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A B S T R A C T

This study investigates the correlations between key wastewater parameters – water level, turbidity, and
electrical conductivity – under varying weather conditions, including extreme rainfall events such as the
May 2023 flood event in Bologna, Italy. Data collected via IoT-based sensors are analyzed using Detrended
Cross-Correlation Analysis and Autoregressive Distributed Lag (ARDL) models. The results highlight significant
correlations between water level and other parameters, with distinct patterns emerging during extreme and
regular weather periods. Notably, water level correlates negatively with electrical conductivity, particularly
during flood events, due to the dilution effect of rainwater. Turbidity shows a complex relationship with
water level, influenced by weather conditions and the opposing effects of different factors. ARDL models
further demonstrate the potential to predict turbidity and electrical conductivity from water level data, offering
valuable insights for wastewater management in urban areas.
1. Introduction

The analysis of extreme events is critical in hydrology for pattern
recognition and risk assessments to quantify the implications for the
environment and infrastructure (e.g., Focaccia et al., 2021; Felisa et al.,
2022; Kohanpur et al., 2023; Hop et al., 2024; Xu et al., 2024). Extreme
precipitation events impact sewer systems and urban flooding (e.g., Liu
et al., 2024). While progress has been made in safeguarding freshwater
resources, there are still significant threats to the quality of receiving
water (e.g., Jalliffier-Verne et al., 2017).

Evaluation by the European Commission of the Urban Waste Water
Treatment Directive identified stormwater overflows, including urban
surface runoff and combined sewer overflows, as major sources of
pollution for aquatic environments. Climate change is expected to
worsen the impact of these emissions on water resources, with more fre-
quent intense rainfall and severe droughts. In this context, innovative
solutions are needed to efficiently and cost-effectively reduce pollution
from urban runoff and sewer overflows (e.g., Rosenberger et al., 2021;
Wang et al., 2023).

Here, we focus on the sewer system of Bologna in the Emilia-
Romagna Region of Italy, and analyze the system response to regular
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weather conditions and the exceptional extreme rainfall event that
happened in May 2023. Specifically, from May 16th to 18th, 2023,
the Emilia-Romagna Region experienced its second severe flooding
event in two weeks, following the first inundation on May 2nd. Both
flooding events were caused by intense and continuous rainfall over
the Region, including the city of Bologna. The impact on water levels
in the southern-eastern part of the Region was significant, with some
rivers reaching their record high levels (eGEOS, 2023).

In the context of the European Project StopUP - Protecting the aquatic
environment from urban runoff pollution, financed by the EU under
the Horizon Europe Programme, data loggers based on the Internet
of Things (IoT) were installed on May 8th, 2023 and were able to
record the impact of the event. These sensors monitor continuously,
with a sampling frequency of fifteen minutes, three key wastewater
parameters, namely water level, turbidity, and electrical conductivity
at the outlet of the 800 km long combined sewer system of Bologna,
which is also the inlet of the Bologna wastewater treatment plant
(WWTP). The installation of the sensors, developed by the company
FLUVES (a partner of the Project), follows up-to-date best practices in
environmental monitoring. Moreover, continuous measurements of the
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Fig. 1. Map of the sewer system of Bologna (Italy, latitude 44.495, longitude 11.343): main watercourses, combined sewer network and WWTP.
wastewater parameters allow the detection of the complete dynamics of
hydrographs and pollutographs, which is the basis to evaluate the full
variability of flow and pollutant concentrations (Gruber et al., 2006).

The availability of these data and the extent and importance of the
rainfall event (and associated flooding) have suggested two avenues of
investigation. These general goals are of importance for sewer system
modeling in general: (i) assessing the impact of the rainfall event on the
tributary basin of the main outlet of the sewer system in Bologna, to
determine if such an event could pose a threat, as has been the case for
larger river basins experiencing critical conditions; (ii) statistically eval-
uating, under extreme and regular weather conditions, the correlations
among the wastewater parameters and between them and rainfall, with
the additional scope of predicting some of these quantities, particularly
turbidity and electrical conductivity, based on the water level.

Specifically, we use cross-correlations to examine the relationship
between time series. Since non-stationary and noisy time series are
ubiquitous in the real world, we adopt detrended cross-correlation
analysis (DCCA) to reduce the impact of non-stationary features and
noise (Podobnik and Stanley, 2008). DCCA helps us study the local
and global fluctuations in the series and explore long-range cross-
correlations using power laws. In contrast to standard DCCA, we use
higher-order polynomials to approximate the local trend and identify
the non-linearity inside the time series (Shadkhoo and Jafari, 2009;
Horvatic et al., 2011; Marinho et al., 2013). Additionally, to quantify
the lag effect, we analyze the cross-correlation between lag time se-
ries (Shen, 2015), and we develop a linear prediction by Autoregressive
Distributed Lag (ARDL) models (Nkoro et al., 2016; Pesaran et al.,
1995), in dry and wet seasons, of turbidity and electrical conductivity
based on the water level.

To the best of our knowledge, there was a lack of studies in this
field that employed these data-driven tools to interpret the relationships
between hydrological variables and water quality parameters based
on (continuous) time series data collected by IoT sensors. If a com-
prehensive literature review on the relationship between hydrological
and water quality parameters at the sewer system level appears to be
lacking – this gap seems to be present also at larger spatial scales
like river basins – specific studies addressing this topic are abundant;
relevant examples are Reisinger et al. (2019) and Mahaut and Andrieu
2 
(2019) for the cities of Baltimore and Nantes respectively. Related
works for river systems are (Prathumratana et al., 2008) and Navratil
et al. (2020). At both the sewer and river scales, the methodologies
range from simple regression analysis to direct simulations of flow and
transport equations, making it challenging to compare directly with the
present results.

The structure of the paper is as follows: Section 2 presents the
case study, the experimental set-up at the WWTP, and the methods,
including the stationary Generalized Extreme Value (GEV) distribution
and Cross-Correlation Analysis (CCA) with Detrended Fluctuation Anal-
ysis (DFA). Section 3 illustrates the results and discusses their physical
meaning and implications, and a set of conclusions and perspectives
closes the paper (Section 4).

2. Materials and methods

In this Section, we provide detailed information about the case study
involving the sewer system serving the City of Bologna. This includes
the experimental setup and the sensors used to collect data on water
level, electrical conductivity, and turbidity at the inlet of the Bologna
WWTP. We also describe how a database is created to store this data
along with rainfall information. Additionally, we discuss the use of the
stationary GEV distribution to study extreme events and the statistical
tools employed for CCA among the different time series collected by
the sensors.

2.1. Case study

The City of Bologna, located in the Emilia-Romagna Region of Italy,
has an urbanized area of 4700 ha and is drained by a combined sewer
system having a total length of 800 km, see Fig. 1. The WWTP serving
the city, with a population equivalent of 600,000, is located on the
northern boundary of the served basin. Both the network and the plant
are operated by the multi-utility Hera S.p.A. (partner of the StopUP
project). Overflows occurring in wet weather periods are received
by three main watercourses (Reno River, Savena River, and Navile
Channel) through 123 spills, or combined sewer overflows (CSOs). In
particular, during rainfall events, the Navile Channel receives the over-
flow before the inlet to the WWTP. The case study domain includes the
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Fig. 2. (a) Top view of the manufact and location of sensors at the inlet of the WWTP (red point). (b) View of sensor’s datalogger set-up. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
𝜎

main CSO of Bologna. Indeed, based on long-term hydraulic simulations
developed in Maglionico et al. (2009) on the whole sewer network, the
CSO just upstream of the inlet to the WWTP is the main contributor in
terms of the amount of mass and volumes discharged every year.

The measuring point is located in the pipe before the inlet to
the WWTP which drains sewage and stormwater (Fig. 2). Installation
in the CSO itself was impractical since the collector transports both
spills during rainfall events and the treated water by the WWTP, see
Fig. 2a. However, the continuous measure of the water level in the pipe
provides information on verified overflows and their relative volume.

The data collection setup is based on the Internet of Things (IoT).
It involves connecting turbidity (Aqualabo NTU, 0–4000 NTU, < 5%
accuracy) and electric conductivity (Aqualabo C4E, 0–200 ms/cm, 1 <
5% accuracy) sensors to an IoT logger. Turbidity is measured using
optical reflection at a 90◦ angle, while electric conductivity is measured
using a titanium and graphite electrode. A relative pressure sensor (STS
PTM/N, 0–5 m, < 0.1% accuracy) measures the water level. The data
logger is responsible for processing the signals from each sensor and
sending the data via LTE-M (fallback: NB-IoT) to a (MQTT-) endpoint.
Measurements are taken every fifteen minutes. This setup was installed
in early May 2023, and the data collected for the first 8 months, from
mid-May to the end of December 2023, are analyzed in Section 3.

The pluviometric regime is analyzed using data recorded by the
weather station ‘‘Bologna Idrografico’’, managed by the Regional Agency
ARPAE. Table 1 lists the main characteristics of rainfall and tempera-
ture registered for the 8 months investigated. The cumulative rainfall
depth ranges from 5.4 mm in December to 347.9 mm in May against
an average of 75.8 mm.

Concurrently, high-time resolution data of electrical conductivity,
turbidity, and water level collected by the sensors are subjected to a
validation process and to the detection of outliers (Bertrand-Krajewski
et al., 2021). Fig. 3 shows boxplots of turbidity and electrical conduc-
tivity for the eight months analyzed. In May 2023, a large number of
outliers in the turbidity data highlights the exceptional nature of the
events that occurred. As mentioned in Razguliaev et al. (2024), these
measurements have been used as a ‘‘proxy’’ for monitoring various
3 
pollutants. Previous studies have shown that turbidity can be a reliable
indicator for indirectly measuring other pollutants. During rainy peri-
ods, numerous pollutants in CSOs are attached to suspended particles
in water (Rossi et al., 2005; Langeveld et al., 2005).

2.2. Stationary GEV distribution

Climate change favors extreme events that may impact sewer sys-
tems. Focusing on the precipitation depth, different methods can de-
scribe the precipitation distribution, such as the GEV distribution, and
the threshold model (Coles et al., 2001; Katz et al., 2002; Cheng
et al., 2014; De Paola et al., 2018). In this work, we have used the
stationary threshold model based on the GEV distribution to estimate
the probability density function (PDF) and the cumulative distribution
function (CDF) of rain events featuring a precipitation depth 𝑑 higher
than a threshold 𝑢, during a rain sampling period that can range from
1 to 6 h. Thus, the conditional CDF is expressed as:

𝑃𝐹 (𝑑′;𝜇 , ̃𝜎 , 𝛾|𝑑 > 𝑢) = 1 − (1 + 𝛾 𝑑′
�̃�

)−
1
𝛾 , (1)

where 𝑑′ = d - u indicates the excess rain depth above the threshold 𝑢,
𝜇 is the location parameter of GEV distribution, �̃� = 𝜎+𝛾(𝑢−𝜇), 𝜎 is the
scale parameter and 𝛾 decides the shape of distribution. The maximum
likelihood method was used to find the optimal parameters 𝜇 , 𝜎 , 𝛾.

According to the threshold model (Katz et al., 2002), the negative
loglikelihood function can be derived from Eq. (1) as

− log𝑃𝑓 (𝑑; �̃� , 𝛾) = log(�̃�) + (1 + 1
𝛾
) log(1 + 𝛾(𝑑 − 𝑢)

�̃�
) (2)

1 + 𝛾(𝑑 − 𝑢)
�̃�

> 0, for all 𝑑 , (3)

where the sample is only taken when the rainfall depth exceeds the
threshold 𝑑 > 𝑢. The relationships between these parameters are
presented below:

̃ = 𝜎 + 𝛾(𝑑 − 𝜇). (4)
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Table 1
Thermo-pluviometric regime at the ‘‘Bologna Idrografico’’ weather station in May-December 2023.
Month Cumulative rainfall

depth (mm)
Max Rainfall
Intensity (mm/h)

Average
Temperature (◦C)

Max Temperature
(◦C)

Min Temperature
(◦C)

May 347.9 52.8 18.5 30.3 11.3
June 45.1 24.8 24.5 37.1 17.0
July 40.6 29.2 28.1 39,2 17.4
August 33.5 11.6 27.0 40.1 16.4
September 27.9 9.6 23.8 33.8 14.5
October 64.5 16.8 19.9 32.4 10.2
November 41.2 11.2 11.4 21.8 3.4
December 5.4 1.6 8.7 22.4 1.8
Fig. 3. Boxplots of electrical conductivity (left panel) and turbidity (right panel) data in May-December 2023.
2.3. Detrended cross-correlation analysis

To study the correlation between any two different time series
among the four considered (i.e., rainfall, water level, electrical conduc-
tivity, and turbidity), we regard each time series as a random process.
DFA (Jun et al., 2006) is a commonly used tool for analyzing the auto-
correlation of time series. Standard cross-correlation methods assume
the time series to be stationary and ignore non-stationary trends,
which can lead to inaccurate correlation values. When studying the
unknown correlation between time series with non-stationary features,
we apply DCCA (Podobnik and Stanley, 2008), which can account for
non-stationarity effects. To incorporate periodic features and capture
higher-order terms for power series, high-order polynomials to approx-
imate the local trend (Horvatic et al., 2011) are used. DCCA has been
successfully applied in hydrology and proven to be effective in time
series analysis (Adarsh et al., 2020; Nogueira, 2019).

The two time series of interest are denoted by {𝑥𝑖}𝑁𝑖=1 and {𝑦𝑖}𝑁𝑖=1.
They can be any combination of turbidity (Nephelometric Turbidity
Unit, NTU), rainfall depth (mm), electrical conductivity (μS/cm), and
water level (mm). Before adopting DCCA methods, we first need to
define the increment series 𝑅𝑥 and 𝑅𝑦 as

𝑅𝑘
𝑥 =

𝑘
∑

𝑖=1
𝑥𝑖, 𝑅𝑘

𝑦 =
𝑘
∑

𝑖=1
𝑦𝑖, (5)

where 𝑘 = 1, 2,… , 𝑁 . Then, the whole time series is divided into 𝑁 − 𝑛
overlapping boxes. Each box includes the 𝑛 + 1 points sequence, 𝑅𝑖

𝑥
to 𝑅𝑖+𝑛

𝑥 , and in each box the ‘local trend’ is computed by polynomials
𝑃𝑙(𝑅𝑥) or 𝑃 ′

𝑙 (𝑅𝑦) approximated by least squares fitting, i.e.

arg min
𝑃𝑙

√

√

√

√
1

𝑛 + 1
𝑖+𝑛
∑

𝑘=𝑖
‖𝑅𝑘

𝑥 − 𝑃𝑙 ,𝑘,𝑖‖2, (6)

where 𝑃𝑙 ,𝑘,𝑖 represents the polynomials at the 𝑘th point defined on the
interval starting from the 𝑖th to the 𝑖+𝑛-th points with the highest order
𝑙. Then, the residual for each box, 𝑓 2

𝐷 𝐶 𝐶 𝐴−𝑙, is defined as

𝑓 2
𝐷 𝐶 𝐶 𝐴−𝑙(𝑛, 𝑖) ≡

1
𝑖+𝑛
∑

(𝑅𝑘
𝑥 − 𝑃𝑙 ,𝑘,𝑖)(𝑅𝑘

𝑦 − 𝑃 ′
𝑙 ,𝑘,𝑖), (7)
𝑛 − 1 𝑘=𝑖

4 
and adding up the residual for all boxes, we obtain the cross-correlation
𝐹 2
𝐷 𝐶 𝐶 𝐴−𝑙, reading

𝐹 2
𝐷 𝐶 𝐶 𝐴−𝑙 =

𝑁−𝑛
∑

𝑖=1
𝑓 2
𝐷 𝐶 𝐶 𝐴−𝑙(𝑛, 𝑖). (8)

Subsequently, the cross-correlation coefficient 𝜌 is introduced as

𝜌(𝑛) =
𝐹 2
𝐷 𝐶 𝐶 𝐴−𝑙(𝑛)

𝐹𝐷 𝐹 𝐴(𝑛)𝐹 ′
𝐷 𝐹 𝐴(𝑛)

, (9)

where the definitions applied for the DFA are similar to those for the
DCCA, e.g.

𝐹 2
𝐷 𝐹 𝐴(𝑛) =

𝑁−𝑛
∑

𝑖=1
𝑓 2
𝐷 𝐹 𝐴−𝑙(𝑛, 𝑖), (10)

𝑓 2
𝐷 𝐹 𝐴−𝑙(𝑛, 𝑖) ≡

1
𝑛 − 1

𝑖+𝑛
∑

𝑘=𝑖
(𝑅𝑘

𝑥 − 𝑃𝑙 ,𝑘,𝑖)2. (11)

By definition, −1 ≤ 𝜌 ≤ 1. Its sign indicates whether there is
a positive or negative correlation between the selected time series
(rainfall, electrical conductivity, turbidity, and water level), while its
absolute value indicates the strength of the relationship between the
two time series.

3. Results and discussion

3.1. Preliminary analysis of extreme rainfall events

Here, the methodology described in Section 2.2 is applied to the
rainfall time series. The considered time series consists of rainfall depth
measured at the weather station ‘‘Bologna Idrografico’’, with a 15-
minute time step resolution, from January 1990 to December 2022
(https://simc.arpae.it/dext3r/). These data are compared with those
referred to the flood event occurred on May 9th–17th 2023.

The maximum rainfall depths in historical data are gathered at
frequencies ranging from 1 h to 24 h. The average value of the time
series, for the different frequencies, falls within the range of 0.5 to
1.4. The threshold, represented as 𝑢, is designated to 0.85 mm, which
corresponds to the midpoint of that interval. The optimal parameters

https://simc.arpae.it/dext3r/
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Fig. 4. (a) PDF and (b) CDF given by the GEV distribution, for sampling frequencies in the range 1–24 h.
Fig. 5. Maximum rainfall intensity value (return level) against the sampling frequency
for return periods in the range 0.01–10 years. Bold lines are referred to historical data,
dashed lines to flood event data.

are determined by solving the maximum likelihood function using the
Quasi-Newton method. Fig. 4 depicts the PDF and CDF for six different
sampling frequencies. It is seen that the sampling frequency affects
marginally the probabilistic behavior of the maximum rainfall depth.

Referring to the Poisson–GP model, the probability of occurrence of
a maximum rainfall depth exceeding 𝑢 can be approximated as

𝑃 (𝑑 > 𝑢) ≈ Num(𝑑 > 𝑢)∕Num(𝑑), (12)

while, for a given return period, the correspondent maximum rainfall
depth value exceeding 𝑢 is (see Coles et al., 2001)

𝑑 = 𝑢 + 𝜎
𝛾
([𝑁 𝑛𝑠𝑃 (𝑥 > 𝑢)]𝛾 − 1), (13)

where 𝑛𝑠 is the sampling frequency and 𝑁(year) is the return period.
Fig. 5 shows the maximum rainfall value (intensity) as a function

of the sampling frequency for different return periods. It can be first
observed that the intensity increases markedly with the return period
as expected (the different curves). The intensity also increases with the
sampling frequency, first in a nonlinear fashion and then, for values of
sampling frequency around 5–6 h, with a nearly linear trend with a gen-
erally low rate of increase. Results are provided both for historical data
(bold curves) and data associated with the flood event (dashed curves).
The latter curves are always higher than their historical counterparts,
highlighting the exceptional nature of the flood event; the difference
between each pair of curves decreases with increasing return time.
5 
3.2. Cross-correlation among time series

Here, the application of DCCA reveals the cross-correlation between
the water level and the other parameters at the measurement station,
namely the electrical conductivity and turbidity, and the rainfall depth.
The rationale for this choice is that (i) a prediction of the water level
based on the rainfall depth is of general hydrologic interest and is
relevant for the management of the WWTP, and (ii) water level is much
easier to measure than turbidity or electrical conductivity, and deriving
the latter quantities from water level is of technical interest for the
WWTP management.

First, we select three classical correlation models to eliminate the
non-stationary trend in the time series, bringing them to a constant
mean value by the detrending process (to enable auto-correlation com-
puting). Let us denote with 𝑃𝑙 a polynomial with the highest order
equal to 𝑙. Hence, the constant polynomial, 𝑃0 = 𝑎0, linear polynomial,
𝑃1(𝑌 ) = 𝑎0 + 𝑎1𝑌 , and quadratic polynomial, 𝑃2(𝑌 ) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2,
are employed to approximate the local trend in (7) where 𝑎0, 𝑎1, and 𝑎2
are constant coefficients and 𝑌 can be any accumulation times series
of rainfall depth, electrical conductivity, turbidity and water level.

Fig. 6 illustrates the variation of the detrended cross-correlation
coefficient between the water level and (a) electrical conductivity, (b)
rainfall depth, (c) turbidity during the dry season, and (d) turbidity in
the wet season, as a function of the time scale 𝑛. The average rainfall
depth defines the dry/wet season in this context. For example, if the
average rainfall over the whole period considered is 0.4 mm/day, the
value associated with the flood event is 2.85 mm/day, while in June
(wet season) is 0.96 mm/day. No lag effects are considered here. Re-
sults for different polynomials are not markedly different. For example,
we observe minor variations for the electrical conductivity-water level
correlation, where higher-order polynomials suggest a less negative
correlation coefficient, and for the turbidity-water level correlation in
the wet season, where higher-order polynomials indicate a less positive
correlation.

The cross-correlation between water level and the other variables
exhibits interesting results. In particular, the negative cross-correlation
between electrical conductivity and water level becomes already signif-
icant at a time scale of 102 h. This negative cross-correlation, already
detectable at relatively small time scales, is physically explained by
considering that rainwater acts as a dilution factor (Bersinger et al.,
2015). In this regard, Khamis et al. (2017) uses electrical conduc-
tivity to proxy the duration of hydrological events. While the cross-
correlation between water level and precipitation is univocal, with
values above 0.5 already for 𝑛 < 102 h, thus denoting the impact of
rainfall events on the selected hydraulic system at any time scale, the
interrelation between turbidity and water level is not.



M. Cheng et al. Journal of Hydrology 649 (2025) 132455 
Fig. 6. Cross-correlation coefficients as a function of box size 𝑛 (hours) for water level and (a) electrical conductivity, (b) rainfall depth, (c) turbidity in the dry season, and (d)
turbidity in the wet season.
Fig. 7. Correlation coefficients between water level and rainfall depth vs lag ℎ (hours) in (a) May 9th–13th (flood event) (b) June 1st–5th (regular wet season).
Turbidity, as defined in Anderson (2005), refers to the cloudiness
or muddiness of water, and it is a measure of the optical property that
causes light to scatter and be absorbed by the water/solids suspension.
According to continuous monitoring conducted by a study in Pau,
southern France (Bersinger et al., 2015), a peak in turbidity was ob-
served in the sanitation network of an urban catchment during rainfall
events, coinciding with an increase in flow. However, the magnitude of
the peaks varied from one event to another. In this regard, according to
Fig. 6, the cross-correlation between turbidity and water level presents
two different behaviors over dry and wet seasons. During the wet
season, turbidity has a weak positive association with water level, until
the time scale is 𝑛 < 103 hours, and then it increases rapidly with
𝑛 above 0.5. During the dry season, there is no clear evidence of a
cross-correlation between the time series.

This first part of our analysis highlights the importance of investi-
gating the cross-correlation between time series with a multi-time scale
approach to quantify scale-dependent correlations. Our results show
that the correlation between water level and (a) electrical conductivity
6 
is negative at any time scale and increases with 𝑛, (b) rainfall depth
is positive at any time scale and increases with 𝑛, (c) turbidity during
dry season is sensibly zero until 𝑛 < 102 h and then exhibits opposite
trends with 𝑛 with no evident characteristics, (d) turbidity during the
wet season is always positive but not significant unless 𝑛 > 103 h.

After obtaining these initial results, we further examined the cor-
relations between the quantities of interest by analyzing different time
lags (ℎ) in the time series data. For this analysis, we used an average
box size of 120 h for the DCCA, i.e., a fixed time scale. The investigation
is developed for a five-day time frame, identified in three distinct
periods: (a) May 9th–13th, 2023, representing the first flood event, (b)
June 1st–5th, 2023, which served as a typical period of wet weather,
and (c) August 15th–19th, 2023, representing dry weather. We assessed
the correlation for time lags ranging from 1.25 to 6.25 h (multiples of
1.25 h).

Regarding the relationship between water levels and rainfall depth,
Fig. 7a illustrates that the correlation coefficient varies slightly with
ℎ, exhibiting a maximum at 3.75 h. This nearly constant correlation
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Fig. 8. Correlation coefficients between water level and electrical conductivity vs lag ℎ (hours) in (a) May 9th–13th (flood event) (b) June 1st–5th (regular wet season) (c) August
15th–19th (regular dry season).
coefficient, close to one, is primarily due to our focus on the five days
associated with the flooding event. During this period, the continuous
rainfall enhances the correlation and reduces the impact of any delay.
In contrast, when analyzing a regular wet period, as shown in Fig. 7b,
the correlation increases with the lag, and the maximum occurs at
6.25 h. Here, the correlation coefficient exceeds 0.5 even at ℎ = 1,
which aligns with previous results for 𝑛 = 102 h (see Fig. 6b). The
continued increase in the correlation with ℎ indicates the specific delay
time for the selected basin relative to a single event. Indeed, the water
level typically increases a few hours after the rain event has occurred
in basins of limited size, such as the one considered here.

The analysis of electrical conductivity and water levels reveals a
negative correlation, as illustrated in Fig. 8a–b. The correlation coeffi-
cients reach a peak at 5–6.25 and 3.75–5 h, respectively. However, the
trend of 𝜌 against ℎ remains relatively constant, especially in the latter
case. Thus suggesting that the decrease in electrical conductivity closely
follows an increase in water level, even though the highest correlation
occurs after a few hours. During a regular dry period, Fig. 8c, the
correlation coefficient increases with ℎ but is less negative than the
previous cases, staying below 0.5 in absolute value. To interpret these
results, we need to consider that an increase in water level reflects a rise
in flow rate, which enhances sediment transport capacity. Conversely,
a higher flow rate leads to greater dilution, resulting in lower electrical
conductivity. The negative correlation observed in Fig. 8a–b indicates
that the dilution effect predominates during the wet season, while its
influence diminishes during the dry season.

Finally, regarding the correlation between turbidity and water level,
Fig. 9a shows that 𝜌 is negative, and remains consistently below 0.5 in
absolute value. It does not vary significantly with ℎ. Conversely, Fig. 9b
shows that 𝜌 is positive during regular wet periods, as expected, and
increases with ℎ, although it remains below 0.5. In Fig. 9c, 𝜌 is negative
and increases in absolute value with ℎ, reaching a maximum of about
−0.5. During the regular wet season shown in Fig. 9b, it is known
that transport capacity increases with flow rate, resulting in higher
turbidity levels. The value of 𝜌 for ℎ = 1 is positive, consistent with
previous results (Fig. 6d), but the further increase in 𝜌 with higher ℎ is
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insufficient to establish a relevant correlation. During the dry season,
depicted in Fig. 9c, transport capacity is restricted by low flow rates.
In particular, 𝜌 is nearly zero for ℎ = 1, aligning with earlier results
(Fig. 6c), and the decrease in 𝜌 with increasing ℎ is not sufficient to
determine a high correlation in this scenario either. In the case of the
flood event shown in Fig. 9a, the negative value of 𝜌 is sensibly constant
with ℎ and below 0.5 in absolute value. This is likely due to a significant
increase in dilution capacity, which remained relatively constant during
the five days considered, reflecting the extreme nature of the event.

3.3. Autoregressive distributed lag models for the prediction of the time
series

Here, we analyze short-term correlations between the time series.
According to the results of DCCA, at least linear approximations exist
between turbidity, electrical conductivity, and water level. As such,
we develop a linear prediction by ARDL models in dry and wet sea-
sons (Nkoro et al., 2016; Pesaran et al., 1995). While there are vari-
ous techniques for time series analysis, such as recurrent neural net-
works (Connor et al., 1994; Hewamalage et al., 2021), ARMA neu-
ral networks (Hwarng and Ang, 2001; Hwarng, 2001), and Gaussian
processes (Roberts et al., 2013; Seeger, 2004; Brahim-Belhouari and
Bermak, 2004), these methods demand significant computational re-
sources for training and are more sensitive to overfitting. In contrast,
the ARDL model is straightforward to deploy and is well-suited for
online prediction since its complexity is comparable to solving a least
squares problem.

We assume different models for each month from May to August,
which are characteristic of the flood events (May), regular rainy period
(June), and regular dry period (July and August). The first half of each
month is used as the training set to compute the coefficients for the
linear model. Once the coefficients are derived, the model is applied
to predict the electrical conductivity and turbidity for the rest of the
month as functions of the water level. To avoid overfitting, we set the
number of parameters within the ARDL model to no more than 10, with
at least a thousand observations sampled for each 15 min.
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Fig. 9. Correlation coefficients between water level and turbidity vs lag ℎ (hours) in (a) May 9th–13th (flood event) (b) June 1st–5th (regular wet season) (c) August 15th–19th
(regular dry season).
Table 2
𝑙1 norm and 𝑅2 of ARDL models for electrical conductivity (EC) and turbidity (Tur).

Month 𝑙1 EC 𝑅2 EC 𝑙1 Tur 𝑅2 Tur

May 28.89 0.9769 46.79 0.9783
June 25.28 0.9709 12.28 0.9774
July 18.32 0.9696 61.63 0.8901
August 24.21 0.9445 22.98 0.9699

The target time series to predict is denoted as 𝑌 , either turbidity or
electrical conductivity. The variable time series is 𝑋 which is the water
level. The maximum lags for the target and variable are defined as 𝑝
and 𝑞. The general ARDL model reads as

𝛷(𝐿)𝑌𝑦 = 𝜙 + 𝛤 (𝐿)𝑋𝑡 + 𝜖𝑡 (14)

where 𝛷(𝐿) = 1 −𝛷1𝐿−⋯−𝛷𝑝𝐿𝑝 and 𝐿𝑝𝑌𝑡 = 𝑌𝑡−𝑝. 𝛤 (𝐿) = 𝛾0 − 𝛾1𝛤 1 −
⋯ − 𝛾𝑞𝛤 𝑞 and 𝛤 𝑞 = 𝑋𝑡−𝑞 . 𝜙 is the constant coefficient. 𝜖𝑡 is the i.i.d
white noise 𝜖𝑡 ∼  (0, 0.01).

With measurements taken every 15 min, we set for turbidity and
electrical conductivity 𝑝 = 5 and for water level 𝑞 = 5 (i.e., 1.25 h),
and compute the linear combination coefficients by the least square
method.

To evaluate the prediction error, we introduce 𝑙1 norm as 𝑒𝑙1 =
1
𝑛
∑𝑛

𝑖=1 |𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑡𝑟𝑢𝑒| where 𝑛 is the total length of time series. Table 2
collects 𝑙1 and 𝑅2 of ARDL models for electrical conductivity and
turbidity.

The comparison between actual and predicted time series for the
four months is illustrated in Figs. 10–13. The predictions from the
ADRL models are generally accurate with 𝑅2 values equal to or above
0.9 in all cases. By calculating the cross-correlation coefficient, as
outlined in Eq. (9), we observed that the correlation between water
level and electrical conductivity is consistently negative across the four
selected months, which is expected. Furthermore, this negative corre-
lation increases in absolute value from dry to wet conditions. In this
8 
short-term analysis, the cross-correlation coefficient for the relationship
between water level and turbidity shows varying signs and magnitudes
in absolute value, which does not provide a clear indication, as noted
in previous analyses.

Finally, we use a fast Fourier transform to get the frequency spec-
trum of the water level time series in May, June, and July (see Fig. 14).
The results indicate that the highest frequency observed in June and
July is approximately the same and higher than in May. This increase in
oscillation frequency suggests that the linear model may lose accuracy.
Several factors may contribute to this phenomenon, including hydraulic
operations at the outlet of the sewer system.

4. Conclusions

This study offers a comprehensive, data-driven analysis of wastew-
ater parameters in response to both extreme and regular weather
conditions in Bologna’s sewer system. DCCA reveals significant corre-
lations between water level and electrical conductivity. Notably, there
is a negative correlation during flood events due to rainfall dilution.
Turbidity displays a seasonally dependent correlation with water level,
showing weak positive correlations during wet seasons and negative
correlations during dry periods. The analysis of time lags highlights
the temporal dynamics of these correlations, with peak values varying
based on weather conditions. Additionally, the study employs ARDL
models to demonstrate the potential for predicting turbidity and elec-
trical conductivity from water level data, taking advantage of the fact
that water level measurements are prone to less uncertainty, and can be
collected remotely. In perspective, we plan to analyze a broader dataset
collected by the sensor system over the project’s duration to strengthen
our findings. We want to mention that another extreme rainfall event
affected the city of Bologna and surrounding areas on October 19th,
2024. Culverted streams, some eventually discharging into Bologna
WWTP, overflowed, causing significant damage. Large volumes of ur-
ban runoff were released into the environment. Thus, yet another
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Fig. 10. ARDL model predictions in May (blue lines) and observed time series (red lines) for (a) electrical conductivity and (c) turbidity. Correspondent regression plots are
in panels (b) and (d). The correlation coefficient (Eq. (9)) between electrical conductivity and water level is −0.9794, while between turbidity and water level is 0.4565. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. ARDL model predictions in June (blue lines) and observed time series (red lines) for (a) electrical conductivity and (c) turbidity. Correspondent regression plots are
in panels (b) and (d). The correlation coefficient (Eq. (9)) between electrical conductivity and water level is −0.4302, while between turbidity and water level is −0.8841. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. ARDL model predictions in July (blue lines) and observed time series (red lines) for (a) electrical conductivity and (c) turbidity. Correspondent regression plots are in
panels (b) and (d). The correlation coefficient (Eq. (9)) between electrical conductivity and water level is −0.3587, while between turbidity and water level is −0.5468. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. ARDL model predictions in August (blue lines) and observed time series (red lines) for (a) electrical conductivity and (c) turbidity. Correspondent regression plots are
in panels (b) and (d). The correlation coefficient (Eq. (9)) between electrical conductivity and water level is −0.9372, while between turbidity and water level is −0.4401. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Frequency spectrum of the water level time series in (a) May, (b) June, and (c) July.
extreme rainfall event reinforces the need to explore with a combi-
nation of tools (data-driven methods and physically-based models) the
relationship between hydrologic and wastewater quality parameters.
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