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A B S T R A C T   

Multivariate pattern analysis (MVPA) of electroencephalographic (EEG) data represents a revolutionary 
approach to investigate how the brain encodes information. By considering complex interactions among spatio- 
temporal features at the individual level, MVPA overcomes the limitations of univariate techniques, which often 
fail to account for the significant inter- and intra-individual neural variability. This is particularly relevant when 
studying clinical populations, and therefore MVPA of EEG data has recently started to be employed as a tool to 
study cognition in brain disorders. Here, we review the insights offered by this methodology in the study of 
anomalous patterns of neural activity in conditions such as autism, ADHD, schizophrenia, dyslexia, neurological 
and neurodegenerative disorders, within different cognitive domains (perception, attention, memory, con
sciousness). Despite potential drawbacks that should be attentively addressed, these studies reveal a peculiar 
sensitivity of MVPA in unveiling dysfunctional and compensatory neurocognitive dynamics of information 
processing, which often remain blind to traditional univariate approaches. Such higher sensitivity in charac
terizing individual neurocognitive profiles can provide unique opportunities to optimise assessment and promote 
personalised interventions.   

1. Decoding cognition using time-resolved MVPA of EEG data 

1.1. The multidimensional nature of neural representations in the EEG 
signal 

Understanding how the human brain encodes sensory information, 
forming neural representation of the external environment, and ulti
mately orchestrating human behaviour has been a paramount pursuit in 
cognitive neuroscience for research generations. In this framework, 
neuroimaging techniques have emerged as powerful operative tools 
capable of addressing these questions, allowing to identify patterns of 
neural activity reflecting specific mental states, characterizing their 
origin in space and informing how they unfold over time. In this regard, 
electroencephalography (EEG) provides an optimal temporal resolution 
to visualize fine-grained, time-sensitive brain signal information, sam
pling at the millisecond level spontaneous or event-related brain elec
trical activity on the scalp generated by the underlying neuronal 

populations (Davidson et al., 2000; Biasiucci et al., 2019). Although the 
EEG technique represents one of the most suitable neuroimaging 
methods to identify how the neural representations of information are 
encoded by our brain, it also presents a critical challenge: how can we 
accurately identify patterns of neural activity associated with specific 
cognitive processes from the complex and multidimensional dataset 
they generate? 

The nature of the neuroelectrical EEG activity is intrinsically multi
dimensional, characterized by a complex signal structured in different - 
but related – spatio-temporal features (Peters et al., 1998; Mitra and 
Pesaran, 1999; Davidson et al., 2000; Biasiucci et al., 2019). Tradi
tionally, the analysis of EEG activity has relied on univariate techniques, 
which implies a hypothesis-driven approach. This approach focuses on 
examining the average activity of a-priori-defined specific temporal 
windows (when?) and specific electrodes placed on the scalp (where?), 
and applies constraints to the analysis of the differences between groups 
or experimental conditions identified in specific components with a 
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well-known meaning (e.g., event-related potentials; ERPs; Luck, 2023). 
While this approach aims to reduce the number of comparisons, thus 
increasing the power of statistical analysis (e.g., Hebart and Baker, 
2018), it also induces investigators to index distinct neural components 
from individual electrodes and timepoints, ultimately seeking in
teractions between condition/group, electrodes and timepoints, a 
strategy that generally reduce statistical power (Luck et al., 2014; 
Hebart and Baker, 2018). Furthermore, constraining the analysis of EEG 
data to specific spatio-temporal features can lead to the possibility of 
ignoring relevant neural information excluded a priori from the statis
tical analysis (Poldrack, 2006; Luck et al., 2014; Hebart and Baker, 
2018; Grootswagers et al., 2017; Bae et al., 2020; Li et al., 2023; Li et al., 
2022; 2023; Peelen and Downing; 2023; Marsicano et al., 2024). For 
example, univariate approaches ground on the assumption that all in
dividuals exhibit a similar scalp distribution for a given spatio-temporal 
ERP component, although there is substantial interindividual variability 
in how neural activity is unfold, with the risk of obfuscating peculiar 
neural dynamics at the individual level (Borrell, 2018; Kroenke and 
Bayly, 2018; Fahrenfort et al., 2018; Farran et al., 2020; Bae et al., 2020; 
Li et al., 2022; 2023; Marsicano et al., 2024). 

As our understanding of the complexity of neural processes has 
deepened, it has become increasingly evident that we require analysis 
methods capable of unveiling how information is coded in complex, 
multidimensional EEG signals (Haynes and Rees, 2006; Pratte and Tong, 
2017; Kaiser et al., 2016; Fahrenfort et al., 2017; Marti and Dehaene, 
2017; Hebart and Baker, 2018; Grootswagers et al., 2017; Fahrenfort 
et al., 2018; López-García et al., 2022; Ashton et al., 2022; Peelen and 
Downing, 2023; Borst and Anderson, 2024). 

1.2. MVPA: decoding from EEG data neural representations of 
information content 

In this context, exploiting machine learning techniques coupled to 
multivariate statistics, Multivariate Pattern Analysis (MVPA; or 
“decoding”) of EEG data has emerged as a revolutionary approach in this 
field, providing a data-driven method capable of considering neural 
activation patterns associated to specific neural representations of in
formation content emerging from multiple electrodes at each individual 
timepoint (Cauchoix et al., 2014; Haxby et al., 2014; Grootswagers et al., 
2017; Holdgraf et al., 2017; Fahrenfort et al., 2017; Bayet et al., 2018; 
Fahrenfort et al., 2018; López-García et al., 2022; Ashton et al., 2022; 
Peelen and Downing, 2023; Borst and Anderson, 2024). The MVPA 
decoding approach, going beyond the constraints presented by tradi
tional univariate techniques, offers a way to consider the relationship 
among multiple spatio-temporal variables of EEG data, leading to an 
increased analysis sensitivity for decoding neural representations of 
information content which do not occur in a spatio-temporal focal 
manner (e.g., Norman et al., 2006, Haxby et al., 2014; Grootswagers 
et al., 2017; Hebart and Baker, 2018; Takacs et al., 2020; Petit et al., 
2023; Marsicano et al., 2024). Differently from univariate analysis, 
which oversimplifies the multivariate structure of EEG signal by taking 
the average of the neural activity emerging from specific time points/
windows in a defined pool of electrodes, MVPA preserves the complexity 
of information present in EEG data (Grootswagers et al., 2017; Hebart 
and Baker, 2018; Fahrenfort et al., 2018; López-García et al., 2022; 
Ashton et al., 2022; Peelen and Downing, 2023; Borst and Anderson, 
2024). As such, MVPA offers a more comprehensive understanding of 
the neural dynamics underlying information processing, enabling the 
detection of complex neural patterns and discriminative spatio-temporal 
features that may elude the operative confines of univariate methodol
ogies (see Fig. 1 for a graphical summary; for a more detailed description 
of the differences between univariate and MVPA approaches, see: 
Hebart and Baker, 2018). 

At an operational level, MVPA of EEG data provides a way to 
quantify an individual’s information content in the neural signal and to 
probe whether the neural activation patterns of information processing 

evoked by different experimental conditions are represented differently 
at the neural level. In detail, for each individual, a machine learning 
classifier (e.g., Linear Discriminant Analysis, LDA; Carlson et al., 2003; 
Fahrenfort et al., 2017; Melinda et al., 2023; Trammel et al., 2023; 
Support Vector Machine, SVM; López-García et al., 2022; Trammel et al., 
2023; Zhang et al., 2024) is trained to discriminate the neural activity 
associated with each of the different experimental conditions in a subset 
of the data, subsequently testing in an independent subset of the data 
whether and to what extent (i.e., level of decoding accuracy) the trained 
classifier is successfully able to discriminate the different conditions 
based on patterns of neural activity, ultimately allowing to compare 
decoding accuracy across each timepoint to test the time course of 
neural information processing. While univariate analyses are typically 
performed on the mean voltage in order to assess the consistency of the 
effect across individuals rather than uniformity across trials (Luck et al., 
2014; Hebart and Baker, 2018; Luck, 2023), MVPA is computed inde
pendently for each individual, using averages of neural activity derived 
from distinct subsets of trials for training and testing (Luck et al., 2014; 
Grootswagers et al., 2017; Hebart and Baker, 2018; Fahrenfort et al., 
2018; Bae et al., 2020; Li et al., 2023; Borst and Anderson, 2024; Mar
sicano et al., 2024). An above-chance classification accuracy of MVPA 
decoding performance indicates that the information associated with 
different experimental conditions is decoded by the algorithm and rep
resented by different patterns of neural activity, thus enabling the 
identification of unique neural dynamics linked to individual profiles of 
information processing (e.g., Cauchoix et al., 2014; Grootswagers et al., 
2017; Fahrenfort et al., 2018; López-García et al., 2022; Ashton et al., 
2022; Peelen and Downing, 2023). 

1.3. Differences between classical univariate analysis and MVPA 

A crucial difference between MVPA and classical univariate ap
proaches is that in the latter, the analysis is constrained to neural re
sponses that typically exhibits uniform direction with similar activations 
(e.g., ERPs with positive or negative amplitude; Hebart and Baker, 2018; 
Grootswagers et al., 2017; Peelen and Downing, 2023). However, when 
neural responses with different signs are present, there is a risk of 
obscuring potential patterns of information processing, due to the 
averaging of neural activity that exhibits a mixture of sign directions. 
Conversely, MVPA demonstrates greater sensitivity in identifying pat
terns of information processing, even in the presence of non-uniform 
neural response signs (Hebart and Baker, 2018; Grootswagers et al., 
2017), as both positive and negative responses are equally meaningful, 
contributing evenly to identifying patterns of neural activity associated 
with different information content (Hebart and Baker, 2018). At the 
same time, in MVPA the direction of the effect is typically hidden, due to 
the intrinsic inability of multivariate approaches to identify the direc
tion (e.g., positive or negative) of the neural response decoded. This 
crucial difference makes it difficult to evaluate whether one experi
mental condition is associated with greater or lesser neural activation 
compared to another (e.g., signal components with higher/lower 
amplitude). In most cases such an objective lies outside the scope of the 
decoding approach, for which the primary goal is to discern the dis
criminability between patterns of neural activity associated with 
different experimental conditions (Cauchoix et al., 2014; Grootswagers 
et al., 2017; Fahrenfort et al., 2018; López-García et al., 2022; Ashton 
et al., 2022; Peelen and Downing, 2023; Borst and Anderson, 2024). 
However, in cases where information on the direction of the effect is 
informative and directly relevant to the investigator’s interests, it is 
possible to evaluate the direction of the decoded neural differences by 
employing various strategies. For example, it is possible to characterize 
the underlying neural activity by transforming the classifier weights (i. 
e., electrodes) into forward weights (for more details, see: Haufe et al., 
2014; Fahrenfort et al., 2018), projecting the classifier weights back 
onto the topographical map of the electrodes, and thus providing in
sights into the source of decodable information. This operation 
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generates activation patterns at each individual timepoint and electrode 
that reflect the univariate differences between conditions. These pat
terns are directly interpretable as neural sources (i.e. raw amplitude), 
allowing for the evaluation of the direction of the effects resulting from 
the comparison between different experimental conditions (Haufe et al., 
2014; Fahrenfort et al., 2017; Fahrenfort et al., 2018). Furthermore, by 
integrating both univariate and multivariate approaches, when uniform 
neural response differences are detected, MVPA can proves to be more 
sensitive than univariate analyses because it allows for the optimal 
integration of data across multiple electrodes and timepoints (Haynes 
and Rees, 2006; Norman et al., 2006; Hebart and Baker, 2018; 
López-García et al., 2022; Ashton et al., 2022; Peelen and Downing, 
2023). 

Importantly, such a decoding technique can probe how neural rep
resentation of information differs between different experimental con
ditions even in the presence of a moderate level of decoding accuracy 
(Christophel et al., 2015; Grootswagers et al., 2017; Hebart and Baker, 
2018). Indeed, when the decoding performance reliably exceeds chance 
levels, it indicates that the information related to the conditions of in
terest is encoded by the brain, suggesting that the information content 
associated with different experimental conditions are represented 
differently at the neural level (Hebart and Baker, 2018; Bae et al., 2020; 
Li et al., 2023; Peelen and Downing, 2023; Marsicano et al., 2024; Borst 
and Anderson, 2024). However, while the level of decoding perfor
mance accuracy is typically equated with the size of an effect, it does not 
reflect a standardized measure of effect size (e.g., Cohen’s d; Ku et al., 
2008; Christophel et al., 2015; Hebart and Baker, 2018). Instead, 
decoding accuracies merely provide an intuitive measure of the classi
fier’s ability to predict information content from neural activity (Hebart 
and Baker, 2018; Bae et al., 2020; Peelen and Downing, 2023; Borst and 
Anderson, 2024). 

Crucially, as the magnitude of the neural activity can be dissociated 
from the decodable information content (Emrich et al., 2013; Cauchoix 
et al., 2014; Grootswagers et al., 2017), the differences identified by the 
decoding classifier can qualitatively and quantitatively differ from those 
found by univariate analyses (Ritchie et al., 2015; Grootswagers et al., 
2017; Fahrenfort et al., 2018), potentially uncovering hidden neural 
dynamics that otherwise remain difficult to detect. Even in the presence 
of neural responses where activation does not differ from baseline levels 
(Bae et al., 2020), it is possible to decode whether and when the infor
mation content begins to be represented at the neural level and when it 
differs between conditions. This allows for the identification of the 

temporal sequence of information processing and the latency of neural 
representations by assessing when the classifier’s accuracy is above 
chance at each timepoint (Grootswagers et al., 2017; Fahrenfort et al., 
2018; Peelen and Downing, 2023; Borst and Anderson, 2024). For 
example, as highlighted in a pioneering study conducted by Cauchoix 
et al., (2012), with respect to univariate approaches, time-resolved 
MVPA can result in earlier detection of differences in neural responses 
associated with face processing, revealing the key contribution of in
termediate visual areas that is hardly detectable employing univariate 
techniques. This contrasts with univariate approaches, where each 
spatio-temporal dimension of the EEG signal is frequently pre
determined and assessed separately (Haynes, 2015; Hebart and Baker, 
2018; Peelen and Downing, 2023). Assuming that different stages of 
neural processing can generally be associated with specific time win
dows may certainly be informative (e.g., ERP components), but there is a 
risk of obscuring individual neural processing timings, due to the high 
inter-individual variability typically observed in the latency of the 
neural activation patterns (Grootswagers et al., 2017; Fahrenfort et al., 
2018; Lopez et al., 2023; Nakuci et al., 2023). 

Relatedly, a relevant strength of MVPA approach as compared to 
univariate techniques, in addition to probing classification accuracy on 
each timepoint (i.e., diagonal decoding; Grootswagers et al., 2017; 
Fahrenfort et al., 2018), concerns the possibility of computing 
cross-decoding analysis, training and testing the classifier decoding 
performance in a different but related set of data, thus allowing to test 
whether a specific neural code is recurrent in different experimental 
conditions, groups and timepoints. In this realm, valuable insights are 
offered by the cross-decoding over time method (i.e., temporal gener
alization; King and Dehaene, 2014), which allows investigators to 
examine how the neural representation of information content is 
unfolded over time, testing whether a pattern of neural activity identi
fied in a specific time window is recurrent over other timepoints (i.e., 
above-chance cross-decoding). In simple terms, cross-decoding over 
time offers a way to identify the longevity and stability of the neural 
representation associated with the information being processed (Fig. 1; 
King and Dehaene, 2014; Cichy and Oliva, 2020). 

1.4. Scope of the present review 

Over the past decade such a machine learning decoding technique of 
EEG data has gained significant traction in the field of cognitive 
neuroscience. Several studies have identified the neural dynamics 

Fig. 1. Schematic illustration depicting the methodological and conceptual contrast between univariate and multivariate analyses of EEG data. A) Univariate 
Analysis. Using a hypothetical experimental scenario, this example schematizes the typical univariate analysis framework applied to EEG data obtained from an 
experimental paradigm featuring two distinct conditions (A = large circle condition depicted in blue squares; B = small circle condition depicted in orange squares). 
Investigators identify specific scalp electrodes of interest (where?), averaging neural activity across predetermined temporal windows (when?) with established 
meaning (e.g., event-related potentials; ERPs). EEG activity elicited by Condition A and Condition B at two distinct posterior electrodes is examined, inspecting 
potential differences over predetermined temporal windows corresponding to P1 and N1 ERPs components. While qualitative differences are observable at the level 
of individual electrodes at different timing, averaging neural activity evaluating magnitude and latency differences over specific spatio-temporal features can reveal 
comparable neural activation patterns across conditions. Although this approach frequently proves effective in determining magnitude and latency differences 
between experimental conditions, constraining EEG data analysis to predetermined spatio-temporal features may significantly increase the risk of overlooking 
relevant neural information showing different latencies and localizations. B) Multivariate Pattern Analysis (MVPA). Using the same example, this panel illustrates the 
sequential steps involved in MVPA of EEG data. Employing a data-driven decoding approach, investigators examine patterns of neural activity associated with 
specific neural representations of information content emerging from multiple electrodes at each individual timepoint. This allows to probe whether the neural 
patterns of information processing elicited by different experimental conditions are represented differently at the neural level, investigating potential effects which 
may not occur in a spatio-temporal focal manner, with variable neural latencies and magnitudes. A machine learning classifier is trained and tested to discriminate 
between the neural activity associated with condition A and condition B, inspecting whether and to what extent (i.e., level of decoding accuracy) it accurately 
discriminates the different conditions, by defining a decision boundary. Here, for simplicity, the interaction of the neural activity at one individual timepoint in two 
different electrodes is represented in a two-dimensional plot. When the classifier undergoes training and testing at each time point (i.e., diagonal decoding), the 
decoder’s accuracy provides information regarding potential differences on how and when the related information content is encoded at the neural level. In this 
example, considering the complex interplay of neural activity emerging from multiple electrodes at each timepoint, the decoding accuracy is above-chance level 
starting from ~150 ms. Here, differently from the univariate approach, this decoding analysis reveals information processing even at extended temporal latencies. 
When evaluating off-diagonal decoding performance, wherein the classifier is trained on specific timepoints and tested over other timepoints, it is possible to probe 
whether specific patterns of neural activity recur and generalized over time (i.e., temporal generalization), allowing to evaluate the stability of the neural repre
sentation associated with the processed information. Here, a transient neural response pattern is observable starting from ~200 ms after stimuli onset, followed by 
the emergence of a stable neural pattern of information processing identifiable starting from ~400 ms. 
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orchestrating low- and high- level cognitive mechanisms, successfully 
decoding patterns of neural activity associated with the processing and 
categorization of visual (e.g., Cauchoix et al., 2014; Bae and Luck, 2019; 
Robinson et al., 2019; Kaiser et al., 2019; 2020; Petit et al., 2023; Meng 
et al., 2023; Qiu et al., 2023; Stecher and Kaiser, 2024) and auditory 
stimuli (e.g., Barne et al., 2018; Jensen et a., 2019; Iamshchinina et al., 
2022; Jaatinen et al., 2023;Wehrman et al., 2023), decision-making (e. 
g., Bode et al., 2012; Stokes et al., 2013; Mercier and Cappe, 2020; Liu 
et al., 2022; Hu et al., 2024) and working memory processes (e.g., van 
Gerven et al., 2013; Wolff et al., 2015; Bae and Luck, 2018; Adam et al., 
2020; Turoman et al., 2024; Shi and Yu, 2024; Li et al., 2024). They 
further revealed the precise temporal dynamics underlying the forma
tion of perceptual and conceptual neural representations (e.g., Kamitani 
and Tong, 2005; Schwarzlose et al., 2008; Simanova et al., 2014; Ron
coni et al., 2017; 2024), ultimately providing a useful operative tool to 
probe cognitive theories (for a recent review, see: Peelen and Downing, 
2023). 

MVPA of EEG data has historically been exploited in the context of 
cognitive neuroscience in healthy populations. However, over the past 
few years, the field has witnessed a paradigm shift, and increasing evi
dence has demonstrated the operative usefulness provided by MVPA of 
EEG data in decoding hidden dysfunctional neurocognitive dynamics - 
and compensatory neural mechanisms - in many different clinical con
ditions, spanning from psychiatric and neurodevelopmental disorders 
(Bae et al., 2020; Farran et al., 2020; Li et al., 2023; Li et al., 2022; 
Gomez et al., 2022; Beach et al., 2022; Marsicano et al., 2024), up to 
acquired (Pfeiffer et al., 2018; Niessen et al., 2020; Defina et al., 2021; 
Lasaponara et al., 2021; Tzovara et al., 2012; 2015; 2016), genetic 
(O’Brien et al., 2020) and neurodegenerative conditions (Karimi et al., 
2022; Zhen et al., 2023). This initial empirical evidence supports a 
greater sensitivity of MVPA of EEG data in identifying aberrant neural 
dynamics as compared to classical univariate methods. 

As this approach is gaining traction, in the current review we 
formalize and propose that the same MVPA technique capable of char
acterizing neurocognitive dynamics in healthy individuals may also 
serve as a powerful lens to identify dysfunctional neurocognitive profiles 
in a wide range of clinical populations, with a special focus to neuro
developmental, psychiatric and neurological conditions. While previous 
studies have provided an overview of the MVPA of EEG data approach in 
the field of basic cognitive neuroscience (Peelen and Downing, 2023; 
Borst and Anderson, 2024), or its use with other neuroimaging methods 
in clinical contexts (i.e., fMRI; Bray et al., 2009), the current review 
represents the first contribution aimed at offering a comprehensive 
overview of the state-of-the-art of this information-based EEG decoding 
technique in clinical research. 

In detail, we review experimental studies employing MVPA of EEG 
data in clinical contexts, with the aim of providing an overview of: i) the 
applicability of this approach in clinical research, ii) whether MVPA of 
EEG data can provides higher sensitivity of analysis compared to 
traditional univariate techniques (e.g., ERP analysis), by also examining 
the differences between the two approaches, and iii) caveats and best 
practices for implementing the MVPA of EEG data approach in clinical 
research. We restricted our focus to time-resolved MVPA studies aimed 
at decoding neural representations of information processing from raw 
EEG activity (i.e., raw amplitude) in neurodevelopmental (i.e., Autism 
Spectrum Disorder, ADHD, William Syndrome, Developmental 
Dyslexia), psychiatric (i.e., Schizophrenia), and neurological conditions 
(i.e., neurodegenerative conditions and acquired brain damages) across 
different cognitive domains (perception, attention, memory, 
consciousness). 

In summary, in this review, after introducing the advantages of 
MVPA over conventional univariate methods, we provide a compre
hensive review of studies highlighting its relevance in understanding the 
neural dynamics of information processing in clinical populations. We 
conclude by discussing how MVPA, coupled to the high temporal reso
lution of EEG, may be relevant in providing a new frontier in the future 

to uncover hidden neural dynamics capable of characterizing the indi
vidual neurocognitive profiles in a wide range of clinical populations. 

2. Merits and utility of MVPA of EEG data in clinical contexts 

Traditionally, different machine learning approaches of EEG data 
have been employed within the context of clinical research, particularly 
for the discrimination of membership in different experimental groups 
(i.e., clinical vs. healthy population) based on specific EEG features (e.g., 
raw voltage or frequency measures; for example see: Bleich-Cohen et al., 
2014; Koch et al., 2015; Haputhanthri et al., 2019, 2020; Brihadiswaran 
et al., 2019; Jayawardana et al., 2019; Bennett et al., 2019; Kang et al., 
2020; Grossi et al., 2021; Alam et al., 2022; Goodspeed et al., 2023; 
Moreau et al., 2023; Toki et al., 2024; Rahul et al., 2024; Peterson et al., 
2024; Li et al., 2024). In this context, the decoder is provided with data 
from all participants and is trained to discern the group membership of 
each individual participant, with the ultimate aim of attaining elevated 
levels of decoding accuracy. For instance, within the context of Autism 
Spectrum Disorder (ASD), this approach provides a cost-effective and 
straightforward diagnostic tool for classifying ASD through EEG signal 
features, which might be beneficial also for early diagnosis, helping to 
differentiate ASD from other neurodevelopmental disorders and typical 
development (Haputhanthri et al., 2019; Brihadiswaran et al., 2019; 
Jayawardana et al., 2019; Haputhanthri et al., 2020; Toki et al., 2024; Li 
et al., 2024). However, while this group classification approach proves 
valuable in the development of diagnostic tools, it fails to provide in
sights into the differences in the information content of neural repre
sentations across individuals (Hebart and Baker, 2018; Fahrenfort et al., 
2018; Bae et al., 2020). 

In more recent years, MVPA has leveraged on the same machine 
learning classification algorithms with a conceptually different aim, 
gaining exponential interest in the realm of clinical neuroscience. 
Indeed, it can provide an operative tool capable of shedding light on the 
nature of neural representations of information content in its time 
course, quantifying the information present in each individual’s neural 
signal. 

Importantly, considering the complex patterns of neural activity 
emerging from the interaction between multiple spatio-temporal fea
tures of the EEG signal, MVPA allows to extract meaningful information 
from neural activity even in presence of low level of neural responses 
magnitude, as the magnitude of neural responses can be independent of 
the information that can be decoded from neural responses (Emrich 
et al., 2013; Hebart and Baker, 2018), thus assuming particular rele
vance in the clinical context (Bae et al., 2020). In the current review, in 
line with recent empirical evidence (Farran et al., 2020; Bae et al., 2020; 
O’Brien et al., 2020; Niessen et al., 2020; Defina et al., 2021; Li et al., 
2023; Li et al., 2022; Beach et al., 2022; Gomez et al., 2022; Karimi et al., 
2022; Zhen et al., 2023; Marsicano et al., 2024), we argue that such a 
peculiar sensitivity of MVPA to decode patterns of neural activity 
associated to information processing could make this decoding tech
nique as one of the most suitable and promising tool for characterizing 
dysfunctional neural dynamics and peculiars neurocognitive profiles in 
clinical populations, by extending and sometimes surpassing the po
tentialities offered by classical univariate analysis approaches (Hebart 
and Baker, 2018; López-García et al., 2022; Peelen and Downing, 2023). 
Accordingly, MVPA of EEG data can assume paramount significance for 
decoding individual patterns of neural activity in clinical populations for 
a multitude of compelling reasons (please, see Fig. 2 for a graphical 
summary). 

A critical aspect in understanding dysfunctional neural dynamics 
through univariate methods lies on the fact that they aim to investigate 
significant differences in EEG voltage (or spectral features) elicited 
under different conditions, assessing the average-based magnitude and 
latency of the evoked-EEG activity – across trials and for each individual 
– over predetermined spatio-temporal features with a well-known 
meaning (e.g., ERPs components or spectral features; e.g., Luck et al., 
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2005; Grootswagers et al., 2017; Hebart and Baker, 2018). Conse
quently, univariate analyses tend to mitigate variability among subjects, 
facilitating the emergence of commonalities across individuals to sta
tistically compare the evoked response magnitude as a function of 
conditions and groups (Luck et al., 2005), with the risk of obfuscating 
peculiar patterns of neural activity at the individual level (Hebart and 
Baker, 2018). 

On the contrary, MVPA grounds on an information-based data- 
driven approach (Grootswagers et al., 2017; Bae et al., 2020; Li et al., 
2022; 2023; López-García et al., 2022) and is computed at the individual 
level, by considering within each subject the neural activity derived 
from distinct subsets of trials for training and testing, thus evaluating the 
consistency of the neural activity across trials for each participant. 
Accordingly, the decoding accuracy for a specific subject represents the 
ability of the neural signal to predict whether the information content is 
encoded in that individual (Grootswagers et al., 2017; Peelen and 

Downing, 2023), considering a distinctive pattern of neural activity for 
each individual (King and Dehaene, 2014; Grootswagers et al., 2017; 
Fahrenfort et al., 2018). More in detail, MVPA aims to ascertain whether 
and at which time the information content has been individually enco
ded at the neural level, informing how neural representations of infor
mation content differs between different classes of stimuli (Poldrack, 
2006; Poldrack, 2011; Hebart and Baker, 2018). This central feature of 
MVPA approaches assume considerable significance in clinical pop
ulations that can manifest peculiar patterns of neural activity, typically 
characterized by higher inter-individual variability and noisier neural 
activity (King and Dehaene, 2014; Dinstein et al., 2015). Grounding on 
an atheoretical data-driven approach (Fahrenfort et al., 2018; Peelen and 
Downing, 2023), such a decoding technique may represent a valuable 
operative tool capable to assess whether the phenotype observed in 
clinical conditions is the product of an alternative, unique neural 
pathway supported by distinctive neural dynamics (e.g., Thomas et al., 

Fig. 2. Schematic illustration depicting methodological and conceptual differences between univariate and multivariate analyses of EEG data in studying neuro
cognitive dynamics in clinical conditions. A) Univariate Analysis. This example of paradigm features the EEG activity differences elicited by two distinct experimental 
conditions, which are compared between clinical and control groups (A = large circle condition depicted in blue squares; B = small circle condition depicted in 
orange squares; green line = control participants; red line = clinical participants). In the clinical context, researchers adopt univariate analysis to compare differences 
between groups in the EEG activity elicited by different conditions over predetermined electrodes and temporal windows, based on the typical neural patterns 
exhibited by the general population. Here, the EEG activity elicited by Condition A and Condition B at two distinct posterior electrodes is inspected in each group, 
examining potential intra- and inter-group differences over three different temporal windows (P1, N1 and P2 ERP components). While at the individual participant 
level the control group shows a clear pattern of differences between conditions on these ERPs components, participants in the clinical group show a qualitatively 
different pattern of information processing, with more inter-individual variability and differences in the magnitude and temporal latency of effects. Also, subjects in 
the clinical group show greater intra-individual variability across-trials (red shaded error bar) compared to the control group (green shaded error bar). Averaging the 
neural activity at the group level assuming uniform scalp distributions and neural timings across individuals in clinical populations, can increase potential differences 
between groups by mitigating variability among subjects, but dramatically can obfuscates peculiar patterns of neural information processing present at the individual 
level. B) Multivariate Pattern Analysis (MVPA). In the clinical context, MVPA of EEG data is typically computed considering the complex interaction among multiple 
electrodes and timepoints, with the ultimate aim to identify patterns of information processing present at the individual level. Assessing the consistency of the neural 
activity across trials for each individual, MVPA decoding accuracy reflects the ability of the decoder to predict whether and when the information content is pro
cessed at the neural level, unveiling the uniqueness of neural timing and spatial distribution within each individual. Accordingly, differently from univariate 
techniques, MVPA demonstrates diminished vulnerability to the increased intra- and inter-individual variability observed within clinical populations. As observable 
in this example, while the univariate approach constrains the intra- and inter-groups comparisons on specific spatio-temporal features by assuming similar cortical 
folding patterns for each individual examined, MVPA ascertains whether and at which time the information content has been individually encoded at the neural level 
within single subjects. This central feature outlines the information-based MVPA approach as a useful operational tool for the identification of dysfunctional and 
residual/compensatory neurocognitive dynamics in individuals exhibiting clinical conditions. MVPA reveals distinct patterns of neural information processing at the 
group level within specific clinical populations, which are qualitatively different from those typically observed in the general population, both in terms of the 
magnitude and latency of neural information processing. 
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2009; Farran et al., 2020; Bae et al., 2020; Defina et al., 2021; Li et al., 
2023; Marsicano et al., 2024). 

Relatedly, while univariate approaches rely on the assumption of 
relatively uniform scalp distributions and neural timings across in
dividuals for given spatio-temporal components (e.g., ERPs), MVPA of 
EEG data can reliably decode pattern of neural activity at the individual 
level, providing a statistical way for addressing the precise spatio- 
temporal features of neural encoding (e.g., Borrell, 2018; Kroenke and 
Bayly, 2018; Farran et al., 2020; Marsicano et al., 2024), and uncovering 
the uniqueness of neural timing and scalp spatial distribution within 
each individual (Borrell, 2018; Kroenke and Bayly, 2018). This is a 
crucial point because it has been widely demonstrated that processing 
speed is often delayed or aberrant in clinical disorders (Key, 2022; 
Farashi et al., 2023; Marsicano et al., 2024), and constraining the 
analysis to specific time windows may obscure neural patterns that are 
evident with different latencies. Thus, being tailored to decode neural 
information at the individual level, MVPA is less vulnerable to the 
higher interindividual heterogeneity exhibited by individuals in clinical 
populations (e.g., Thomas et al., 2009; Dinstein et al., 2015), allowing 
the identification of potential distinctive, compensatory or residual 
neurocognitive mechanisms which may establish as a consequence of 
structural and functional brain anomalies, and that can lead to alter
native neural dynamics as compared to those measurable in neuro
typical individuals (O’Brien et al., 2020; Dinstein et al., 2015; Farran 
et al., 2020; Defina et al., 2021; Marsicano et al., 2024). 

Although univariate analysis and MVPA of EEG data may be 
considered conceptually complementary in understanding the neural 
dynamics orchestrating information processing by addressing different 
experimental questions (i.e., univariate activation-based vs. multivar
iate information-based; Grootswagers et al., 2017; Bae et al., 2020; Li 
et al., 2023; Li et al., 2022; see also below), there is a growing consensus 
of a greater sensitivity of the MVPA in characterizing the neural repre
sentation of information content when compared to traditional univar
iate analysis techniques (Grootswagers et al., 2017; Hebart and Baker, 
2018). 

The subsequent section will scrutinize in detail the studies that have 
leveraged MVPA of EEG data to decode neurocognitive dysfunctions or 
anomalies of neural encoding in clinical populations, when possible by 
directly comparing MVPA outcomes with those derived from univariate 
analysis (see Table 1 for a summary). 

3. Decoding cognition in neurodevelopmental and psychiatric 
populations: the state-of-the-art of empirical evidence 

3.1. Decoding cognition in schizophrenia 

One of the first attempt in decoding dysfunctional neural patterns of 
information processing in clinical populations, exploiting MVPA of high- 
resolution EEG data, was provided by Bae et al. (2020) with the aim to 
directly determine whether such a decoding technique may be reliably 
implemented to compare the neural dynamics orchestrating information 
processing in psychiatric populations. They reanalyzed an EEG dataset 
previously examined using univariate ERPs analyses (Leonard et al., 
2013), in which Schizophrenic (SCZ) individuals showed a higher pos
terior contralateral delay activity (CDA) during the delay period of a 
visual working memory task as compared to control (HC) participants. 
Bae et al. (2020) proposed MVPA of EEG data technique as an 
information-based decoding approach capable of quantifying in each 
individual whether and when the information content is encoded by the 
brain. However, given that the neural signal in individuals with SCZ – 
and more broadly in clinical cohorts (e.g., Dinstein et al., 2015) - is more 
variable due to greater noise intrinsically related to variability in neural 
processes (Smyrnis et al., 2009; Vinogradov et al., 1998; Yang et al., 
2014), this could be linked to a lower decoding accuracy in SCZ in
dividuals, posing a crucial issue in the application of this decoding 
technique in clinical populations. They performed MVPA of EEG data of 

the time window where the CDA component is typically measured, 
decoding neural responses elicited by single vs. multiple objects main
tained in memory over all electrodes, probing whether such a decoding 
technique would reveal between- and within-group differences unde
tected using univariate ERPs analysis. To ensure that differences in 
decoding performance between groups were not resulting from noise (e. 
g., Haynes, 2015), Bae et al. (2020) compared the decoding performance 
between groups (SCZ vs. HC) carefully considering for each individual 
the strength of task-related neural signal, the extent of neural noise, and 
the signal to noise ratio (i.e. contrast-to-noise ratio; CNR). First, their 
results revealed the presence of a greater decoding accuracy in the SCZ 
group compared to HC subjects, mimicking previous univariate results 
in which a greater CDA was exhibited by individuals with SCZ (Leonard 
et al., 2013). Importantly, the decoding performance was predicted by 
the ratio of the task-related neural signal, its variability across trials, and 
neural noise (i.e., CNR). While the findings emerging from the univari
ate analysis allowed to infer only that SCZ allocated more neural activity 
(i.e. higher CDA) as compared to the HC group, decoding results allowed 
to conclude that the neural signal contains more task-related informa
tion in SCZ as compared to HC individuals, providing a proof-of-concept 
that MVPA of EEG data can be reliably applied to compare the neural 
dynamics psychiatric and non-psychiatric populations, highlighting at 
the same time the importance of carefully considering differences in 
noise between groups. 

In a more recent study, Li et al. (2022) investigated the dysfunctional 
neural dynamics underlying visual working memory and attentional 
deficits in first-episode individuals with SCZ. Similar to Bae et al. (2020), 
the authors employed a visual working memory paradigm while EEG 
activity was recorded in SCZ patients and HC subjects. Using univariate 
analyses, the authors identified that SCZ patients showed lower ampli
tude of N2-posterior-contralateral and CDA components with respect to 
HC participants. Implementing an information-based MVPA approach 
they confirmed their univariate results, showing that, despite both 
groups (SCZ and HC) demonstrated sustained significant decoding of 
memory loads across time, decoding accuracy was lower in SCZ as 
compared to HC groups during the time periods of N2pc and CDA. 
However, such results seem in contrast with previous MVPA findings in 
which neural activity in CDA time window was decoded with higher 
accuracy in SCZ patients (Bae et al., 2020), leading the authors to 
hypothesise that these differences may depend on discrepancies in the 
experimental paradigm adopted (Li et al., 2022). From a speculative 
standpoint, such discrepancies may depend on the fact that in this study 
neural noise in each participant was not considered, potentially leading 
to a lower decoding accuracy in SCZ where greater noise in the neural 
signal have been reported (Smyrnis et al., 2009; Yang et al., 2014; Bae 
et al., 2020; see also Section 4). More interestingly, in contrast to uni
variate results, only in SCZ individuals, the decoding accuracy of 
memory load showed a significant positive correlation with their 
behavioural performance, suggesting that a greater decoding accuracy 
predicted higher behavioural accuracy. Overall, also in the study by Li 
et al. (2022), the MVPA of EEG data has proved useful in shedding light 
on the dysfunctional patterns of neural activity at the individual level in 
patients with SCZ, which were largely undetectable by using classical 
univariate ERPs analysis. 

3.2. Decoding cognition in neurodevelopmental disorders (Autism, ADHD 
and Williams syndrome) 

To disentangle whether the applicability of this individualized 
information-based MVPA approach could be extended to neuro
developmental conditions, the same research group (Li et al., 2023) 
implemented EEG-decoding technique in school-age children with 
attention deficit hyperactivity disorder (ADHD), aiming to identify the 
neural correlates of their visuo-attentional orienting deficits. Specif
ically, MVPA was implemented for occipito-parietal EEG activity eli
cited by a classical visual pop-out search paradigm (e.g., Luo et al., 2021; 
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Table 1 
Report of the studies employing time-resolved MVPA of EEG data in clinical populations.  

Authors, year, journal Clinical 
Condition 

Research 
Domain 

Analysis 
Approach 

Univariate 
Results 

MVPA 
Results 

Bae et al., (2020); 
NeuroImage: Clinical; https://doi. 
org/10.1016/j.nicl.2020.102179 

Psychiatric/ 
Neurodevelopmental: 
Schizophrenia (n = 24) 

Visual Working 
Memory 

Univariate analysis: 
ERP 
MVPA: 
Diagonal Decoding 
and 
CNR (contrast-to- 
noise ratio) 

Higher contralateral 
delay activity (CDA) 
in SCZ vs. HC 

Higher Decoding 
Accuracy in SCZ vs. HC. 
Decoding Accuracy 
was predicted by CNR 

Li et al., (2022); 
Clinical Neurophysiology; https://doi. 
org/10.1016/j.clinph.2022.02.001 

Psychiatric/ 
Neurodevelopmental: 
Schizophrenia (n = 35) 

Visual Working 
Memory 
and Attention 

Univariate analysis: 
ERP, Alpha Power 
MVPA: 
Diagonal Decoding 

Lower alpha power, 
N2pc and CDA 
in SCZ vs. HC 

Lower Decoding 
Accuracy in SCZ vs. HC. 
Greater Decoding Accuracy 
predicted higher behavioural 
accuracy in SCZ. 

Li et al., (2023); 
Human Brain Mapping; https://doi. 
org/10.1002/hbm.26115 

Neurodevelopmental: 
ADHD (n = 70) 

Visuo-Spatial 
Perception 
Target Localization 

Univariate analysis: 
ERP 
MVPA: 
Diagonal Decoding 

Lower N2pc 
amplitude 
in ADHD vs. control 

Lower decoding accuracy and a 
delayed accuracy peak in 
ADHD vs. HC. 
Negative association between 
decoding accuracy and 
behavioural RTs in ADHD. 
Negative association between 
decoding accuracy and 
standard deviation of RTs. 

Marsicano et al., (2024); 
Autism Research; https://doi. 
org/10.1002/aur.3062 

Neurodevelopmental: 
ASD (n = 20) 

Visual Perception 
and Attention 

Univariate analysis: 
ERP 
MVPA: 
Diagonal Decoding 
and Temporal 
Generalization 

No difference in P1 
and N1 mean 
amplitude and peak 
latency between 
ASD vs. control 

Earlier Decoding and a 
Stronger accuracy in ASD vs. 
control. 
Spatially diffuse and 
temporally prolonged 
decoding of visual information 
in ASD vs. control. 
Higher decoding accuracy of 
visual information predicted 
slower RTs at the behavioural 
level in ASD. 

Farran et al., (2020); 
Neuropsychologia; https://doi. 
org/10.1016/j. 
neuropsychologia.2020.107440 

Neurodevelopmental: 
WS (n = 11) 

Face Processing Univariate analysis: 
ERP 
MVPA: 
Diagonal Decoding 

No differences 
between WS and 
control children in 
P1 and N170 
components 

Delayed and sustained 
decoding for WS vs. control 

Gomez et al., (2022); 
Orphanet J Rare Dis; https://doi. 
org/10.1186/s13023–022–02395–6 

Neurodevelopmental: 
WS (n = 14), 
ASD (n = 14) 

Face Processing Univariate analysis: 
/ / 
MVPA: 
Diagonal Decoding 

/ / Early time window (~170 ms): 
lower decoding accuracy in 
WS, with respect to ASD and 
control. 
Late time window (~260 ms): 
lower decoding accuracy in 
ASD, with respect to WS and 
control. 

Beach et al., (2022); 
Frontiers in Human Neuroscience; 
https://doi. 
org/10.3389/fnhum.2022.823627 

Neurodevelopmental: 
Dyslexia (n = 24) 

Neural Representation 
of Repeated Standard 
and Deviant Stimuli 

Univariate analysis: 
/ / 
MVPA: 
Diagonal Decoding, 
Temporal 
Generalization 

/ / No differences in decoding 
accuracy and latency between 
DD and control groups. 
With repetition over time, only 
in control individuals 
standards stimuli became 
increasingly different from 
deviants 

Karimi et al., (2022); 
Plos One; https://doi. 
org/10.1371/journal.pone.0264058 

Neurodegenerative: 
MCI (n = 18) 

Animacy Processing Univariate analysis: 
ERP 
MVPA: 
Diagonal Decoding 

Decreased P300 
amplitude 
in MCI vs. HC. 
No neural 
differences in other 
timepoints. 

Decreased neural speed of 
animacy information 
processing in MCI vs. HC 
evident in different spatial 
scalp areas and more 
prolonged over time with 
respect to ERP analysis 

Zhen et al., (2023); 
The Journals of Gerontology: Series B; 
https://doi. 
org/10.1093/geronb/gbad076 

Neurodegenerative: 
aMCI (n = 32) 

Visual and 
Kinesthetic Imagery 

Univariate analysis: 
Mass-univariate 
Cluster-based 
Permutation 
of ERP data 
MVPA: 
Diagonal Decoding 

Two significant 
clusters only in 
visual condition: 
130–150 ms; 
300–400 ms. 
aMCI differed in 
how neural activity 
was modulated by 
stimulus orientation 

Lower Decoding Accuracy both 
during kinesthetic and visual 
imagery in aMCI patients vs. 
HC. 
The electrodes that mostly 
contributed to successful 
decoding differed between the 
two groups 
In both groups significant 
decoding emerged from global 
neural patterns, not from 
specific electrodes. 
Higher Decoding Accuracy 

(continued on next page) 
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Table 1 (continued ) 

Authors, year, journal Clinical 
Condition 

Research 
Domain 

Analysis 
Approach 

Univariate 
Results 

MVPA 
Results 

predicted better behavioural 
outcomes in the executive 
function domain in aMCI. 

Defina et al., (2021); European Journal of 
Neuroscience; https://doi. 
org/10.1111/ejn.15387 

Chronic Syndrome: 
CRPS (n = 13) 

Pain Perception 
and Processing 

Univariate analysis: 
/ / 
MVPA: 
Diagonal Decoding 
and Temporal 
Generalization 

/ / Lower decoding accuracy in 
CRSP vs. HC in the affected 
side. 
Pain-related neural responses 
were delayed and sustained 
over time in CRSP. 

Niessen et al., (2020); 
NeuroImage: Clinical; 
https://doi.org/10.1016/j. 
nicl.2020.102307 

Brain Damage: 
Left Hemisphere 
(LH) Stroke (n = 24) 

Performance 
Monitoring and Error 
Detection 

Univariate analysis: 
ERP 
MVPA: 
Diagonal Decoding 

No differences in 
ERN amplitude/ 
latency between LH 
vs. HC. 
Aberrant N2 an P3 
responses in LH vs. 
HC 

No difference in decoding 
accuracy between LH vs. HC. 
Absence of group differences in 
error-processing neural 
encoding. 

Lasaponara et al., (2021); 
Neuroscience Letters; 
https://doi.org/10.1016/j. 
neulet.2021.136097 

Brain Damage: 
Right Hemisphere 
Stroke (n = 24) with 
(N+) and without (N-) 
left spatial neglect 

Posner Task Univariate analysis: 
/ / 
MVPA: 
Single-trial 
topographical 
analysis, STTA (De 
Lucia and Tzovara, 
2015) 

/ / Individual level: above-chance 
decoding of leftward and 
rightward attentional orienting 
in five out of the six N+, five 
out of the six N− patients and 
in all the six HC. 
Group level: 
Significant above-chance 
decoding level was observed in 
N+ patients during a later time 
window (i.e, 400–800 ms) 
after cue-onset. 

Tzovara et al., (2012); 
Brain; 
https://doi.org/10.1093/brain/aws264 

Brain Damage: 
Postanoxic Coma 
(n = 30) 

Auditory Deviance 
Detection 

Univariate analysis: 
Auditory Evoked 
Potentials (AEPs) 
MVPA: 
Diagonal Decoding 

23/30 patients on 
the first day and 20/ 
30 patients during 
the second day had 
a consistent AEP. 
AEPs were not 
informative about 
patient’s chance of 
survival 

Higher decoding accuracy of 
auditory processing both in all 
HC and comatose patients. 
An increase in decoding 
accuracy from the first to the 
second day was predictive of 
the chance of awakening/ 
survival at 3 months (100 % 
predictive value). 

Tzovara et al., (2015); 
Brain; 
https://doi.org/10.1093/brain/awv041 

Brain Damage: 
Postanoxic Coma 
(n = 24) 

Auditory Deviance 
Detection at a global 
(groups of sounds) and 
at a local (single- 
sounds) level 

Univariate analysis: 
/ / 
MVPA: 
Diagonal Decoding 

/ / Detection of global regularities 
in 10 of 24 patients (above- 
chance decoding 
performance). 
An increase in decoding 
accuracy from the first to the 
second day was predictive of 
the chance of awakening/ 
survival at 3 months (78 % 
predictive value). 

Tzovara et al., (2016); 
Annals of Neurology; 
https://doi.org/10.1002/ana.24622 

Brain Damage: 
Postanoxic Coma 
(n = 94) 

Auditory Deviance 
Detection 

Univariate analysis: 
/ / 
MVPA: 
Diagonal Decoding 

/ / The above-chance level 
decoding between first and 
second day was predictive of 
patient’s chance of survival 
(82 %, including all 
participants; 93 %, excluding 
patients with epileptiform EEG 
signal) 

Pfeiffer et al., (2018); 
Annals of Clinical and Translational 
Neurology; 
https://doi.org/10.1002/acn3.600 

Brain Damage: 
Postanoxic Coma 
(n = 66) 

Somatosensory 
Deviance Detection 
(Auditory and Tactile) 

Univariate analysis: 
/ / 
MVPA: 
Diagonal Decoding 

/ / Auditory Domain: Above 
chance-level decoding in 25 
patients on the first day and in 
31 patients on the second day. 
Tactile Domain: Above chance- 
level decoding in 16 patients 
on the first day and in 23 
patients on the second day. 
Improvement of auditory 
discrimination, but not tactile, 
from first to the second day 
was predictive of patient’s 
chance of survival 

O’Brien et al., (2020); 
Front. Integr. Neurosci.; https://doi. 
org/10.3389/fnint.2020.00014 

Genetic Syndrome: 
Tuberous Sclerosis 
Complex 
(n = 11) 

Auditory and 
Language Processing 

Univariate analysis: 
ERP 
MVPA 
Diagonal Decoding 

Atypical AEP in TSC 
vs. HC 

Above-chance level decoding 
accuracy in TSC and HC. 
No decoding accuracy 
differences between groups.  
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Guo et al., 2023), with the aim to decode target localization, as well as to 
examine a potential association between an inaccurate spatial position 
encoding and poor behavioural outcomes. The authors claimed that a 
classical univariate approach may not allow to achieve these aims, since 
the N2pc (i.e., an ERPs component typically investigated in visual search 
paradigms; e.g., Woodman et al., 2009) is intricately associated with the 
process of lateralized attentional selection, but it remains unclear 
whether it genuinely conveys precise information regarding the target 
spatial location, or whether it is a mere reflection of attentional shifting. 
On the contrary, MVPA of EEG data can provide a reliable method to 
decode neural representations reflecting encoding of spatial localization 
of target location, as previously demonstrated in healthy individuals (e. 
g. Foster et al., 2017). Furthermore, an aberrant spatial encoding in 
ADHD may be related to a higher neural noise (Pertermann et al., 2019; 
Saville et al., 2015), which might result in a lower decoding accuracy 
(Deneve and Chalk, 2016; Grootswagers et al., 2017). Li et al. (2023) 
hypothesised that an increased neural noise, as reflected in a lower 
decoding accuracy in individuals with ADHD, may be linked to a chaotic 
neural activity in the visual cortex, which in turn could affect the pre
cision of visuo-spatial attentional localization (e.g., Li et al., 2001). 
According to these hypotheses, first, they identified a smaller N2pc 
component elicited in the posterior scalp areas in individuals with 
ADHD with respect to the control group. In addition, they applied 
time-resolved MVPA analysis to further explore when and whether the 
information of target position was decoded. Results showed that 
decoding accuracy was above chance level starting after the onset of 
visual search in both control and ADHD groups, but the latter exhibited 
lower decoding accuracy and a delayed decoding peak, suggesting a 
more inaccurate and slower target localization in ADHD children. 
Importantly, correlational analysis among behavioural outcomes, uni
variate and multivariate neural measures revealed a significant associ
ation between N2pc amplitude and decoding accuracy in the control 
group, but not in ADHD children, who showed a negative association 
between decoding accuracy and behavioural reaction times (RTs). This 
suggests that individuals with ADHD encoded target representation with 
a unique representation not related to N2pc activity, exhibiting a 
different neural latency. Finally, a negative association between 
decoding accuracy and standard deviation of RTs at the individual level 
was found, suggesting that lower level of decoding accuracy in ADHD 
children predicted higher intra-individual variability in behavioural 
outcomes. Overall, this pattern of results highlights once again the 
paramount importance of MVPA in clinical contexts, where individuals 
show atypical patterns of neural activity and neural processing timings 
that are often unpredictable, and incomparable with respect to the 
neural dynamics exhibited by healthy individuals. 

Leveraging the same information-based decoding approach, in a 
recent study (Marsicano et al., 2024) we have adopted MVPA decoding 
in a sample of individuals with autism spectrum disorder (ASD) with the 
aim to characterize the dysfunctional neural patterns underlying their 
atypical visual attention (for a review, see: Palmer et al., 2017), directly 
comparing the outcomes deriving from univariate and multivariate EEG 
analyses. Atypical encoding of visual information in individuals with 
ASD has been widely documented (e.g., Ronconi et al., 2013, 2018; 
Wang et al., 2015; Lawson et al., 2017; Noel et al., 2021), and in 
particular their aberrant hyper-focused attention and an inflexibility in 
the reallocation of attentional resources (Ronconi et al., 2013, 2018; 
Wang et al., 2015; Lieder et al., 2019; Noel et al., 2021). In our recent 
study (Marsicano et al., 2024), we hypothesized that such peculiar vi
sual information processing style may be associated with atypically 
prolonged neural responses and an overrepresentation of visual infor
mation at the neural level. To probe these hypotheses, we acquired EEG 
in age-matched children with ASD and controls (typically developing 
children) during a visuo-spatial attentional task, where a large or a small 
circular visual cue preceded the onset of a target at different eccentric
ities (i.e., centrally or peripherally). MPVA of EEG data was imple
mented to disclose whether children with ASD showed a prolonged 

neural representation of visual information, thus comparing neural 
patterns of ASD and control groups elicited during the modulation of the 
attentional focus (large vs. small cue trials; cue-locked analysis) and as a 
function of target location (target-locked analysis). We employed: i) a 
’classical’ information-based diagonal decoding, where the classifier 
was trained and tested on the same timepoint; ii) a temporal general
ization analysis, using cross-classification across time, a useful method 
to track whether neural dynamics are stable or transient over time and 
capable of identifying the longevity of the neural representation of in
formation content (see Fig. 1; King and Dehaene, 2014). ‘Classic’ MVPA 
cue-locked analyses highlighted a sustained significant decoding of the 
cue (large vs. small) in both the ASD and control groups, although an 
earlier decoding and a stronger accuracy was shown in the ASD group. 
When the same analysis was performed separately for different clusters 
of neighbouring electrodes, we found that while in control individuals 
the neural encoding associated to the visual cue expired at the onset of 
the target in multiple scalp regions, in the ASD group a significant 
decoding was present in different scalp regions even after the target 
onset, thus suggesting a spatially broader and temporally more pro
longed processing of visual information, as also confirmed by temporal 
generalization analyses of cue-related neural responses. Furthermore, an 
overall significant decoding of target eccentricity was evident in both 
ASD and control groups, but in the small cue condition (zoom-in con
dition), children with ASD showed an early onset and a delayed 
decoding peak with respect to the control group, supporting previous 
behavioural evidence demonstrating a slower disengagement and 
hyperfocusing of visual attention (e.g., Ronconi et al., 2013; 2018; 
Ridderinkhof et al., 2020). Finally, we found that a higher neural 
encoding of cue-related visual information after target onset predicted 
slower RTs at the behavioural level only in children with ASD, thus 
suggesting that an excessive automatic visuo-attentional capture 
(Palmer et al., 2017; Ronconi et al., 2018; Lieder et al., 2021; Noel et al., 
2021), may be linked to a prolonged encoding of visual information at 
the neural level. Finally, we also performed univariate analysis (for a 
similar approach, see Luo et al., 2001; Fu et al., 2005; Song et al., 2006; 
Zhang et al., 2018) on differences between groups in the mean ampli
tude and peak latency of P1 and N1 ERPs over different scalp areas. Such 
analyses did not show significant differences between ASD and control 
groups, strengthening the notion that MVPA of EEG data may be more 
sensitive in unveiling hidden neural dynamics which might remain 
largely blind to traditional univariate analysis techniques, which are less 
sensitive in identifying when the encoding of information content occur 
over time (Marti and Dehaene, 2017; Mostert et al., 2015; Grootswagers 
et al., 2017; Fahrenfort et al., 2018; Peelen and Downing, 2023). 

Interestingly, despite ASD is associated with higher neural noise and 
greater intra-individual variability in the neural signal (e.g., Milne, 
2011; Dinstein et al., 2015; Pertermann et al., 2019), a greater level of 
decoding accuracy was found in ASD individuals with respect to the 
control group. This might reflect, as also suggested in previous MVPA 
evidence in the context of SCZ (Bae et al., 2020) an aberrant deployment 
of visuo-attentional and cognitive resources (Luck et al., 2019), with a 
consequent inflexible hyperfocusing (Luck et al., 2019; Bae et al., 2020; 
Marsicano et al., 2024). However, additional empirical investigations 
using EEG-decoding approaches are needed to corroborate this 
hypothesis. 

Shifting the focus to another neurodevelopmental disorder, Farran 
et al. (2020) successfully provided empirical evidence regarding the 
higher sensitivity of information-based decoding techniques in unveiling 
distinctive neural profiles of face processing in individuals with Wil
liams Syndrome (WS). Farran et al. (2020) aimed to characterize the 
atypical face processing mechanisms and the underlying neural activa
tion profile in WS. Alongside a classical ERPs univariate analysis, they 
implemented MVPA to explore potential differences between WS and 
control groups in the neural activation patterns elicited by upright/
inverted faces vs. houses. First, their results showed that both MVPA and 
univariate ERPs analysis (i.e., N170 ERP component) revealed that both 
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groups showed a face-specific neural activation profile when compared 
to houses, suggesting a typical neural activation pattern in classifying 
faces as a distinct category. Importantly, to unveil potential differences 
in face-processing masked at the group level, Farran and colleagues 
(2020) showed that the decoding of face orientation occurred later and 
was sustained for a longer time in individuals with WS, suggesting 
hidden atypicalities in the neural response latencies to faces that 
remained blind to the univariate approach. 

Overall, the pattern of results emerging from the aforementioned 
studies highlighted the operative usefulness of MVPA of EEG data in 
unveiling dysfunctional and compensatory patterns of neural activity 
reflecting the neural processing of information content within the realm 
of neurodevelopmental disorders, which are not easily detectable 
applying conventional univariate analysis approaches. 

3.3. Decoding altered cognition in neurological conditions 

An increasing body of empirical findings in this field indicates in
stances wherein the application of MVPA is not solely a methodological 
choice for investigators, but it becomes necessary for discerning indi
vidual neural responses that are otherwise inaccessible through uni
variate techniques. For instance, in neurological conditions frequently 
the brain undergoes a reorganization of its functional architecture, 
resulting in a pronounced interindividual variability of the neural dy
namics underlying information processing. Consequently, there arises a 
necessity to identify distinctive patterns of neural activity within each 
individual capable of predicting their neuropsychological profile. As 
outlined in the overview proposed in following sections, this task proves 
challenging when approached through univariate analysis methodolo
gies, but can be successfully addressed implementing MVPA (e.g., Tzo
vara et al., 2012; 2015; Grootswagers et al., 2017; Lasaponara et al., 
2021; Karimi et al., 2022). 

3.3.1. Neurodegenerative conditions 
An explicit empirical illustration of this case was provided in the field 

of neurodegenerative conditions (Karimi et al., 2022; Zhen et al., 2023), 
where MVPA has proven useful in providing valuable clinical insights, 
potentially serving as a biomarker for the early detection of anomalous 
neurocognitive dynamics in individuals with Mild Cognitive Impairment 
(MCI). Karimi et al. (2022) implemented MVPA of EEG data to charac
terize animacy information processing in patients with MCI as compared 
to a control group. The authors highlighted the need to look beyond a 
univariate analysis capable of merely indexing activation level of neural 
responses, applying MVPA with the aim to decode patterns of neural 
activity reflecting information content in each patient. Applying such a 
decoding technique, Karimi et al. (2022) identified a decreased neural 
speed of animacy information processing in MCI patients with respect to 
control individuals, highlighting a delayed neural encoding latency of 
the information content. Contrarily, inspecting potential differences of 
information encoding in the time window where MVPA was capable of 
discriminating between groups at its maximum, the univariate ERP 
approach did not reveal significant differences between control and MCI 
groups. When compared to the ERP univariate results, MVPA differences 
between groups were evident in different spatial scalp areas and more 
consistent over time, also showing its usefulness in predicting behav
ioural outcomes and thus better elucidating individual neurocognitive 
profiles of information processing. 

In a different study, Zhen et al. (2023) investigated the neural cor
relates of visual and kinesthetic imagery in amnestic MCI (aMCI) pa
tients adopting MVPA to analyze EEG neural dynamics in a data-driven 
manner. Relying on the evidence of higher inter-individual variability in 
the spatio-temporal properties of neural responses in aMCI individuals, 
they highlighted the relevance in this context of examining the patterns 
of neural activity on large-scale of neural signal, preserving the 
uniqueness of each patient (Zhen et al., 2023). To ensure a highly 
comparable confrontation between univariate activation-based and 

MVPA information-based approaches, in their study the authors 
employed a data-driven mass univariate analysis (Groppe et al., 2011), 
allowing the identification of differences between conditions and groups 
during the entire temporal window of neural processing. Their results 
showed that while the univariate approach highlighted differences be
tween groups only in the visual imagery conditions, MVPA revealed 
aberrant processing of both visual and kinesthetic imagery in aMCI 
patients with respect to control individuals, suggesting a lack of neural 
representation of information content in both conditions (i.e., lower 
decoding accuracy). Interestingly, MVPA revealed that spatially the 
electrodes that mostly contributed to successful decoding differed be
tween the two groups, thus showing that the information processing of 
kinesthetic and visual imagery was differently represented at the neural 
level in aMCI and control participants. Furthermore, this decoding 
analysis revealed that in both groups the ability of the decoder to 
discriminate kinesthetic and imagery neural processing was not attrib
utable to a specific group of electrodes in the scalp. Thus, the neural 
encoding of information content was ascribable to patterns of neural 
activity emerging from the interaction of multiple electrodes across the 
topographical space, highlighting the importance of MVPA in capturing 
global patterns of neural activity which are otherwise undetectable by 
using univariate approaches. 

Overall, these findings suggest that MVPA can capture neural pat
terns of information processing that can provide useful insights in 
characterizing anomalous neural dynamics of information processing in 
neurodegenerative conditions. 

3.3.2. Acquired brain damages 
MVPA approach can yield invaluable insights also in the field of 

acquired cerebral damage following stroke, where the brain often re
organizes its functional architecture. For instance, Lasaponara et al. 
(2021) implemented multivariate decoding analysis of EEG neural re
sponses to track the individual profile of left and right endogenous 
attentional orienting in right-brain damaged patients with (N+) and 
without (N-) left spatial neglect. Neglect syndrome exhibits notable 
interindividual variability in its symptomatic profile (e.g., Lasaponara 
et al., 2018). Consequently, averaging at the group level predetermined 
spatio-temporal components of EEG signal using a univariate approach 
could be not effective in providing a reliable characterization of atten
tional orienting profile at the individual-patient level. Thus, Lasaponara 
et al. (2021), used a variant of MVPA (Tzovara et al., 2015; single-trial 
topographical analysis, STTA), analyzing topographical neural re
sponses during leftward and rightward orienting of attention with cen
tral cues, comparing N+, N- and controls participants. At the individual 
level, MVPA successfully decoded EEG signals related to leftward and 
rightward attentional orienting in right brain-damaged patients and 
control participants. In particular, in N+ patients, significant individual 
classifications were mainly observed at a later time window after 
cue-onset (i.e, 400–800 ms) compared to N- and controls, reflecting an 
altered and delayed processing of information, but spared voluntary 
engagement of attentional resources in a later time window. These re
sults highlighted the importance of a decoding approach capable of 
investigating attentional mechanisms at the individual level and char
acterising their subtle temporal dynamics. 

In a recent investigation, Niessen et al. (2020) adopted MVPA of EEG 
data to explore the neural dynamics underlying deficits in performance 
monitoring and error detection (Krämer et al., 2013; Klein et al., 2013) 
in patients with left hemisphere (LH) stroke affecting the left middle 
cerebral artery territory, with associated cognitive deficits (i.e., aphasia 
and apraxia) and executive dysfunction. Alongside the application of 
univariate ERPs analysis with the aim to investigate neural activity 
associated with stimulus-processing (i.e., N2 and P3 components) and 
error-related information (error-related negativity; ERN), they imple
mented MVPA to track over time whether the pattern of whole-brain 
activity allowed to decode correct from erroneous responses, thus 
identifying an individual index of error-related processing. Surprisingly, 
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although both stimulus-related ERP components (i.e., N2 and P3) were 
abnormal in patients as compared to controls, no group differences were 
observed in ERN activity, suggesting that early deficits in stimulus 
processing were successfully compensated in subsequent 
response-related ERP components. Also, the MVPA analysis confirmed 
the absence of group differences in error-related neural processing, as 
the information contained in the neural activity related to correct and 
incorrect responses was decodable above chance level in both groups 
(Niessen et al., 2020), supporting the value of MVPA analyses also in 
unmasking preserved post-lesional cognitive functions. 

3.3.3. Decoding neural processing of sensory information in neurological 
conditions 

The application of time-resolved MVPA of EEG data within clinical 
contexts has proven not only as valuable for decoding high-level aspects 
of cognition, but also stands as an effective tool for inspecting the 
integrity of low-level sensory systems and perceptual processes. 

A clear empirical evidence in this context was provided by Tzovara 
and colleagues in a series of different studies (Tzovara et al., 2012; 2013; 
2016; Pfeiffer et al., 2018), which demonstrated the ability of MVPA, 
with respect to univariate approaches, to decode patterns of neural ac
tivity associated with auditory information processing even in the 
absence of explicit measures of cognition in comatose patients. In their 
first pioneering study, Tzovara et al. (2012) analyzed EEG neural re
sponses related to standard and deviant sounds (i.e., mismatch auditory 
paradigm) of 30 post-anoxic comatose patients compared to control 
participants, implementing MVPA at the single patient level at two 
different times: within 24 h after coma onset and subsequently after 
1 day. First, their results revealed a high level of decoding accuracy in 
discriminating sounds both for all control subjects and all comatose 
patients, thus showing that also the latter showed, to some extent, 
preserved neural representations of auditory information. Concomitant 
with MVPA, they conducted a univariate analysis of auditory evoked 
potentials (AEPs) across fronto-central electrodes. Nevertheless, given 
the higher interindividual variability of these patients and the 
spatio-temporal constraints applied in univariate methodology (i.e., 
predetermined time window and pool of electrodes analyzed), this 
analysis revealed consistent AEPs only in 23 patients during the first day 
and in 20 patients during the second day of EEG recording. Thus, these 
findings highlighted the enhanced sensitivity of MVPA in capturing 
global patterns of neural activity reflecting auditory sensory processing, 
which were undetectable applying standard univariate approaches. 
Interestingly, an increase in decoding accuracy between the first and 
second day of EEG data acquisition was also informative of the patient’s 
chance of survival and awakening at 3 months, with 100 % positive 
predictive value. On the contrary, AEPs univariate analysis did not yield 
informative insights into the clinical prognosis of individual patients, 
ultimately highlighting the importance of MVPA in providing para
mount insights at the individual level. Following their initial findings, 
the outcomes derived from MVPA were successfully replicated in a large 
cohort of individuals in a comatose state (Tzovara et al., 2016) and in 
response to more complex auditory (Tzovara et al., 2013, 2015) and 
tactile stimuli (Pfeiffer et al., 2018). 

Another interesting contribution in this field was provided by Defina 
et al. (2021), who highlighted how MVPA of EEG data has proven as a 
useful tool for exploring dysfunctional neural dynamics underlying 
tactile perception in individuals with chronic complex regional pain 
syndrome (CRPS). The authors investigated potential differences in 
neural responses elicited by touch in the affected and unaffected side of 
the body between CRPS individuals and controls. Following previous 
studies in healthy population, which showed the effectiveness of MVPA 
in decoding the neural patterns associated with pain perception (Schulz 
et al., 2011; Rosa and Seymour, 2014; Lancaster et al., 2017), the au
thors exploited this decoding technique in CRPS participants, extracting 
individual patterns of neural activity related to the pain experience. 
Implementing an elegant coupling of decoding techniques and 

computational models (Defina et al., 2021), they found an overall lower 
decoding accuracy in CRSP patients as compared to the control group in 
the affected side of the body, with the associated neural code that was 
delayed and sustained over time, as highlighted, respectively, by diag
onal decoding and temporal generalization analysis. In discussing their 
results, Defina et al. (2021) underlined the importance of using EEG 
decoding techniques capable of identifying individual patterns of neural 
information processing related to individual differences in perceptual 
and sensory processes, ultimately providing a useful tool to obtain in
dividual neurocognitive profiles for a better identification and treatment 
of CRSP. 

To summarize, in acquired neuropsychological conditions, 
information-decoding techniques facilitate the characterization of re
sidual activities and potential compensatory mechanisms of information 
processing, elucidating unique spatial localizations and temporal pat
terns that may emerge in these cohorts as a consequence of functional 
and structural anomalies. 

4. Caveats of MVPA in clinical contexts 

Despite its promising utility, MVPA of EEG data is not exempt from 
some methodological pitfalls that must be considered before the appli
cation of this method in clinical populations. Individuals charachterized 
by clinical conditions often exhibit a noisier neural signal and a higher 
variability in neural processes (e.g., trial-by-trial variability; Yang et al., 
2014; Dinstein et al., 2015; Pertermann et al., 2019; Carment et al., 
2020; Turri et al., 2023; Dwyer et al., 2024). In detail, individuals 
affected by clinical conditions typically show a more ‘chaotic’ neural 
signal and variable patterns of neural responses over time, which can 
mask the physiological neural activity (Smyrnis et al., 2009; Vinogradov 
et al., 1998; Yang et al., 2014; Dinstein et al., 2015; Turri et al., 2023), 
ultimately exerting a detrimental impact on MVPA decoding perfor
mance (i.e., lower decoding accuracy), whose level of accuracy in pre
dicting neural activity differences between conditions typically relies on 
effect consistency across trials (Deneve and Chalk, 2016; Grootswagers 
et al., 2017; Bae et al., 2020; Li et al., 2023). Despite this potential 
pitfall, as outlined throughout the current review, MVPA has proved to 
be particularly useful in characterizing neurocognitive profiles in clin
ical populations exhibiting higher neural noise. Increasing evidence in 
the domain of neurodevelopmental (ASD: Gomez et al., 2022; Marsicano 
et al., 2024; WS: Farran et al., 2020; Gomez et al., 2022; ADHD: Li et al., 
2023), psychiatric (SCZ: Bae et al., 2020; Li et al., 2022) and in acquired 
neuropsychological conditions (e.g., Pfeiffer et al., 2018; O’Brien et al., 
2020; Niessen et al., 2020; Defina et al., 2021; Karimi et al., 2022; Beach 
et al., 2022; Gomez et al., 2022; Zhen et al., 2023), demonstrated that 
MVPA of EEG data is a reliable and enlightening technique to decode 
how the information content is encoded by the brain in clinical pop
ulations with high intra and inter-individual neural variability. For 
instance, it was documented that a higher neural noise in individuals 
with attention deficit and hyperactive disorder (ADHD) was associated 
with a lower decoding accuracy of neural representations of information 
content, which in turn predicted aberrant behavioural outcomes (Li 
et al., 2023). On the other hand, addressing visual working memory 
impairments in schizophrenia (SCZ), carefully accounting for the neural 
noise in the signal, two different studies recently demonstrated different 
decoding accuracy in SCZ individuals as compared to healthy control 
individuals, although the directionality (increased vs. decreased accu
racy) remains to be clarified (Bae et al., 2020; Li et al., 2022). Similarly, 
in the context of autism spectrum disorder (ASD; Marsicano et al., 2024) 
and William Syndrome (WS; Farran et al., 2020; Gomez et al., 2022), it 
has been demonstrated a greater decoding accuracy with respect to 
neurotypical individuals, capable of predicting aberrant behavioural 
outcomes at the individual level. The mixed pattern of results emerging 
from these studies suggest that, while the level of decoding accuracy 
mainly corresponds to the decoder’s ability to discriminate differences 
in how different contents of information are processed at the neural 
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level, in the clinical context the decoding performance is highly influ
enced by the intra-individual variability in neurocognitive processes 
(Deneve and Chalk, 2016; Grootswagers et al., 2017). Given the greater 
intraindividual neural variability in clinical populations, this point as
sumes crucial importance, and neural noise must be carefully considered 
when implementing MVPA approaches (e.g., Bae et al., 2020; Li et al., 
2022). To mitigate this noise issue, various strategies have been pro
posed. One effective approach is to employ robust cross-validation 
techniques (e.g., Brihadiswaran et al., 2019; Fahrenfort et al., 2017), 
to ensure the reliability of the decoding results for each individual. This 
method helps to smooth out the effects of neural noise by training and 
testing the decoding classifier on different subsets of data, ensuring that 
the model’s performance is not dependent on any particular set of data, 
which might include noise. This approach reduces the risk of overfitting 
to noisy data and ensures that the model’s performance accurately re
flects its ability to generalize beyond the specific data used in training. 
Additionally, the signal-to-noise ratio (SNR) can be included as a co
variate in statistical models to control for noise effects, ensuring that 
differences in decoding performance are not simply due to variations in 
neural noise levels. By calculating SNR, it is possible to quantify the 
amount of noise in the data for each individual. This procedure allows 
for comparing SNR between groups (e.g., clinical vs. controls) to identify 
and account for differences in data quality that might affect the 
decoding results. For example, an EEG-MVPA study in the context of SCZ 
(Bae et al., 2020) showed that decoding performance was predicted 
individually by the SNR, thus highlighting the importance of carefully 
considering differences in noise between individuals and groups in the 
clinical research. 

Also the decoding onset and peak latencies are often distorted by 
neural noise, and this assumes crucial relevance in clinical contexts 
where such neural noise is typically greater (Yang et al., 2014; Dinstein 
et al., 2015; Pertermann et al., 2019). In this context, a reliable method 
for characterizing temporal dynamics when testing for statistical sig
nificance using EEG decoding is to determine the onset latency as the 
moment when the component attains 50 % of its maximum amplitude 
(Luck, 2014; Fahrenfort et al., 2018). 

Another critical aspect of MVPA, as previously discussed in this re
view (see Section 1.2), lies in the loss of information regarding the di
rection of the effect when comparing different conditions or 
experimental groups (e.g., lower/higher amplitude). This information 
is, however, of substantial relevance in clinical contexts, where it is 
typically useful to quantify markers of neural activation (e.g., ampli
tude, latency), which can be easily compared between groups and 
experimental conditions. For example, a consistent body of evidence, 
using an activation-based approach (i.e., ERPs univariate analysis), has 
revealed that individuals with ASD show a smaller amplitude in the 
N100 component elicited by non-face stimuli and N170 amplitude eli
cited by faces (for a recent review see: Farashi et al., 2023). Such 
comparisons of neural activity differences between groups or experi
mental conditions are not directly accessible through MVPA, as it is an 
information-based approach primarily aimed at identifying neural pat
terns associated with the processing of information content. Accord
ingly, MVPA provides a percentage-based measure of classifier accuracy 
in predicting differences in neural activity related to different informa
tion content, thus obfuscating the direction (e.g., positive or negative) of 
neural responses and their relative magnitude. This makes it harder to 
evaluate whether one group or experimental condition is associated 
with greater or lesser neural activation compared to another. However, 
as previously discussed (see Section 1.2), this MVPA limitation can be 
overcome. Feature weights can be forward-projected onto topographical 
maps, providing activation patterns at each individual timepoint and 
electrode, reflecting the mass-univariate differences between the 
compared conditions (Haufe et al., 2014; Fahrenfort et al., 2017). 

When the aim is to compare neural activity associated with an 
experimental condition between different groups (e.g., ASD vs. control), 
using the MVPA approach poses additional challenges. This is because 

the decoding approach primarily aims at discriminating between 
different neural patterns associated with different information content, 
which can then be compared between different groups, as described in 
this review. Despite various methods being proposed to address this 
MVPA limitation (for example, see: Hebart and Baker, 2018), we suggest 
an integrated approach of univariate analysis and MVPA in the clinical 
context. This integrated approach can flexibly adapt to the research 
needs of the investigator, as both methods can provide insightful in
formation regarding neural processing differences between populations 
and individuals, addressing different research questions (i.e., 
activation-based vs. information-based approaches). 

5. General discussion and future perspectives 

The insights garnered from the empirical investigations examined 
throughout this review emphasize that the MVPA approach applied to 
EEG data holds particular promise for investigating both dysfunctional 
and compensatory neural patterns associated with information pro
cessing across diverse cohorts of neurodevelopmental, neuropsychiatric 
and neuropsychological conditions. An EEG information-based decoding 
approach, as the one proposed in the aforementioned studies, may 
provide new valuable insights concerning individual neurocognitive 
profiles in clinical populations, better accounting for the higher het
erogeneity across individuals, while preserving the peculiarities of each 
subject (e.g., Dinstein et al., 2015; O’Brien et al., 2020; Farran et al., 
2020; Bae et al., 2020; Marsicano et al., 2024). 

In contrast to the limited sensitivity offered by average-based uni
variate analysis (e.g., ERPs), which tend to underestimate the substan
tial interindividual variability of neural activity across individuals in 
clinical populations, data-driven MVPA approach considers the 
comprehensive patterns of neural activity for each individual arising 
from intricate interactions among multiple timepoints and electrodes 
(Cauchoix et al., 2014; Grootswagers et al., 2017; Holdgraf et al., 2017; 
Bayet et al., 2018; Peelen and Downing, 2023). In clinical conditions 
characterized by notable differences in patterns of neural activity, 
manifesting with unique spatio-temporal localizations, such a decoding 
approach can assume significant importance, as it facilitates the explo
ration of dysfunctional neural dynamics and compensatory mechanisms 
of information processing that may emerge due to functional anomalies 
(e.g., Grootswagers et al., 2017; Fahrenfort et al., 2018; O’Brien et al., 
2020; Bae et al., 2020; López-García et al., 2022; Li et al., 2022; 2023; 
Marsicano et al., 2024). 

Conventional univariate analyses – typically applied to pre
determined spatio-temporal components of the EEG signal – are often 
driven by a theory-driven framework, posing a risk of overlooking 
dysfunctional patterns and alternative neural dynamics present in in
dividuals with clinical conditions. Conversely, MVPA holds the potential 
to effectively capture individual patterns of neural activity, without 
necessitating a priori selection of spatio-temporal EEG components, thus 
delineating a novel avenue for investigating individual neurocognitive 
profiles (e.g., Grootswagers et al., 2017; Bae et al., 2020; Li et al., 2023; 
2022; Marsicano et al., 2024). Importantly, differently from traditional 
univariate techniques, where statistical analysis is performed at the 
group-level, EEG decoding is computed separately for each individual, 
providing a paramount tool for understanding how information content 
is individually encoded by the brain. This peculiarity is promising to 
optimize personalized assessment and intervention in different clinical 
cohorts (e.g., Bae et al., 2020; Farran et al., 2020; Defina et al., 2021; Li 
et al., 2022; 2023; Marsicano et al., 2024). 

Nonetheless, as discussed in previous sections, we want to emphasize 
that within the clinical context, the application of MVPA of EEG data 
does not preclude the concurrent use of conventional univariate ap
proaches. Rather, it enriches the decoding analysis, providing valuable 
complementary information, such as insights into the magnitude and 
direction of neural activation differences across different experimental 
conditions. Indeed, the information content is also inherently present in 
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the univariate EEG signal, although when the locus of the effect is un
clear, experimental differences between groups can be more difficult to 
discern using traditional univariate approaches (Fahrenfort et al., 2017; 
Fahrenfort et al., 2018; Bae et al., 2020; Li et al., 2022; 2023; Marsicano 
et al., 2024). Consequently, we advocate for an integrated approach that 
combines conventional univariate analysis with MVPA, resulting in a 
methodology designed to enhance sensitivity in the detection of differ
ences between and within individuals. 

An intriguing aspect emerging from this literature review concerns 
the decoding accuracy differences in identifying neural representations 
of information between groups (i.e., typical vs. clinical). Although low 
or moderate levels of decoding accuracy in individuals with clinical 
conditions can be attributed to their higher neural noise (please, see 
previous sections and: Dinstein et al., 2015; Pertermann et al., 2019; 
Turri et al., 2023), interestingly, several studies have shown that neu
roatypical individuals can often exhibit higher levels of accuracy 
compared to control participants. For instance, recent studies revealed 
that individuals with ASD (Marsicano et al., 2024) and SCZ (Bae et al., 
2020) showed an overall greater level of decoding accuracy compared to 
the typical group. This is counterintuitive, as clinical populations are 
typically characterized by higher neural noise and greater variability in 
the neural signal (e.g., Pertermann et al., 2019), which would be ex
pected to result in lower decoding accuracy compared to typical in
dividuals. It has been recently hypothesized that the accuracy of the 
decoding performance might also indicate a greater representation of 
information content in neural activity and the extent of neurocognitive 
resources deployed during stimulus encoding (Bae et al., 2020; Marsi
cano et al., 2024). Although such functional interpretations of decoding 
accuracy level in predicting the extent of neurocognitive resources 
allocated remain speculative at present, we encourage the scientific 
community to empirically investigate these hypotheses by implement
ing EEG-decoding techniques in clinical research. 

Relatedly, the studies examined in this review suggest that multiple 
aspects of decoding performance can be informative for characterizing 
neurocognitive profiles in clinical populations. As employed in recent 
clinical studies (O’Brien et al., 2020; Farran et al., 2020; Bae et al., 2020; 
Karimi et al., 2022; Beach et al., 2022; Li et al., 2022; 2023; Zhen et al., 
2023; Marsicano et al., 2024), we suggest indexing measures at both 
individual and group levels that highlight both the accuracy (i.e., per
centage of accuracy) and the timing (i.e., decoding latency) of decoding 
performance. This approach allows for the identification of information 
related to: i) when information content begins to be decodable in neural 
activity (decoding onset), ii) how prolonged the neural encoding of in
formation is over time (sustainability of decoding), iii) the average level of 
accuracy and the latency peak of the decoding performance (decoding 
accuracy and peak decoding latency; for example, see: Farran et al., 2020). 
Additionally, coupling cross-decoding over time analysis (i.e., temporal 
generalization) with the diagonal decoding technique (i.e., training and 
testing at the same time point) can be useful for identifying sequential 
stages of information processing in individuals with clinical conditions 
typically exhibiting aberrant neural processing timings, providing 
valuable information regarding the longevity of neural representations 
(King and Dehaene, 2014; Defina et al., 2021; Beach et al., 2022; Mar
sicano et al., 2024). 

In the current review, we restricted our focus on evidence employing 
such a decoding technique within the time domain of EEG data (time- 
resolved MVPA). Nonetheless, this approach can also be applied to 
decode information contained in the neural activity by addressing other 
evoked and spontaneous measures of the EEG signal, such as frequency 
and time-frequency features (e.g., Jafarpour et al., 2013; Bae and Luck, 
2018; Desantis et al., 2020; Zhang et al., 2023). For instance, MVPA was 
recently employed to ascertain whether raw amplitude and frequency 
features of the EEG signal reflected different aspects of visual attentional 
selection, revealing that oscillatory activity in the alpha band may be 
more associated with the orientation of covert attention, while raw 
amplitude could be linked to low-level perceptual processes (Bae and 

Luck, 2018; Desantis et al., 2020). Within this context, as indicated by 
recent evidence in the clinical domain (e.g., Zhang et al., 2023), it is 
desirable that future studies will employ decoding of information con
tent by using different EEG measures with the aim to obtain a more 
comprehensive understanding of the individual neurocognitive profile. 

Finally, a noteworthy aspect we wish to emphasize is that, 
notwithstanding the importance of a basic comprehension of the 
methodological principles underlying the application of MPVA to EEG 
data, contemporary tools do not necessitate an advanced programming 
proficiency. Notably, Matlab-based toolboxes, such as CoSMoMVPA 
(Oosterhof et al., 2016), ADAM (Fahrenfort et al., 2018), and the latest 
version of ERPLAB (Lopez-Calderon and Luck, 2014; Luck et al., 2023), 
required only a modest level of programming knowledge, thereby 
enabling the implementation of most analyses described in the current 
review through a user-friendly interface. 

We foresee that MVPA of EEG data will be a valuable tool for iden
tifying dysfunctional and compensatory patterns of neural activity in a 
wide range of neurodevelopmental, neuropsychiatric and neuropsy
chological conditions, thanks to its potential to identify biomarkers of 
anomalous cognitive architecture and to tailor treatment for individuals 
based on their unique neural signatures. 

Funding Information 

CB was supported by Ministero dell’Istruzione, dell’Università e 
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