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KEY PO INT S

•Genomic profiling
identifies molecular
subgroups of MDS
associated with distinct
clinical phenotypes and
disease courses.

• The molecular taxonomy
isabasis foramechanistic
MDS classification that
might benefit clinical
decision-making and
therapeutic research.
Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by
morphologic abnormalities of myeloid cells and peripheral cytopenias. Although genetic
abnormalities underlie the pathogenesis of these disorders and their heterogeneity,
current classifications of MDS rely predominantly on morphology. We performed genomic
profiling of 3233 patients with MDS or related disorders to delineate molecular subtypes
and define their clinical implications. Gene mutations, copy-number alterations, and copy-
neutral loss of heterozygosity were derived from targeted sequencing of a 152-gene
panel, with abnormalities identified in 91%, 43%, and 11% of patients, respectively. We
characterized 16 molecular groups, encompassing 86% of patients, using information
from 21 genes, 6 cytogenetic events, and loss of heterozygosity at the TP53 and TET2
loci. Two residual groups defined by negative findings (molecularly not otherwise speci-
fied, absence of recurrent drivers) comprised 14% of patients. The groups varied in size
from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and
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outcomes. The median bone marrow (BM) blast percentage across groups ranged from 1.5% to 10%, and the median
overall survival ranged from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to
support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of BM blasts
depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myelo-
proliferative neoplasms had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-
derived subgroups of MDS are clinically relevant and might inform future classification schemas and translational
therapeutic research.
Introduction
Myelodysplastic syndromes (MDS) comprise a diverse group of
myeloid neoplasms characterized by morphologic dysplasia,
persistent cytopenias, and a variable risk of evolution to acute
myeloid leukemia (AML).1 More than 50 genes are recurrently
mutated in MDS implicating the spliceosome complex, epige-
netic or transcriptional modifiers, and signaling pathways.2,3

Genomic profiling efforts have demonstrated preferred comu-
tation patterns and robust associations between gene muta-
tions and clinical presentation.2-7

With current classification schemas relying predominantly on
bone marrow (BM) morphology, clinical phenotypes within
MDS diagnostic categories exhibit significant heterogeneity.8-10

This highlights the need for defining genetically-informed dis-
ease subtypes to better understand MDS pathogenesis and the
variability in responses to treatment and outcomes observed in
patients. However, the complexity of the MDS genetic land-
scape has challenged the delineation of genetic subtypes.6

Formalizing the definition of genetic subtypes would provide
a valuable tool for future studies focused on elucidating disease
mechanisms and therapeutic targeting.

In this work, we studied how genetic alterations delineate
specific disease subtypes using 3233 representative samples
from patients with MDS from the cohort built to develop the
International Prognostic Scoring System Molecular (IPSS-M).7

We analyzed comutation patterns and genotype-phenotype
associations for gene mutations, copy-number alterations
(CNAs), and copy-neutral loss of heterozygosity (cnLOH) events.
Patients were clustered based on their composite molecular
profiles to develop a molecular taxonomy comprising 18
different groups (16 molecular groups and 2 residual groups).
The clinical implications of the proposed MDS molecular tax-
onomy were evaluated.

Methods
Study cohort
The cohort consisted of 3233 treatment-naive diagnostic BM or
blood samples from adult patients (median age, 72 years) with
MDS or related neoplasms with <30% blasts per the World
Health Organization (WHO) 2016 classification (excluding AML
with recurrent genetic abnormalities; ie, AML-defining cytoge-
netic lesions, NPM1, or CEBPA mutations; supplemental
Tables 1-3,8 available on the Blood website). To enable the
study of molecular subtypes across the borders of diagnostic
entities, we included 536 patients with myelodysplastic/
myeloproliferative neoplasms (MDS/MPN; 371 and 165 with
1618 10 OCTOBER 2024 | VOLUME 144, NUMBER 15
white blood cell [WBC] count below or above 13 × 109/L,
respectively), 267 patients with secondary/therapy-related MDS (s/
t-MDS), and 85 patients with AML (61 AML with myelodysplasia-
related changes, and 24 AML not otherwise specified). Clinical
annotation, cytogenetic, and outcome data were recorded. WHO
2016, WHO 2022, and International Consensus Classification (ICC)
classifications were assigned (supplemental Table 4).8-10 Diag-
nostic subtypes defined by genetic biomarkers (MDS-5q, MDS-
SF3B1, or MDS-biTP53) represented 23% and 22% of cases per
WHO 2022 and ICC, respectively.

The study was approved by the institutional review board and
Memorial Sloan Kettering Cancer Center after full consideration
of the scope and methods of the study.

Genomic analysis
Sequencing was performed with a targeted 152-gene panel
enriched with genome-wide CNA probes. Oncogenic muta-
tions with a minimum variant allele frequency (VAF) of 2% were
considered. Arm-level CNAs and cnLOH events were called
using CNACS,11 complementing cytogenetic. The putative
cancer cell fraction per sample was inferred as twice the
maximum VAF adjusted for ploidy. Whole-genome sequencing
was performed on 30 samples. For further details see the
supplemental Methods.

Statistical analysis
Molecular features were constructed from the presence or
absence of genetic alterations (gene mutations, CNAs, and cnLOH
events). Comutation analysis or prior knowledge further informed
the derivation of specific features encoding distinct allelic states or
hot spot mutations.12,13 The molecular features were used as input
for unsupervised clustering analysis using Bayesian Dirichlet pro-
cesses to identify genetic groups with high within-group similarity
and between-group discrimination.13 The results were then
manually curated into a rule-based hierarchical classification tree.
The relative chronological order of gene mutations was inferred
through Bradley-Terry analysis.2 The IPSS-M score and risk cate-
gories were calculated using the open-access R package.7,14
Results
Integrative comutation patterns and implications
for genotype-phenotype analysis
We characterized 10 564 oncogenic mutations across 126 genes
in 91% of patients, 3558 chromosomal alterations in 43% of
patients, and 375 cnLOH events in 11% of patients (Figure 1A).
Gene mutation and CNA comutation patterns were consistent
with prior studies (supplemental Figure 1).2-4,15-17
BERNARD et al
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Figure 1. Integrative comutation patterns in MDS and implications for genotype-phenotype analysis. (A) Proportion and number of patients with or without gene
mutations (mut.), cytogenetic alterations, and cnLOH events. (B) Number of patients with cnLOH at the most recurrent loci and co-occurrence of gene mutations in cis. The
most recurrent cnLOH loci were 4/4q (2.6%), 17/17p (2.3%), and 7/7q (1.6%). Mutations in TET2, TP53, and EZH2 occurred in 94% (78/83), 96% (75/78), and 79% (42/53) of cases
with cnLOH at the 4/4q, 17/17p, and 7/7q loci, respectively. (C) Heat map representing mutual exclusivity (brown) or co-occurrence (green) between gene mutations and loci
with haploid LOH or cnLOH. Apart from the strong cnLOH–gene mutation interaction in cis (black thick line), focal deletions at the TET2 locus (4q24) also co-occurred with
TET2 mutations (OR, 2.4; P = .0007). P values are from Fisher exact test with Benjamini-Hochberg (BH) multiple testing correction. (D) Comparison of comutation frequencies
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Interactions in cis between gene mutation and
cnLOH Of the patients with cytogenetic or cnLOH alterations,
93% (1281/1384) and 99% (350/351) had co-occurring gene
mutations, respectively (Figure 1A). The interactions between
cnLOH events and gene mutations in cis were highly specific,
most frequently 4q-TET2, 17p-TP53, and 7q-EZH2 (odds ratio
[OR], 37, 247, and 68, respectively; P < .0001), but also 11q-
CBL, 2p-DNMT3A, 9p-JAK2, and 1p-MPL (Figures 1B-C). Large
chromosomal losses (haploid LOH) but not cnLOH events were
systematically linked to TP53 mutations (Figure 1C). Haploid
LOH and cnLOH events had distinct genome-wide comutation
patterns (Figure 1D). As observed in clonal hematopoiesis,18,19

cnLOH events likely contribute to biallelic inactivation and/or
allele dosage adjustment of specific mutated genes in MDS.20

TET2 allelic states are associated with distinct comu-
tation patterns and clinical correlates Consistent with
published methodology,12,21 we integrated the number of
TET2 mutations, their cumulative VAFs, and 4q24 LOH status to
stratify 1014 patients with mutated TET2 into 2 groups: (1)
“TET2 biallelic” (47%), and (2) “TET2 other” (53%) representing
likely monoallelic mutation (supplemental Figure 2). SRSF2
mutations were more frequent in the TET2 biallelic group,
whereas SF3B1 mutations prevailed in TET2 other (OR, 2.7 and
0.45, respectively; P < .0001; supplemental Figure 3). Chronic
myelomonocytic leukemia (CMML) was enriched in the biallelic
group (38% vs 9%; OR, 6.4; P < .0001). Blood counts and BM
blast percentages differed between the 2 TET2 subsets
(Figure 1E), but not overall survival (OS; supplemental Figure 3).

Distinct comutation patterns between U2AF1 hot
spot mutations We systematically assessed comutation
patterns across hot spot mutations within genes. Among 278
patients with mutated U2AF1, 58% had a Q157 mutation, 41%
had a S34 mutation, and 1% had both. Patients with Q157 or
S34 mutations had distinct comutation patterns (Figure 1F), in
addition to previously reported different RNA splicing
events.22,23 However, their clinical profiles were similar
(supplemental Figure 4). For SF3B1 hot spot mutations, the only
significant difference was an overrepresentation of STAG2
mutations in patients with K666 mutation, with no other clear
clinical associations (supplemental Figure 4).24,25

Together, these results emphasize the importance of incorpo-
rating cnLOH events, allelic states, and hot spot mutations to
study genetic subtypes. Such discrimination lacked in recent
prior MDS molecular classification studies.5,26

Derivation of MDS molecular subgroups and their
clinical relevance
We characterized 18 molecular subgroups using unequivocal
and hierarchical rules (Figure 2; supplemental Figure 5). The first
Figure 1 (continued) between cases with cnLOH (blue) or haploid LOH (gold) at 7/7q in th
cnLOH at 7/7q (79%) compared with the 125 cases with isolated haploid LOH at 7/7q
DNMT3A mutations (28% and 20%) compared with cnLOH at 7/7q (9% and 2%). P values
*P < .05. (E) Comparison of the distributions of blood counts and of the percentage of
monoallelic, gold). P values are from the Wilcoxon rank-sum test. ****P < .0001; ***P < .00
hot spot mutations. For example, ASXL1 mutations were present in 65% and 20% of patie
in CUX1, EZH2, PHF6, SETBP1, TP53, and monosomy 7 were also significantly more fr
common in patients with S34 (26%) compared with Q157 (3%) mutations (P < .0001). P val
.01. FDR, false discovery rate; PTD, partial tandem duplication.
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16 groups (86%, n = 2769) were based on the presence of
mutations in 21 genes (ASXL1, BCOR, BCORL1, DDX41,
DNMT3A, EZH2, FLT3, IDH1, IDH2, MLL [ie, KMT2A], MYC,
NPM1, SETBP1, SF3B1, SRSF2, STAG2, TET2, TP53, U2AF1,
WT1, and ZRSR2), 6 cytogenetic events (inv(3), complex kar-
yotype [CK], der(1;7), −7, del(5q), −Y), and LOH at the TP53 and
TET2 loci. The molecularly not otherwise specified (mNOS)
group (8%, n = 254) corresponded to the presence of other
cytogenetic abnormalities and/or mutations in 51 other recur-
rently mutated genes (>0.5%). The No-event category (6%,
n = 210) was characterized by the absence of any recurrent
drivers evaluated in this study.

The groups varied in size (0.5%-14%) and in molecular
complexity (median, 0-5 mutated genes per patient; Figure 3;
supplemental Figures 6-7; supplemental Table 5). They were
associated with distinct demographics, clinical presentations,
and patient outcomes (Figure 3; Figure 4A-B; supplemental
Figures 8-11). Median age of diagnosis across groups ranged
from 64 to 75 years, median BM blast percentage ranged from
1.5% to 10%, median OS ranged from 0.9 to 8.2 years, and 2-
year rate of leukemic transformation ranged from 0% to 40%.
The IPSS-M captured genetic heterogeneity in relation to out-
comes within molecular groups (Figure 3) and retained superior
predictive performances compared with a model based on
molecular groups, consistent with prior studies (supplemental
Figure 12).5

From the 16 groups excluding mNOS and No-event groups
(accounting together for 14% of patients), 5 subgroups (36%,
n = 1176) validated established (TP53-complex, del(5q), and
SF3B1) or well-characterized entities (DDX41 and AML-like;
supplemental Figures 13-19), 3 subgroups (20%, n = 651)
supported previously reported subsets (bi-TET2, der(1;7), and
CCUS-like; supplemental Figures 20-22), and 8 subgroups were
novel (30%, n = 942; supplemental Figures 23-28).
Established or well-characterized entities: DDX41,
AML-like, TP53-complex, del(5q), and SF3B1
The DDX41 group (3.3%, n = 107; supplemental Figure 13)
aligned with the results of Makishima et al.27 In our study, 56%
of patients with mutated DDX41 had both a putative germ line
DDX41 variant (defined here as >30% VAF) and a somatic
DDX41 mutation, 37% only a putative germ line DDX41 variant,
and 7% only somatic DDX41 mutations (≥1; supplemental
Table 6). DDX41 mutations were the sole alteration in 23% of
cases, more frequently biallelic than monoallelic (16 and 9
cases, respectively). CUX1 was the only gene significantly
comutated with DDX41 (OR, 3.4; P < .001). TET2 mutations
were mutually exclusive with biallelic but not monoallelic
DDX41 mutations (P = .0003). The DDX41 group had a unique
e absence of CK. For example, mutations in EZH2 were enriched in the 53 cases with
(10%). Conversely, haploid LOH at 7/7q was significantly enriched for U2AF1 and
are from Fisher exact test with BH multiple testing correction. ***P < .001; **P < .01;
BM blasts between cases classified as TET2 biallelic (blue) or TET2 other (ie, likely
1. (F) Comparison of comutation frequencies between cases with U2AF1Q157 or S34
nts with U2AF1 Q157 and S34 mutations, respectively (OR, 7.3; P < .0001). Mutations
equent in the Q157 subset. Conversely, BCOR mutations and del(20q) were more
ues are from Fisher exact test with BH multiple testing correction. ***P < .001; **P <
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Figure 2. Derivation of 16 MDSmolecular groups. (A) Schematic of the analytical workflow to identify molecular groups. Features were based on the presence or absence of
genetic alterations (gene mutations, cytogenetic, and cnLOH events). Distinct allelic states or hot spots were also included based on prior knowledge (TP53 allelic state, IDH2
hot spots) or univariate comutation analysis (TET2 allelic state, U2AF1 hot spots). (B) Rules of co-occurrence and mutual exclusivity of genetic alterations organized in a
hierarchical classification tree.
clinical profile including elevated blasts and increased risk of
leukemic transformation yet no excess risk of death.27

The AML-like group (2%, n = 66; supplemental Figure 14) was
defined by NPM1 mutations (n = 39), inv(3)/t(3;3) (n = 8), or at
least 2 events from WT1, FLT3, MLLPTD, or MYC mutations
(n = 22). Of the 8 cases with inv(3)/t(3;3), 5 had a SF3B1
mutation (VAF, 5%-36%). The AML-like group showed the
highest percentage of BM blast (median, 10% vs 3%; P < .0001;
MOLECULAR TAXONOMY OF MYELODYSPLASTIC SYNDROMES
supplemental Figure 9). It was also associated with a younger
age (median, 65 vs 72 years; P < .0001), a female predomi-
nance (53% vs 39%; OR, 1.7; P = .03), short OS (median, 0.9
years [interquartile range [IQR]; 0.5-2.3]), and had the highest
rate of leukemic transformation (40% vs 14% for other MDS at 2
years; Figure 4B). Those associations were preserved when
separating patients with established AML-defining NPM1
mutations or inv(3) vs other AML-like mutations (supplemental
Figure 14).
10 OCTOBER 2024 | VOLUME 144, NUMBER 15 1621
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Figure 3. Molecular composition and main characteristics of MDS molecular groups. Each row represents a molecular subgroup, and molecular features are ordered by
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Multihit TP53 alterations have been incorporated in the WHO
2022/ICC MDS-biTP53 entity.9,10 In the TP53-complex group
(10%, n = 325; supplemental Figure 15), multihit TP53 mutations
were present in 241 (74%) cases, of which 219 (91%) had CK. Only
13 cases (4%) had monoallelic TP53 mutations and CK. Among
the 303 (93%) cases with CK, 71 (23%) had no detected TP53
mutation. This allowed us to compare CK cases with (n = 232) or
without (n = 71) TP53 mutation (supplemental Figure 18). As
expected,28 CK cases with TP53 mutations (CK:TP53) had more
cytogenetic abnormalities compared with those with CK only
(73% vs 20% with ≥6 events; OR, 10.8; P < .0001); deletion of 5q
occurred in 87% and 32%, respectively. Only trisomy 8 and
deletion of 11q were more frequent in the CK-only group. The
CK-only subset had more mutated genes than the CK:TP53 group
(46% vs 24% with ≥3 mutated genes; OR, 2.8; P = .0005), with
enrichment for RUNX1, SRSF2, and SF3B1 mutations. OS was
poor in both CK subsets, albeit shorter in the presence of TP53
mutation (median, 0.7 vs 1.5 years; P < .0001; supplemental
Figure 18). Therefore, although our categorization did not
formally distinguish between CK with or without TP53 mutation,
differences in molecular profiles and outcomes support a sub-
categorization, as suggested by Huber et al.26

The del(5q) group (6.9%, n = 222; supplemental Figure 16) was
defined by the presence of del(5q) as the sole cytogenetic
abnormality or with 1 additional abnormality excluding −7/
7q.9,10,29 In this group, 84% of patients had at least 1 gene
mutation, most commonly SF3B1 (22%), DTA (DNMT3A, TET2,
1622 10 OCTOBER 2024 | VOLUME 144, NUMBER 15
ASXL1: 21%, 17%, 14%), and monoallelic TP53 (13%) muta-
tions. Monoallelic TP53 mutations were significantly enriched in
this group (OR, 4.8; P < .0001), along with mutations in
CSNK1A1 (10%; OR, 16.4; P < .0001), IRF1 (5.4%; OR, 19.0; P <
.0001), and RAD50 (4.1%; OR, 14.1; P < .0001), all located on
5q; and NFE2 (3.6%; OR, 5.1; P = .0006). Gene mutations
occurred secondary to del(5q) (supplemental Figure 19).30

Del(5q) was associated with a female bias (75% vs 37%; P <
.0001), low hemoglobin values, high platelet counts, and
favorable OS (Figure 4B). Notably, 22% (49/222) of cases from
our del(5q) group would be excluded from the WHO 2022/ICC
MDS with isolated del(5q) category because of excess blasts.
Only 1% of cases were CMML per WHO 2016 compared with
8% per the new WHO 2022 definition of CMML.

The SF3B1 group (14%, n = 456; supplemental Figure 17) was
the most prevalent. Comutations were relatively infrequent, with
23% of cases having isolated SF3B1mutations, and 27% of cases
having only SF3B1 and DTA mutations.31,32 SF3B1 mutations
were frequently secondary to DNMT3Amutations and dominant
to TET2 mutations. The group had low BM blasts (median, 1.5%
[IQR, 1-3]) and favorable outcomes (median OS, 6 years [IQR, 3-
12]). Per WHO 2016, 80% of cases had low-blast MDS, 8% had
excess blasts, and 12% had MDS/MPN. Per WHO 2022 and ICC,
60% and 54% of cases were MDS-SF3B1, respectively (25
discordant cases classified as MDS-NOS per ICC, with SF3B1
VAF of <10% or RUNX1 mutations). Of 355 cases with low-blast
MDS, 85 (24%) met monocyte criteria for CMML per WHO 2022.
BERNARD et al
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Previously reported subsets: bi-TET2, der(1;7), and
CCUS-like
The second largest group was defined by biallelic TET2 muta-
tions (13%, n = 411; supplemental Figure 20), which has been
recognized in few studies despite its prevalence.21,33 Patients in
this group had distinct clinicohematological features, including
MOLECULAR TAXONOMY OF MYELODYSPLASTIC SYNDROMES
older age, milder anemia, increased monocytes, and a CMML
enrichment (42%; Figure 4A).

The bi-TET2 group was defined by early biallelic TET2 muta-
tions with splicing factor mutations in 80% of patients, most
commonly affecting SRSF2, SF3B1, or ZRSR2 (185/411, 86/411,
10 OCTOBER 2024 | VOLUME 144, NUMBER 15 1623
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Figure 4 (continued)
and 65/411, respectively; supplemental Figures 20-21). The
association with elevated monocytes within bi-TET2 was pre-
served across all splicing factor mutation subsets. However,
comutations further modulated the phenotypes: in multivari-
able analysis, SF3B1 and JAK2 mutations were both predictors
of higher platelet count, whereas SF3B1 mutations were pre-
dictive of lower hemoglobin level. RUNX1 mutations were
predictive of higher blasts, and ASXL1 and RAS pathway
mutations of higher WBC and monocyte counts (supplemental
Figure 21). Although secondary events influenced the overall
disease phenotype, all molecular trajectories converged on a
bias toward monocytic differentiation.
The der(1;7) group (0.5%, n = 16) was a rare subset character-
ized by der(1;7)(q10;p10), previously reported to be enriched in
Japanese populations.34,35 There was a male predominance
(14/16) and a relatively young age (median, 64 years [IQR, 55-
70]). ETNK1 mutations were enriched in this group (56%;
OR, 61; P < .0001) as secondary events (median VAF, 25%).
1624 10 OCTOBER 2024 | VOLUME 144, NUMBER 15
In the CCUS-like group (6.9%, n = 224; supplemental Figure 22),
104 (46%) patients had a single mutated gene (45 TET2, and 37
DNMT3A), 17 (8%) had loss of Y without gene mutations, and 14
(6%) only had ≥2 DTA mutations. CCUS-like had low cancer cell
fractions compared with other groups (median, 42% vs 84%; P <
.0001), reflecting smaller clonal cytopenia of unknown signifi-
cance (CCUS) clone sizes.36 The group was associated with lower
risk (68% IPSS-M very low/low) and favorable outcomes (median
OS, 4.9 years [IQR, 2 to not reached]).

Novel molecular groups: −7/SETBP1, EZH2-
ASXL1, IDH-STAG2, BCOR/L1, U2AF1157,
U2AF134, SRSF2, and ZRSR2
The −7/SETBP1 group (4.9%, n = 157; supplemental Figure 23)
was defined by SETBP1 mutations and/or −7 in the absence of
CK (OR, 9; P < .0001).37,38 Within this group, 11% of patients
had both SETBP1mutation and −7, 51% only SETBP1mutation,
and 38% only −7. SETBP1 mutations were secondary events
(median VAF, 24%). Clonally dominant events included ASXL1,
BERNARD et al
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SRSF2 (enriched in the SETBP1-only subset), or U2AF1 Q157
mutations. GATA2 mutations were also overrepresented
(OR, 6.8; P < .0001), with VAFs suggestive of germ line variants
in 6 (4%) patients (median age, 59 years; range, 18-80).39

The −7/SETBP1 group was associated with a younger age
(median, 67 vs 72 years; P < .0001), particularly for the subset
with both SETBP1 mutation and −7 (median, 61 years [IQR, 56-
69]). The sequencing panel excluded SAMD9/L genes linked to
germ line driven −7 reversion in MDS.40 Further research is
needed to investigate SAMD9/L or other germ line variants in
the −7/SETBP1 group. Last, −7/SETBP1 was characterized by
higher risk (71% IPSS-M very high/high) and poor outcomes
(median OS, 1.5 years [IQR, 0.8-3.8]).

The EZH2-ASXL1 group (4%, n = 129; supplemental Figure 24)
was defined by ASXL1 and EZH2mutation co-occurrence. It was
MOLECULAR TAXONOMY OF MYELODYSPLASTIC SYNDROMES
characterized by a high molecular complexity (75% of patients
with ≥5 mutated genes). Half of cases had splicing factor
mutations in ZRSR2 (20% [26/129]), U2AF1 Q157 (12%), SRSF2
(11%), and SF3B1 (8%). EZH2 mutations were frequently sub-
clonal to TET2, ASXL1, and splicing factor mutations. This
group had the highest proportion (47%) of secondary RUNX1
mutations. Although 60% of cases had BM blasts of <5%, this
group was associated with poor OS (median, 1.5 years [IQR,
0.9-2.8]). Splicing factor mutations in this context were not
associated with differing survival or comutation patterns
(supplemental Figure 25).

The IDH-STAG2 group (8.9%, n = 288; supplemental Figure 26)
was defined by mutations at the IDH2 R140 hot spot, IDH1,
and/or STAG2 co-occurring with either SRSF2 or ASXL1 muta-
tions. Mutations in IDH2, SRSF2, and ASXL1 were generally
10 OCTOBER 2024 | VOLUME 144, NUMBER 15 1625
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Figure 5 (continued)
acquired early whereas STAG2 mutations were late. The com-
posite genotypes of this group mirrored secondary AML,41,42

and the myelodysplasia-related AML (WHO2022) or AML with
MDS-related gene mutations (ICC) subtypes.43,44 Accordingly,
this group had elevated BM blasts (median, 6% [IQR, 3-12];
supplemental Figure 9). Median BM blasts of cases with both
IDH1/2 and STAG2 mutations, STAG2 only, and IDH1/2 only
were 12% (IQR, 7-15), 8% (IQR, 4-13), and 4% (IQR, 2-8),
respectively. This group had the third highest 2-year incidence
rate of AML transformation (28%) after AML-like and TP53-
complex (Figure 4B).

In the BCOR/L1 group (3.5%, n = 114; supplemental
Figure 27), 83% of patients had mutations in BCOR, 33% in
BCORL1, and 17% in both genes. BCOR/L1 mutations were
secondary to DTA and splicing factor mutations. The latter
occurred in 61% of patients: U2AF1 S34 mutations were most
frequent (22%; OR, 9.4; P < .0001), followed by SF3B1 (21%)
and SRSF2 (11%) mutations. Subclonal RUNX1 mutations were
frequent (41%). BCOR/L1 was characterized by pronounced
thrombocytopenia, elevated BM blasts, short OS (median,
2.2 years [IQR, 1.1-4.8]), and a 24% 2-year incidence of
AML transformation. These phenotypic associations were
irrespective of splicing factor mutation status (supplemental
Figure 28).
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The last 4 groups, U2AF1157 (2.2%, n = 72), U2AF134 (2.1%,
n = 68), SRSF2 (2.2%, n = 71), and ZRSR2 (1.3%, n = 43), were
defined based on the exclusion of the aforementioned group-
defining events and the residual presence of distinct splicing
factor mutations other than SF3B1. Patients from these groups
had fewer mutations, with 38% (96/254) having only 1 or 2
mutated genes (Figure 3). The ZRSR2 group, specific to males,
correlated with indolent clinical phenotypes and favorable OS
(median, 5.3 years [IQR, 3.5 to not reached]; Figure 4A-B).

Residual groups: mNOS and No-event
The last 2 groups were defined by negative findings: mNOS
(absence of group-defining patterns) and No-event (absence of
recurrent mutations or cytogenetic). Both groups were associ-
ated with mild phenotypes and favorable outcomes (Figure 4A-
B). Compared with cases with oncogenic events, patients
without identified drivers were younger (median age, 65 vs 72
years; P < .001), with a female bias (61% vs 38%; OR, 2.5; P <
.001), frequent classification as MDS with single-/multilineage
dysplasia (73% vs 27%; OR, 7.1; P < .001), lower risk IPSS-M
(75% vs 36% as very low/low; OR, 5.5; P < .001), and favor-
able OS (median, 7.6 vs 3.0 years; P < .001; supplemental
Figure 29). A concomitant study demonstrated that the male
subset of the No-event group was enriched for UBA1 mutations
(7%) and VEXAS-like clinical presentation.45
BERNARD et al
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Nonetheless, 11% (21/193) of cases without identified drivers
had excess blasts (median BM blasts, 7% [range, 5%-15%]). We
therefore performed whole-genome sequencing from 30
patients with excess blasts that did not have an identified driver
(n = 20) or only had −Y or DTA mutation (n = 10; −Y in 1,
DNMT3A in 4, TET2 in 4, and ASXL1 in 1). We identified
additional putative oncogenic events in 27% (8/30) of cases.
This included 1 NUP98-MLL fusion, chromosome 20 and 22
abnormalities, and 1 UBA1 M41T mutation in a male patient
(5% BM blasts), and possibly germ line frameshift mutations in
ATR, FANCC, INPPL1, and RTEL1 (supplemental Table 7).

The prognostic influence of BM blasts within
genetic subtypes
Blast count thresholds (<5% for low blast, 5%-9% for excess
blasts 1, and 10%-19% for excess blasts 2) are defining features
in MDS classifications.8-10 We evaluated how genetic subtypes
relate to BM blast strata. In our data set, 61% (1974) of patients
had <5% blasts, 18% (566) had 5% to 9%, and 16% (507) had
10% to 19%.

Seven to 9 different molecular groups accounted for >5% of
patients within each blast stratum (supplemental Figure 30).
This molecular heterogeneity translated into variability in out-
comes, whereby the OS of patients within each blast stratum
stratified with the molecular groups. However, contrary to prior
findings,26 both molecular groups and blast percentages were
independently predictive of OS (supplemental Figure 30). We
reasoned that the impact of BM blast counts on outcomes
might depend on the specific molecular subtype, and we
therefore investigated the effect of blast counts on the OS of
patients within each molecular group.

We focused on the 12 groups with at least 10 patients with
outcome data per blast stratum (Figure 4C; supplemental
Figure 31). In 8 groups (SF3B1, CCUS-like, del(5q), bi-TET2,
mNOS, BCOR/L1, IDH-STAG2, and TP53-complex), blast count
differentiated OS. Of note, blast stratification was significant in
the TP53-complex group but outcomes were all very poor
(median OS: 1.4, 0.8, and 0.7 years across the 3 strata;
supplemental Figure 32). For 4 groups (EZH2-ASXL1, −7/
SETBP1, DDX41, and AML-like), OS was not stratified by blast
count. DDX41 and AML-like had the highest blasts of all
groups: 49% (51/104) and 53% (34/64) of patients had ≥10%
blasts, respectively. Yet, within the DDX41 and AML-like
groups, both the OS and the rate of leukemic transformation
were comparable across the 3 blast strata (Figure 4D;
supplemental Figure 31). This effect in AML-like was indepen-
dent of NPM1 mutations (supplemental Figure 32). Conversely,
the EZH2-ASXL1 and −7/SETBP1 groups were enriched for low
blasts, with 61% (77/126) and 52% (79/152) of patients having
<5% blasts, respectively. However, the OS of patients in those 2
groups was poor independently of blasts (median OS, <2 years
in each stratum; Figure 4E). This demonstrates that specific
Figure 6 (continued) mutations include mutations in N/KRAS, CBL, NF1, and PTPN11.
groups −7/SETBP1, EZH2-ASXL1, IDH-STAG2, and bi-TET2, respectively, compared with 3
representing 1 dot per patients with RAS pathway mutation, with the VAF of RAS pathwa
patient on the y-axis. (E) Monocyte level in 109/L as a function of the VAF of RAS pathwa
groups as in panel C. (F) Median survival (dots) and interquartile range (lines) for MDS/M
group had favorable OS (median, 5.5 and 3.9 years for MDS and MDS/MPN, respectively).
dismal OS in both subsets (median, 2.1, 1.8, and 1.5 years, respectively, in MDS and 2.2
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genetic subtype outweighs blast count as a predictor of out-
comes, which should be considered in a future MDS
classification.
Genetic heterogeneity of s/t-MDS
We used the molecular groups to investigate genetic hetero-
geneity in s/t-MDS. We first evaluated the repartition of 267
patients with s/t-MDS across molecular groups (Figures 5A-B). As
expected, the TP53-complex group was the most frequent within
s/t-MDS (27%) and enriched in this subset compared with pri-
mary MDS (OR, 3.8; P < .001).46-48 The remaining 73% of
patients with s/t-MDS spread across 16 other groups, predomi-
nantly −7/SETBP1 (10%, 27/267), SF3B1 (9%), and IDH-STAG2
(8%). The −7/SETBP1 group was enriched in s/t-MDS (OR, 2.4;
P < .01), whereas the SF3B1, bi-TET2, and DDX41 groups were
underrepresented (OR: 0.5, 0.5, and 0.2, respectively; P < .05).

When selecting groups with >20 patients with s/t-MDS (TP53-
complex, −7/SETBP1, SF3B1, and IDH-STAG2), and
comparing s/t-MDS with primary MDS, we observed similar
molecular (Figure 5C; supplemental Figure 33), clinical
(Figure 5D; supplemental Figure 34), and outcome (Figure 5E)
profiles. The younger age characterizing −7/SETBP1 was
conserved in s/t-MDS (median age, 67 years; range, 39-81). We,
and others, have shown that the IPSS-M efficiently risk stratifies
patients with s/t-MDS.3,49 Here, we demonstrated that the
heterogeneity in outcomes within s/t-MDS can be partially
explained by the underlying molecular subtypes. Indeed, the
median OS of patients with s/t-MDS across TP53-complex, −7/
SETBP1, IDH-STAG2, and SF3B1 groups were 0.8, 1.5, 1.6, and
4.7 years, respectively, which was similar to the OS of the
respective primary MDS subsets (Figure 5E).

Genetic heterogeneity of MDS/MPN with
ubiquitous RAS pathway mutations enrichment
The distribution of molecular subgroups in 536 patients with
MDS/MPN (WHO 2016) was heterogeneous and consistent with
prior studies (Figure 6A).50 Fifteen groups were observed in
>1% of patients, and 6 groups (bi-TET2, SF3B1, IDH-STAG2,
EZH2-ASXL1, mNOS, and −7/SETBP1) in >5% of patients.
Among those, bi-TET2 and EZH2-ASXL1 were enriched in
MDS/MPN compared with MDS (OR, 5.2 and 2.6, respectively;
P < .0001; Figure 6B). Beyond the genes defining the enriched
groups (TET2, EZH2, ASXL1, and SRSF2), RAS signaling
pathway mutations (OR, 4.8; P < .0001) and, to a lesser extent,
RUNX1 mutations (OR, 1.4; P < .01) were enriched in MDS/
MPN. RAS pathway mutations were consistently over-
represented in MDS/MPN across the −7/SETBP1, EZH2-ASXL1,
IDH-STAG2, and bi-TET2 groups (Figure 6C; supplemental
Figure 35). Moreover, the VAF of RAS pathway mutations was
higher in MDS/MPN (median, 20% [IQR, 6-42]) than in MDS
(median, 10% [IQR, 4-31]; P < .0001) across molecular sub-
groups (Figure 6C-D; supplemental Figure 35).
They were observed in 68%, 51%, 45%, and 40% of patients with MDS/MPN within
3%, 21%, 14%, and 15% of patients with MDS within the same groups. (D) Scatterplot
y mutations on the x-axis and the maximum VAF of all other mutations in the same
y mutations in the subset of 297 patients with MDS/MPN from the same molecular
PN (green) and MDS (blue) within each molecular group. Patients from the bi-TET2
Conversely, patients from the IDH-STAG2, EZH2-ASXL1, and −7/SETBP1 groups had
, 1.1, and 2.0 years, respectively, in MDS/MPN).
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We explored molecular predictors of WBC and monocyte
levels. In multivariable regressions for leukocytosis and
monocytosis, the presence of RAS pathway, SRSF2, biallelic
TET2 (but not monoallelic), and ASXL1 mutations were posi-
tive predictors for both parameters (supplemental Figure 36).
EZH2 mutations predicted for leukocytosis but not mono-
cytosis, consistent with the atypical CML enrichment in the
EZH2-ASXL1 group (OR, 8.8; P < .001). The 185 patients with
MDS from the bi-TET2 group had higher monocyte counts
than the 1675 patients with MDS from other groups (48% vs
24% with ≥0.5 × 109/L; supplemental Figure 37). In addition,
the VAF of RAS pathway mutations strongly predicted
increased monocyte counts in multivariable analysis
(Figure 6E; supplemental Figure 36).51,52 This effect was
stronger in MDS/MPN than MDS (supplemental
Figures 36-37), suggesting that considerable expansion of
RAS pathway mutated clones is necessary to drive elevated
monocyte counts at diagnosis.

Last, we compared the clinical phenotypes and outcomes of
patients categorized as MDS or MDS/MPN within molecular
groups. Despite expected differences in WBC and monocyte
counts, age, blast, hemoglobin, and platelet distributions were
comparable within each group (supplemental Figure 38), as
well as OS (Figure 6F; supplemental Figure 39). Thus, similar to
our observations in s/t-MDS, the genetic subtype plays a
dominant role in the overall clinical phenotype (aside from the
MDS/MPN-defining features of WBC and monocyte counts)
and outcomes irrespective of morphologic classification as
MDS or MDS/MPN.

Discussion
Diagnostic classification of hematologic neoplasms rely pre-
dominantly on morphological features, which do not
adequately account for heterogeneous clinical phenotypes
and outcomes. Deletion 5q, SF3B1, and biallelic TP53
mutations are established subtype-defining MDS bio-
markers.9,10 However, the majority of genetic lesions are not
yet considered. A broader integration of genetic alterations
will improve our understanding of disease ontogeny; the
design of clinical trials; and, ultimately, the diagnosis and
treatment of MDS.

We characterized 18 MDS subtypes (16 genetic groups and 2
residual groups) each associated with specific clinical pheno-
types and disease courses. The subtypes were defined by
combinations of chromosomal aneuploidies, cnLOH events
(TP53 and TET2 loci), gene mutations, and gene–gene inter-
actions. We validated established (TP53-complex, del(5q), and
SF3B1) or well-characterized entities (DDX41 and AML-like),
substantiated support for emerging subtypes (bi-TET2, der(1;7),
and CCUS-like), and unveiled novel groups (−7/SETBP1, EZH2-
ASXL1, IDH-STAG2, BCOR/L1, U2AF157, U2AF134, SRSF2, and
ZRSR2). Unlike published MDS genetic hierarchies,5 splicing
factor mutations were not at the top of the classification tree.
For several subgroups, the defining events were secondary to
DTA and/or splicing factor mutations (SETBP1, EZH2, STAG2,
or BCOR/L1 mutations), reminiscent to NPM1 mutations
defining a unique AML subtype while often being secondary to
DNMT3A mutations.53 Study limitations included the use of
targeted sequencing, which might have omitted pertinent
MOLECULAR TAXONOMY OF MYELODYSPLASTIC SYNDROMES
biomarkers (eg, SAMD9/L variants and UBTF tandem duplica-
tion), the absence of germ line control tissues, and the lack of
correlative analysis with some relevant morphological features,
such as cellularity and fibrosis.

We evaluated the relationship between genetic subtypes and
blasts. In several groups (AML-like, DDX41, −7/SETBP1, and
EZH2-ASXL1), blast percentages did not stratify patient out-
comes. However, for groups enriched for lower-risk disease (for
example del(5q), bi-TET2, SF3B1, CCUS-like, and mNOS) blasts
percentages differentiated outcomes. This suggests a novel
paradigm in which the genetic subtypes should be the over-
arching basis of disease classification, whereby blasts designate
disease stage within certain genetic contexts, for example
del(5q) or IDH-STAG2 with increased blasts, as Kewan et al also
have suggested.6

These molecular subgroups facilitated the evaluation of
genetic heterogeneity in s/t-MDS and MDS/MPN. Although
enriched in specific subtypes (TP53-complex and −7/SETBP1),
s/t-MDS were represented across most genetic groups,
including those associated with favorable outcomes (SF3B1).
This suggests that although some chemotherapy-resistant
molecular subtypes are promoted by prior therapy,54 others
may arise from other mechanisms. Patients with s/t-MDS and
primary MDS had comparable clinical profiles and outcomes
within genetic subtypes. MDS/MPN were also represented
across diverse genetic subgroups (SF3B1, IDH-STAG2, and
EZH2-ASXL1) but were strongly enriched in the bi-TET2 group,
which was associated with elevated monocytes across disease
categories. A higher frequency and clonal expansion of RAS
pathway mutations in MDS/MPN over MDS was ubiquitous
across genetic subtypes. This argues for the recognition of
bi-TET2 as a unique entity encompassing both MDS and
MDS/MPN, and for the prospective monitoring of RAS
pathway mutations as potential biomarkers predictive of
monocytic proliferation.

The molecular taxonomy outlined in this study identifies groups
of patients with MDS with shared molecular pathogenesis,
providing the foundation for a broader genetically informed
classification of MDS. Its purpose is different from that of
prognostic assessments, such as IPSS-M, whereas both inform
clinical decision-making. Prognostic schemas consider clinical
and molecular features to estimate patient outcomes, thus
guiding risk-adapted therapies. However, there is no equiva-
lence between risk and molecular groups: 2 patients from the
TP53-complex or EZH2-ASXL1 molecular groups may both be
categorized as high risk although distinct. The definition of
molecular groups is key to identifying determinants of disease
progression and treatment response. This molecular taxonomy
should be a useful tool for future correlative studies and
exploratory analyses within clinical trials evaluating the efficacy
of therapeutic compounds and for the development of targeted
therapies.
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