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Abstract

Purpose — In this study, response surface methodology (RSM) is applied to a three-point bending stiffness analysis of low-cost material (PLA)
specimens printed using FDM technology to analyze the performance of different internal lattice structures (Octet and IsoTruss principally). The
purpose of this study is to extend the definition from a discrete (lattice) model to an analytical one for its use in subsequent design phases, capable
of optimizing the type of cell to be used and its defining parameters to find the best stiffness-to-weight ratio.

Design/methodology/approach — The representative function of their mechanical behavior is extrapolated through a two-variable polynomial
model based on the cell size and the thickness of the beam elements characterizing it. The polynomial is obtained thanks to several tests performed
according to the scheme of RSM. An analysis on the estimation errors due to discontinuities in the physical specimens is also conducted. Physical
tests applied to the specimens showed some divergences from the virtual (ideal) behavior of the specimens.

Findings — The study allowed to validate the RSM models proposed to predict the behavior of the system as the size, thickness and type of cells
vary. Changes in stiffness and weight of specimens follow linear and quadratic models, respectively. This generally allows to find optimal design
points where the stiffness-to-weight ratio is at its highest.

Originality/value — Although the literature provides numerous references to studies characterizing and parameterizing lattice structures, the
industrial/practical applications concerning lattice structures are often still detached from theoretical research and limited to achieving functioning
models rather than optimal ones. The approach here described is also aimed at overcoming this limitation. The software used for the design is nTop.
Subsequent three-point bending tests have validated the reliability of the model derived from the method's application.

Keywords Response surface method (RSM), Lattice structures, Three-point bending, Stiffness optimization, Lightweighting,
Additive manufacturing

Paper type Research paper

1. Introduction types, such as triply periodic minimal surfaces (TPMS) (Zhang
et al., 2024; Gunther er al., 2023), exhibit a spatial form
characterized by well-known mathematical equations. These
cells typically offer high stiffness and greater energy absorption
capacities in case of impacts compared to beam-based cells, but

Lattice structures represent a pivotal facet in contemporary
engineering design (Bacciaglia et al, 2022). These are
characterized by repetitive patterns of one or more geometrical

cells disFributed inside the Volurpe or onto the surfaces of a they are more challenging to manufacture through printing
mechanical part. The “classic” porous  structures - are processes (Echeta et al., 2020; Cai et al., 2022). However, 3D
composed of patterns of beams with a defined thickness printing often influences the quality of the print by leading to
distributed within a cell (typically cubic) according to a specific defects such as non-filling, material shrinkage, localized

arrangement. Among the most recognized and industrially deformations (Ferretti et al., 2023; Liverani et al, 2023;
employed types are Cubic (as body centered or face centered) Ciccone et al., 2023). Perhaps the most well-known and used
(Maet al., 2023), Diamond, Fluorite, Octet (Korshunova ez al., lattice type for manufacturing is the Gyroid structure, followed
2021; Nam et al., 2023), Weaire-Phelan, IsoTruss, Kelvin cell by others such as the Diamond, SplitP, Lidinoid, Schwarz (Cai
(Wang ez al., 2023a), to name a few. They are generally easy to et al., 2022), Neovius. A comprehensive representation of the
print and excellent for significantly reducing the weight of the most used cells in the field of scientific research/3D prototyping
mechanical component, thereby lowering its relative density is provided in Figure 1.

(Song et al., 2021). These cells are actual lattice structures
consisting of small beams (Latture et al., 2018) arranged in
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In direct comparison to conventional foams and honeycombs,
lattice structures emerge as superior counterparts, particularly in
terms of mechanical prowess (Dong er al., 2017; Uddin ez al.,
2024; McDonnell et al., 2024). The overarching objective, as
addressed in numerous scientific publications on the subject, is
generally directed toward defining stiffness models (Daynes,
2023; Wang ez al., 2023b; Stallard et al., 2023) for various cell
types based on the differing magnitudes of loads and constraints
they encounter. These studies encompass the assessment of the
mechanical response (Imediegwu ez al., 2023) of polymeric lattice
structures (Eren er al, 2022), structural analysis of sandwich
beams with lattice core (Ghannadpour er al., 2022), stiffness
optimization in sandwich structures with isotropic lattice core
(Zhu et al., 2024), experimental and analytical investigation of
bioinspired lattice structures (Doodi and Balamurali, 2023),
production and mechanical properties analysis of steel strut-
based lattice structures (Caiazzo et al., 2022) and the mechanical
behavior of a novel lattice configuration (Ma ez al., 2024). Similar
case studies exist but are focused on the analysis of energy
absorption (Niutta ez al., 2022; Boursier Niutta et al., 2022; Khan
et al., 2024). Notable contributions include the crashworthiness
design of functional gradient bionic structures under axial impact
loading by Wang et al. (Wang et al., 2023c), the exploration of
bending crashworthiness in smooth-shell lattice-filled structures
by Yin er al. (2022) and a study on the design and impact energy
absorption of Voronoi porous structures with tunable Poisson’s
ratio by Zou et al. (2024). Li er al. (2021) delve into the
characterization of energy absorption for side hierarchical
structures under axial and oblique loading conditions, while
Alkhatib ez al. (2023) focus on the isotropic energy absorption of
topology-optimized lattice structures. Other studies concern
sound applications with customizable lattice cells (Li ez al., 2023).

Often, there is a significant use of design of experiments
(DOE) and/or response surface methodology (RSM) based on
analysis of variance (ANOVA) in these research studies, as
known in literature (Mushtaq ez al., 2022; Ali et al., 2023; Li
et al., 2018; Mushtaq ez al., 2023; Valean et al., 2020; Bacciaglia
et al., 2021). This is usually due to the difficulty in defining a
mathematical model representative of these structures, given
their complex shapes and the general nonlinearity of their
mechanical behavior. This integration is usually applied to the
design of lattice structures aimed at identifying optimal
parameters for cell design and printing, with the goal of
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minimizing technical defects. Aslani er al. (2020) present a
quality performance evaluation of thin-walled PLA 3D printed
parts using the Taguchi Method and Grey Relational Analysis,
shedding light on the robustness of 3D printing techniques in
lattice structure fabrication. Vaissier ez al. (2019) contribute to
the understanding of thermal dissipation through their
parametric design of graded truss lattice structures (Latture
et al., 2018), demonstrating the potential for enhanced thermal
management. Meanwhile, Di Prima ez al. (2024) investigate the
influence of build parameters on strut thickness and mechanical
performance in additively manufactured titanium lattice
structures, elucidating critical factors in the production process.
An additional step forward in this field has been taken thanks to
artificial intelligence (AlI) often integrated also with DOE/RSM
studies. Eren ez al. (2024) present a deep learning-enabled
design for tailored mechanical properties of selective laser
melting-manufactured metallic lattice structures. Challapalli
et al. (2021) propose an inverse machine learning framework for
optimizing lightweight metamaterials, showcasing the potential
of Al in metamaterial design. Yiksel ez al. (2023) provide a
comprehensive review of Al applications in engineering design,
offering a broader perspective on the transformative role of Al.
Siegkas (2022) explores the generation of 3D porous structures
using machine learning and additive manufacturing,
highlighting the synergy between Al and manufacturing
processes. Additionally, Yiksel ez al. (2024) investigate the
mechanical properties of additively manufactured lattice
structures designed through deep learning, emphasizing the role
of Al in tailoring material behavior. Nasiri and Khosravani
(Nasiri and Khosravani, 2021) delve into machine learning’s
predictive capabilities for the mechanical behavior of additively
manufactured parts, and Hassanin er al. (2020) explore the
control of properties in additively manufactured cellular
structures using machine learning approaches. These works
collectively underscore the transformative impact of Al in
redefining the boundaries of lattice structure design and
optimization. However, the main limitation associated with the
integration of Al is related to the large amount of data required
to train neural networks. Prototyping times linked to 3D
printing of complex geometries, coupled with test realization
times, can often prove to be excessive. Frequently, the use of
established methodologies such as DOE, constructed on the

Figure 1 Possible types of infill cells: beam-based classic cells and triply periodic minimal surfaces
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minimum number of trials necessary for the study of the system,
remains favorable, as evidenced in the following study.

Although the literature provides numerous references to
types, data and properties of lattice structures (Maconachie
et al., 2019; Chen er al., 2023; Pan et al., 2020), their practical
application still proves challenging. The choice of the cell type
to employ frequently depends on the shape of the component
being designed and the loads to which it is subjected. For
instance, cubic cells perform well under tension but poorly
under bending or compression (primarily due to local buckling
phenomena). Even in the hypothetical scenario where the
optimal cell type is known with certainty, understanding the
optimal values for cell dimensions, including its thickness
(beam diameter in the case of classic cells/surface thickness in
the case of TPMS), remains a complex task.

For these reasons, the following study proposes an
approach aimed at obtaining a highly reliable mathematical
model (in the form of an n-variable polynomial) to assess the
variation in structural stiffness as the main representative
parameters of the model change. These parameters include
the size, beam thickness and type of cell used. The reliability
of the derived RSM model is verified by comparing its results
with those obtained from every single FEM calculation
applying various cell dimensions and thicknesses of the
constituent beam elements. Following this application, an
analysis of the local error obtained from the application
of the RSM methodology concerning the variation of cell size
is conducted. This variable is continuous and therefore
suitable for the RSM methodology. However, the presence of
some undesired effects in the 3D printing process is one of the
main causes of the overall imprecision observed in the model,
as described later. The specimens used in the study are also
tested in three-point bending tests necessary to validate
their virtual models and derive the real structural
stiffness. The specimens are printed with PLA using FDM
technology, in accordance with relevant standards and
project requirements, as described later.

2. Materials and methods

The first phase of the study is designed to immediately derive
the most rigid structural models for the three-point bending
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geometry considered in the following RSM analysis. This
avoids excessively increasing the number of combined tests on
the PLA physical specimens. To achieve this, several specimens
of the same geometric dimensions are considered. The
specimens are in line with ASTM D7249 standards, although
slightly resized. The reason for this resizing is related to the
maximum printing volume of the Artillery Sidewinder X1
(300 x 300 x 400 mm) printer used for subsequent 3D
prototyping. Other cases in the literature implement resizing
when the specimen’s size is not particularly relevant for the
study’s tests (Austermann et al., 2019) or variance analysis. The
specimens are rectangular prisms made entirely of PLA, a low-
cost polymer material that is easy to print. The dimension of the
internal core is 180 x 36 x 18 mm. This is the volume that
changes in each test based on the type of cell and its
dimensions. Two continuous layers of PLLA, each 1 mm thick,
are applied to the upper and lower faces. The full specimen size
is then 180 x 36 x 20 mm. The main reason for this choice is to
minimize the possibility of local crushing effects at the three
contact points of the bending test excessively influencing the
overall deformation of the specimen. This deformation serves
to evaluate the representative stiffness of each specimen,
assessed each time as the ratio between the applied load and the
vertical displacement in the midpoint recorded at the bottom of
the specimen. In fact, both in virtual and experimental tests, the
effect of compression due to the punch at the midpoint usually
resulted in slightly greater vertical displacements on the upper
face of the specimen compared to the lower one. A
schematization of the test set up and a representation of this
effect is proposed in Figure 2.

Another reason for choosing these specific values is related to
the need of multiple sizes nested within each other. The idea
was to analyze large dimensional variations of the cells and their
thicknesses, as subsequently specified, specifically using only
full lattice cells (this means that their sizes were necessarily
submultiple of the core volume dimensions). In fact, if the three
dimensions (length, height, depth) of the specimen are not all
multiples of the length of the sides of the cubic cells, these will
remain partly incomplete in certain areas of the internal core. In
general, this happens in the interface areas with the upper and
lower faces of the specimen. In an RSM analysis, the system
analyzed should remain the same even if it foresees a

Figure 2 Schematization of three-point bending test and specimen dimensions according to ASTM D7249
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continuous variation of its parameters. The approach is indeed
valid if specimens always have complete cells although their
dimensions are changing at each simulation. This is an efficient
way to get a correct final regression equations in authors’
opinion. Using cells with 3 or 9 mm sides (variable D), it is then
convenient from this point of view. The core dimensions (18,
36 and 180 mm) are in fact multiples of each. In addition, their
mean value (6 mm) is also a divisor of these values (this is useful
in the RSM model described later). Defining the range in which
to vary the size of the cells is the first step. The choice of the
most useful specimen sizes follows accordingly. More details on
this are described below.

Each virtual test should be validated with experimental
analyses performed on real specimens. In this case, the high
number of design parameters increases the time of
experimentation. For this reason, it was necessary to look for the
types of cells offering the best stiffness in subsequent bending
tests. The first stiffness analysis was conducted maintaining a
cell size of 6mm and allowing thickness variations for this
reason. To already identify the stiffness trends in this analysis
(non-RSM), four thickness values (variable T) were chosen as
inputs. These were: 1 mm, 1.5mm, 2mm, 2.5 mm. Here, the
use of beam elements is employed in FEM simulations to
expedite processing and computation times. The beam finite
element is ideal for use in the analysis of lattice structures (not
for TPMS ones, only for trabecular ones). Its simplest version
(2 nodes) allows displacements at the ends in the three
Cartesian directions to model the application of all possible
external loads (tensile/compression, shear, bending moment).
In addition, the beam element of nTop (the software used for
the design and virtual simulation phases) also admits the version
with three or four nodes (one or two internal, respectively).
However, it is not possible to evaluate the local stress increase
due to carving effects in the model using it. This can be
considered as one of its general limitations.

To clarify these last concepts, an image referencing some of
the issues described in the model analysis is provided in
Figure 3.
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Another consideration concerns the typical anisotropy that
3D printed specimens exhibit in characterization tests. This
issue is well-documented in the literature (Ali ez al., 2023; Li
et al., 2018; Mushtaq er al., 2023; Valean ez al., 2020) and
during the prototyping phases, it is usually necessary to
consider the principal printing direction (for example, the one
in which the actual Young’s modulus offered by the specimens
is greater). The material considered in the following tests is
PLA (4 GPa as Young’s modulus and 0.35 as Poisson’s ratio
used in virtual simulations). Using small-sized print layers (max
0.1 mm) in printing helps attenuate the specimens’ anisotropic
behavior (Bacciaglia and Ceruti, 2023). All specimens were
printed horizontally to ensure the best resistance capability
along the horizontal direction of tensile/compressive fibers due
to bending. Furthermore, print orientation constitutes a
variable that would potentially need to be added to the system
because it alters the mechanical behavior of the material. As can
be inferred, these and further considerations regarding 3D
prototyping do not pertain to the virtual analysis of the models.
This approximation was considered valid because neither the
virtual nor experimental tests focused on fracture tests. The
tests conducted on the specimens were solely related to stiffness
analysis in the discussed study (evaluated for small
displacements).

Once the specimens with the best stiffness were identified,
the RSM analysis followed. The dimensional range of the edge
of the cubic cells was defined from 3mm to 9mm and
represented with letter D. The average value between the two is
easy to calculate and equals 6 mm. As can be seen, the ratio
between the size of the sides of the core and these values always
leads to integer values, guaranteeing in each analyzed
combination an exact internal distribution of cells (cells cut in
half or, in general, incomplete is avoided). The RSM model is
of the face-centered type (alpha = 1). This is the best choice to
avoid tests with cell sizes that are not divisible by those of the
core, as previously underlined. If ANOVA leads to a
predominantly linear or quadratic two-variable model, the

Figure 3 Beam element for FEM analysis and representation of interrupted octet cells within the lattice of a sample specimen

Beam element (nTop)

nodes
Subdivisions
1
2 - It
3 o @
D
VSR | | Seampe— I
1 5 1
! ' - 1
. i iy
_.!_._._._i ...... HH-1-
1 | 1
| R ;_ i
| . complete

B[] interrupted

required condition: T < D

Source: Figure by authors

348



RSM applied to lattice patterns

Rapid Prototyping Journal

Giampiero Donnict, Marco Freddi and Alfredo Liverani

characteristic regression equations will be of the first or second
order, respectively, as shown in Figure 4.

The final RSM model had to predict the maximum vertical
displacement along the z-axis of the model. In general, there is
no full linearity in the output, as shown in the results section.
The range of variability of the thicknesses of the beams (their
diameters) goes from 1mm to 3mm. This variable is
represented with letter T in the manuscript. The value of 1 mm
is large enough to guarantee that at least 10 layers of 0.1 mm
cover it, while 3 mm (maximum) maintain a sufficiently wide
range of manufacturable specimens. In fact, it is an adequate
value for cells from 3mm to 9mm. The ASTM D7249
standard also provides guidelines for the optimal setup of the
specimen test. As stated in Figure 2, the distance between the
two supports is proportional to the length of the specimen and
should not be chosen randomly. The load should be applied at
the exact midpoint of the specimen. In the virtual and
experimental tests described below, a load of 2000 N was used
for the three-point bending test (the value may be high for tests
on real specimens, as specified below, as it leads to the
exceeding of the elastic response range of the specimens but has
no relevance on purely virtual linear elastic tests).

Once the virtual RSM tests have been performed on the cells
selected from the first stiffness analysis, it is possible to analyze
which variables have the greatest effect on the system. An RSM
analysis allows the evaluation of nonlinear pro-proportionality
(as in classical factorial DOE) up to the sixth order. This is
possible without much effort thanks to the help of applications
such as Design Expert or Minitab (the latter, however, is
limited to the second order). ANOVA useful for calculating the
sums of squares of the different variables allow to weigh their
effect on the results. Associated p-value analyses allow to
immediately identify which ones are impactful and which have
little effect on results. If a variable does not have a sufficiently
low p-value (close to 0), it can be excluded from the polynomial
regression analysis. The tests required a 95% reliability on the
model here, which is why the p-values sought had to be less
than 0.05. For the different types of cells analyzed with the
RSM methodology, an n-order regression equation was then
obtained (the second-order one, i.e. quadratic, resulted always
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optimal as shown in result section). This was necessary to link
the variability of cell thicknesses and sides to the displacement
(and stiffness) outputs. The overlapping graphic plots of the
two outputs considered in these models allow to evaluate any n-
tuples (cell side, beam thickness, cell type) of the analysis
domain in which a small percentage reduction in stiffness is
obtained compared to the solid material specimen in the face of
a large lightening. This already offers a considerable technical
starting point for the design. The classic contour plots then
make it possible to highlight any optimal design points if they
fall within the domain considered. Otherwise, an analysis of the
gradients (growth rates) of the output functions in the same
graphs is already sufficient to identify where the optimum
points might be found.

A final comparison between some of the results predicted by
the RSM model and the actual results of virtual (and
experimental) tests is useful to identify the points where it is
most divergent. Any macro-forecast errors (even if few and
localized) could be due to the great variability in the mechanical
behavior of the specimens. The internal porosity of the material
makes its prediction more difficult, often far from the classic
analytical model of the elastic line that can be used here as a
first approximation. It estimates the inflected deformation of
the specimen and is based on the following starting differential
equation (1):

"

w(x) = ,M

i Y]
In it, M(x) is the value of bending moment along the length, E
is the Young’s modulus of the beam and I is its surface moment
of inertia (both constants on the x-domain). The x domain
starts from one of the supports and it is directed toward the
other one. The parts of the beam specimen outside these
supports are not considered in this equation (in fact, they are
not stressed). Non-constant is the value of the bending moment
due to the applied load F (Figure 2), zero at the hinged ends
and maximum at the centerline and equal to the product of the
load F and half the length of the beam. Solving the differential
equation results in equation (2):

Figure 4 RSM analysis diagram with examples of linear or quadratic regression polynomials, Pareto diagram and 3D plots of a sample output
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"n F ’ F2 F3
w(x)zz—éﬂw(x):r;[ +cl — w(x)zﬁz,lﬁ—clx-i-cZ
2

The terms cl and c2 emerge from the integration process and
need to be analyzed for the specific case at hand. Knowing that
w(x = 0) = 0 and w'(x =//2) = 0 since it is the point of
maximum deflection and at this point the tangent to the beam’s
curvature is horizontal, the two values can be easily obtained by
substitution, as follows in equation (3):

FP2 F , FP

2=0,cl = ———_ S L
2=0,¢ 1651 ~ “® = 2E* " Tem”

(3
At the centerline point (x =//2) it is in fact equal to the well-

known Euler-Bernoulli equation (4):

e FP?
" 48EI

©)

3. Results

The first series of virtual analyses on the specimens allow to
map the trend of the stiffness values in relation to the thickness
variability alone. An analysis of this type precedes the RSM
analysis but is useful for having a simple reference for
comparison with subsequent multivariable analyses. In fact, if
the graphical solution of a two-variable RSM approach is a
continuous multidimensional curve in space (a plane in the case
of linearity, paraboloids in the case of second-order relations
and so on), intersecting it with a shear plane whose points are
the pairs (D;T) in which the cell size is kept constant should
yield similar patterns on the thickness domain.

The cubic cells analyzed were initially of ten different types:
Simple cubic, Body centered, Face centered, IsoTruss,
Diamond, Fluorite, Kelvin, Octet, Weaire-Phelan, Reentrant.
The design of the specimens and the virtual simulation test was
done with nTop, setting the dimensions of the standard
specimen (20x36x180 mm), a load of 1000 N on the centerline
and two lateral supports typical of three-point bending as in

Volume 30 - Number 11 - 2024 - 345-356

Figure 2. The thickness variability was 1, 1.5, 2, 2.5 mm. The
load is applied over an area of 12x36 mm on the upper face to
better represent the future experimental test. The real
importance of the results, however, lies in their variation rather
than in their values. Two cells (Simple cubic and Reentrant)
were immediately found to be highly yielding and unsuitable for
the following stiffness analyses, as shown in Figure 5. The
table shows the values of vertical displacement (in mm)
recorded in the transverse centerline on the upper face of the
specimen and on the lower one, for the reasons explained in the
previous section (Material and Methods). Except for the two
clearly worse cells, we proceeded with the creation of the graph
shown in Figure 5. As can be seen, the relationship between the
increase in the thicknesses and the displacements recorded
does not follow a linear model. Second- and third-order
polynomial models, in general, apply well to these distributions
with very high average R? coefficients, close to 0.98 (simply
verifiable), as described later.

The graph helps to understand which models are best for the
geometry, loads and constraints considered. The Weare-
Phelain cell lends itself well to this type of test, followed by the
Octet and the IsoTruss. For thicknesses of 2.5 mm, minimum
expected displacement values are on the order of 0.25 /0.5 mm.
They increase up to 1 mm in the case of thicknesses of 1.5 mm.
Cells with simple cubic cells or reentrants show peaks that are
too high and are not suitable to withstand this type of load. In
order not to excessively increase the number of experimental
tests, it is advisable to focus only on the study of the best two or
three cells. After all, no further analyses (virtual or
experimental) on specimens made with Weaire-Phelan cells
have been considered to speed up and facilitate the printing
process, preferring the Octet and the IsoTruss types (easier to
3D print). The results obtained for the other two cell types
should be representative of all specimens’ general behavior.

The first RSM model was applied to structures of the Octet
type. Two continuous factors (cubic cell size D and beam
thickness T) were defined for the model in the ranges [3; 9] and
[1; 3] mm respectively. Each trial was performed and evaluated
according to the two-level factorial central composite design (o =
1) model. The model includes 4 cube points, 4 axial points and 5

Figure 5 Displacement (z-axis) measured by FEM analysis on specimens of different cell types and thicknesses to highlight the most rigid specimens for

three-point bending
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center points in cubes. The total number of trials is 13 and the
various results are summarized in Figure 6.

Similarly, the procedure was repeated with the same inputs for
the IsoTruss specimens. The results obtained from these tests
are roughly like those in Figure 6. The ANOVA table is not given
for this reason so as not to weigh down the manuscript.
Centerline displacement data will follow in the next figure. Once
the analysis has been carried out, the two-variable regression
function (D; T) that can better approximate them is easily
obtained thanks to applications such as Minitab or Design
Expert. As already stated, the order of this polynomial depends
on the generic regression model that offers the best fitting value.
The Octet linear model offered adjusted R* and predicted R? of
0.8547 and 0.7051, respectively. The quadratic equation had
better values (0.9966 and 0.9810). The cubic model is “aliased.”
This indicates that some interactions between the independent
variables cannot be distinguished from other effects in the model.
This is often the result of a limited number of experimental
points compared to the number of terms. Similarly, the values of
the adjusted R? and predicted R? of the IsoTruss model were
0.9864 and 0.9202. For these reasons, the quadratic model was
the most suitable for its representation. The regression equations
for the Octet and IsoTruss cells are as follows, respectively:

disp.(D, T, octer) = 0.882 + 0.358D — 1.18T + 0.267T"
—0.083DT

disp,(D, T, isotruss) = 0.9982 + 0.547D — 1.68T + 0.4357T>
—0.148DT

The effect of thickness is in both cases principally second order,
while cells affect flexural stiffness linearly. Note that the term
D? does not appear in the equations because it was irrelevant
from the ANOVA and the calculations of the p-values of the
variables, as can be seen in Figure 6. Subsequently, the results
extrapolated from the regression model were compared with
those obtained from each individual simulation. This is useful
in the case of real tests. These tests require time to prototype
the specimens, to set up the machine for three-point bending
and to carry them out. Simulations did not require particularly
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long times for setup and calculation (performed with nTop
4.17.3 on an Antec computer with a 2.5 GHz CPU, NVIDIA
Quadro M5000 graphics card and 63.7 GB of RAM) also
thanks to the use of beam FEM elements, the prototyping
phases discussed later greatly lengthened the research time.
This comparison is in general necessary to understand how
close the regression model is to the individual case under
consideration each time. As can be seen in Figure 7, in several
cases the evaluation errors of the model reach peaks of up to
0.1mm. In the procedure of comparison between the RSM
data and those of the individual simulations, it was realized that
the introduction of some higher-order terms allowed a better
approximation between the two series. For this reason, new
uncoded equations (i.e. referring to the integer terms D and T
and not normalized to values from 0 to 1) have been derived to
study the behavior of the model. References to the coefficients
of these equations are in Figure 7.

The main area of divergence is for the larger cells (9 mm). In
a special case (D = 9mm; T = 1.5mm) the error is almost
0.2mm. The reason is most likely related to the greater
discontinuity of the model, characterized by greater
displacements of the mesh elements and high local
displacements along the centerline. Only small discrepancies
emerge for the 3 and 6 mm cells, areas of analysis where the
RSM surface works optimally. In all cases, for high values of
thickness, the variation in stiffness tends to assume trends that
can be well approximated with linear models. This is not true
for small thicknesses. In general, a quadratic model is
suitable for representing the stiffness behavior of these systems.
However, it is only by adding higher-order terms that it is
possible to approach the true behavior of the specimens with
excellent accuracy. After the following series of analyses a
further interesting result concerning the best combinations
between stiffness and weight of the specimens is obtained. In
fact, it has been noted that for Octet or IsoTruss cells of
different sizes there is an optimal design point where the
stiffness-to-weight ratio is maximum. To obtain this result, it
was sufficient to calculate the percentage of material mass saved
thanks to the use of lattice structures using the special nTop
“weight savings” tool. The numerical results of this analysis are
shown in the graph in Figure 8.

Figure 6 Scheme of tests, analysis of variance (ANOVA) and of the most influential variables for Octet cells in Pareto chart

|

| Pareto chart

Analysis of Variance (ANOVA) - Octet cell
RunOrder PtType D T Maxdispl (z) Source DF  AdjSS AdjMS F-Value P-Value | Terms
1 1 3 1 0.76 Model 4 469682 1.1742  1100.9 0
2 1 9 1 2.45 Linear 2 42194 21097 1977.99 0 T
3 1 3 3 0.076 D 1 1.99411 1.99411 1869.62 0
4 1 9 3 0.77 T 1 222529 222529 2086.36 0
5 -1 3 2 0.205 Square 1 0.22942 0.22942  215.09 0 D
6 -1 9 2 1.28 f 51 ] 1 0.22942 0.22942 215.09 0
7 -1 6 1 1.66 2-Way Interaction 1 0248 0248  232.52 0 o
8 -1 6 3 0.37 DT d 0.248 0.248 232.52 0
9 0 6 2 0.75 Error 8  0.00853 0.00107
10 0 6 2 0.75 Lack-of-Fit 4 0.00853 0.00213 & ¥ T,
1" 0 6 2 0.75 Pure Error 4 0 0
12 0 6 2 075 Total 12 470535 ° 1 20 30 P s
13 0 6 2 0.75 Source DF  AdjSS AdjMS F-Value P-Value Standardized effects

Source: Figure by authors
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Figure 7
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Comparison between vertical displacements derived from FEM analyses and RSM model predictions as cell thicknesses and sizes vary
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Figure 8 Plot of the percentage of mass saved as the thicknesses and dimensions of the cells vary and their relationship with the maximum
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The percentage of saved mass is calculated every time by
comparing the weight of each porous core to the fully filled core
inside every specimen (relative density). This ratio is subtracted
from the value 1 and then translated into a percentage. This
means that the percentage of mass saved in the first of the two
graphs should be intended as unprinted mass. As can be seen
from the graphs, the variation in mass and stiffness does not
always follow a direct proportionality and it is possible to
identify an optimal weight/stiffness ratio in many cases. The
change in mass, for example, follows almost linear models with
respect to the change in displacement (and therefore in
structural stiffness). The optimum points also fall in an area of
the analysis domain where the thicknesses are quite small
compared to the size of the cell and, therefore, physically
plausible and manufacturable. In the case where D = 9 mm and
T = 1.75mm, Octet cells offer the best compromise. In the
case of IsoTruss cells this is true if T is equal to 2.25 mm. If the
cell size drops to 6 mm, however, the optimal thickness should
drop to 1.5 mm. Similar considerations can be made for other
types of cells, geometries and load tests. A series of final
comparisons with real printed specimens subjected to the

45,00
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352
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three-point flexure test served to validate the methodological
approach. The experimental analyses involved the breakage of
each of the specimens analyzed, although in this case the object
of greatest interest was the elastic behavior of the structures.
The main objective was to compare virtual and experimental
stiffnesses. The tests were carried out in line with the ASTM
D790 standard which defines the geometries and settings of the
tests considered to ensure their validity. From the first part of
the load curve, it was possible to derive the average real stiffness
value expected for the various types of specimens. From the
stress—strain curve, the calculation of the equivalent Young’s
modulus for each tested specimen is feasible. Each type of
specimen chosen was printed five times to statistically validate
the results of the individual tests. Comparisons were made for
specimens with Octet cells of size 9 mm and thickness 3 mm,
Octet with cells of 6 mm and thickness of 2 mm, and IsoTruss
of 6mm and thickness of 2mm (15 specimens). The test
involved an Instron® ElectroPuls E1000 machine with a nose
loading speed of 1.41 mm/min. The distance between the
supports was 108 mm (each with cylindrical radius equal to
10mm), resulting in a protrusion of 36 mm over the single
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supports. The dimensions of the specimens are previously
indicated. The fillet radius of the cylindrical punch was 15 mm.
All parts of the machine were made of stainless steel.

For each type of specimen, the regression line of elastic
behavior was analyzed. In the first part of the elastic section,
almost all the specimens showed great closeness to the
prediction models. From this half onwards the behavior of the
physical specimens has always been worse, probably due to a
first series of yields/internal breakages that occurred in the most
fragile printing points. In fact, in experimental tests, plateau
points are highlighted where increasing the load slightly still
results in considerable displacements, as can be observed in
Figure 9 (here in the case of the Octet cell) and as known in the
literature (Maconachie et al., 2019). The plateau phase
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typically precedes the densification of the specimen unless
fractures occur eventually due to their excessive brittleness.

The results of the experimental tests and the comparisons
with those expected from the numerical simulations are shown
in Figure 10 together with some images of the different types of
specimens used for the tests.

It was precisely in this phase of analysis that the greatest
discrepancies between virtual and physical simulations emerged.
The main factors related to the overestimation of the structural
stiffness of numerical models are probably related to the fact that
they are ideal. As well known, 3D printing causes voids and
irregularities in printed material that are difficult to predict. The
absence of a truly homogeneous material and the presence of
layers that are not always perfectly interfaced with each other

Figure 9 Set up on the machine for the physical tests of the specimens and graphic comparison between the numerical and real model referring only to

the elastic part of the test
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Source: Figure by authors
Figure 10 Representation of different types of specimens and comparison table between virtual and real simulations
Displacement aftar 1 kN (mm) Equivalent flexural modulus Ef [GPa]
Type; D; T Numerical ~ Physical  Average Std dev. | Numerical Physical  Average Std dev.
Octet; 9; 3 077 125 142 0.87
Octet; 9; 3 077 126 1.42 0.87
Octet; 9; 3 077 124 126 005 1.42 0.88 087 003
Octel; 9; 3 077 133 142 0.82
Octel; 9; 3 077 121 1.42 0.90
Octel; 6; 2 075 119 146 092
Octet; 6; 2 075 125 148 0.87
Octet; 6; 2 075 126 124 003 146 0.86 089 002
Octot; 6; 2 075 123 1.46 0.89
Octet: 6; 2 075 125 1.46 0.88
Isotruss: 6; 2 0.88 151 1.24 072
Isotruss: 6; 2 0.88 152 1.24 0.72
Isotruss; 6;2 | 0.88 150 149 005 1.24 073 074 002
Isotruss; 6;2 | 0.88 151 1.24 072
Isolruss; 6;2 | 0.8 1.41 1.24 078

Source: Figure by authors
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increase the divergence between the two models. The anisotropy
of a printed model is another important factor. However, data
obtained from the numerical tests are clearly proportional to the
virtual estimated values (even if they represent worse mechanical
behaviors and stiffnesses). This suggests that the ANOVA
associated with the models works properly and that with further
experimental evidence it is also possible to correctly map the
behavior of the real system.

4. Conclusions

The virtual and experimental tests performed on the specimens
have demonstrated the effectiveness of using continuous RSM
for predicting the stiffness behavior of specimens subjected to
three-point bending tests. The polynomial regression models
accurately predicted stiffness, highlighting the ability of these
nonlinear models to identify optimal design points that balance
stiffness and lightness. However, limitations have been
identified principally related to the physical tests. These are the
anisotropic behavior of 3D-printed structures, the difficulties
associated with 3D prototyping and the poor mechanical
properties of polymer latex structures. These factors affect the
validation of numerical models against real models and limit
the industrial application of these structures. However, the
authors identify the main success of the study in the fact that by
integrating classical methodologies (ANOVA, RSM) with an
effective parameterization of porous geometries it was possible
to guide the design in a logical and optimal way. This included
the possibility of choosing the optimal cell type by defining its
dimensional parameters to ensure optimal ratios between
weight and structural stiffness. This effort aims to reinforce the
design principles inherent in lattice structures within the fields
of scientific research and industrial production, which are still
detached from theoretical research and focused on achieving
functional models rather than optimal ones.
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