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Abstract: In the present study, bio-based polymeric blends have been prepared for applications in the
field of sustainable food packaging, starting from two furan-based homopolymers, poly(hexamethylene
2,5-furanoate) (PHF) and poly(pentamethylene 2,5-furanoate) (PPeF). PHF and PPeF were synthesized
by two-step melt polycondensation—a solvent-free synthetic strategy—and then binary physical
mixtures, PHF/PPeF, with different weight compositions were prepared by dissolution in a common
solvent. The blends were processed into compression-moulded films, and molecular, morphological,
structural, thermal, and mechanical characterizations were subsequently carried out. Blending did
not negatively affect the thermal stability of the parent homopolymers, and good compatibility
between them was observed. This strategy also allowed for the modulation of the chain rigidity as
well as of the crystallinity, simply by acting on the relative weight amount of the homopolymers.
From a mechanical point of view, the presence of PPeF led to a reduction in stiffness and an increase
in the elongation at break, obtaining materials with an elastomeric behaviour. Evaluation of the gas
barrier properties confirmed that the good barrier properties of PHF were preserved by blending.
Finally, lab-scale composting tests confirmed a greater weight loss of the mixtures with respect to the
PHF homopolymer.

Keywords: bio-based polyesters; furan-based polyesters; physical blends; gas barrier properties;
flexible packaging

1. Introduction

Over the years, plastic materials have become an integral part of people’s daily lives,
playing a key role in the most varied applications and significantly influencing consumers’
quality of life, as confirmed by market data. Indeed, approximately 400 million tons of
plastics were globally produced in 2022, 14.7% of which were destined for the European
market [1,2]. This success is due to their cost-effectiveness, together with unique properties
such as their easy processability, light weight, durability, mechanical strength, and thermal
and chemical resistance over time [3,4]. The other side of the coin is the end of life of
these materials that, if not properly disposed or recovered, accumulate uncontrollably in
the environment [3]. Once deposited, plastic can break over time into smaller pollutant
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pieces [5,6], which eventually reach the bottom of the oceans and groundwater, thus
becoming part of the universal food chain, with harmful effects on the health of living
species. As reported by the European Environment Agency, more than 14 million tons of
microplastics have been accumulated until now in the oceans [7]. All this, as well as
the greater awareness of both producers and consumers on ecological issues, have led
governments to take action. The European Union has started pursuing holistic policies
to achieve, among the objectives, zero pollution, a reduction in greenhouse gas emissions
and the transition to a circular economy by 2030, and, by 2050, the climate neutrality
target [8]. Among these actions, in 2023, 17 sustainable development goals were defined as
a standard for sustainable development in many fields, including healthcare, clean energy,
manufacturing responsibility, and climate action [9]. Accordingly, the minimization of the
volumes of plastics through reuse, recycling, and upcycling [10]; better waste management;
and the use of flexible packaging instead of rigid ones, characterized by smaller volumes,
are among the first actions to be taken [11,12].

These considerations are even more valid for packaging, an economic sector character-
ized by large volumes of plastics and relatively short life-cycles, which, alone, covers about
40% of global production [2]. As mentioned, possible solutions include recycling, which
can certainly contribute to a lower consumption of virgin raw materials, but they are not
always economically sustainable or practicable, especially for multilayer films or materials
contaminated by food, as in the case of food packaging [13–16]. Furthermore, in developing
countries where there is a lack of adequate policies and infrastructure for effective recycling,
landfill accumulation is still the predominant solution [17–19]. For this reason, the search
for alternative and bio-based sources of monomers for the eco-design of new plastics should
be maximized too. The best choice fell on renewable plastic, which, through synthetic
strategies with low environmental impact, can give life to 100% green materials.

Considering that bioplastics (i.e., bio-based, biodegradable, or both [20]) currently
account for 0.5 percent of the global plastic produced annually [21], because of their
high costs and lower performance compared to traditional petroleum-based ones [22,23],
many efforts should be taken to improve their properties, making them, at the same time,
economically affordable [24].

Within this complex framework, the aim of the present study is the realization of bio-
based polymeric blends, characterized by suitable mechanical and gas barrier properties
for food packaging applications. The starting materials belong to the class of aromatic
polyesters, which are particularly suitable for this purpose [25,26] as they can be easily
synthesized, even in the absence of solvents, and can be thermally stable, lightweight, and
characterized by properties that can be modulated according to their chemical structure,
to meet the requirements of different packaging materials, specifically, the homopolymers
derived from 2,5-furandicarboxylic acid (FDCA), a bio-based chemical building block
obtainable from 100% renewable sources, such as from the catalytic dehydration of car-
bohydrates [27,28]. This monomer is considered a promising eco-sustainable alter-ego
of terephthalic acid, which is currently the starting building block of some of the most
produced and used packaging plastics, such as PET, just to cite one. FDCA became so
promising in the last few years that its market size, which was valued at 762.9 million in
2022, is expected to grow about 34% every year in the period 2023–2030 [29].

From an academic point of view, many studies have been carried out on the realization
of furan-based polyesters [30–34], copolymers [35–41], and blends [42–49], thus obtaining a
wide plethora of sustainable materials. Among them, blends are of particular interest, as
the physical mixing technique is simple, cheap, and easily scalable on an industrial level.
Moreover, the final properties are usually a combination of the original functionalities and
strong points.

In the present study, three binary blends were prepared, starting from poly(pent-
amethylene furanoate) (PPeF) and poly(hexamethylene furanoate) (PHF), which were
mixed together in different weight ratios (25, 50, and 75%, respectively). PHF is a semicrys-
talline and rigid material, with good gas barrier properties and not compostable [50,51].
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Conversely, PPeF is rubbery and amorphous at room temperature, showing elastomeric
mechanical behaviour and an impressively low permeability to gasses [50,52]. Therefore,
mixing these two homopolymers together would be useful to modulate their functional
properties, thus obtaining final materials with balanced mechanical properties and efficient
gas barrier behaviour. These starting homopolymers have been specifically chosen for sev-
eral reasons: first, by combining FDCA with two bio-based glycols, such as 1,5-pentanediol
and 1,6-hexanediol, fully bio-based materials are obtained. Indeed, 1,6-hexanediol can
be synthesized from hydroxymethylfurfural, which is derived from cellulose and is the
same intermediate used to prepare FDCA [53], while the production of 1,5-pentanediol
can be performed starting from biomass-derived tetrahydrofurfuryl alcohol, with furfural
as the intermediate [54]. Also, the parent homopolymers have a very similar chemical
structure, which should favour their miscibility or at least compatibility, the latter of which
is fundamental in exhibiting good final functional performances of the new materials.
Moreover, thanks to the similar chemical structure of PPeF and PHF, the resulting blends
can be considered real monomaterials, thus making their recycling easier and more feasible.

The blends, obtained by dissolution in a common solvent and processed into films
by compression moulding, were then characterized from thermal, structural, and me-
chanical points of view. The phase dispersion was evaluated qualitatively by scanning
electron microscopy. Lastly, the permeability to oxygen and carbon dioxide was analyzed,
together with their biodegradability in compost. Thus, the present research provides new
insights into the development of high-performance bio-based blends for sustainable food
packaging applications.

2. Materials and Methods
2.1. Materials

Dimethyl 2,5-furandicarboxylate (DMF) was purchased from Sarchem Labs (Farm-
ingdale, NJ, USA), 1,5-pentanediol (PeD) from Fluorochem (Glossop, UK), 1,6-hexanediol
(HD) from TCI (Zwijndrecht, Belgioum), and titanium tetrabutoxide (TBT) and titanium
isopropoxide (TIP) from Sigma-Aldrich (Saint Louis, MO, USA). All the reagents were
reagent-grade.

2.2. Poly (Hexamethylene 2,5-Furanoate) and Poly (Pentamethylene 2,5-Furanoate) Synthesis

The synthesis of poly(hexamethylene 2,5-furanoate) (PHF) and poly(pentamethylene
2,5-furanoate) (PPeF) was carried out by two-step melt polycondensation in a 250 mL
glass reactor, continuously stirred (100 rpm), and put in a thermostated silicon oil bath,
according to the conditions described elsewhere [51,52]. The starting monomers were DMF
and HD, and DMF and PeD, respectively (glycolic molar excess of about 300%), together
with 200 ppm of TBT and 200 ppm of TIP, used as catalysts. In brief, during the first step,
transesterification reactions occurred under a pure nitrogen flow at a temperature of 190 ◦C,
while methanol was distilled off (1.5 h). The second step was carried out under high vacuum
(0.06 mbar) at a temperature of 200 ◦C, in order to eliminate the glycolic excess, favouring
the increase in molecular weight. During this phase, which lasted about 2.5 additional
hours, a gradual increase in the torque was observed. When this torque reached a plateau
value, the synthesis was stopped and the high-molecular-weight polymers were discharged
from the reactor.

2.3. Molecular Characterization

The chemical structure of PHF and PPeF was confirmed by proton-nuclear magnetic
resonance spectroscopy (1H-NMR) using an Agilent Varian Inova 400 MHz instrument
(Palo Alto, CA, USA). Measurements were carried out at room temperature. Samples
were prepared by dissolving about 10 mg of material in 0.7 mL of deuterated chloroform
containing 0.03 vol % tetramethylsilane (TMS) as the internal standard. In the case of PHF, a
few drops of trifluoroacetic acid were added to the solution just before the measurements to
favour the complete dissolution of the sample. For 13C-NMR experiments, 40 mg of material
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was used instead of 10 mg; a few drops of trifluoroacetic acid were added immediately
before analysis to completely dissolve the samples.

The molecular weights (Mn) of PHF and PPeF and the corresponding polydispersity
indexes (D) were evaluated at 30 ◦C by gel permeation chromatography (GPC) using an
HPLC Lab Flow 2000 apparatus (Waters, Milford, MA, USA) equipped with a Rheodyne
7725i injector (Thermo Fisher Scientific, Waltham, MA, USA), a Phenomenex (Torrence,
CA, USA) Phenogel MXM 5 µm mixed-bed column, and an RI K-2301 (KNAUER, Berlin,
Germany) detector. The instrument was calibrated with polystyrene standards in the
range of 550–2,500,000 g/mol. HPLC-grade chloroform was used as the eluent, with a
flow of 1 mL/min. The samples were prepared by dissolving the homopolymers in the
same solvent used as the eluent (2 mg/mL). In the case of PHF, a few drops of 1,1,1,3,3,3-
hexafluoro-2-propanol were added to completely dissolve the sample.

2.4. Blend Preparation and Processing

After synthesis and purification, binary mixtures were prepared by starting from
different weight amounts of the two parent homopolymers (75/25, 50/50, and 25/75). The
polymers were dissolved, under magnetic stirring at room temperature, in the minimum
weight amount of the 1,1,1,3,3,3-hexafluoro-2-propanol/chloroform (5% v/v) mixture.
The resulting solutions were then poured into Petri dishes to allow solvent evaporation.
Samples were designated as PHFx/PPeFy, where x and y represent the relative wt% of the
two parent homopolymers.

Before being tested, samples were processed in the form of films (about 100 µm thick)
by compression moulding, using a Carver (Wabash, IN, USA) C12 laboratory press. About
3 g of each blend was put in between two Teflon sheets inside the press and heated to a
temperature of 190 ◦C. After 2 min, it was necessary to let the sample melt, and the pressure
was increased to 6 ton/m2 and maintained for 2 further minutes. Then, the films were
ballistically cooled, in press, to room temperature.

2.5. Morphological Characterization of the Homopolymers and of the Blends

The phase dispersion of the blends was qualitatively evaluated using a Hitachi (Tokyo,
Japan) S-2400 scanning electron microscope (SEM), operating at 15 kV. The cryo-fractured
cross-sections of each sample were analyzed after the deposition of a gold conductive coating.

2.6. Thermal and Structural Characterization of the Homopolymers and of the Blends

TGA measurements were performed on both the homopolymers and the blends by
means of a Perkin Elmer (Waltham, MA, USA) TGA4000, equipped with Pyris 11 software,
under a pure N2 flow (40 mL/min). About 5 mg of material was heated at a constant rate of
10 ◦C/min in the temperature range of 40–800 ◦C. Tonset was calculated as the temperature
corresponding to the beginning of degradation, while Tmax was calculated as the minimum
of the thermogram derivative.

Differential scanning calorimetry was performed using a Perkin Elmer (Waltham, MA,
USA) DSC6 under pure N2 flow (20 mL/min). About 5 mg of each sample was placed in
aluminium pans and subjected to a thermal programme controlled by Pyris 11 software:
heating from −30 to 190 ◦C at 20 ◦C/min (I scan), rapid cooling from 190 to −30 ◦C at
100 ◦C/min, and subsequent heating from −30 to 190 ◦C at 20 ◦C/min (II scan). The
glass transition temperature (Tg) was calculated as the midpoint of the glass-to-rubber
transition step, while the relative specific heat increment (∆Cp) was determined as the
height between the two baselines related to the glass-to-rubber transition step. The melting
temperature (Tm) and the cold crystallization temperature (Tcc) were calculated as the peak
maximum/minimum of the endotherms/exotherms in the DSC traces, respectively, while
the corresponding heat of fusion (∆Hm) and heat of crystallization (∆Hcc) were obtained
from the areas of the endothermic and exothermic phenomena, respectively.

Wide-angle X-ray scattering (WAXS) experiments were carried out on films obtained
from both the homopolymers and the blends using a PANalytical (Almelo, The Netherlands)
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X’PertPro diffractometer coupled with a copper source (λ = 0.154 nm) and equipped with
a solid-state X’Celerator detector (0.1◦ steps, rate = 100 s/step). The crystallinity degree
(Xc) was calculated as the ratio between the crystalline diffraction area (Ac), obtained by
subtracting the amorphous halo from the total area of the diffraction profile, and the area
of the whole diffraction profile (At).

2.7. Mechanical Characterization of the Homopolymers and of the Blends

Tensile tests were performed using an Instron (Norwood, MA, USA) 5966 dynamome-
ter, equipped with rubber grips and a transducer-coupled 1 kN load cell. Measurements
were performed on rectangular film specimens (5 mm × 50 mm), which were stretched at
a rate of 10 mm/min. The gauge length was 20 mm. The instrument measures the load
applied as a function of the displacement (which is calculated as the ratio between the
length variation and the initial one) and can convert these data into stress–strain curves.
The elastic modulus (E) was calculated as the slope of the initial linear segment of the curve
without the use of any extensometer, while the stress at break (σB) and elongation at break
(εB) were determined as the values of stress and elongation at the breakpoint. At least
6 specimens were tested for each material, and the results obtained are reported as the
average value ± standard deviation.

2.8. Gas Permeability Measurements of the Homopolymers and of the Blends

The permeability of PHF and PPeF and the relative blends towards dry O2 and
CO2 (0% relative humidity) were tested with a manometric method using a permeance
testing device, type GDP-C (Brugger Feinmechanik GmbH, Munchen, Germany), in line
with the Gas Permeability Testing Manual and standards ASTM 1434-82 (2009) (Standard
test method for determining gas permeability properties of plastic film and coating), DIN 53536
(Determination of permeability of rubber to gases), and ISO/DIS 15105-1:2007 (Plastic film and
sheeting determination of gas transport rate; part I: differential pressure method). Each film (area
of 78.5 cm2) was first placed in between the two chambers of the instrument, and then the
upper one was filled with the gas under investigation with a stream of 100 cm3/min, at
room pressure. In the lower chamber, a pressure transducer measured the increase in gas
pressure as a function of time. The so-obtained pressure–time data were converted into
Gas Transmission Rate (GTR) values, directly related to the permeability of the polymeric
film. The results obtained are reported as the mean value of at least 3 measurements.

2.9. Lab-Scale Composting Studies of the Homopolymers and of the Blends

Lab-scale composting tests were performed using hydrated mature compost kindly
provided by “Nuova Geovis S.p.A”—HERA Group of Sant’Agata Bolognese (BO). Square
pieces (1.5 × 1.5 cm) of each polymeric film were weighed, placed in between two layers
of wet compost, and then put in a thermostated water bath (Julabo (Seelbach, Germany)
SW22 incubator) under mechanical agitation and controlled temperature and humidity
(58.0 ◦C and 90% RH, respectively). Periodically, sacrificial specimens were withdrawn
from the compost and washed with a 70% v/v ethanol solution. Once dry, their percentage
weight loss was calculated according to the following equation:

% weight loss =
mi − m f

mi
× 100 (1)

where mi is the initial mass of the samples and mf is their final one.
Furthermore, DSC analysis was carried out on the partially degraded films and on

the blanks (i.e., films incubated for 1 month at 58 ◦C in a humid environment, but without
compost) to verify how the permanence in compost affected the crystallinity and the main
thermal transitions of the materials investigated. Lastly, the surface morphology of samples
incubated for 6 months was analyzed through scanning electron microscopy (SEM).
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3. Results and Discussion
3.1. Synthesis and Molecular Characterization

PHF appeared in form of white flakes (Figure 1A), while PPeF was a light-coloured
rubbery solid (Figure 1B). PHF/PPeF blends appeared as light-coloured solids (Figure 1C).
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1H-NMR analysis allowed confirmation of the chemical structure of the parent ho-
mopolymers, thus excluding the occurrence of side reactions during polycondensation.
This can be assessed since the only signals in the spectra were those related to the polymers
and to the solvents (Figure S1). In detail, for PHF, the three peaks of hydrogen atoms of
1,6-hexanediol ((4H, m), (4H, m), and (4H, t)) can be found at δ 1.49 ppm, δ 1.81 ppm, and
δ 4.48 ppm, respectively, while for PPeF, the methylene protons of the glycolic subunit
(2H, m), (4H, m), and (4H, t) were located at δ 1.55 ppm, δ 1.80 ppm, and δ 4.35 ppm,
respectively. In both cases, the singlet related to the furan subunit was located at lower
fields, at δ 7.21 ppm for PPeF and 7.31 ppm for PHF, respectively. Also, in the spectra
obtained with the 13C-NMR test, no further peaks apart from those related to the carbon
atoms of the polymers can be observed (Figure S2).

The optimization of the synthetic process was also confirmed by GPC measurements.
For both the homopolymers, the molecular weight (Mn) was high and comparable, ranging
from 28,900 g/mol for PHF to 29,600 g/mol for PPeF, with narrow polydispersity indexes
(Ð) of 2.3 and 2.4, respectively, in line with the values obtained for polycondensate polymers.

3.2. Morphological Characterization

SEM micrographs of the cryo-fractured sections of the three PHF/PPeF mixtures
at different magnifications are shown in Figure 2. As it can be seen, for all the blends,
the two homopolymers are characterized by a very good compatibility, as most of the
fracture surface is quite homogeneous and there is no clear phase separation, even at higher
magnifications (Figure 2D–F). This result is particularly positive, since commonly, the
presence of two phases not chemically bonded results in fracture surfaces with holes and
cavities [43,48].
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3.3. Thermal and Structural Characterization

The films obtained from the PHF/PPeF blends after three weeks from moulding were
subjected to the same calorimetric treatment. The DSC profiles of the first and second scan
are shown in Figure 3A and 3B, respectively, while the relative thermal data are reported in
Table 1.
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Figure 3. First (A) and second (B) DSC scans, WAXS profiles (C), and TGA curves (D) of PHF, PPeF,
and PHF/PPeF blends.
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Table 1. Thermal (TGA and DSC) and structural characterization data (WAXS) of PHF, PPeF, and
PHF/PPeF blends.

Tonset
[◦C]

Tmax
[◦C]

I Scan II Scan
Xc
[%]Tg

[◦C]
∆cp

[J/g◦C]
Tm
[◦C]

∆Hm
[J/g]

Tg
[◦C]

∆cp
[J/g◦C]

Tcc
[◦C]

∆Hcc
[J/g]

Tm
[◦C]

∆Hm
[J/g]

PHF 374 394 14 0.146 144 39 16 0.156 - - 144 39 35
PHF75/PPeF25 373 396 18 0.176 57–144 5.3–37 14 0.373 66 10 143 34 24
PHF50/PPeF50 375 398 14 0.247 59–142 3.1–27 14 0.425 85 23 142 23 16
PHF25/PPeF75 376 396 14 0.234 59–140 1.3–13 14 0.366 101 13 139 13 12

PPeF 377 399 16 0.319 - - 16 0.277 - - - - 0

In agreement with the literature data [55,56], the PHF homopolymer has a Tg below
room temperature and a melting point at 144 ◦C, indicating that it is a semicrystalline
polyester with a mobile amorphous phase. On the other hand, PPeF is an amorphous and
rubbery polymer, with only the Tg jump at 16 ◦C being present [52,57]. As expected, all
the blends exhibit an intermediate behaviour, depending on their relative composition.
In detail, they are all semicrystalline, with Tm values slightly lower than that of the PHF,
indicating a partial miscibility of the two components, in good agreement with SEM
observations (Figure 2). As expected, since PPeF is not capable of crystallizing unless after
very long periods of time at room temperature (6 months), the crystalline phase developed
in the blend is ascribable only to PHF, and ∆Hm values decrease with the amount of
PHF. Moreover, in all the DSC profiles, a slight endothermic phenomenon occurs in the
temperature range between 57 and 59 ◦C, whose intensity increases with the amount of
PHF (Table 1).

All the molten samples were subjected to rapid cooling and analyzed upon a second
heating measurement (Figure 3B, Table 1). PPeF was completely amorphous, while the
PHF profile was the same as the one observed in the I scan, indicating that, despite the
high cooling rate, the polymer could not be quenched in the amorphous phase. As for
the blends, the Tg values were all similar and close to those of the parent homopolymers.
Moreover, once Tg was exceeded, the macromolecular chains were able to fold in an ordered
structure at a higher temperature as the amount of PPeF was increased. This evidence
highlights that the presence of this homopolymer, which is completely amorphous, hinders
the crystallization of the PHF-rich phase. As for PHF75/PPeF25, ∆Hm was higher than ∆Hcc,
indicating that quenching was not effective, while for PHF50/PPeF50. and PHF25/PPeF75,
the cooling rate was high enough to block the macromolecular chains in the amorphous
state (∆Hcc = ∆Hm).

In order to determine their crystallinity degree (Xc), wide-angle X-ray diffractometric
analysis (WAXS) was performed. The diffraction patterns are shown in Figure 3C, while
the degrees of crystallinity are reported in Table 1.

With regard to the two homopolymers, no reflections due to the crystalline phase were
observed in PPeF, while the semicrystalline nature of PHF was confirmed by three intense
reflections at 2
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= 13.7◦, 17.1◦, and 24.8◦. All the PHF/PPeF blends had reflections in the
same position as those of PHF, confirming that the crystalline phase remained the same,
regardless of the amount of PPeF present. However, their intensity, and, in turn, Xc values,
became lower as the amount of PPeF was increased, in agreement with the calorimetric
data (Table 1).

To determine the thermal stability of the homopolymers and the blends, thermo-
gravimetric analysis (TGA) was performed under a controlled nitrogen atmosphere. The
thermograms are shown in Figure 3D, while the relative onset temperature (Tonset) and the
temperatures corresponding to the maximum degradation rate (Tmax) are listed in Table 1.

As for PHF and PPeF, it is worth noticing that their thermal stability is particularly
high and comparable, with Tonset being above 370 ◦C and Tmax above 390 ◦C, in line with
data obtained from previous studies [51,52,56]. Moreover, degradation occurs in two steps,
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with the thermograms being characterized by a shoulder when a temperature of 400 ◦C
is reached. At the end of the measurements, weight loss is complete. As expected, the
mixtures show a similar behaviour as their reference homopolymers, confirming that
blending does not alter the high stability of the starting materials, which is one of their
strong points.

3.4. Mechanical Characterization

The mechanical behaviour of PHF, PPeF, and the blends was analyzed through tensile
tests. Figure 4 shows the relative stress–strain curves, while the values of elastic modulus
(E), stress (σB), and strain (εB) at break are listed in Table 2.
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Table 2. Mechanical characterization data and GTR to O2 and CO2 of PHF, PPeF, and
PHF/PPeF blends.

E (MPa) σB (MPa) εB (%)
O2-TR

(cm3 cm m−2

d−1 atm−1)

CO2-TR
(cm3 cm m−2

d−1 atm−1)

PHF 906 ± 34 22 ± 1 42 ± 6 0.19 0.5
PHF75/PPeF25 205 ± 21 16 ± 2 368 ± 12 0.852 1.29
PHF50/PPeF50 85 ± 4 14 ± 1 657 ± 39 0.997 1.55
PHF25/PPeF75 32 ± 3 5 ± 1 803 ± 43 0.505 0.969

PPeF 9 ± 1 6 ± 1 1050 ± 200 0.0016 0.0014

As commonly accepted, chain flexibility (i.e., Tg value) and the degree of crystallinity
play a key role in determining mechanical properties [58–60]. Considering this, the PHF
homopolymer, which is rubbery but highly crystalline, shows the highest elastic modulus
(906 MPa) and the lowest elongation at break (below 50%) among the family. Conversely, the
amorphous and rubbery PPeF is the material with the lowest elastic modulus (E = 9 MPa)
and highest elongation at break (more than 1000%). This is interesting to point out as
this homopolymer shows a peculiar behaviour, as it can be processed into a film with
elastomeric properties (elongation at break values greater than 1000%) and exhibits an
almost instantaneous return to its initial length after break, although amorphous and
rubbery at room temperature. As reported in the literature, this evidence can be due to the
presence of an ordered phase different from the conventional 3D one, which is responsible
for excellent functional properties, including mechanical and barrier ones [52,61–64].

As for the blends, the first main evidence is that the mixing of PHF with PPeF is
effective in reducing the stiffness of PHF, as the introduction of increasing amounts of PPeF
leads to a progressive decrease in the elastic modulus and stress at break, together with
an increase in the elongation at break. More in detail, compared to the values measured
for PHF, the values of the elastic modulus decrease approximately 4.4, 10.5, and 28 times
in PHF75/PPeF25, PHF50/PPeF50, and PHF25/PPeF75, respectively, while the elongation
at break improves by factors of approximately 9, 15, and 19, respectively. This result is
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remarkable, considering that the two parent homopolymers are mixed only physically
together, without any chemical bond among them. Moreover, previous studies carried
out on furan-based blends showed poorer elongations at break, not so much higher than
those of the most rigid component of the binary blends [43,48]. Therefore, such a behaviour
further confirms the good compatibility and the cohesion between two phases, already
highlighted by the morphological results (Figure 2). Lastly, the blends PHF75/PPeF25 and
PHF50/PPeF50 show yielding at strains lower than 20%.

Overall, these results confirm that all the mechanical parameters, such as ductility and
flexibility, can be nicely tailored simply by acting on the blend composition, depending on
the target properties. Of note, the mechanical properties obtained are absolutely in line
with those of commercial plastic materials commonly used for packaging purposes, such
as LDPE, LLDPE, and HDPE [65,66].

3.5. Evaluation of Gas Barrier Properties

The analysis of barrier properties is extremely important in understanding the po-
tential applications of the materials under study in the field of food packaging. The
permeability tests to pure gasses O2 and CO2 were carried out at 23 ◦C and the permeability
values, expressed as Gas Transmission Rate (GTR), are reported in Table 2 and shown in
Figure 5.

As commonly accepted, keeping the molecular weight of the materials fixed, gas
barrier properties are influenced by the free volume fraction, directly related to Tg, and by
the degree of crystallinity. Indeed, glassy polymers have a lower free volume compared
to rubbery ones, while 3D crystals hinder the passage of gasses, unlike what occurs in
amorphous materials, where the gas molecules can pass more easily [67,68]. However,
previous studies have shown that in polymers containing mesogenic units, i.e., materials
characterized by the presence of a rigid unit (such as the furan ring) together with a flexible
one (such as aliphatic glycols), the formation of a further phase, known as the mesophase, is
possible. This peculiar phase is different from the crystalline one and more effective than the
latter in reducing the permeability of the materials [61,69]. The formation of the mesophase
is favoured in amorphous polymers with Tg around room temperature [63,70,71]. Moreover,
the presence of crystals within the amorphous phase gives rise to the so-called disclinations,
which are channels at the interface between the two phases, through which gasses can pass
more easily.

According to this, PHF is the least performing material, despite its Tg around room
temperature, due to its high crystallinity degree (Table 1). Conversely, PPeF is the material
with the lowest GTR values, in which the formation of the mesophase is maximized, thanks
to its amorphous and rubbery nature at room temperature. The macromolecular chains at
this temperature are indeed unlocked and can rotate and maximize the interchain hydrogen
bonds responsible for the formation of the mesophase. According to literature data about
similar polymeric systems [48], regarding the PHF/PPeF blends, it can be seen how the
GTR values are comparable to those of the PHF homopolymer, as expected on the basis of
a conspicuous crystalline portion present in the blends, which develops at the expense of
the performing mesophase and which gives rise to disclinations.

In Figure 5, the GTR values of some commonly used packaging materials (PP, HDPE,
LDPE, and PET) [72,73] are also shown for the sake of comparison. Of note, the GTR values
of all the materials investigated, including the blends, are comparable (in the case of PET) or
even lower (in case of polyolefins) than those of plastic packaging materials, which can be
found on the market, making all the materials under study very interesting for applications
in the field of food packaging.
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3.6. Lab-Scale Composting Studies

The capacity of a material to undergo degradation in compost is particularly important
in the field of food packaging, with the generated plastic wastes being characterized by a
short life-cycle and being difficult to recycle due to contamination with organic matter.

Previous studies from the authors [74–76] have indicated that the PHF homopolymer
is not degradable in compost, showing negligible weight loss after 6 months of incubation.
Conversely, PPeF is compostable, as it completely degrades in about two months. As it can
be seen in Figure 6A, the non-incubated films of the mixtures are characterized by a smooth,
homogeneous, and semi-transparent surface. On the contrary, the samples incubated for
6 months show opacification, accompanied by an increase in fragility as the amount of
PPeF in the blends is higher, suggesting the presence of a higher amount of crystallinity.

Figure 6B shows the gravimetric weight loss at different incubation times for the
mixtures and the relating homopolymers. A direct dependence of weight loss on both the
incubation time and the amount of degradable PPeF is clearly evident, although during
the explored timescale, none of the samples showed a complete degradation. Indeed, the
highest weight loss, of about 50%, was observed in the PHF25/PPeF75 mixture.

The surface morphology of the polymeric blends was analyzed by means of SEM. As
an example, in Figure 6A, the images of the films before and at the end of the composting
experiment are shown. As it can be seen, the neat films show a smooth and homogeneous
surface, while at the end of the experiment, they undergo significant changes. Even if the
weight loss is not complete, deep holes and cracks on the surfaces become visible, whose
width and number increase with the amount of PPeF, in agreement with weight loss data.
These phenomena are due to both the bulk hydrolytic degradation and the enzymatic
activity of the microorganisms inside the compost, which occurs mainly at the surface
level. In detail, the hydrolytic cleavage results in the presence of cracks [77,78], while the
enzymatic mechanism results in the presence of holes and cavities [79,80]. Considering the
results obtained (Figure 6A), it seems that in the blends, the hydrolytic mechanism prevails
over the enzymatic one.

In order to verify how the permanence in compost may have influenced the crys-
tallinity and the thermal transitions of the investigated materials, I DSC scans were per-
formed on partially degraded films after 1 and 6 months of incubation. The DSC traces are
shown in Figure 7, while the relative thermal data are reported in Table S1.
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Taking into account that all the neat samples were semicrystalline, a slight increase in
the intensity of the melting phenomenon over time can be observed only in PHF50/PPeF50.
Conversely, the melting temperature remains unchanged, indicating that the main crys-
talline phase, rich in PHF, was not appreciably attacked.

Of note, an endothermic peak between 85 and 93 ◦C appeared in all the samples, due
to the formation of a less perfect ordered phase compared to the higher melting one, which
develops upon the permanence of the samples at 58 ◦C. In order to understand the origin
of this endothermic phenomenon, DSC analysis was also carried out on blank samples.
According to Figure 7, the permanence at the incubation temperature seems to be enough to
trigger the above-mentioned phenomenon, as the DSC curves of the blanks and composted
samples are practically identical (Table S1).
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Figure 7. First DSC scans of (A) PHF75/PPeF25, (B) PHF50/PPeF50, and (C) PHF25/PPeF75 after 1
and 6 months of incubation in compost, compared to those of the neat (t0) and blank samples after
1 month of incubation (1 month_b).

4. Conclusions

The realization of bio-based blends with different weight compositions of poly(penta-
methylene furanoate) (PPeF) and poly(hexamethylene furanoate) (PHF) has been proved
to be an effective way to obtain new sustainable materials in view of applications in the
field of flexible food packaging. Indeed, all the starting monomers are bio-based and the
synthesis of the homopolymers has been carried out through bulk polycondensation, a
solvent-free strategy. In addition, the preparation of the binary mixtures was simple, fast,
and easy to scale up to the industrial level.

According to the morphological data, it can be assessed that the blends show a good
compatibility, as the homopolymer phases are intimately dispersed, despite the absence of
chemical bonds between the macromolecular chains. Blending did not negatively alter the
thermal stability, which is one of the strong points of furan polymers. From the mechanical
point of view, remarkable improvements with respect to the rigid and brittle PHF were
observed, since the presence of increasing amounts of the rubbery and elastomeric PPeF
led to a progressive lowering of the stiffness and an increase in the elongation at break,
reaching values in line with those of LDPE, LLDPE, and HDPE. This result is particularly
remarkable, considering the absence of chemical bonds between the two homopolymers.
In addition, the overall barrier properties remained comparable to those of the PHF, and
better than those of conventional plastic packaging materials on the market, making the
blends very competitive for this application. Lastly, composting experiments did not show
complete weight loss, even though high fragmentation in the sample containing the highest
amount of PPeF was observed, together with a weight loss of about 50%. Although not
fully compostable, the blends, thanks to the similar chemical structure of the starting
homopolymers, can be potentially recycled, also resulting in their end-of-life sustainability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16162342/s1, Figure S1. 1H-NMR spectra of PPeF (top) and
PHF (bottom) homopolymers, with peaks attribution; Figure S2. 13C-NMR spectra of PPeF (top) and
PHF (bottom) homopolymers, with peaks attribution; Table S1. I scan DSC data of partially degraded
PHF/PPeF blends.
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