities such that GA`L1

is acyclic.

Then, the corresponding PSP-SL instance with the additional requirement that precisely

all learning opportunities in L1 are active can be solved to optimality efficiently.

Proof. To see this, consider the auxiliary PSP-SL instance using activities in V, the
extended precedence set A1 :“ AYL1, no learning opportunities (L :“ H), and a reduced

duration dj :“ dj ´ lj for each activity j P VpL1q. Then, Algorithm 1 (without explicit

learning opportunities) can be applied to obtain an optimal schedule where all activities in

VpL1q learn. The proposition follows from GA1

being acyclic by assumption and the fact that

every learning opportunity is enforced by construction of the auxiliary problem through

corresponding additional precedences. ■

To understand the process of organic learning, consider the optimal schedule for the

example (PSP) shown in Figure 2 (left). We argue that activity 5 learns organically from

activity 4 since the necessary precedence requirement is naturally met (i.e., u4 “ 2 ď 3 “

u5 ´ d5). Similarly, organic learning also occurs between activities 3 and 6. Using Propo-

sition 2, we can enforce both learning opportunities and re-optimize the schedule using

Algorithm 1 for the PSP. The result is an improved schedule with a makespan of 9 as

shown in Figure 3 (left). We refer to this organic learning-based method as OrgaOpt.

The schedule found by OrgaOpt can be further improved by considering organic learning

opportunities in an iterative fashion. The organic learning opportunity p5,7q can only be

identified after the initial re-optimization using OrgaOpt. Pursuing another iteration of

OrgaOpt where activity 7 also learns organically (in addition to activities 5 and 6) results in

an improved makespan of 8, as shown in Figure 3 (right). This mechanism can be repeated

until no organic learning can be identified.

Figure 3 The project schedule for the PSP-SL instance obtained after single-step organic learning OrgaOpt

(left), and after iterative organic learning OrgaOptIter (right).
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Algorithm 2 OrgaOptIter(V,A,L)
1: k Ð 0, A Ð H

2: repeat Ź Iteratively enforce organic learning opportunities

3: k Ð k ` 1

4: puk,Lq Ð TopoSortOptpV,AYA,Hq Ź Re-optimize PSP

5: Lk Ð tpi, jq P LzA : uk,j ě uk,i ` dju Ź Identify organic learning opportunities

6: for all pi, jq P Lk do

7: dj Ð dj ´ lj Ź Update organic learners’ durations

8: A Ð AYLk Ź Update enforced learning opportunities

9: until Lk “ H Ź Stop when no organic learning found

10: return puk,Aq Ź Return schedule and active learning opportunities

We refer to the resulting iterative organic learning procedure as OrgaOptIter, which

is formally described in Algorithm 2. The method repeatedly executes the TopoSortOpt

algorithm without learning opportunities which corresponds to solving a PSP after updat-

ing the precedences using Proposition 2. Note that uk denotes the schedule computed in

iteration k and uk,j is the corresponding completion time of activity j. We explicitly track

the iteration numbers to ease exposition in subsequent proofs.

In addition, we establish the complexity of OrgaOptIter in Lemma 2.

Lemma 2. Algorithm OrgaOptIter returns a feasible schedule for PSP-SL in Opp|V | `

|A| ` |L|q ¨ |L|q.

Proof. By induction, GA`L is acyclic in each iteration by definition of A and A. There-

fore, uk always corresponds to a feasible schedule using Lemma 1. The cardinality of the

set of additional precedences A strictly increases in each iteration until no new organic

learning opportunities are identified. The maximum number of iterations is |L| since A is

extended by arcs from L, i.e., k ď |L| holds. ■

Corollary 1. OrgaOpt returns a feasible schedule for PSP-SL in Op|V | ` |A| ` |L|q.

Proof. OrgaOpt is a special case of OrgaOptIter obtained by limiting the number of

iterations to two. ■

Both the OrgaOpt and OrgaOptIter algorithms can be applied when cycles are present

in GA`L. These methods, however, do not necessarily converge to a global optimum –
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even when GA`L is acyclic. To see this, it suffices to consider the example project from

Section 4.1 without learning opportunity p3,2q. Nevertheless, we recall that this acyclic

case can be solved optimally by Algorithm 1.

4.2.3. Achieving Optimality The suboptimality of the OrgaOptIter algorithm can be

attributed to the fact that it is an additive procedure, that is, learning opportunities can

only be added in each iteration. To overcome this, we next consider a more general approach

that also allows previously active learning opportunities to be removed. Specifically, we

modify Algorithm 2 to allow the deactivation of learning opportunities in line 4 of the

algorithm.

The key idea behind this approach is to consider a set of candidate learning opportunities

in each iteration of the procedure that generalizes the organic learning opportunities iden-

tified in the OrgaOptIter algorithm. Given a schedule u, a non-active learning opportunity

pi, jq P L is a candidate if

uj ą ui ` dj ´ lj,

that is, adding the learning opportunity has the potential to reduce the completion time of

activity j. After adding such candidate learning opportunities, the TopoSortOpt algorithm

can then be used to determine which of the learning opportunities should be activated.

However, we require that candidate learning opportunities do not introduce cycles in the

graph GA`L. This is established in the following lemma.

Lemma 3. Let u be an optimal project schedule with the set of active learning opportu-

nities L, and define the candidate set

C “ tpi, jq P L : uj ą ui ` dj ´ lju.

Then, GA`L`C is acyclic.

We omit a formal proof of the lemma as it follows the reasoning outlined in the first step

of the proof of Proposition 1, using LYC in lieu of L˚. Algorithm 3 describes the resulting

OptIter procedure.
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Algorithm 3 OptIter(V,A,L)
1: k Ð 0, L0 Ð H, C0 Ð H

2: repeat Ź Iteratively integrate learning opportunities

3: k Ð k ` 1

4: puk,Lkq Ð TopoSortOptpV,A,Lk´1 YCk´1q Ź Re-optimize acyclic PSP-SL

5: Ck Ð tpi, jq P L : uk,j ą uk,i ` dj ´ lju Ź Identify candidates

6: until Ck “ H Ź Stop when no candidates found

7: return puk,Lkq Ź Return schedule and active learning opportunities

Algorithm 3 generalizes organic learning for solving arbitrary PSP-SL instances, as it

guarantees an optimal solution and has polynomial time complexity. We first show that

the algorithm generates an optimal solution upon termination.

Theorem 1. Upon termination, Algorithm 3 (OptIter) returns an optimal schedule for

the PSP-SL.

Proof. To establish optimality, we show that the final solution pu,Lq satisfies the mod-

ified Bellman equations (2). By construction, we have

uj “

$

&

%

maxpi,jqPA ui ` dj, if j R VpLq;

maxpi,jqPAYL ui ` dj ´ lj, if j P VpLq.
@j P V,

and can define

u0
j “ max

i:pi,jqPA
ui ` dj, @j P V,

u1
j “ maxpu0

j ´ lj, ui ` dj ´ ljq, @pi, jq P L.

Observe that uj “ u0
j for j R VpLq, and uj “ u1

j for j P VpLq. To ensure that the optimality

equations are met, we need to show that

uj “

$

&

%

u0
j , j R VpLq;

minpu0
j , u

1
jq, j P VpLq.

, @j P V.

Clearly this holds for j R VpLq. For an activity j P VpLq, we know that

u1
j “ uj ď max

pi,jqPA
ui ` dj “ u0

j .
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Thus, uj “ u1
j “ minpu0

j , u
1
jq and therefore the optimality equations again hold. Finally, for

an activity j P VpLqzVpLq we have

u0
j “ uj “ max

pi,jqPA
ui ` dj.

When the algorithm terminates, there are no candidate learning opportunities and there-

fore uj ď ui ` dj ´ lj for the learning opportunity pi, jq P LzL, Thus, u0
j ď u1

j and therefore

the optimality equations also hold in this case. ■

Moreover, it is easy to see that the algorithm will terminate in a finite number of itera-

tions. The addition of candidate learning opportunities identified in line 5 of the algorithm

can only lead to a decrease of the completion times uj (j P V) in each iteration, while (by

induction on the topological ordering used by the TopoSortOpt algorithm in line 4) the

completion time will strictly decrease for at least one activity. The challenge in establishing

polynomial time convergence, however, lies in the fact that candidate learning opportunities

might become active, active learning opportunities might become inactive, while inactive

learning opportunities might become candidates. To demonstrate polynomial time conver-

gence, we limit the number of such occurrences. Specifically, we show that the completion

time of at least one additional activity will be fixed after each iteration and not decrease

further in any future iterations. We establish polynomial time convergence of the OptIter

algorithm in Theorem 1.

Theorem 2. Algorithm 3 (OptIter) computes an optimal schedule for the PSP-SL in

Opp|V | ` |A| ` |L|q ¨ |V |q.

Proof. We show that the OptIter algorithm will terminate in at most |V | iterations.

Given that each iteration requires Op|V | ` |A| ` |L|q time, this will establish the desired

result.

Specifically, we show that in each iteration there is at least one activity whose completion

time will become fixed. To that end, consider an iteration k and define

uk “ min
pi,jqPCk

uk,i,

that is, uk represents the earliest candidate teacher completion time in iteration k. We

also define Fk “ tj P V : uk,j “ uku and F “ tj P V : uk,j ď uku. Observe that |Fk| ě 1 by

construction unless Ck “ H and the procedure terminates.
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After completing TopoSortOptpV,A,Lk Y Ckq in iteration k, we can observe that the

completion times of the activities in F remain unchanged, that is, uk`1,j “ uk,j for j P F . In

addition, we can also observe that any activity j P F will neither be teacher nor a learner

in any candidate learning opportunity during iteration k` 1. Together, these observations

guarantee that the size of F will strictly increase after each iteration of the procedure.

To see why the completion times of the activities in F remain unchanged after completing

TopoSortOptpV,A,Lk YCkq, we note that executing TopoSortOptpV,A,Lk YCkq can only

impact the completion times of the learner activities in Ck and their successors in the

acyclic graph GAYLkYCk . Therefore, the completion times of the learner activities that are

updated will always be larger than uk, and the same also holds for their successors.

By contradiction, we can show that an activity j P F will neither be learner nor a

teacher in any candidate learning opportunity during iteration k ` 1. First, suppose that

pi, jq P Ck`1, that is, j is a learner in iteration k ` 1. However, we have i R F for otherwise

pi, jq would have been a candidate learning opportunity during iteration k. At the same

time, i R VzF because uk`1,j ď uk and uk`1,i ą uk for all i R VzF . Next, suppose that

pj, iq P Ck`1, that is, j is a teacher in iteration k ` 1. Because ui,k`1 ą uj,k`1 ` di ` li and

activity completion times only decrease, this would imply that pj, iq P Ck. However, after

the execution of TopoSortOptpV,A,Lk Y Ckq we have that ui,k`1 ď uj,k`1 ` di ` li for all

pj, iq P Ck. ■

Using the OptIter algorithm, the example project introduced in Section 4.1 can be solved

to optimality in two iterations. After computing the initial schedule for the PSP (see

Figure 2 (left)), it identifies the following learning opportunities: C1 “ tp4,3q, p4,5q, p3,6qu.

The solution of the resulting acyclic PSP-L subproblem found by TopoSortOpt is given by

u2 “ p0,3,3,2,5,6,6q and has makespan 6.

To see that the OptIter algorithm might in fact deactivate learning opportunities, con-

sider the 7-job example project illustrated in Figure 4. Note that GL, and therewith GA`L,

is cyclic. After obtaining the optimal PSP schedule with makespan 9 in the first iteration,

candidate learning opportunities p5,4q and p2,6q are considered. The resolution of the cor-

responding acyclic PSP-SL results in an improved makespan of 8, and opportunity p4,3q

becomes an additional candidate. Activity 3 does learn in the optimal schedule found in

the third iteration. However, the previously useful learning of activity 6 is deactivated.
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Figure 4 An example project for which our optimal strategy OptIter deactivates learning opportunity p2,6q in

the third iteration, yielding the optimal schedule.

5. Project Scheduling with Multiple Learning Opportunities

In this section we extend our model to incorporate multiple learning opportunities for each

activity, and show that the OptIter algorithm can be modified to also find optimal solution

in this general case.

As a first step, we again establish a formal problem statement by modifying the dual

formulation to find the longest path and minimize makespan for a given set L Ď L of active

learning opportunities. This yields the following formulation.

zDpLq “ min ut ´us

s.t. uj ´ui ě dj ´ ljpLq, @pi, jq P AYL.

Its corresponding primal formulation equals

zP pLq “ max
ÿ

pi,jqPAYL

rdj ´ ljpLqsxij

s.t.
ÿ

i:pi,jqPAYL

xij ´
ÿ

i:pj,iqPAYL

xij “

$

’

’

&

’

’

%

´1, j “ s;

1, j “ t;

0, otherwise,

@j P V,

xij ě 0 @pi, jq P AYL.
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Observe that the dual formulation will be infeasible if AYL contains a cycle (assuming that

dj ´ ljpLq ą 0 for all j P V); in that case, the primal is unbounded and we have zP pLq “ 8.

The overall problem is to determine a set of learning opportunities such that the longest

path is minimized. We can formulate this problem with multiple learning opportunities as

PSP-ML : z “ min
LĎL

zP pLq.

Following the same approach as for the single learning opportunity case, we first establish

certain properties of optimal solutions to PSP-ML. Again, we use uj to represent the

earliest completion time of activity j after incorporating learning opportunities and aim

to express those using a set of optimality equations. The optimality equations we define

are:

us “ 0, (3a)

uj “ min
LjĎLj

max
pi,jqPAYLj

ui ` dj ´ ljpLjq, @j P V. (3b)

The makespan will correspond to the largest of these completion times, that is, z “ ut.

Next, we generalize Proposition 1 to show that solutions satisfying these new optimality

equations provide an optimal solution to PSP-ML.

Proposition 3. Let u˚ be a solution that satisfies the Bellman conditions (3), and let

L˚
j P arg min

LjĎLj

max
pi,jqPAYLj

ui ` dj ´ ljpLjq, @j P V.

Then, L˚ “
Ť

jPV L˚
j is an optimal solution to PSP-ML.

We omit the proof of Proposition 3 as it relies on the same reasoning as Proposition 1,

in that we first establish that A Y L˚ is acyclic and use this to establish optimality by

induction.

A key complication in this case is that the optimality equations require optimization

over all subsets of learning opportunities for a given activity j P V. However, the following

lemma shows that only a small number of such subsets need to be considered.

Lemma 4. Suppose pi, jq P L˚
j for some j P V, and let Li,jpu

˚q “ tpi1, jq P Lj : u
˚
i1 ď u˚

i u.

Then, without loss of optimality we can assume that Li,jpu
˚q Ď L˚

j .
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Proof. This follows because

max
pi,jqPAYL˚

j YLi,jpu˚q

u˚
i ` dj ´ ljpL

˚
j YLi,jpu

˚
qq ď max

pi,jqPAYL˚
j

u˚
i ` dj ´ ljpL

˚
j q,

since

max
pi,jqPAYL˚

j YLi,jpu˚q

u˚
i “ max

pi,jqPAYL˚
j

u˚
i

following the definition of of Li,j, and

ljpL
˚
j YLi,jpu

˚
qq ď ljpL

˚
j q,

due to the monotonicity of lj. ■

Lemma 4 implies that the optimization over all subsets of learning opportunities can be

achieved by optimizing over all individual learning opportunities pi, jq for a given learner

activity j P V by considering the subset of learning opportunities whose corresponding

teacher activities have completion times earlier that activity i. We formalize this in the

following corollary.

Corollary 2. Let u˚ be a solution that satisfies the Bellman conditions (3), and let

u0,˚
j “ max

i:pi,jqPA
ui ` dj, @j P V,

u1,˚
j “ min

pi,jqPLj

max
pi,jqPAYLi,jpu˚q

u˚
i ` dj ´ ljpLi,jpu

˚
qq, @j P V.

Then,

u˚
j “ minpu0,˚

j , u1,˚
j q, @j P V.

5.1. Optimization Strategies: The Acyclic Case

We first adapt Algorithm 1 to handle multiple learning opportunities in the PSP-ML

where GA`L is acyclic. Given a set of learning opportunities L, we can now use Algorithm 4

to derive an optimal schedule based on a topological ordering of the nodes in GA`L.

Lemma 5. Algorithm 4 (TopoSortOptGen) computes an optimal project schedule for

PSP-ML in Op|V | ` |A| ` |L|p1` logp|L|qqq if the digraph GA`L is acyclic.

Proof. Optimality follows because the schedule produced by algorithm will satisfy the

modified Bellman equations (3) by construction, while the complexity follows from the

complexity of the topological sorting procedure together with the complexity of sorting

the learning opportunities. ■
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Algorithm 4 TopoSortOptGen(V,A,L)
1: τ Ð TopoSortpV,AYLq Ź Compute topological ordering of GA`L

2: uτp1q Ð 0 Ź Schedule first activity in ordering (τp1q “ s)

3: for k Ð 2, . . . , |V | do Ź Iteratively schedule subsequent activities

4: u0
τpkq

Ð maxpi,τpkqqPA ui ` dτpkq

5: u1
τpkq

Ð minpi,τpkqqPLj
maxpi,τpkqqPAYLi,jpuq ui ` dτpkq ´ lτpkqpLi,τpkqpuqq

6: pi1, τpkqq Ð argminpi,τpkqqPLj
maxpi,τpkqqPAYLi,jpuq ui ` dτpkq ´ lτpkqpLi,τpkqpuqq

7: uτpkq Ð minpu0
τpkq

, u1
τpkq

q,

8: Lτpkq Ð

$

’

&

’

%

H, u0
τpkq

ď u1
τpkq

Li1,τpkqpuq, otherwise

9: L Ð
Ť

jPV Lj Ź Identify active learning opportunities

10: return pu,Lq Ź Return schedule and active learning opportunities

5.2. Optimization Strategies: The General Case

To establish a polynomial-time algorithm to solve PSP-ML in the general case we again

rely on identifying candidate learning opportunities, using the observations in our proof of

Lemma 5. Given a schedule u and some non-active learning opportunity pi, jq P Lj, we use

Li,jpuq “ tpi1, jq P Lj : ui1 ď uiu and observe that the learning opportunities in Li,j provide

a candidate set if

uj ą ui ` dj ´ ljpLi,jpuqq.

Because a candidate set Li,jpuq includes all learning opportunities whose teacher has a

completion time that is at most ui, it suffices to only consider the non-active learning

opportunity pi, jq P Lj with the highest teacher completion time ui. More precisely, we can

define

uj “ max
pi,jqPLj :ująui`dj´ljpLi,jpuqq

ui

and its corresponding candidate set

Cj “ tpi, jq P Lj : ui ď uju.

Adding such candidate sets has the potential to reduce the completion time of activity

j. As before, however, the following lemma first establishes that adding these learning

opportunities does not introduce cycles in the graph GA`L.
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Lemma 6. Let u be an optimal project schedule with the set of active learning oppor-

tunities L, let uj “ maxpi,jqPLj :ująui`dj´ljpLi,jpuqq ui, and let Cj “ tpi, jq P Lj : ui ď uju for all

j P V. Defining the candidate set

C “
ď

jPV
Cj,

we have that GA`L`C is acyclic.

We again omit a formal proof of the lemma as it is based on the reasoning outlined in the

first step of the proof of Proposition 3. Algorithm 5 describes the resulting procedure for

determining optimal project schedules in the general case.

Algorithm 5 OptIterGen(V,A,L)
1: k Ð 0, L0 Ð H, C0,j Ð H @j P V

2: repeat Ź Iteratively integrate learning opportunities

3: k Ð k ` 1

4: puk,Lkq Ð TopoSortOptGenpV,A,Lk´1 Y
Ť

jPV Ck´1,jq Ź Re-optimize

5: for all j P V do Ź Identify candidates

6: uk,j “ maxpi,jqPLj :ująui`dj´ljpLi,jpuqq ui

7: Ck,j “ tpi, jq P Lj : ui ď uk,ju

8: until
Ť

jPV Ck,j “ H Ź Stop when no candidates found

9: return puk,Lkq Ź Return schedule and active learning opportunities

We first show that Algorithm 5 generates an optimal solution upon termination.

Theorem 3. Upon termination, Algorithm 5 (OptIterGen) returns an optimal schedule

for PSP-ML.

Proof. To establish optimality, we show that the final solution pu,Lq satisfies the mod-

ified Bellman equations (3). By construction, we have

us “0,

uj “ max
pi,jqPAYLj

ui ` dj ´ ljpLXLjq, @j P V.

Suppose now there exists some L̂j Ď Lj for some j P V such that

uj ą max
pi,jqPAYLj

ui ` dj ´ ljpL̂j XLjq.
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This implies that there exist some pi, jq P L̂j such that uj ą ui `dj ´ ljpLijpuqq, which would

yield a contradiction because the candidate set is empty upon termination. ■

Finally, we establish polynomial time convergence of the OptIterGen algorithm in Theo-

rem 4.

Theorem 4. Algorithm 5 (OptIterGen) computes an optimal schedule for PSP-ML in

Opp|V | ` |A| ` |L|p1` logp|L|qqq ¨ |V |q time.

Proof. We show that the OptIter algorithm will terminate in at most |V | iterations.

Given that each iteration requires Op|V | ` |A| ` |L|p1` logp|L|qqq time, this will establish

the desired result.

As before, we show that in each iteration there is at least one activity whose completion

time will become fixed. To that end, consider an iteration k and define

uk “ min
jPV:Ck,j‰H

uk,j,

that is, uk represents the earliest of the latest candidate teacher completion times in iter-

ation k. We again define Fk “ tj P V : uk,j “ uku and F “ tj P V : uk,j ď uku. Observe that

|Fk| ě 1 by construction unless the candidate set is empty and the procedure terminates.

After completing TopoSortOptGenpV,A,Lk Y
Ť

jPV Ck,jq in iteration k, we can observe

that the completion times of the activities in F remain unchanged, that is, uk`1,j “ uk,j

for j P F . In addition, we can also observe that any activity j P F will neither be teacher

nor a learner in any candidate learning opportunity during iteration k`1. Together, these

observations guarantee that the size of F will strictly increase after each iteration of the

procedure.

To see why the completion times of the activities in F remain unchanged

after completing TopoSortOptGenpV,A,Lk Y
Ť

jPV Ck,jq, we note that executing

TopoSortOptGenpV,A,Lk Y
Ť

jPV Ck,jq can only impact the completion times of the learner

activities in
Ť

jPV Ck,j and their successors in the acyclic graph GAYLkY
Ť

jPV Ck,j . Therefore,

the completion times of the learner activities that are updated will always be larger than

uk, and the same also holds for their successors.

By contradiction, we can show that an activity j P F will neither be teacher nor a learner

in any candidate learning opportunity during iteration k ` 1. First, suppose that Ck`1,j “

Li,jpuk`1q for some pi, jq P Lj, that is, j is a learner in iteration k`1. Because the completion
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times of activities in F do not change, we have i R F or otherwise we would have Li,jpuk`1q Ď

Ck,j during iteration k and after executing TopoSortOptGenpV,A,Lk Y
Ť

jPV Ck,jq we have

uk`1,j ď uk`1,i ` dj ´ ljpLi,jpuk`1q for all pi, jq P Ck,j. At the same time, i R VzF because

uk`1,j ď uk and uk`1,i ą uk for all i R VzF . Next, suppose that Lj,ipuk`1q Ď Ck`1,i, that is, j

is a teacher in iteration k`1 for some activity i. Because ui,k`1 ą uj,k`1 `di ` lipLj,ipuk`1qq

and activity completion times only decrease, this would imply that pj, iq P Ck,j. However,

after the execution of TopoSortOptpV,A,Lk Y
Ť

jPV Ck,jq we have that ui,k`1 ď uj,k`1 `di `

lipLj,ipukqq for all pj, iq P Ck,j. ■

6. Computational Study

We perform a computational analysis to quantify (1) makespan benefits, (2) learning oppor-

tunity utilization, and (3) algorithm performance for the discussed methods. In our exper-

iments, we use a subset of 180 instances (Hill and Vossen 2024) based on PSPlib (Kolisch

and Sprecher 1997) instances introduced in Hill et al. (2021) for the resource-constrained

case. In these instances, learning opportunities are randomly incorporated respecting the

assumptions (no free learning, no impossible learning, at most one teacher). We adapted

these instances to our model by discarding the resource features. These PSP-SL test cases

contain 30 or 120 activities (90+90 instances), from 20% to 80% learners, and duration

reduction potentials of 10%, 50%, and 90%. For the PSP-ML, we used these instances as

starting point to create instances for extended scenarios. We implemented the methods

using the computer algebra system MAPLE1 and ran the tests on an Intel Core i7-7600

2.80 GHz machine with 16 GB RAM.

6.1. Single Learning Opportunities

Tables 2 and 3 contain instance and solution details for 30-job instances and 120-job-

instances, respectively. The average run time for 30-job instances is 0.3 seconds, and 6.1

seconds for the 120-job instances. The column data can be described as follows.

#: Instance number

|V |: Number of activities

|A|: Number of precedences

|L|: Number of learning opportunities

1 https://www.maplesoft.com
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λ: Learning benefit with respect to learner duration (100 ¨ rli,j{djs)

z˚: Optimal project makespan

|L˚|: Number of active learning opportunities in optimal schedule; this number corresponds

to the number of insertion iterations in the algorithm

t(s): Algorithm run time in seconds

In the case that GL contains cycles, we denote this by ˝. If GA`L is cyclic, then this is

indicated by t . Note that ˝ implies ˝ tbut not vice versa. For 39 instances, GL is cyclic

and GA`L is cyclic for 156 instances.

6.2. No Learning, Organic Learning, and Optimal Learning

Table 4 shows the average benefit of learning for different instance sizes, relative number of

potential learning activities (|L|%) and learning intensity (λ). The relative makespan reduc-

tion with respect to the optimal non-learning project makespan is denoted by ∆%. More-

over, it contains the relative number of learning opportunities that are utilized (|L˚|%).

It can be seen that projects are clearly finished earlier even in the case of few oppor-

tunities and low individual learning effects. We observe that both factors, the increase of

learning opportunities and the increase of learning reduction have a major impact on ben-

efit. Figure 5 reveals a near-linear increase of learning benefit. This effect is comparable

to what has been observed for projects with limited resource availability (Hill et al. 2021).

However, |L|% is only correlated with ∆% and does not impact |L˚|% which consistently

ranges from 37.3% to 58.3% for both 30-job and 120-job projects. In our experiments,

λ turns out to be the main driver for makespan improvements. The highest individual

makespan saving that occurs is 57.9% – from 57 to 24 (instance 81).

To better understand the effectiveness of our sub-optimal optimization methods, we

illustrate average relative makespan reductions in Figure 6. Although organic learning is

effective, only our optimal strategy unleashes the remaining 11% of the achievable overall

learning benefit.

6.3. Multiple Learning Opportunities

We generated 160 instances for the more general case with multiple learning opportunities

– 80 with 30 jobs and 80 with 120 jobs – as follows. For each base PSP-SL instance (see

Section 6.1) with a medium learning impact (λ “ 50), we created four scenarios in which we

increased the number of learning opportunities by 20%, 40%, 60%, and 80%, respectively.
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Table 2 Detailed properties and results for PSP-SL 30-job instances.

# |V | |A| |L| λ ˝ t z˚ |L˚| t(s) # |V | |A| |L| λ ˝ t z˚ |L˚| t(s)

1 30 48 6 10 38 3 0.0 46 30 58 6 10 t 48 2 0.1
2 30 48 6 50 38 3 0.0 47 30 58 6 50 t 45 2 0.1
3 30 48 6 90 38 3 0.0 48 30 58 6 90 t 40 3 0.1
4 30 48 15 10 t 34 7 0.1 49 30 58 15 10 ˝ t 47 5 0.3
5 30 48 15 50 t 30 7 0.2 50 30 58 15 50 ˝ t 41 6 0.3
6 30 48 15 90 t 28 7 0.1 51 30 58 15 90 ˝ t 37 7 0.2
7 30 48 24 10 t 33 9 0.3 52 30 58 24 10 ˝ t 46 11 0.5
8 30 48 24 50 t 29 9 0.3 53 30 58 24 50 ˝ t 38 11 0.6
9 30 48 24 90 t 27 11 0.3 54 30 58 24 90 ˝ t 31 14 0.5
10 30 48 6 10 46 3 0.0 55 30 68 6 10 58 2 0.1
11 30 48 6 50 40 4 0.1 56 30 68 6 50 53 3 0.1
12 30 48 6 90 35 4 0.1 57 30 68 6 90 46 4 0.1
13 30 48 15 10 t 45 6 0.3 58 30 68 15 10 t 57 3 0.3
14 30 48 15 50 t 38 8 0.3 59 30 68 15 50 t 47 6 0.3
15 30 48 15 90 t 33 8 0.3 60 30 68 15 90 t 35 9 0.3
16 30 48 24 10 t 44 8 0.6 61 30 68 24 10 t 55 6 0.6
17 30 48 24 50 t 35 12 0.6 62 30 68 24 50 t 44 9 0.5
18 30 48 24 90 t 29 13 0.6 63 30 68 24 90 t 32 10 0.5
19 30 48 6 10 61 3 0.1 64 30 68 6 10 54 2 0.1
20 30 48 6 50 55 4 0.1 65 30 68 6 50 49 2 0.1
21 30 48 6 90 49 4 0.1 66 30 68 6 90 47 1 0.1
22 30 48 15 10 ˝ t 59 6 0.3 67 30 68 15 10 ˝ t 53 6 0.3
23 30 48 15 50 ˝ t 48 8 0.3 68 30 68 15 50 ˝ t 48 6 0.3
24 30 48 15 90 ˝ t 37 8 0.3 69 30 68 15 90 ˝ t 43 7 0.3
25 30 48 24 10 ˝ t 59 10 0.5 70 30 68 24 10 ˝ t 52 9 0.6
26 30 48 24 50 ˝ t 47 11 0.5 71 30 68 24 50 ˝ t 45 9 0.6
27 30 48 24 90 ˝ t 34 13 0.5 72 30 68 24 90 ˝ t 38 10 0.6
28 30 58 6 10 51 3 0.1 73 30 68 6 10 t 56 2 0.1
29 30 58 6 50 46 5 0.1 74 30 68 6 50 t 50 3 0.1
30 30 58 6 90 44 5 0.1 75 30 68 6 90 t 48 4 0.1
31 30 58 15 10 50 5 0.3 76 30 68 15 10 t 54 7 0.3
32 30 58 15 50 41 9 0.3 77 30 68 15 50 t 44 8 0.3
33 30 58 15 90 37 10 0.3 78 30 68 15 90 t 37 8 0.3
34 30 58 24 10 ˝ t 49 10 0.5 79 30 68 24 10 t 53 10 0.6
35 30 58 24 50 ˝ t 37 13 0.6 80 30 68 24 50 t 38 13 0.6
36 30 58 24 90 ˝ t 28 17 0.6 81 30 68 24 90 t 24 15 0.6
37 30 58 6 10 61 2 0.1 82 30 68 6 10 t 53 3 0.1
38 30 58 6 50 54 3 0.1 83 30 68 6 50 t 50 3 0.1
39 30 58 6 90 45 4 0.1 84 30 68 6 90 t 47 3 0.1
40 30 58 15 10 t 61 7 0.3 85 30 68 15 10 t 53 4 0.3
41 30 58 15 50 t 54 7 0.3 86 30 68 15 50 t 48 5 0.3
42 30 58 15 90 t 44 10 0.3 87 30 68 15 90 t 43 5 0.3
43 30 58 24 10 ˝ t 60 11 0.5 88 30 68 24 10 t 52 7 0.5
44 30 58 24 50 ˝ t 46 12 0.6 89 30 68 24 50 t 45 9 0.6
45 30 58 24 90 ˝ t 34 16 0.6 90 30 68 24 90 t 37 11 0.6
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Table 3 Detailed properties and results for PSP-SL 120-job instances.

# |V | |A| |L| λ ˝ t z˚ |L˚| t(s) # |V | |A| |L| λ ˝ t z˚ |L˚| t(s)

91 120 183 30 10 t 87 10 1.7 136 120 257 30 10 t 99 9 1.8
92 120 183 30 50 t 83 11 2.6 137 120 257 30 50 t 92 10 1.8
93 120 183 30 90 t 79 13 2.0 138 120 257 30 90 t 87 10 1.8
94 120 183 60 10 t 86 20 7.3 139 120 257 60 10 t 98 17 5.8
95 120 183 60 50 t 80 23 5.7 140 120 257 60 50 t 80 22 5.8
96 120 183 60 90 t 74 26 4.8 141 120 257 60 90 t 70 24 5.5
97 120 183 90 10 t 82 33 9.3 142 120 257 90 10 ˝ t 95 34 10.7
98 120 183 90 50 t 67 38 9.4 143 120 257 90 50 ˝ t 78 38 11.1
99 120 183 90 90 t 55 44 9.7 144 120 257 90 90 ˝ t 58 46 11.7
100 120 220 30 10 t 95 15 1.9 145 120 257 30 10 t 84 13 1.7
101 120 220 30 50 t 80 19 2.0 146 120 257 30 50 t 75 13 1.7
102 120 220 30 90 t 69 19 2.0 147 120 257 30 90 t 71 17 1.8
103 120 220 60 10 t 92 28 6.6 148 120 257 60 10 t 81 28 5.3
104 120 220 60 50 t 72 32 7.1 149 120 257 60 50 t 71 27 6.2
105 120 220 60 90 t 61 36 5.9 150 120 257 60 90 t 65 30 5.1
106 120 220 90 10 t 92 41 11.8 151 120 257 90 10 t 77 40 10.8
107 120 220 90 50 t 70 49 11.2 152 120 257 90 50 t 65 42 11.5
108 120 220 90 90 t 54 52 10.8 153 120 257 90 90 t 57 48 10.9
109 120 220 30 10 t 100 13 2.0 154 120 257 30 10 t 130 14 1.6
110 120 220 30 50 t 94 14 1.7 155 120 257 30 50 t 119 14 1.8
111 120 220 30 90 t 88 16 1.7 156 120 257 30 90 t 111 14 1.9
112 120 220 60 10 t 97 24 5.5 157 120 257 60 10 t 126 27 6.0
113 120 220 60 50 t 87 29 5.3 158 120 257 60 50 t 101 30 6.0
114 120 220 60 90 t 75 32 5.3 159 120 257 60 90 t 84 31 6.2
115 120 220 90 10 ˝ t 96 32 11.3 160 120 257 90 10 t 124 40 11.1
116 120 220 90 50 ˝ t 82 37 11.0 161 120 257 90 50 t 95 43 10.7
117 120 220 90 90 ˝ t 63 44 10.3 162 120 257 90 90 t 74 45 10.3
118 120 220 30 10 t 96 11 1.9 163 120 257 30 10 t 100 11 1.6
119 120 220 30 50 t 94 13 1.9 164 120 257 30 50 t 93 12 1.8
120 120 220 30 90 t 93 16 1.6 165 120 257 30 90 t 87 14 1.7
121 120 220 60 10 t 93 23 6.3 166 120 257 60 10 t 99 19 5.1
122 120 220 60 50 t 82 26 5.2 167 120 257 60 50 t 91 22 5.4
123 120 220 60 90 t 74 29 5.5 168 120 257 60 90 t 85 25 5.4
124 120 220 90 10 ˝ t 92 36 10.7 169 120 257 90 10 ˝ t 95 34 11.7
125 120 220 90 50 ˝ t 74 42 11.3 170 120 257 90 50 ˝ t 78 35 11.4
126 120 220 90 90 ˝ t 58 47 10.7 171 120 257 90 90 ˝ t 68 41 11.2
127 120 183 30 10 t 68 13 1.6 172 120 183 30 10 t 79 12 1.5
128 120 183 30 50 t 64 14 1.9 173 120 183 30 50 t 77 15 1.5
129 120 183 30 90 t 61 17 1.6 174 120 183 30 90 t 75 15 1.4
130 120 183 60 10 t 67 28 5.4 175 120 183 60 10 t 76 28 5.0
131 120 183 60 50 t 61 29 5.7 176 120 183 60 50 t 68 32 5.0
132 120 183 60 90 t 55 32 5.3 177 120 183 60 90 t 61 35 5.1
133 120 183 90 10 t 66 40 9.9 178 120 183 90 10 ˝ t 73 40 12.0
134 120 183 90 50 t 53 42 10.6 179 120 183 90 50 ˝ t 58 46 9.7
135 120 183 90 90 t 44 44 10.4 180 120 183 90 90 ˝ t 46 51 10.5
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Table 4 Average relative makespan reduction and average learning utilization for different learning parameters

and project sizes.

|V | “ 30 |V | “ 120

|L|% λ |L˚|% ∆% |L|% λ |L˚|% ∆%

20 10 41.7 2.7 25 10 40.3 2.7

50 53.3 10.9 50 45.0 9.5

90 58.3 18.2 90 50.3 14.5

* 51.1 10.6 * 45.2 8.9

50 10 37.3 5.4 50 10 40.3 5.0

50 46.7 18.9 50 45.3 17.2

90 52.7 30.5 90 50.0 26.3

* 45.6 18.3 * 45.2 16.2

80 10 37.9 7.3 75 10 41.1 7.5

50 45.0 25.2 50 45.8 25.2

90 54.2 41.3 90 51.3 39.9

* 45.7 24.6 * 46.1 24.2

* * 47.5 17.8 * * 45.5 16.4

Figure 5 The average makespan reduction (in percent) achieved through optimal learning integration for different

learning intensities lambda (10%, 50%, 90%), relative number of potential learners (20/25%, 50%,

75/80%), and project sizes (30/120 jobs).

To expand the learning network GL, we randomly selected an existing learner (i.e., a job j

such that |tpi, jq P Lu| ą 0) and a new activity to learn from. In the case that either free or

impossible learning would have been induced, we re-sampled a different activity. Similarly,
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Figure 6 The average makespan reduction when learning organically (OrgaOpt), iteratively applying organic

learning (OrgaOptIter), and optimal full learning integration (OptIter) for test projects with 30 jobs

(black), 120 jobs (gray), and all projects (white).

we discarded the random candidate when our learning function ljpLq could not be extended

for another teacher. We use different random seeds for the base instances, but the same seed

for different scenarios to ensure that the expansion is incremental. We limited ourselves to

the twenty base instances with the highest index (#) for both categories, 30 and 120 jobs.

For an activity j P V and its potential learning opportunities Lj, we define the learning

function to be ljpL
1q “ lj ` |L1| ´ 1 for L1 Ď Lj. It is easy to see that this function is

monotone. The detailed instance data and results obtained by Algorithm 5 are shown in

Table 5.

As expected, we observe reduced acyclicity for scenarios with an increased number of

learning opportunities. From 29 acyclic learning networks in the PSP-SL, the number goes

down to 14 (out of 40) in the 80% scenario. Similarly, the number of acyclic combined

networks GA`L drops from 4 to 2. The average number of jobs that experience multi-

learning in the optimal schedule is 1.6, 3.3, 4.8, and 6.3 for the augmentation scenarios

(the maximum ranged from 7 to 25).

Most importantly, our experiments show that the addition of multi-learning opportuni-

ties results in a notable reduction of the optimal makespan. This effect is shown in Table

5. We observe that the average relative makespan reduction is linearly correlated with the

percentage of new learning opportunities (R “ 0.996). We note that stronger makespan

reductions can be expected when using a more aggressive learning function ljpLq. Our

experiment choice can be considered conservative since the additional benefit of one more

teacher is always one time unit. In other words, using the first teacher can be expected to

be most beneficial which results in moderate attractiveness for more teachers.
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Table 5 Detailed instance properties and results for PSP-ML learning opportunity scenarios, and the average

relative makespan decrease (bottom line).

PSP-SL PSP-ML

# 0% 20% 40% 60% 80%

|L| ˝ t z˚ |L| ˝ t z˚ |L| ˝ t z˚ |L| ˝ t z˚ |L| ˝ t z˚

32 15 41 18 41 21 t 41 24 t 40 27 t 39
35 24 ˝ t 37 29 ˝ t 37 34 ˝ t 36 39 ˝ t 36 44 ˝ t 34
38 6 54 8 t 54 9 t 50 10 t 49 11 t 48
41 15 t 54 18 ˝ t 50 21 ˝ t 50 24 ˝ t 50 27 ˝ t 47
44 24 ˝ t 46 29 ˝ t 46 34 ˝ t 44 39 ˝ t 44 44 ˝ t 40
47 6 t 45 8 t 42 9 t 41 10 t 41 11 t 41
50 15 ˝ t 41 18 ˝ t 41 21 ˝ t 41 24 ˝ t 39 27 ˝ t 39
53 24 ˝ t 38 29 ˝ t 37 34 ˝ t 37 39 ˝ t 37 44 ˝ t 32
56 6 53 8 53 9 53 10 52 11 52
59 15 t 47 18 t 44 21 t 44 24 t 42 27 ˝ t 39
62 24 t 44 29 t 41 34 ˝ t 38 39 ˝ t 37 0 ˝ t 0
65 6 49 8 49 9 49 10 49 11 49
68 15 ˝ t 48 18 ˝ t 48 21 ˝ t 47 24 ˝ t 45 27 ˝ t 44
71 24 ˝ t 45 29 ˝ t 45 34 ˝ t 45 39 ˝ t 45 44 ˝ t 43
74 6 t 50 8 t 50 9 t 50 10 t 49 11 t 49
77 15 t 44 18 t 44 21 t 44 24 t 44 27 ˝ t 43
80 24 t 38 29 ˝ t 36 34 ˝ t 33 39 ˝ t 33 44 ˝ t 33
83 6 t 50 8 t 48 9 t 48 10 t 48 11 t 46
86 15 t 48 18 ˝ t 46 21 ˝ t 45 24 ˝ t 44 27 ˝ t 42
89 24 t 45 29 t 42 34 ˝ t 41 39 ˝ t 39 44 ˝ t 35
122 60 t 82 72 t 80 84 t 80 96 t 80 108 t 79
125 90 ˝ t 74 108 ˝ t 73 126 ˝ t 72 144 ˝ t 68 162 ˝ t 67
128 30 t 64 36 t 63 42 t 63 48 t 63 54 t 62
131 60 t 61 72 t 61 84 t 60 96 t 59 108 ˝ t 59
134 90 t 53 108 t 51 126 t 51 144 t 50 162 ˝ t 50
137 30 t 92 36 ˝ t 91 42 ˝ t 91 48 ˝ t 89 0 ˝ t 0
140 60 t 80 72 t 80 84 ˝ t 80 96 ˝ t 80 108 ˝ t 77
143 90 ˝ t 78 108 ˝ t 71 126 ˝ t 71 144 ˝ t 68 162 ˝ t 65
146 30 t 75 36 t 75 42 t 75 48 t 75 54 t 75
149 60 t 71 72 ˝ t 68 84 ˝ t 67 96 ˝ t 67 108 ˝ t 67
152 90 t 65 108 t 65 126 ˝ t 62 144 ˝ t 57 162 ˝ t 56
155 30 t 119 36 t 119 42 t 114 48 t 113 54 t 113
158 60 t 101 72 t 97 84 t 94 96 t 90 108 t 88
161 90 t 95 108 ˝ t 89 126 ˝ t 88 144 ˝ t 79 162 ˝ t 75
164 30 t 93 36 t 92 42 t 86 48 t 86 0 ˝ t 0
167 60 t 91 72 t 88 84 t 86 96 t 86 108 t 85
170 90 ˝ t 78 108 ˝ t 72 126 ˝ t 70 144 ˝ t 70 162 ˝ t 69
173 30 t 77 36 t 77 42 t 77 48 t 77 54 t 77
176 60 ˝ t 68 72 ˝ t 68 84 ˝ t 68 96 ˝ t 68 108 ˝ t 67
179 90 ˝ t 58 108 ˝ t 57 126 ˝ t 56 144 ˝ t 56 162 ˝ t 53

∆ (%) 18.0 19.9 21.3 22.6 24.8
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7. Conclusion

This paper considers the impact of learning in project scheduling problems. To capture

learning effects, we introduce a new class of conditional precedence relationships that allow

a reduction in the duration of selected activities only if these activities are scheduled after

similar activities that provide relevant experience. We study both situations where an activ-

ity learns from at most one preceding activity and where an activity can simultaneously

learn from multiple activities.

The resulting project scheduling problem with learning has to determine which of these

learning opportunities to activate. This is complicated by the fact the resulting learning

network can introduce cycles in the overall precedence graph, and a critical challenge is

therefore to determine a collection of learning opportunities that will eliminate cycles such

that overall makespan is minimized. We first analyze reactive approaches that repeat-

edly add organic learning opportunities that might be present. The limitations of these

approaches lead us to consider a more proactive approach that relies on repeatedly iden-

tifying a select subset of candidate learning opportunities. We show that the resulting

algorithm yields an optimal solution in polynomial time. Using an extensive collection of

well-known instances in the project scheduling literature, we conduct numerical experi-

ments to analyze the impact of learning in project scheduling problems. Our results indicate

that proactively accounting for learning opportunities can have significant benefits and

lead to substantial makespan reductions.

Finally, we believe that our approach presents several opportunities for further research.

It could be useful to explore mathematical programming formulations for project schedul-

ing problem with learning that potentially lead to novel methods for the resource-

constrained case. In addition, it could be interesting to explore domain-specific applica-

tions of our strategies to better understand the improvement potential in different indus-

tries. Similarly, the investigation of alternative learning curves could yield new algorithmic

insights and allow the application of the presented concepts to further domains.
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