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Abstract
Purpose of Review  This paper aims to address the latest findings in neuroendocrine tumor (NET) theranostics, focusing on 
new evidence and future directions of combined diagnosis with positron emission tomography (PET) and treatment with 
peptide receptor radionuclide therapy (PRRT).
Recent Findings  Following NETTER-1 trial, PRRT with [177Lu]Lu-DOTATATE was approved by FDA and EMA and is 
routinely employed in advanced G1 and G2 SST (somatostatin receptor)-expressing NET. Different approaches have been 
proposed so far to improve the PRRT therapeutic index, encompassing re-treatment protocols, combinations with other 
therapies and novel indications. Molecular imaging holds a potential added value in characterizing disease biology and het-
erogeneity using different radiopharmaceuticals (e.g., SST and FDG) and may provide predictive and prognostic parameters. 
Response assessment criteria are still an unmet need and new theranostic pairs showed preliminary encouraging results.
Summary  PRRT for NET has become a paradigm of modern theranostics. PRRT holds a favorable toxicity profile, and it is 
associated with a prolonged time to progression, reduction of symptoms, and improved patients’ quality of life. In light of fur-
ther optimization, different new strategies have been investigated, along with the development of new radiopharmaceuticals.
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Introduction

Theranostics is one of the most promising applications of 
precision medicine and a major emerging branch of nuclear 
medicine. It relies on the concept of targeting disease-spe-
cific features to detect and treat tumor lesions (Fig. 1): at 
first, a radiopharmaceutical is labeled with a positron-emit-
ting radionuclide and used for positron emission tomography 
(PET) lesion detection, then the same compound is labeled 
with a different radionuclide, emitting a cytotoxic radiation 
(e.g., beta-minus or alpha) for target treatment [1].

The forerunner application of the theranostic approach 
was the use of radioactive iodine for diagnosis and treat-
ing thyroid disease in 1950s [2]. Neuroendocrine neoplasms 
(NEN) have been diagnosed and treated with radionuclides 

for over 20 years and are referred today as a paradigm for 
modern theranostics [3].

NEN are rare malignancies that can arise anywhere in 
the human body and can be functioning (if the secretory 
activity is maintained) or, more frequently, non-functioning 
(detected incidentally or following tumor-mass symptoms). 
The most recent 2022 WHO Classification of Endocrine 
Tumors divides NEN according to the cell of origin into 
neural and epithelial types; the latter are sub-categorized 
depending on their cells’ differentiation grade in well dif-
ferentiated, i.e., neuroendocrine tumors (NET) and poorly 
differentiated, i.e., neuroendocrine carcinomas (NEC) [4]. 
Ki67 further classifies NET in G1 (< 3%), G2 (3–20%), and 
G3 (> 20%); NEC are high-grade by definition (ki-67 > 20% 
but generally > 55%). This grading system provides prognos-
tic information: the higher the grade, the worse the prognosis 
[4].

NET originate more frequently from the gastro-entero-
pancreatic tract (GEP-NET), followed by the lung (typical 
and atypical forms), with incidence rates respectively of 3.56 
and 1.49 per 100,000; other localizations are less frequent 
[5]. NET incidence, and in particular NET prevalence, are 
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increasing, following earlier diagnosis and new treatment 
strategies leading to improved survival rates [5].

Although frequently heterogeneous in terms of primary 
tumor site, clinical presentation, and behavior over time, 
NET are typically slow-growing and usually express soma-
tostatin receptors (SST), mostly type 2. This feature has 
been used to detect tumor sites with SST PET with com-
puted tomography (PET/CT) and to selectively treat SST-
expressing lesions with peptide receptor radioligand therapy 
(PRRT) with [6]Y- or [177]Lu-labeled somatostatin analogs 
[1].

PRRT with [177Lu][Lu-DOTA0-Tyr3]octreotate 
([177Lu]Lu-DOTATATE) was approved by the European 
Medicines Agency (EMA) in 2017 and Food and Drug 
Administration (FDA) in 2018 [7]. According to EMA, 
[177Lu]Lu-DOTATATE is approved for unresectable or 
metastatic, progressive, well-differentiated (G1 and G2), 
SST-positive GEP NET in adults [7]. Patients’ eligibility for 
PRRT requires SST PET/CT positivity (uptake considered 
significant if at least above the liver parenchyma) [8]. PRRT 
is included in ESMO and ENETS clinical guidelines [9, 10].

The aim of this paper is to critically highlight the latest 
issues concerning NEN theranostics.

Updates in PRRT​

New Evidence on Safety and Efficacy

NETTER-1 was a phase III randomized, multicentric, open-
label trial which aimed to evaluate the safety and efficacy 
of PRRT in patients with progressive well-differentiated 
and SST-positive midgut NET. Progression-free survival 
(PFS) was longer in the 229 patients of the study arm (who 
received 4 cycles of 7.4 GBq of [177Lu]Lu-DOTATATE 

every 8 weeks and 30 mg octreotide LAR every 4 weeks) 
vs the control arm (FDA-approved off-label use of high-
dose octreotide LAR every 4 weeks) [11]. The final results 
showed a longer median overall survival (OS), for the PRRT 
arm (48 months vs 36.3 months), although not statistically 
significant, due to a high rate of cross-over of the patients in 
the control arm [12••]. In a deeper analysis adjusting sur-
vival of those patients who crossed-over to PRRT (36%), the 
adjusted median OS was 30.9 months in the control group 
[12••]. The Netter 1 trial showed that PRRT is safe: final 
results showed that in the whole study, 7/111 (6%) patients 
had grade > 3 treatment-related toxicity, i.e., nephrotoxicity, 
grade > 3, 5%; hematological toxicity, 2%, myelodisplastic 
syndrome (MDS) [12••].

Gordon et  al. recently published an analysis of their 
5-year experience in administering [177Lu]Lu-DOTATATE 
after its approval. They treated 143 patients with advanced 
NET, administering ~ 8 GBq for 4 cycles every 8 weeks, 
and observed a median PFS of 32.3 months, a median OS 
of 72.5 months, and no evidence of renal toxicity, while 
MDS occurred in 5% of the subjects [13]. Favorable results 
were also reported in Brazilian (n = 36; mPFS = 23.0; 
OS = 30.0 months for G3 patients) [14], Polish (n = 167; 
mPFS = 29.3; OS = 34.0 months) [15], and Korean (n = 64; 
mPFS = 21.7; OS not reached within the 15.7-month follow-
up) [16] cohorts.

PRRT was also reported to be safe in the elderly (Theiler 
et al. described a comparable safety profile in young and 
elderly patients aged > 79) [17] and in patients with chronic 
kidney disease [18].

In a large cohort of 1631 patients who received PRRT 
from 1999 to 2019, Chantadisai et al. reported therapy-
related myeloid neoplasms (t-MN) in 30 cases only (1.8%), 
with a median latency period (from first PRRT to diagnosis 
of t-MN) of 43 months (range 6–123). The median OS from 

Fig. 1   Patient with pancreatic 
NET G1 (Ki-67, 1.7%) treated 
with 4 cycles of PRRT with 
[177Lu]Lu-DOTATATE. Base-
line [68 Ga]Ga-DOTANOC 
PET/CT (a, b) showed high 
uptake in multiple liver lesions. 
[68 Ga]Ga-DOTANOC PET/CT 
after PRRT (c, d) documented 
reduced lesions’ number and 
reduced intensity of uptake, in 
keeping with partial response 
to PRRT​
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diagnosis of t-MN was 13 months (all patients), 6 months in 
the acute myeloid leukemia subgroup (seven patients), and 
15 in the MDS subgroup (23 patients) [19].

Although PRRT was reported as a safe therapeutic option 
in NET patients with up to 50% liver involvement [20–22], 
a more recent study by Gococo-Benore et al. investigated 
the risk of radiation-induced hepatotoxicity in patients with 
more than 75% of liver involved. Of 15 patients included 
(371 screened), only one experienced hyperbilirubinemia 
(grade 1 hepatotoxicity) and no one went through grade 3–5 
hepatotoxicity, highlighting the potential feasibility of PRRT 
also in high-burden liver disease [23•].

Overall, the most recent studies confirm the knowledge 
acquired so far regarding PRRT safety and efficacy and show 
comparable outcome data, demonstrating that this therapeu-
tic option is founded on solid evidence [9, 10].

Retreatment

Given the limited therapeutic options for progressive GEP-
NEN and the known frequent adverse events caused by suni-
tinib and everolimus, retreatment with [177Lu]Lu-DOTA-
TATE (R-PRRT) has been considered for NET patients who 
progressed after receiving first course PRRT (I-PRRT), with 
either [177Lu]Lu-DOTATATE or 90Y-PRRT. In a meta-
analysis by Strosberg et al., including 13 studies investi-
gating R-PRRT (comparable indications), a similar safety 
profile was observed in comparison with I-PRRT (grade 3–4 
toxicity of any type in 5% of patients, hematologic toxicity 
of grade 3–5 in 9%). The estimated PFS was > 12 months in 
all the sub-groups, with a DCR (disease control rate) of 70%, 
but OS was not reported in all included studies [24]. OS data 
were available in the studies by Severi et al. (n = 26; median 
OS after retreatment = 36 months), Rudisile et al. (n = 35; 
median OS after I-PRRT not reached within a follow-up of 
71 months, median OS after retreatment = 51 months), and 
Van Der Zwan et al. [25–27]. Van Der Zwan et al. inves-
tigated the largest sample (n = 181) of retreated patients 
with bronchial or GEP-NET, receiving a single radiophar-
maceutical ([177Lu]Lu-DOTATATE) and up to three treat-
ment courses: patients were selected for re-(re)treatment 
if they had benefited from I-PRRT with a minimal PFS of 
18 months. Patients received an additional cumulative dose 
of 14.8 GBq of [177Lu-DOTA,Tyr3]octreotate over two 
cycles per retreatment with R-PRRT or re-retreatment with 
PRRT (RR-PRRT). PFS was 19 months across all primaries. 
Combined OS after I-PRRT plus R-PRRT and RR-PRRT 
was 80.8 months (95% CI 66.0–95.6) [27].

Across studies investigating re-treatment, all courses con-
sisted of 1 to 6 cycles and the doses administered were vari-
able, but in 6/7 works where [177Lu]Lu-DOTATATE was 
employed for both I-PRRT and R-PRRT, they were super-
imposable, i.e., 7.4 GBq per-cycle [26–29].

More recent studies confirmed the safety profile of 
R-PRRT and a PFS > 12 months: in a retrospective single-
center study, Sitani et al. observed an acceptable safety 
profile (no grade 3–4 toxicity) and a PFS of 17 months 
after R-PRRT in a population of 22 re-treated patients, 
while the median OS was not reached during the follow-up 
period of 72 months [30•]. Silva et al. reported a median 
PFS of 17.5  months (IQR 7–39) for PRRT re-treated 
patients (n = 22), longer PFS after 2 cycles vs 1 and a 
median OS from I-PRRT of 66 months (IQR 65–90), with-
out significant toxicity except for a lowering of platelet 
count (grade 1 toxicity, 10 patients, P-value = 0.055) [31].

Interestingly, Rodrigues et al., in addition to the out-
come data of 40 patients treated with a second course 
of PRRT (PFS = 19.37; median OS = 122), analyzed the 
predictive value of [18F]FDG PET/CT status before 
and after the first and the second PRRT course. They 
found a more favorable outcome after the second PRRT 
course in the FDG-negative group (n = 26; median 
OS = 145.5 months; 95% CI 83.34–207.67) than the FDG-
positive group (n = 14; median OS = 95.06 months; 95% 
CI 48.36–141.77) [32].

Across the different studies, the minimum PFS from 
the first PRRT, required as re-treatment eligibility criteria, 
was very heterogeneous, i.e., a PFS after the initial PRRT 
of > 12 months, ≥ 6 months, and no fixed time, respec-
tively, in the works of Sitani et al., Silva et al., and Rodri-
gues et al. [30•, 31, 32]. Criteria for choosing a time-inter-
val over another were not proposed in any of the studies.

Other limitations of the available works include the ret-
rospective study designs, different treatment response cri-
teria, and the heterogeneous populations in terms of initial 
treatment (radiopharmaceutical/doses/number of cycles), 
variability of time to progression (TTP), and intervening 
therapies from the first PRRT.

The multicenter randomized controlled trial ReLUTH, 
still recruiting, is the first prospective trial evaluat-
ing PRRT retreatment. It aims to compare two different 
[177Lu]Lu-DOTATATE schemes of retreatment (2 + 2 
cycles vs 2 cycles) in patients with intestinal NET pro-
gressing after 12 months from the first PRRT course, 
expecting that four cycles will be more effective than two, 
with limited adverse impact on safety [33].

In conclusion, preliminary results are supporting PRRT 
retreatment as a feasible option in patients progressing 
after I-PRRT. R-PRRT is expected to be particularly effec-
tive in cases presenting a good response to I-PRRT, with 
a similar limited toxicity profile with respect to the first 
course. Randomized controlled trials are needed to directly 
compare the survival benefit of PRRT retreatment to other 
therapy lines like sunitinib or everolimus.
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The Issue of Response Assessment

Providing adequate evaluation of PRRT response in patients 
with advanced NET remains an unsolved problem. Crite-
ria used so far for response evaluation of solid tumors, i.e., 
Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 
1.1) [34], mRECIST [35], or WHO [36], are based on 
dimensional changes and are suboptimal for NET distinctive 
slow-growing lesions. Moreover, patients with metastatic 
NET frequently do not display a morphological response to 
systemic therapies, including PRRT, that frequently results 
in disease stabilization [37]. It has been demonstrated that 
preventing disease progression, either through stabilization 
or obtaining remission (a concept referred to as “disease 
control rate” (DCR)), produces comparable outcomes in 
NET patients [38]. Although not optimal, morphology-
based response criteria are currently used in clinical trials 
because they provide a standardized framework for objec-
tive assessments. Conventional imaging is routinely used in 
clinical practice to document progression and subsequently 
start further-line treatments in advanced NEN. Therefore, 
contrast enhanced computed tomography or magnetic reso-
nance imaging remains irreplaceable as their spatial resolu-
tion allows for the detection of small dimensional changes 
that may be missed by PET.

On the other hand, PET functional imaging may detect 
even non-enlarged nodes or bone lesions (either millimetric 
or without corresponding morphological changes on CT) 
when presenting high SST expression. In addition, mere 
changes in tumor dimension may lead to equivocal interpre-
tation. For example, a stable lesion may mask intralesional 
de-differentiation while a decrease in tumor volume after 
chemotherapy could subtend a cyto-reductive effect on the 
most aggressive components without a significant effect on 
SST-expressing cells. In addition, an initial increase in tumor 
volume may be related to inflammatory mechanisms (i.e., 
pseudoprogression), involving up to 10% of patients after 
PRRT [39].

For this reason, a complementary evaluation by con-
ventional imaging and SST PET/CT, and, when necessary, 
[18F]-fluorodeoxyglucose ([18F]-FDG), has been suggested 
to evaluate both dimensional changes and functional pheno-
types. Nevertheless, in the EANM Focus 3 meeting, consen-
sus was not reached on the preferential imaging technique to 
assess PRRT response [40].

In a recent retrospective study, Zwirtz et al. compared 
Choi, RECIST, and SST-PET/CT criteria in 34 patients 
who received at least two PRRT cycles. EORTC [41] was 
the chosen model for somatostatin-based evaluation, named 
MORE and based on maximum standardized uptake value 
(SUVmax). The authors conceptualized a new parameter, 
ZP, defined as the product of SUVmean and Hounsfield 
Units (HU) of target lesions. PET/CT was performed at 

baseline and after every PRRT cycle (mean of 3.2 months). 
Patients progressing after the second PPRT cycle according 
to PET-based criteria (MORE and ZP) had a shorter survival 
compared to responders, but not statistically significant, and 
OS was not reached. The authors observed significant vari-
ability between all different criteria, uncovering the weak-
ness of current evaluation systems and suggesting further 
investigations of PET-based parameters for response assess-
ment [42•].

Molecular imaging allows to obtain functional informa-
tion on whole tumor burden that is not achievable other-
wise, i.e., tumor volume parameters, whose potential value 
for response assessment is under investigation and will be 
discussed in the next chapter.

In conclusion, the formulation of NET-specific response 
assessment criteria constitutes an ambitious challenge and 
an unmet need.

PET Parameters for Predictivity and Prognosticity

SST‑PET/CT

In the last decade, SST-PET/CT has almost completely 
replaced somatostatin receptor scintigraphy as a tool to 
select patients for PRRT, due mostly to its higher accuracy 
and quantification.

Previous analysis focusing on the predictive value of 
SUV before and/or after PRRT provided different results 
[43–47] and was carried out in mostly heterogenous cohorts 
(in terms of primary tumor site), often analyzed using dif-
ferent response criteria and assessing different functional 
parameters. In a meta-analysis by Lee et al. [48], eight stud-
ies showed that a higher baseline SUV was associated with 
favorable outcomes: it was predictive of responding lesions 
(using SUVmax [49–51]; SUVmax average in up to five 
target lesions [51]; tumor-to-spleen ratio, SUVT/S [49]; 
tumor-to-liver ratio, SUVT/L [49, 50]); of longer OS (using 
SUVmean [52]); of longer PFS (using SUVmax [50, 51, 
53], SUVT/S and SUVT/L [50]); of reduced lesion diameter 
(using SUVmax [54]).

Overall, a low SUVmax on baseline PET/CT was associ-
ated with a worse outcome and a high baseline SUV pre-
dicted response [55] due to the high citotoxic effect on the 
over-expressed SST target. The same rationale can explain 
why a decrease in SUVmax after PRRT was reported in 
responders [54, 56–58] and a decreasing ΔSUV from base-
line to follow-up was associated with longer PFS [51] and 
longer time to progression using ΔSUVT/S [43]. However, 
caution is needed in interpreting SUV decrease as a predic-
tor of low risk of progression, because the de-differentiation 
phenomena can cause a lowering of SST expression as well.

Tumor-to-blood ratio (TBR), defined as the ratio between 
the SUVmean of the tumor divided by the SUVmean of the 
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left ventricle or aortic blood pool, was found to correlate to 
NET cells’ Ki67 and to reflect SST expression better than 
SUVmax [59]. Following this rationale, Weber et al. recently 
investigated the predictive value of TBR (SUVmean of the 
tumor were divided by the SUVmean of the left ventricle) 
in a retrospective single-center analysis of 139 individuals 
diagnosed with NET, who received PRRT and underwent 
baseline and follow-up PET/CT. Patients with baseline TBR 
in the 1st quartile had a shorter PFS (14.4 months) than those 
in the 3rd (23.7 months; P = 0.03) and 4th (24.1 months; 
P = 0.02) quartile. Also, these patients had significantly 
shorter OS (32.5 months) than those with baseline TBR in 
the 2nd (41.8 months; P = 0.03), 3rd (69.2 months; P < 0.01), 
and 4th (42.7 months; P = 0.03) quartile. Baseline to follow-
up increases in TBR were independently associated with 
shorter PFS and OS while changes in SUVmean were not 
[44].

Other recently investigated parameters are tumor vol-
umes, mostly total receptor volume (RTV), referring to the 
summed SST-volumes of the segmented lesions, and total 
lesion activity (TLA), calculated by the sum of the prod-
uct of each lesions’ SUVmean and its corresponding SST-
expressing volume.

In a prospective study with one of the largest populations, 
Tirosh et al. enrolled 184 NET patients who underwent SST 
PET/CT before receiving PRRT. PET parameters includ-
ing RTV were calculated. The authors found a significant 
association between RTV and risk for disease progression 
(for RTV ≥ 7.0 mL) on univariate (P = 0.02) and multivari-
ate analyses (HR 3.0, 95% CI 1.1–8.7, P = 0.04). Moreover, 
RTV ≥ 35·8 mL was associated with a higher disease-spe-
cific mortality on multivariate analysis (HR 10.6, 95% CI 
1.6–68.9, P = 0.014) [58]. Further recent studies confirmed 
the correlation between baseline RTV and worse prognosis 
in terms of PFS or TTP and OS [60–63].

A meta-analysis conducted by Hou et al. (nine studies and 
593 patients) reported an association between high RTV and 
shorter PFS and OS [64].

Mileva et al. recently reported the results of the prospec-
tive phase II LUMEN study, in which they used different 
imaging modalities (SST-PET/TC, FDG-PET/CT, and MRI) 
at baseline and after the first PRRT cycle in 37 patients. 
Early documentation of a RTV decrease of more than 10% 
in SST-PET/CT after the first cycle was associated with 
longer PFS (51.3 vs. 22.8 months; hazard ratio, 0.35; 95% 
CI, 0.16–0.75; P 5 0.003) [37].

The limitations of the studies conducted so far mostly 
regard small cohorts and the inclusion of NET of different 
primary sites, known to have different clinical behaviors and 
outcomes after PRRT, as shown in the recently published 
results of the SEPTRALU trial [65•].

In summary, clinical prediction of PRRT response based 
on baseline SST-PET parameters is still under investigation.

[18]FDG PET/CT

Intralesional heterogeneity may be a marker of poorer prog-
nosis. In a recent study by Graf et al., SST intralesional het-
erogeneity was assessed as visually interpreted changes in 
the modified Krenning score across a single target lesion. 
A change from grade 3–4 to grade 2 or from grade 2 to 1 in 
3 dimensional analysis within a lesion (> 5 mm in all axes) 
was used as the cutoff to define a lesion as heterogeneous. 
In cases of central necrosis, SST expression was assessed 
on the periphery. Patients were classified as having het-
erogeneous SST expression if > 50% of their target lesions 
were heterogeneous: this group showed a lower median TTP 
(26 months vs 54 months of cases presenting homogeneous 
lesions). In this patient cohort, visual assessment of SST-
heterogeneity was both predictive and prognostic [66].

FDG is an indirect indicator of NEN lesions’ heterogene-
ity due to its ability to identify undifferentiated clones with 
typically low SST that are expected to drive disease progres-
sion. However, FDG is generally not considered as a routine 
component of the pre-PRRT diagnostic flow-chart, although 
it is widely performed in many centers. It is well known that 
patients with G3 or high-grade G2 tumors may exhibit some 
FDG-avid lesions and that even patients originally graded as 
G1 at first pathological assessment may develop FDG-avid 
clones at disease progression [67, 68]. Patients presenting 
spatially concordant FDG/SST avid lesions are expected 
to show reduced PRRT efficacy. On the contrary, spatially 
mis-matched FDG/SST lesions represent a contraindication 
to PRRT alone. In a recent meta-analysis encompassing 12 
studies and a cohort of 1492 patients across all tumor grades, 
researchers found that patients with negative FDG scans 
prior to PRRT exhibited a superior disease control rate, as 
well as extended PFS and OS [69].

Binderup et al. prospectively enrolled 166 patients of all 
grades (median follow-up time of 9.8 years): FDG-positivity 
was associated with a shorter OS compared with a negative 
scan (hazard ratio (HR), 3.8; 95% CI, 2.4–5.9; P < 0.001). 
Moreover, in G1/G2 patients (n = 140), FDG-positivity was 
the only identifier of high-risk for death (HR, 3.6; 95% CI, 
2.2–5.9; P < 0.001), demonstrating its superiority over his-
tologic grading for risk stratification [70].

In a retrospective study by Zhang et al. encompassing a 
large population of patients treated with PRRT (n = 495), 
FDG PET resulted as an independent prognostic fac-
tor. FDG positivity was associated to shorter median PFS 
(18.5 months vs. 24.1 months) and OS (53.2 months vs. 
83.1 months) [71].

Given the high prognostic value of FDG PET, different 
grading systems have been proposed to standardize the inter-
pretation of the double tracer SST/FDG imaging [67, 72]. 
Among them, the NETPET score by Chan et al. (P0 = nor-
mal scan on both tracers; P1 = presence of SST positive/FDG 
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negative lesions only; P2–4 = positivity on both tracers, with 
gradual escalation in FDG uptake; P5 = presence of FDG-
positive/SST-negative lesions only) [67] was validated by 
a multicenter study confirming its prognostic role (median 
OS/TTP of 101.8/25.5 months for P1, 46.5/16.7 months for 
P2–4, and 11.5/6.6 months for P5) [73].

A recently published multicenter study by Chan et al. (44 
patients from three institutions) evaluated a novel parameter, 
named total discordant volume (TDV), obtained by summing 
the volumes of mis-matched lesions among 44 individuals 
diagnosed with a GEP-NET. OS was longer in the low-TDV 
cohort than in the high-TDV cohort (median volume, 43.7 
cm3; survival time, 23.8 months vs. 9.4 months; hazard ratio, 
0.466 [95% CI, 0.229–0.948]; P = 0.0221) [74].

A proper standardization of the use of different tracers, 
and of the interpretation of their combined uptake profiles, 
will more accurately define tumor biology, allowing a tai-
lored subsequent treatment choice.

Enhancing PRRT: Combination Therapies

Since advanced-stage NEN frequently display inter-/intra-
tumor heterogeneity, various combination therapies have 
been considered in addition to PRRT, to improve efficacy 
and target all components of the whole tumor burden.

As for all radiation treatments, the issues of radiosen-
sitivity and radioresistance are worth of consideration. It 
is known that chemotherapy can work both with a direct 
cytotoxic effect and as a radiosensitizer, contrasting DNA 
repair and cell proliferation; this rationale led researchers 
to analyze the combination of various cytotoxic treatments 
with PRRT, obtaining promising results on the outcome and 
safety profile [75–77].

Nicolini et al. selected 37 patients with G1–G3 GEP-
NET, with high uptake on both SST and FDG PET/CT, 
to combine PRRT with oral capecitabine, administered 
in between PRRT cycles. They found a median PFS of 
31.4 months, with median OS not reached during the follow-
up period of 38 months. Grade 3 or 4 hematological toxicity 
affected 16.2% of patients, diarrhea occurred in 5.4%, and 
asthenia in 5.4% of them, showing an acceptable safety pro-
file [78]. This study, as well as those previously conducted 
by Kong et al. [79] and by Kashyap et al. [80] (both on the 
combination of PRRT with 5-FU), highlights the potential 
benefit of combined chemo-PRRT in patients with advanced 
GEP NET presenting with SST and FDG-positive PET/CT. 
In all of the cited works, chemotherapy was administered as 
low dose, solely for a radiosensitizer scope, as first defined 
by van Essen et al. in their pilot study [81].

Conversely, Parghane et  al. employed a full dose of 
capecitabine-temozolamide (CAPTEM) in a “sandwich” 
scheme, administering chemotherapy between two [177Lu]
Lu-DOTATATE cycles in 38 patients with SST and 

FDG-avid metastatic NET, obtaining favorable response 
rates in terms of estimated PFS rate ( 72.5%) and OS rate 
(80.4%) at 36 months (median PFS and OS not reached at a 
median follow-up of 36 months) [82].

Two parallel phase II randomized trials are focusing 
on the CAPTEM-PRRT ([177Lu]Lu-DOTATATE) com-
bination versus CAPTEM alone in the treatment of pNET 
and versus PRRT alone in midgut neuroendocrine tumors 
(NCT02358356).

An alternative radiosensitizer method consists in con-
trasting the DNA repair mechanisms acted by tumor cells 
in response to radiotherapy. With this aim, some research-
ers employed poli-ADP ribose polymerase (PARP) inhibi-
tors in combination with PRRT. Available data come 
mostly from preclinical studies [83, 84], but ongoing 
clinical trials are currently evaluating the use of olaparib 
(NCT04086485, NCT05870423, NCT04375267) and tala-
zoparib (NCT05053854) in combination with PRRT.

Another approach to maximize PRRT efficacy is to hin-
der the neovascularization that frequently characterizes 
advanced tumors (including NEN), which tends to obsta-
cle drug delivery, due to the fragile and disorganized blood 
vessels produced under the abnormal stimulation of VEGF. 
Sunitinib is a multi tyrosin kinase inhibitor with an anti-
proliferative and anti-angiogenic action, only approved for 
the treatment of advanced pancreatic NET on the basis of 
the SUNNET phase III trial [85]. Its use in combination to 
PRRT as a radiosensitizer has been successfully explored 
[86, 87] and a trial is in progress (NCT05687123). The 
Occlurandom trial is currently investigating safety and effi-
cacy of [177Lu]Lu-DOTATATE vs Sunitinib in unresectable 
progressive well-differentiated neuroendocrine pancreatic 
tumor (NCT02230176).

The efficacy and safety of 177Lu-Edotreotide PRRT in 
comparison with everolimus have been investigated in the 
COMPETE trial, actually completed but with results no yet 
presented, with PFS as a primary endpoint (NCT03049189). 
The COMPOSE trial (NCT04919226) is comparing 177Lu-
Edotreotide with Everolimus or chemotherapy (folfox or 
captem) and it is still recruiting.

The association between PRRT and immune-check-
point inhibitor nivolumab is being assessed in a phase II 
single arm trial, evaluating preliminary safety and efficacy 
of the combination in G3 NET and NEC (still recruiting, 
NCT04525638). Another clinical trial aims to evaluate the 
combination of pembrolizumab plus liver-directed therapy 
or PRRT (NCT03457948).

Another strategy that is currently under investigation 
is the upregulation of SST, as the cytotoxicity of PRRT 
strictly depends on SST density on the surface of tumor 
cells. Chemotherapy [88] and everolimus [89] were reported 
to promote the expression of SST and cold SST analogs 
were hypothesized to act in a similar way [90]. In addition, 
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novel epigenetic drugs demonstrated the ability to success-
fully upregulate SST expression in vitro [6] and in vivo 
[91], potentially enabling PRRT in cases of initial low SST 
expression. Modulating SST is desirable to strengthen the 
therapeutic effect of PRRT, but the optimal approach to 
increase SST expression is not defined yet.

Lastly, the benefit of dual-PRRT, i.e., the combination 
of different PRRT pharmaceuticals, has been outlined by 
different studies [92, 93], and it is worthy of consideration 
for future trials.

The therapeutic options available to date for advanced 
NEN can target different molecular pathways in the absence 
of clear prioritization or established sequencing protocols. 
The studies conducted so far suggest that a synergistic effect 
with PRRT may be expected but robust evidence is still 
needed.

Emerging Indications

The superiority of PRRT over cold somatostatin analogs as 
a second-line treatment for advanced G1 and G2 GEP-NET 
is well-accepted. Bringing PRRT forward to first line has 
been recently considered for metastatic higher-grade NET. 
Netter 2 study (NCT03972488) is a phase III trial that aims 
to evaluate the efficacy of first-line [177Lu]Lu-DOTATATE 
to treat advanced high-grade G2 and G3 (ki67 > 10%; < 55%) 
SST-expressing GEP-NET patients, comparing it to long-
acting release octreotide (4 cycles of 7.4 GBq [177]Lu-
DOTATATE vs 60  mg octreotide every 4  weeks). Pre-
liminary results have recently been presented and showed 
a median PFS (95% confidence interval) of 8.5 months in 
the control arm and 22.8 months in the PRRT arm, the lat-
ter with limited toxicity (≤ 3 cases of grade 3–4 leukope-
nia, anemia, and thrombocytopenia and one case of MDS) 
[94••]. ESMO 2020 guidelines report that PRRT may be 
considered in patients with NET G3 [9]; however, patients 
need to be carefully selected and prospective trials are war-
ranted to further establish which patients with NEN G3 
might benefit most from PRRT. The above discussed NET-
TER-2 trial has recently been initiated to address this issue 
(NCT03972488). Preliminary data on PRRT in NEN G3 
(n = 280pts in four retrospective studies) [95–98] reported 
disease control rates between 30 and 80% (PFS 9–23 months 
and OS 19–53 months).

Induction PRRT has been explored for unresectable 
tumors prior to surgery (i.e., neoadjuvant treatment) [99, 
100] or followed by further maintenance cycles [101].

Minczeles et al. administered [177Lu]Lu-DOTATATE 
with the scope of downstaging in 49 patients with pancreatic 
NET. Of these, 26 underwent surgery with curative intent, 
obtaining a median OS of 14.7 years (95% CI 5.9–23.6), 
compared to 5.5 years (95% CI 4.5–6.5) for the PRRT-only 
group (P = 0.003). Median PFS was 5.3 years (95% CI 

2.4–8.1) for the PRRT + surgery group and 3.0 years (95% 
CI 1.6–4.4) for the PRRT-only group (P = 0.02) [99].

A prospective on-going phase II single-arm trial (Neo.
Lu.Pa.NET) aims to investigate evaluated safety and efficacy 
of neoadjuvant PRRT with [177Lu]Lu-DOTATATE fol-
lowed by surgery for resectable pancreatic neuroendocrine 
tumors (NCT04385992).

New Tracers and Theranostic Pairs

Fluorine-labeled somatostatin (SST) agonists have been pro-
posed as an alternative to [68 Ga]-labeled PET tracers due to 
the advantages of [18F] in terms of longer half-life (110 min 
vs. 68 min), easier distribution to other centers, more favora-
ble positron range (resulting in better image quality), higher 
activity amounts available per center (in contrast with the 
limited [68 Ga] doses obtainable per single elution). In a 
recent multicenter study, [18F]F-Alf-NOTA-octreotide 
showed an equal or superior [68 Ga]Ga-DOTATATE/NOC 
detection rate (91.1% vs. 75.3%; P < 10–5) [102], and the 
first clinical studies on [18F]F-SiFAlinTATE described 
favorable tumor-to-liver and tumor-to-spleen ratios [103].

SST antagonists display pharmacokinetic characteristics 
(low internalization, reduced dissociation, higher receptor 
binding) and low backgrounds that translate into superior 
detection rates compared to SST-agonists. A recent bi-center 
prospective study compared [68 Ga]Ga-NODAGA-JR11 
and [68 Ga]Ga-DOTATATE in a cohort of 100 patients 
with unresectable or metastatic NET. Superior detec-
tion ability and superimposable lesion uptake were found 
for [68 Ga]Ga-NODAGA-JR11 compared to [68 Ga]Ga-
DOTATATE, with the latter being superior only in detecting 
bone lesions (but without statistical significance and justi-
fied by the lower JR11 bone marrow uptake). Sensitivity 
was higher for [68 Ga]Ga-NODAGA-JR11 (91.7%, range, 
87.6–95.7%) compared to [68 Ga]Ga-DOTATATE (77.2%, 
range, 71.0–83.4%), using conventional imaging as a ref-
erence [104]. [177Lu]Lu-DOTA-JR11, the corresponding 
therapeutic radionuclide, has been shown to cause more 
hematologic adverse events than [177Lu]Lu-DOTATATE. 
Reidy-Lagunes et al. have hypothesized that 177Lu-DOTA-
JR11 could target SST expressed by stem cells or progenitor 
cells [105].

[68 Ga]Ga-NODAGA-LM3 and [68 Ga]Ga-DOTA-LM3 
are novel antagonists with similar high tumor accumulation 
[106]. In a newly published paper, Liu et al. described the 
use of four types of antagonists ([68 Ga]Ga-NODAGA-LM3, 
[68 Ga]Ga-DOTA-LM3, [68 Ga]Ga-NODAGA-JR11, and 
[68 Ga]Ga-DOTA-JR11) in 549 patients, with 181 of them 
having a [68 Ga]Ga-DOTATATE PET/CT scan as compari-
son. The authors found that only [68 Ga]Ga-NODAGA-LM3 
produced a significantly higher uptake than [68 Ga]Ga-
DOTATATE in the hottest lesions (SUVmax = 57.4 ± 38.5 
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vs. 40.0 ± 22.8, P < 0.001), while the other antagonists 
showed comparable or lower SUVmax then [68 Ga]Ga-
DOTATATE. All the antagonists displayed a higher TLR 
compared to [68 Ga]Ga-DOTATATE [107].

SST-targeting tracers labeled with alpha emitters [212Pb], 
[213Bi] [108], and [225Ac] [109] have been developed for 
their promising characteristics, i.e., higher linear energy 
transfer and lower tissue penetration (40–100 µm) compared 
to beta-emitters, allowing to deliver higher cytotoxic radia-
tion to the tumor while sparing normal tissues.

[212Pb]Pb-DOTAM-TATE was well tolerated in phase I 
studies [110] and it is currently under evaluation for treat-
ment-naïve NET patients (NCT03466216).

An interesting and emerging setting is the possbility to 
use alpha emitters for PRRT to treat relapsing patients after 
177Lu-PRRT failure. The use of [225Ac]Ac-DOTATATE 
has been proposed for 177Lu-PRRT refractory patients or 
patients with PD after the first 177Lu-PRRT course: Ballal 
et al. administered [225Ac]Ac-DOTATATE in 91 patients 
with metastatic GEP-NET, 57 of them with prior [177Lu]
Lu-DOTATATE treatment. Median OS and PFS were not 
reached during the 24-month follow-up. Two of 79 patients 
(2.5%) had CR, 38 (48%) had a PR, and 23 (29%) had SD. 
The treatment was safe, without higher grade toxicities 
[111]. The on-going trial ACTION-1 is also investigating 
the feasibility of [225Ac]Ac-DOTATATE following PRRT 
with [177Lu]Lu-labeled-PRRT failure (NCT05477576).

Other Issues

Neuroendocrine liver metastases can be targeted with tran-
scatheter intra-arterial liver-directed therapies, if surgery is 
not feasible.

Loco-regional treatments include embolization, chem-
oembolization, and radioembolization with [90Y]-glass/
resin microspheres (preceded by [99mTc]-macroaggregates 
of albumin SPECT/CT for pre-treatment evaluation) or radi-
oembolization with [166Ho]-microspheres (made of poly-l-
lactic acid) [112]. Radioembolization with [166Ho]-micro-
spheres presents the theranostic advantage of using a scout 
dose of [166Ho]-microspheres to safely evaluate their intra-
arterial distribution before [166Ho]-microsphere treatment.

Intra-arterial (IA) PRRT has been proposed for NET 
patients with predominant liver involvement, hypothesiz-
ing a more favorable tumor uptake compared to the intra-
venous (IV) administration of [177Lu]Lu-DOTATATE, 
thanks to the first-pass effect. Promising results were 
obtained through the comparison of IA and IV PRRT in 
different patient populations, with the limitations of the 
heterogeneous primary sites, SST expression, ki67, and 
previous therapies [113]. The LUTIA randomized con-
trolled trial, conversely, was designed using an intra-
patient control, injecting [177Lu]Lu-DOTATATE (4 

cycles of 7.4 Gbq) in only one hepatic lobe, in 27 patients 
with bilobar NET liver metastases (G1 and G2 GEP-NET). 
The authors did not find significant differences between 
the tumor-to-non-tumor (T/N) uptake ratio of the two 
lobes on the 24 h post-treatment [177Lu]Lu-SPECT/CT 
after the first cycle, which was the primary endpoint (T/N 
IA = 17.4 vs. T/N control = 16.2; P = 0.299) [114]. Future 
trials are needed to evaluate this treatment strategy.

With respect to scheme personalization, Garske-Román 
et al. investigated a dosimetry-guided approach to allow the 
prolonging of PRRT cycles in patients that do not reach the 
limiting absorbed doses of 23 Gy to the kidneys or 2 Gy to 
the bone marrow within the standard 4 cycles of 7.4 GBq 
of [177Lu]Lu-DOTATATE each. They continued adminis-
tering further cycles besides the first four in 200 patients, 
until achieving therapy-limiting doses. Results displayed 
that the individualized approach is feasible, with the limit-
ing absorbed dose to the kidneys reached in 3 to 9 cycles in 
123 patients and none experimenting the limiting dose to the 
bone marrow. Hematological toxicity regarded three patients 
(1.5%) with post-PRRT acute leukemia, and 30 (15%) grade 
3 or 4 bone marrow toxicity. Eight patients (4%) had grade 2 
kidney toxicity and one patient (0.5%) grade 4 kidney toxic-
ity [115].

The value of personalized versus fixed schemes is under 
investigation (NCT03454763, NCT04917484).

Conclusion

Theranostics is one of the most promising applications 
of precision nuclear medicine. In the setting of NET, the 
cellular target is represented by the SST overexpressed on 
tumor cells. Approved [68 Ga]-SST radiopharmaceuticals 
are routinely used for diagnostic PET/CT imaging to assess 
SST-expressing tumor burden and to assess eligibility for 
targeted therapy with the approved SST-targeted [177Lu]
Lu-DOTATATE. PRRT is an effective treatment for well 
differentiated NET, already included in EANM/SNMMI, 
ESMO, and ENETS guidelines. Along with a favorable tox-
icity profile, it is associated with a strong impact on quality 
of life (longer time interval to quality of life deterioration 
and reductions of symptoms). To optimize the therapeutic 
index, many studies are on-going investigating delivery of 
PRRT at earlier time-points in the natural history of the dis-
ease, comparison with other approved drugs, combination 
with chemo/target therapy, PRRT re-treatment, different 
administering PRRT protocols (cycles number and dose/
cycle), use and combination of different radionuclide thera-
pies (beta-minus and alpha emitters), and development of 
new theranostic pairs.
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