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Abstract
The advent of superconducting bulks, due to their compactness and performance, offers new
perspectives and opportunities in many applications and sectors, such as magnetic field
shielding, motors/generators, NMR/MRI, magnetic bearings, flywheel energy storage, Maglev
trains, among others. The investigation and characterization of bulks typically relies on
time-consuming and expensive experimental campaigns; hence the development of effective
surrogate models would considerably speed up the research progress around them. In this study,
we first produced an experimental dataset containing the levitation and lateral forces between
different MgB2 bulks and one permanent magnet under different operating conditions. Next, we
have exploited the dataset to develop surrogate models based on Artificial Intelligence (AI)
techniques, namely Extremely Gradient Boosting, Support Vector Regressor (SVR), and Kernel
Ridge Regression. After the tuning of the hyperparameters of the AI models, the results
demonstrated that SVR is the superior technique and can predict levitation and lateral forces
with a worst-case accuracy scenario 99.86% in terms of goodness of fit to experimental data.
Moreover, the response time of these models for the estimation of new datapoints is ultra-fast.

Keywords: extremely gradient boosting, kernel ridge regression, machine learning,
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1. Introduction

Nowadays, the applications of superconductivity involve
energy, transportation, industry, medicine, communication,
environmental protection, and various other aspects. With the
advancement of superconductors like cuprates, MgB2, and
iron-based superconductors, the utilization of bulk supercon-
ductors expands across various domains. These include mag-
netic field shielding, motors/generators, NMR/MRI, magnetic
bearings, flywheel energy storage, and Maglev trains utilizing
superconducting magnetic levitation (SML) systems [1–3].
While ReBCO bulk has receivedmore attention for its superior
superconducting properties and cost-effective cooling method
in these applications, advancements in high-quality and large-
size MgB2 bulk fabrication [4–6] and two letters recently
published in the “Superconductor Science and Technology”
journal [7, 8] have unveiled the significant potential of MgB2

bulk material for new applications such as SML and NMR sys-
tems utilizing hydrogen liquid cooling. This also presents a
promising avenue for clean energy development [9]. Despite
the operating temperature of MgB2 is lower compared to
cuprates like ReBCO, MgB2 offers other advantages for the
applications, including affordability, low density, reduced
issues of anisotropy and inhomogeneity.

SML systems, benefiting from the flux pinning proper-
ties of bulk superconductors and requiring no energy sup-
ply except for system cooling, demonstrate a stable levita-
tion force between the magnet source and the superconductor
bulk [3]. It is noted that levitation stability is an aspect of
paramount importance for real applications. Stable levitation
occurs when, for a horizontal relative displacement between
a superconducting bulk and a permanent magnet (PM) (typ-
ically one superconducting bulk and one conventional PM), a
horizontal force in the same direction but opposite sign arises.
This force, which is referred to as lateral force hereafter, helps
to bring the two magnets (PM and cryomagnet) to the initial
relative axial position, hence the levitation is stable. If the lat-
eral force shared the same sign of the horizontal displacement,
it would tend to make the magnet and the superconductor push
each other away, resulting in an unstable levitation. The stabil-
ity of such systems is closely related to the ratio of dimensions
between the superconductingmaterials and the magnet source,
the cooling distance, and the working temperature. A highly
stable levitation force exceeding 400 N was achieved using a
120 mm diameter MgB2 bulk fabricated within 2 h [8]. This
value is comparable to systems consisting of ReBCO bulks
[10], and the fabrication process for superconducting samples
is much faster and simpler.

As the current research in the field is focused on finding
the characteristics and conditions for superconducting bulk
to yield strong and stable levitation, tackling this challenge
exclusively experimentally would imply an enormous and
expensive amount of work dedicated to the manufacturing of
the superconducting samples and its experimental tests. The
availability of reliable surrogate models for the calculation
of the levitation and lateral forces produced with supercon-
ducting bulks would represent an efficient tool for guiding the
research towards its current goals.

Artificial intelligence (AI) techniques have recently been
the center of attention within superconducting community, as
they can be used for optimization, estimation, conditionmonit-
oring, etc. AI techniques offer accuracies close to experimental
measurement while their computation times aremuch less than
modelling techniques such as finite element methods [11–14].
In addition, as AI techniques could help with prediction val-
ues for those data points which are not part of experiment or
modelling campaign, they technically can provide interpola-
tion and extrapolation with high accuracies [15, 16]; some-
thing that conventional statistical or mathematical methods are
not capable of [17–19].

Recent advancements in AI have paved the way for sig-
nificant breakthroughs in high-temperature superconducting
(HTS) maglev technologies. Researchers are increasingly
turning to AI and machine learning (ML) techniques to
tackle complex challenges in design, diagnostics, and oper-
ational control of maglev systems [20]. A notable applica-
tion of AI is in the development of neural network-based
state observers designed to estimate system states and para-
meter matrices effectively. This approach includes the use
of adaptive inversion control algorithms that incorporate out-
put limitation characteristics to ensure stability against load
variations and disturbances [21]. In the field of system dia-
gnostics, AI has proven instrumental in vibration state detec-
tion. Backpropagation neural networks are employed to accur-
ately detect and classify different vibration states within
HTS maglev systems [22]. AI techniques like wavelet trans-
form combined with neural networks facilitate the analysis
of thermal-vibration correlations. This approach offers a non-
invasive method to monitor internal temperature changes in
superconductors, crucial for diagnosing system health and pre-
venting failures before they occur [23].

AI’s ability to handle complex problems extends to the pre-
diction of levitation forces, a critical aspect of maglev techno-
logy. Aligning with [24, 25], where the authors utilize neural
networks, such as back-propagation and gated recurrent unit
models, to predict complex and nonlinear levitation and lat-
eral forces, this study tries to implement robust AI techniques
to develop intelligent models for prediction of these forces for
MgB2 bulks with various dimensional sizes.

In this paper, three AI algorithms that can manage vari-
ous non-linear datasets with an extremely high accuracy,
namely Extremely Gradient Boosting (XGBoost), Support
Vector Regressor(SVR), and Kernel Ridge Regression (KRR)
have been used to essentially estimate the levitation and lateral
forces in MgB2 superconducting bulks. These AI algorithms
have been trained over a dataset containing the experimental
results regarding the levitation and lateral forces between a
conventional PM and MgB2 bulks of diverse sizes and dimen-
sions, and under different operating conditions (meaning the
temperature of and the relative position the bulk). The find-
ings of the work demonstrated that the AI models can estim-
ate these forces with an accuracy of 99.86% of R-squared
for testing dataset. Another major point about these models
is that such an excellent accurate estimation is occurring in
only milliseconds of time, making it suitable for fast pre-
dictions wherever is required. The MgB2 samples, created
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Figure 1. Photograph of spark plasma sintering equipment and the
interior of the sintering chamber.

using the Spark Plasma Sintering (SPS) technology at the
University of Caen-Normandy, were tested using a specific
facility at the University of Bologna (UniBO), and the AI
models were developed in the ‘Propulsion, Electrification &
Superconductivity’ group at University of Glasgow specific-
ally for these experimental data. The combination of the exper-
imental data and AI models provides a more convenient and
efficient method to identify suitable working conditions for the
Superconducting Magnet Levitation System in the future.

In the following sections, first, the procedure of the tests,
their findings, and data processing for AI modelling will be
discussed. Next, in section 3, the algorithms of AI techniques
and the performance indices that have been used in this paper
will be explained. During section 4, initially the effective para-
meters of all three AI techniques will be presented and then
the results of the sensitivity analysis on them are proposed.
Finally, a conclusion based on the results of modelling will be
presented.

2. Sample preparation and experimental testing

2.1. Sample synthesis and preparation

This study utilized ten cylindrical bulks of MgB2, prepared
through the SPS technology [8] using MgB2 powder acquired
from Pavazyum company (in Turkey). SPS is renowned for its
efficiency in producing highly dense MgB2 bulks by applying
uniaxial pressure and simultaneously high-intensity current to
heat and densify the pellets [26, 27]. The powder is heated by
the Joule effect, resulting in a typically faster process com-
pared to other sintering methods [28]. Figure 1 shows the SPS
machine (FCT Systeme GmbH, HD25, Rauenstein, Germany)
located at the University of Caen-Normandy in the CRISMAT
laboratory. The sintering of the samples occurred at 1150 ◦C
for 45 min with an applied axial pressure of 50 MPa under
dynamic vacuum conditions (10−3 mbar). The samples shown
in figure 2 typically exhibit a relative density exceeding 98%.
Detailed information regarding the label name and dimensions
of the fabricated MgB2 discs can be found in table 1.

Figure 2. Photograph of the MgB2 discs prepared by the spark
plasma sintering.

2.2. Experimental setup

The levitation apparatus employed in this studywas previously
used and described in [29, 30]. This apparatus comprises a
vacuum chamber that envelops a cooling copper plate designed
to support the superconductor. Moreover, it includes a mech-
anical system for moving a PM and a set of probes for measur-
ing the levitation and lateral forces. The displacement system
consists of two stepping motors that can move the PM in both
vertical (z-axis) and horizontal (x-axis) directions, being the
directions along which the forces are measured. These motors
are situated outside the vacuum chamber and are linked to
the PM through a rod passing through a vacuum-tight flex-
ible steel tube. The maximum excursion of the PM along the
vertical and the horizontal direction is 55.9 mm, whereas levit-
ation forces up to 700 Nwere recently measured in this facility
[8]. The copper cold plate is linked to the second stage of
the Sumitomo Cryocooler RDK 415D, potentially capable of
cooling the plate down to 4.2 K with a cooling power of 1.5 W
at the same temperature. However, during experiments, due
to the input radiation the bulks in contact with the cold plate
could reach 16 K at minimum. The superconductor’s temper-
ature is regulated using four power resistors connected to the
cold head and is monitored through two Si diodes. Pictures of
the levitation facility are depicted in figure 3.

2.3. Experimental tests and data collection

The levitation and lateral force measurements were carried
out after field cooling the superconductor within the field of
a NdFeB PM with a diameter of 70 mm and a thickness of
35 mm. To measure the levitation forces, the magnet was posi-
tioned above the superconductor at a distance Zcp (cooling
height) from the sample’s surface, symmetrically aligned with
the superconductor axis (X = 0). The MgB2 disc was then
cooled down to the measurement temperature (20 K). After
the sample temperature stabilized, the magnet descended ver-
tically toward the superconductor until it reached theminimum
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Table 1. Parameters of fabricated MgB2 samples.

Label S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Diameter (mm) 69.5 65.2 59.6 49.7 50 50 50 50 50 56
Thickness (mm) 9.88 9.5 9.8 9.8 2 2.9 5 7.6 16 16.2

Figure 3. UniBO levitation apparatus pictures: (a) The motors of the displacement system, the instruments for acquiring measurements, and
the vacuum chamber. (b) The cryocooler, the helium flux lines, and the vacuum system. (c) Inside of the vacuum chamber with the strain
gauges, the permanent magnet and the superconducting bulk hold still by a copper and aluminium clamping system.

distance (Z = Zmin) above the superconductor surface. At this
point, the motion was reversed, and the magnet ascended to its
initial position. The interaction force between the magnet and
the superconductor was recorded as a function of the vertical
distance (Z) between them throughout the entire process.

After the magnet returned to the cooling height, it was lat-
erally moved along the surface of theMgB2 disc until reaching
Xmax. Then the motion direction was reversed and returned to
zero. The vertical and lateral force was recorded as a function
of X during this process. Furthermore, the distance between
the magnet and the superconductor was systematically adjus-
ted to different altitudes (Z < Zcp), and the same measure-
ments were carried out until reaching the point where the lat-
eral force, Fx, exhibited a positive slope, indicating a loss of
stability in the system [31].

The displacement speed of the magnet was maintained at
10mm s−1. Figure 4 shows the flow chart illustrating the entire
force measurement process for all MgB2 samples. Table 2
provides a summary of the experimental conditions utilized
for different samples. Once the experimental campaign was
completed, the data collected have to be processed to make it
suitable for AI models, hence it was stored in a tabular form
with proper labelling, in which each row contains one unique
combination of experimental datapoints. In the resulting table,
the columns contain the cooling point distance (Zcp), the dia-
meter of the bulk (Dsc), the height of the bulk (Hsc), the temper-
ature of the bulk (T), the actual vertical distance between the
bulk and the PM at the moment of the forces measurement (Z),
the actual horizontal distance between the axes of symmetry
of the bulk and the PM at the time of the forces measurement

(X), the movement orientation, and the lateral and levitation
forces measured. For clearance, figure 5 offers a visual rep-
resentation of the geometrical parameters mentioned earlier,
while the first three rows of the dataset table (which contains
11 408 datapoints in total) are shown in table 3. It is reminded
that Zcp and Z refer to the vertical distance between the upper
surface of the bulk and the lower surface of the PM.

For reaching the best possible AI prediction accuracy, it is
decided to develop single target models, which means that,
for a given combination of inputs, the model predicts only
one type of quantity (either the levitation or the lateral force).
Therefore, three types of tests are considered according to
the aforementioned motivation: one that predicts the levita-
tion force following a vertical movement along the shared axes
of symmetry (#1), one that predicts the lateral force follow-
ing a horizontal movement (#2), and one that predicts the lev-
itation force following a horizontal movement (#3). Test #1
makes its prediction based on four inputs while for tests #2
and #3 seven inputs have been used. As an example, table 3
demonstrates the first dataset used for tests #2 and #3. Instead,
the first test only needs four inputs, because no horizontal
movement is implied in this case and also because the tem-
perature was always kept equal to 20 K during the tests that
explored the levitation force due to vertical movements of
the PM. Details of the three considered tests are reported in
table 4.

Once data is made as discussed, it is now ready for imple-
mentation in the AI algorithms; however, as the number of data
is limited, it is common among the researchers that consider
80% of the data for training purposes of the network and 20%
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Figure 4. Flow chart of the whole force measurements.

Table 2. Experimental conditions for different samples.

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Zcp (mm) 25, 30, 35, 40, 50 30, 40, 50 30, 40, 50 30, 40 30, 40, 50 30, 40, 50 30 30, 40, 50 30 30
Temperature (K) 20 20 20 20 20 20 20 20 20 20, 26, 28, 29, 30

Figure 5. (a) Positions of the SC bulk (with diameter Dsc and heigh Hsc) and the PM during field cooling. During this time, the upper
surface of the bulk and the lower surface of the PM are distance Zcp from each other. The bulk is cooled down to temperature T. (b) After the
bulk is cooled down and its temperature is stable, the PM is moved vertically to a new position Z. The bulk and the PM, still share the same
axes of symmetry (X = 0), and the levitation and lateral forces are measured (waiting a few hundreds of milliseconds after the PM has
stopped moving). (c) While the bulk temperature is stable and a vertical position Z is established, the PM is moved horizontally (according
to a certain orientation, left or right) to a new position X, and the levitation and lateral forces are measured (waiting a few hundreds of
milliseconds after the PM has stopped moving).
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Table 3. A sample of pre-processed dataset.

Zcp (mm) Dsc (mm) Hsc (mm) T (K) Z (mm) X (mm) Orientation of movement Lateral force (N) Levitation force (N)

30 49.7 9.8 20 6 1 Right 0.8 147.7
30 49.7 9.8 20 6 2 Right 0.6 147.5
30 49.7 9.8 20 6 3 Right 0.7 147.6
… … … … … … … …

Table 4. Details of the input and output parameters of each test for implementation in the AI models.

Test Input parameters Output parameter Movement orientation Number of observations

#1 Zcp, Dsc, Hsc, Z Levitation force Vertical 1416
#2 Zcp, Dsc, Hsc, T, Z, Oreintation of moving,X Lateral force Horizontal 11 408
#3 Zcp, Dsc, Hsc, T, Z, Oreintation of moving, X Levitation force Horizontal 11 408

of it for testing of the developed model. In this way, the pre-
dicted values of the model can be compared with experimental
results, evaluating its performance and predictability.

3. The proposed AI models

The selection of ML models in this study was driven by
the imperative to utilize robust, versatile, and innovative
approaches for the accurate estimation of both levitational and
lateral forces. The rationale behind choosing these specific
models can be explained as follows:

• These algorithms have demonstrated high levels of accuracy
and efficiency in predictive tasks across various scientific
fields. Their ability to deliver rapid predictionswithhigh reli-
ability is beneficial for real-time application in supercon-
ducting systems, where timely and accurate force estima-
tions are critical. The literature provides numerous instances
where these methods have been successfully applied in
many engineering and scientific applications.

• The selection of these algorithms was also influenced by
their unique features that cater to the specific requirements
of our research. For instance, effective handling of outliers
of SVR and scalability of XGBoost were key considerations.
Also, the ability of KRR to handle multicollinearity effect-
ively made it a suitable choice given the correlated nature
of superconducting properties and external influences like
temperature and magnetic field strength.

3.1. SVR

Support vectors are a family ofMLmethods including Support
Vector Machine (SVM), which is used for classification, and
SVR, which is for regression problems [32]. The main logic
of the SVR is to convert the input dataset to a new dataset
with higher dimensions. Then, it tries to simply find a hyper-
plane in the higher dimension space that best represents the
relationship between the input and output features [33]. There
are also twomarginal lines, with same distance from the hyper-
plane and parallel to it. Although the ideal condition is that
the hyperplane does not have any datapoint in the vicinity of
it with marginal lines, in application there will be some points

Figure 6. Schematic of SVR method.

that are very close to it, which are known as support vectors
[34, 35] and has been shown in figure 6. In this figure, X1 and
X2 are two axes of higher dimensional space. Support vectors
are the components that specify where and which orientation
the hyperplane should be.

Themain objective of the SVR technique is tomaximize the
marginal area around the hyperplane with respect to the toler-
ance that has been set for the algorithm to neglect support vec-
tors. This can be reached by using the following equation [36]:

Objective :Min

[
||w||2

2
+C

(
vϵ+

1
P

P∑
i=1

(ζi+ ζ∗i )

)]

Constraints


f(xi)− si ⩽ ϵ+ ζ∗i
si− f(xi)⩽ ϵ+ ζi

ζi, ζ
∗
i ⩾ 0

ϵ⩾ 0

. (1)

In equation (1), i ∈ N and from 1 to P, term ||w||2
2 is known

as the regularization factor, C is a constant for controlling the
smoothness of model, v is a coefficient from 0 to 1 that con-
trols the number of support vectors, ϵ is loss function, P is
the total number of datapoints of the dataset that was used
for training of the model, ζi, ζ∗i are non-negative slack para-
meters, and f(xi) and si are predicted and actual value of xi,
respectively [37].
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For high non-linear data, it is difficult (or impossible) to
find a linear hyperplane for the data that can represent the data
pattern with high accuracy. SVR is a method that uses kernel
functions, which are also known as interpolation functions. By
benefiting from this trick, the model can implicitly map the
data into higher dimensions where it is easier to understand
the pattern of data and therefore have an accurate prediction
[38]. There are some kernel functions available in literature,
but here we use three common ones, Linear, Polynomial, and
Radial Basis Function (RBF). The mathematical form of these
functions can be written as follows [39, 40]:

Linear : k(xi,xj) = xTi xj+ c1 (2)

Polynomial : k(xi,xj) = (xi+ xj)
d (3)

RBF : k(xi,xj) = exp
(
−γ|xi− xj|2

)
. (4)

In the equations (2)–(4), xi and xj are the input instances,
γ is a positive random number or equal to 1

2η2 while η is the
standard deviation of the population, d is the order of polyno-
mial kernel, and c1 is a constant. The effect of these functions
on the accuracy of the model will be assessed in section 4.2.1.

3.2. XGBoost

XGBoost stands for eXtremely Gradient Boosting is a kind
of ensemble technique that is well-known for its high accur-
acy of prediction and fast training process. Like any other
ensemble ML technique, XGBoost uses the results of sev-
eral decision trees (also referred to as boosting rounds) to
make a more concise estimation [41]. This method which was
first proposed by Chen et al [42] has the capability of hand-
ling both classification and regression problems. Generally,
the predicted value for a regression problem can be evaluated
through equation (5) [43]:

v̂i =
K∑
k=1

pk (xi) ,pk ∈ T. (5)

In this equation, k is the index of each of regression trees,
pk (xi) is the estimated value of kth regression tree for xi, and
T is the set of the regression trees. The goal of the XGBoost
algorithm is to make the predictions as close as possible to the
actual value by weighting the trees that have better accuracy
and considering lower weight factors for the worse trees (see
figure 7.)

In terms of mathematical equations, this goal can be
written as:

Objective=
n∑

i=1

loss(vi, v̂i)+
K∑
k=1

Θ(pk) . (6)

In equation (6), the first term is loss function, which evalu-
ates the accuracy of the estimated value, and the second term
is known as regularization factor and aims to avoid overfitting.
Overfitting is a condition in which the model is too fitted to the
trained data and understands all the fluctuations and noises

Figure 7. Schematic of XGBoost algorithm.

instead of the main trend. Considering v̂ki as the estimated
value of kth regression tree, equation (6) can be rewritten as:

Objective(pk) =
n∑

i=1

loss
(
vi, v̂

k−1
i + pk (xi)

)
+Θ(pk)+ c (7)

where c is a constant. The regularization term also can be
written as:

Θ(pk) = c1N+
1
2
c2

N∑
j=1

w2
j . (8)

In equation (8), the c1 and c2 are constants and wj is the
weight factor of jth leaf, where leaf refers to the results of one
decision tree.

3.3. KRR

KRR is a ML technique in which utilizes a kernel for Ridge
Regression algorithm to avoid overfitting [44] and performing
a ridge regression in a higher dimensional space (like the gen-
eral approach of SVR). But the difference is that this method
uses squared error for updating of the results and finding the
best regression while SVR uses a pre-set value for error. Like
the other proposed methods, the model tries to optimize the
predicted value through implementation of an objective func-
tion and minimizing of its value. As has been depicted in
figure 8, the model has identified the pattern of datapoints
(blue pentagons) and ignored the noises of the data where
have significant different value from the overall trend of the
data (red line).

This function can be written as follows [45]:

Objective=

∑N
n=1 (αn−βn)

2

N
+

M∑
m=1

ν2m. (9)

In equation (9), αn is the actual value, βn is the predicted
value, N is the total number of samples (datapoints) of training
dataset, M is the total number of effective parameters, and ν
is a model parameter. Like the other methods, there is a reg-
ularization term in the KRR algorithm that does a trade-off
between fitting to the input datapoints and avoiding overfit-
ting. In this paper the same kernel functions that were listed

7



Supercond. Sci. Technol. 37 (2024) 075008 S Alipour Bonab et al

Figure 8. Schematic of KRR model.

in equations (2)–(4) are used for KRR algorithm too. More
details on this method can be found on these papers [46–52].

4. Results and discussion

Now, the pre-processed dataset needs to be implemented into
theMLmodels that were discussed in section 3.When it comes
to developing an AI model, the learning curves are one of the
most important tools that should be taken into consideration
as they indicate how well a model learns from data over time
or as the dataset size increases. A learning curve is a graph
that compares the performance of a model on training and val-
idation data over a varying number of training instances. It
typically plots the training and validation error as a function
of the training set size. It helps to distinguish between high
bias (underfitting) and high variance (overfitting) problems by
showing how the model performs on both the training set and a
validation set as more data is used for training. It also provides
insights into whether the model would benefit from more data
(if the validation error continues to decrease with more data)
or if the model complexity needs to be adjusted (if there is a
persistent gap between the training and validation errors). As
an example, the learning curve of the XGBoost model for test
#3 have been provided in figure 9. As can be seen with figure 9,
initially, with few data points, the model has a high validation
error, indicating that it cannot yet generalize well. The training
error is also high, which is normal in the initial learning phase.
As more data is introduced to the model, both errors decrease,
with the validation error decreasing significantly, which shows
the model is starting to generalize better with more informa-
tion. This trend continues until both curves saturate and do not
change notably by adding more training data.

In the following, first, the controlling parameters that highly
affect the performance of each of the AI models are described.
These parameters are known as hyperparameter among the
researchers and tuning of these parameters is unavoidable to
reach the best performance of AI model. Then, the models are
trained and tested using the same input dataset but the new

Figure 9. Learning curve of XGBoost model for test #3.

hyperparameters. Also, a detailed discussion based on the res-
ults of the tests is provided. Finally, the results of the tuned AI
models are compared.

4.1. Performance metrics

In order to assess the performance of the trained AI models,
there are some common indicators that can help on the under-
standing of how accurately the models can predict the levita-
tion and lateral forces. One of themost useful tools for this pur-
pose is Root Mean Squared Error (RMSE). The main reason
behind using this index instead of directly evaluation of the
error is that it enlarges the effect of error in the points where
the error is massive by squaring of its value. This is while in
simply Averaged Error (AE) there is no difference between the
error of the points. By the help of scale analysis, as it appears
from the equation (10), the RMSE has the same scale of actual
value, which in this case is the force. So, it has a unit of force
that in this paper is reported with [N].

Root mean squared error =

[
N∑
i=1

(αi−βi)
2

N

]0.5
. (10)

In this equation the variables have the same meaning of
equation (9).

Another important indicator is the Residual Value (RV),
which is a helpful tool to understand how the model has
learned the data pattern. In fact, RV is the difference between
coefficient of determination (also known as R-squared or R2)
and its maximum value, which is 1. In this way, the perform-
ance of the models can better be understood and compared
with each other. What makes RV an extremely important met-
ric is that it shows the general inaccuracy of the model instead
of directly presenting the error. In this way, it is not depend-
ent to the scale and quantity of the data and merely assess the
goodness of fit of the model to the actual data. Therefore, the
RV can be evaluated by using equation (11).
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RV= 1−R2 =
Sum of squares residual
Sum of squares total

=

∑N
i=1 (αi−βi)

2∑N
i=1 (αi− ᾱ)

2

(11)

where ᾱ represents the average value of α.
Mean Absolute Deviation (MAD) is another useful indic-

ator that is extremely helpful for stability assessment of the
model. This index is used because the accuracy of the AI mod-
els is dependent on the selection of datapoints for training and
testing process; however, the robust algorithms are not highly
dependent on this factor and therefore their performance does
not fluctuate a lot. Therefore, MAD is used to show how stable
the model is and the lower value of it shows less dependency
on train-test splitting process. Themathematical form ofMAD
can be written as follows:

MAD=
T∑

j=1

|pj− p̄|
T

. (12)

In equation (12), pj refers to the performance (either RV or
RMSE) of jth iteration of a model, p̄ is the average value of p,
and T is the total number of iterations.

4.2. Sensitivity analysis for optimal hyperparameter tuning

All AI methods are characterized by hyperparameters that
significantly impact the accuracy of the trained models. As
a necessity of every AI modelling, these parameters must
be tuned to reach the best performance possible for that
algorithm. As these parameters are different for each of the
applied methods, they are discussed in individual subsections
and their results for each of the tests #1, #2, and #3 are
presented.

It is worth noting that for reaching an optimum value for
each hyperparameter the grid search approach is used. In this
approach, initially, an effective range in which the accuracy
of AI model is changing notably must be detected through a
trial-and-error process. Then, by testing the models that are
trained with different values of the hyperparameters in the
detected range and comparing the performance of the models,
an optimum value that resulted in highest accuracy is chosen.
Next, the optimal value is then fixed and employed to determ-
ine the optimal values for the other hyperparameters.

4.2.1. SVR. As SVR is a method that uses kernel trick, as
previously described. Naturally, the selection of kernel is cru-
cial to reach the lowest inaccuracies and RV. By using the data-
set relating to each of tests #1, #2 and #3, the type of kernel var-
ies among the three options that was first introduced in section
3.1. Referring to the bar charts presented in figure 10, RBF
has the lowest RV when compared to linear and polynomial
kernels for all three tests.

Another major hyperparameter is the regularization para-
meter. The strength of regularization in the model is inversely
proportional to this parameter [53]. It is a positive float num-
ber that can have any value but in a common way of ana-
lysis, it is considered to vary in a geometric sequence with

a common ratio of 10. Therefore, the numbers from 0.1 to
10 000 are considered for this step of analysis as there was
no significant change in the accuracy of the model for a range
above this value. The importance of the tuning of this para-
meter is determined by the fact that too much value for it can
lead the model to an overfitting condition. As is depicted in
figures 10(c) and (d), for test #1 a value of 104 of this para-
meter represents the highest accuracy while for tests #2 and
#3 the optimum value is 102 as the diagram is almost satur-
ated in that point.

The last hyperparameter that is analyzed for SVR method
in this paper is epsilon [53]. The importance of epsilon is
stressed by the fact that it is the most impactful parameter on
the marginal area around the hyperplane. Generally, a greater
value of epsilon enlarges the distance between margin lines
and hyperplane and therefore exacerbates the error of model.
Meanwhile, too little values of epsilon may result in an overfit-
ting condition due to very low tolerance for errors. Therefore,
it is crucial to assess the influence of this parameter on model’s
performance during modelling with SVR. Upon closer inspec-
tion of figures 10, 0.01 as an optimal value for epsilon resulted
in the lowest RV and RMSE values for all three tests.

4.2.2. XGBoost. XGBoost as an ensemble method, has its
own unique hyperparameters, which are mostly about con-
trolling of the decision trees that it uses to reach a final
decision.

One of the major hyperparameters is the number of boost-
ing rounds. The greater number of boosting rounds usually
leads to more robust models with higher accuracy. That said,
too much boosting rounds results can lead to overfitting. Also,
increasing of the boosting round soars the training time of the
model. For these reasons, it is crucial to consider a reason-
able number of estimators for the model. As it appears from
figures 11(a) and (b), for tests #1 to #3 a value of 70, 490, and
490 are the best choices for the number of estimators as they
resulted in the lowest RV and RMSE.

Another hyperparameter for this method is the maximum
depth. As appears from its name, it controls the maximum
depth of the decision tree that the model generates internally.
As the model tends to go as deep as possible to grasp the
relation between the parameters, if this action is exaggerated,
there is a possibility of overfitting for the final model that over
focuses on specific values. Now, using the tuned value for the
number of estimators and using the same approach of tuning
process of it, a sensitivity analysis on the maximum depth is
done [54]. Noteworthy findings are represented in figure 11(c)
show that beyond a maximum depth more than 4 there are
no notable changes in RV. However, figure 11(d) depicts that
for tests #2 and #3, RMSE value is lower when the maximum
depth is set to 5, making it a better choice.

The learning rate is also an important parameter that influ-
ences the performance of the model significantly. More com-
monly among the researchers, a value between 0 and 1 is con-
sidered for this parameter. Greater values of learning rate allow
the model to reach a decision faster and converge quicker. As
a result, the model is trained in less time. However, in some
cases, this can lead to a condition that the model is off the

9
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Figure 10. Tuning of the hyperparameters of SVR in terms of RV and RMSE for tests #1, #2, and #3.

course and does not converge (so the performance gets worse
as the model trains more). A closer look at figures 11(e) and (f)
illustrates how the performance of the models are changing as
the learning rate varies. By considering RV and RMSE plots at

the same time, 0.35, 0.25, and 0.25 values of learning rate are
chosen as the optimum values for tests #1 to #3, respectively.

It is worth noting that since the RMSE is an index that
has the same unit as the predicted value, its value can be

10
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Figure 11. Tuning of the hyperparameters of XGBoost in terms of RV and RMSE for tests #1, #2, and #3.

higher or lower subject to the nature of the dataset. For
instance, in this work, test #2 represents the data for lateral
force, which is lower in magnitude than levitation force
of test #3. Therefore, it generally has a lower RMSE than
the model of test #3 (see figure 11). This is while the

RV of test #2 that represents the inaccuracy of the model
is higher than test #3, meaning that the model of test #2
is less accurate than for test #3. This highlights how the
RV is extensively important for assessment of the accuracy
of a model.

11
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Figure 12. Tuning of the hyperparameters of KRR in terms of RV and RMSE for tests #1, #2, and #3.

4.2.3. KRR. The choice of kernel is of paramount
importance during the modelling process with KRR. By
varying the kernel between the same kernel options of
SVR and comparing with the results of the testing of the
models (figure 12), it can be found that Polynomial func-
tion is the kernel can yield the highest accuracy for the
model.

Another crucial factor is the parameter that is usually
referred to as alpha parameter. In fact, alpha is a parameter
that controls the strength of the regularization term.Most com-
monly, its value f is varied exponentially of base 10 (like
0.01, 0.1, 1, …). In this paper, for the purpose of sensit-
ivity analysis of this parameter, it is considered to change
between 0.001 and 1. With reference to figure 12, it can
be observed that for tests #1 to #3, the value of 1, 100,
and 0.001 for alpha results in the lowest RV and RMSE,
respectively.

The summary of the best values of the hyperparameters for
all methods within their testing range have been gathered in
table 5.

4.3. Comparison of results and discussion

In order to establish which model performs the best, a
comparison of RV of different methods is not sufficient and
demands careful examination of the stability of the models.
As the accuracy of estimation for AI methods is dependent on
the quality and consistency of the training and testing data,
stability of results that is a fundamental step in the AI mod-
elling, warrants the reproducibility and repeatability of the
results of the work. To reach this matter, the tuned models
for all three AI algorithms undergo an iterative study where
the randomized selection of datapoints for training and test-
ing varies 50 times. In this way, it is ensured that the models
with the reported performance are reproducible. After that, the
mean and MAD values of RV, RMSE, and response time for
all the models must be compared. It should be noted that the
response time is dependent on the specification of the com-
puter and can change device to device. The testing computer
for this work has a 11th Gen Intel(R) Core(TM) i5-1135G7@
2.40 GHz CPU, 12 GB RAM, and a Solid-State Drive. In line

12
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Table 5. Summary of the best values of hyperparameter for each of the models and tests.

Model Hyperparameter Testing range Test
The best configuration
within the testing range

SVR Kernel function ‘rbf’, ‘linear’,
‘polynomial’

#1 ‘rbf’
#2 ‘rbf’
#3 ‘rbf’

C 0.1–10 000 (logarithmic) #1 10 000
#2 100
#3 100

epsilon 0.001–1 (logarithmic) #1 0.01
#2 0.01
#3 0.01

XGBoost Number of estimators 10–500 #1 70
#2 490
#3 490

Maximum depth of trees 1–15 #1 4
#2 5
#3 5

Learning rate 0.05–1 #1 0.35
#2 0.25
#3 0.25

KRR Kernel function ‘rbf’, ‘linear’,
‘polynomial’

#1 ‘polynomial’
#2 ‘polynomial’
#3 ‘polynomial’

Alpha 0.001–100 000 #1 1
#2 100
#3 0.001

with table 6, it is apparent that SVR models not only are the
most accurate ones, but also, they are the most stable models
as their performance less fluctuated and their MAD value for
both RV and RMSE is almost the least among the three AI
algorithms. As an alternative option, the XGBoost is recom-
mended as according to the information in table 6 it is the
second accurate method for the same reasons of SVR. Finally,
KRR is a simpler method that results in a good accuracy but
not as high as SVR and XGBoost. However, subject to applic-
ation and the required accuracy, the KRR model can also be
used by the researchers.

Now, to illustrate a detailed performance of the developed
models for prediction of the levitation and lateral forces, the
part of the data that has not been utilized for training purposes
(testing dataset) is implemented in the model and its predicted
value is plotted along with the actual value. In this way, it can
be seen how the model performs in estimating every single
point. For this purpose, figure 13 is provided to demonstrate
their predicted forces accuracy compared to the actual data.
In these figures, static values for Zcp, Dsc, hsc, T and Z (spe-
cifically for test #1) were assumed and the variation of forces
in relation to the position of the bulk is depicted. The corres-
ponding values are provided alongside each of figure 13 (a),
(b), and (c). As demonstrated by these figures, the model has
accurately learned the data’s pattern, resulting in the predicted
and actual force values being remarkably close to each other.

Regarding the advances of this work, it is worth high-
lighting that this study presents significant advancements in

the characterization and modeling of MgB2 superconducting
bulks through the application of AI techniques. By developing
and validating surrogate models, this research addresses crit-
ical gaps in traditional experimental methodologies, which are
often costly and time-consuming. The key contributions of this
work are:

1. We employed three advanced AI techniques—XGBoost,
SVR, and KRR—to predict levitation and lateral forces
between MgB2 bulks and PM. These models demonstrated
a worst-case accuracy scenario of 99.86%, providing an
efficient and reliable alternative to finite element methods
and experimental testing.

2. The AI models developed offer super-fast response times
for estimating new data points, which is pivotal for real-
time applications in magnetic levitation systems. This cap-
ability allows for quicker iterations during the design and
testing phases of superconducting materials and devices.

3. The high accuracy of our AI models was validated against
a comprehensive dataset obtained from rigorous experi-
mental testing of MgB2 bulks under various operational
conditions. This validation underscores the reliability of
AI techniques in replicating and extending experimental
results.

The integration of AI into the study and development
of superconducting materials offers numerous benefits to
the community. Intelligent models based on AI techniques
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Table 6. Summary of stability analysis for tests #1, #2, and #3.

Test AI algorithm Mean RV MAD RV Mean RMSE (N) MAD RMSE (N) Testing time (s)

#1 SVR 1.36 × 10−03 1.94 × 10−04 3.0414 5.0827 0.360
XGBoost 3.00 × 10−03 6.63 × 10−04 4.4853 7.9706 0.018
KRR 1.13 × 10−02 1.34 × 10−03 8.7704 16.5409 0.383

#2 SVR 6.66 × 10−04 1.21 × 10−04 0.1459 0.7083 0.425
XGBoost 1.15 × 10−03 1.61 × 10−04 0.1918 0.6164 0.029
KRR 3.36 × 10−02 1.97 × 10−03 1.0433 1.0866 0.397

#3 SVR 8.03 × 10−05 1.00 × 10−05 0.4405 0.1191 0.434
XGBoost 3.58 × 10−04 4.56 × 10−05 0.9297 0.8594 0.026
KRR 2.75 × 10−03 2.89 × 10−04 2.5759 4.1517 0.382

Figure 13. Predicted and actual value of SVR model for each of tests (a) #1, (b) #2, and (c) #3.
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significantly reduce the time and resources required to eval-
uate and optimize superconducting materials, allowing for
faster advancements in technology development. Also, their
high predictive accuracy ensures that they can be reliably
used to predict complex phenomena in superconducting sys-
tems, supporting the engineering of more robust and efficient
devices. Moreover, referring to the fact that AI models benefit
from scalability and versatility, they are adaptable to different
types of superconductors and can be scaled to handle larger
datasets and more complex system configurations, promoting
broader application across various superconducting technolo-
gies and materials.

4.3.1. Discussion on extrapolation capabilities of AI
models. One of the capabilities of AI models is the extra-
polation of data beyond the range they have previously been
trained on. In such cases, the model estimates values based on
learned data patternswithout having a prior knowledge ofwhat
to come. These cases are what the AI models will face in real-
world after being trained and developed by experts in labor-
atories or companies. Although this paper does not primarily
focus on this topic, we conducted two fairly complicated dif-
ferent extrapolations tests to evaluate the model’s performance
when applied to a new MgB2 disk or new positions.

In the first scenario, we excluded the data from S1 in the
training dataset for test #3 and selected XGBoost, known for
its moderate accuracy among the three algorithms chosen in
this paper, so, we did not want to have the best-case scenario
with the best algorithm. We then used this data segment to test
the trained model’s performance. The results showed that the
model could predict the levitational force of a new bulk sample
with an RMSE of 6.725656, and an RV of 0.04575.

In the second scenario, we excluded the data for x = 29
and x = 30 for all samples, treating it as the testing dataset,
and trained the model with the remaining data. In this scen-
ario, the model exhibited excellent accuracy with an RMSE of
1.860467, and an RV of 0.00378.

These two scenarios prove the significant potential of
AI methods for extrapolation and estimation in unseen out-
of-range data conditions, which is usually the concern of
many engineers and physicists in their real-time experimental
studies.

5. Conclusion

Ten highly dense MgB2 bulks of various dimensions were fab-
ricated using SPS process. Magnetic levitation and guidance
(lateral) force measurements were carried out at 20 K using a
NdFeB magnet with a diameter of 70 mm and a thickness of
35 mm. These measurements served as input for training AI
models, with the objective of rapidly and accurately correlat-
ing measurement data with simulation results to assess the lev-
itation and lateral forces. In this paper, 9 models are developed
based on three AI algorithms namely XGBoost, SVR, and
KRR for prediction of levitation force in vertical movement
(test #1), lateral (test #2) and levitation (test #3) forces in hori-
zontal movement of the PM. Doing the sensitivity analysis on

the hyperparameters of the implemented algorithms ensures us
that the models are at their optimum condition in which they
can perform at highest accuracy. The key findings of this paper
can be summarized as follows:

• SVR resulted in the highest accuracy amongst the three AI
methods that are implemented in this paper for all the tests.
It can estimate the levitation force in test #1 and #3 with an
RV less than 1.36 × 10−03 and 8.03 × 10−05, respectively.
Also, it can predict lateral force in test #2 with an RV of
6.66 × 10−04.

• Overall, the accuracy of prediction for test #3 is better than
#2 and test #2 than #1. This can be due to the natural beha-
vior and topology of the raw dataset used as inputs for AI
models.

• The AI approach for estimating levitation and lateral forces
of bulk superconductors showed an extensive goodness of fit
to the experimental data collected from the explained tests.

• AI models have demonstrated their effectiveness as
approaches for developing surrogate models to estimate
magnetic levitation and lateral forces between MgB2 bulks
and a PM. Consequently, they can serve as cost-effective
tools to advance the development and manufacturing of
superconducting systems for strong and stable magnetic
levitation.

• We speculate that the models we developed in this study are
probably specific to the PM used in the experimental cam-
paign. In fact, it is known that, physically speaking, the lev-
itation and lateral forces depend on both the magnetic flux
density and its gradient, which in turn depend on the PM.
Since the approach of this study was intended to enhance
the generalization capabilities of the models across differ-
ent scenarios, we aim to include datapoints related to exper-
iments involving different PMs and retrain themodels to fur-
ther extend their applicability in future studies.

• The developedAImodels were tested for the cases of unseen
and out-of-range data to demonstrate the excellent predic-
tion performance of the model when it is used for extrapola-
tions of any new cases. A very high accuracy achieved have
firmly demonstrated such extrapolation capabilities for lev-
itation and lateral force prediction of MgB2 bulks.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Acknowledgments

For the purpose of open access, the author(s) has applied a
Creative Commons Attribution (CCBY) license to any Author
Accepted Manuscript version arising from this submission.

Yiteng Xing thanks the ‘Conseil Régional-Normandie,
France’ for her Postdoc Grant-RIN Recherche “Emergent”
from Normandy state (N◦ 21E04334).

15



Supercond. Sci. Technol. 37 (2024) 075008 S Alipour Bonab et al

ORCID iDs

Shahin Alipour Bonab https://orcid.org/0009-0002-8316-
4336
Yiteng Xing https://orcid.org/0000-0002-8818-7433
Giacomo Russo https://orcid.org/0000-0002-2011-8423
Antonio Morandi https://orcid.org/0000-0002-1845-4006
Pierre Bernstein https://orcid.org/0000-0002-8104-2151
Jacques Noudem https://orcid.org/0000-0002-8020-9095
Mohammad Yazdani-Asrami https://orcid.org/0000-0002-
7691-3485

References

[1] Durrell J H, Ainslie M D, Zhou D, Vanderbemden P,
Bradshaw T, Speller S, Filipenko M and Cardwell D A
2018 Bulk superconductors: a roadmap to applications
Supercond. Sci. Technol. 31 103501

[2] Werfel F N, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B,
Wippich D and Schirrmeister P 2012 Superconductor
bearings, flywheels and transportation Supercond. Sci.
Technol. 25 014007

[3] Deng Z et al 2016 A high-temperature superconducting
maglev ring test line developed in Chengdu, China IEEE
Trans. Appl. Supercond. 26 1–8

[4] Prikhna T et al 2013 Synthesis pressure–temperature effect on
pinning in MgB2-based superconductors J. Supercond. Nov.
Magn. 26 1569–76

[5] Xing Y, Bernstein P, Muralidhar M and Noudem J 2023
Overview of spark plasma synthesis and sintering of MgB2

superconductor Supercond. Sci. Technol. 36 115005
[6] Perini E, Bassani E, Giunchi G and Weisend J G 2010 The

levitation characteristics of MgB2 plates on tracks of
permanent magnets AIP Conf. Proc. 1218 261–8

[7] Takahashi Y, Naito T, Nakamura T and Takahashi M 2021
Detection of 1H NMR signal in a trapped magnetic field of
a compact tubular MgB2 superconductor bulk Supercond.
Sci. Technol. 34 06LT02

[8] Xing Y, Russo G, Ribani P L, Morandi A, Bernstein P,
Rossit J, Lemonnier S, Delorme F and Noudem J 2024 Very
strong levitation force and stability achieved with a large
MgB2 superconductor disc Supercond. Sci. Technol.
37 02LT01

[9] Mojarrad M, Farhoudian S and Mikheenko P 2022
Superconductivity and hydrogen economy: a roadmap to
synergy Energies 15 6138

[10] Deng Z, Wang J, Zheng J, Lin Q, Zhang Y and Wang S 2009
Maglev performance of a double-layer bulk high
temperature superconductor above a permanent magnet
guideway Supercond. Sci. Technol. 22 055003

[11] Yazdani-Asrami M, Sadeghi A and Song W 2023 Ultra-fast
surrogate model for magnetic field computation of a
superconducting magnet using multi-layer artificial neural
networks J. Supercond. Nov. Magn. 36 575–86

[12] Tsotsopoulou E, Karagiannis X, Papadopoulos T,
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