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1. INTRODUCTION AND MOTIVATIONS

Since the origin of Lyapunov’s direct method (Lyapunov,
1992), assessing the stability of an unforced system is
done by considering a nonnegative scalar function of the
state vector and checking that its value is monotonically
decreasing in time. The approach was also described and
extended in (Bertram and Kalman, 1960; Massera, 1956;
Barbashin and Krasovskii, 1961; Hahn et al., 1967), see
also (Martynyuk, 2002) for a review on the development
of the definition of stability during the last century and
(Leine, 2010) for a historical perspective on the stability
concept.
For an autonomous linear system ẋ = Ax, with x(0) =
x0 ∈ Rn, stability analysis is usually done by looking for
a time-(in)dependent quadratic Lyapunov function, i.e.,
one has to look for a symmetric positive definite matrix P
solution of a particular Linear Matrix Inequality (LMI),
i.e., the Lyapunov inequality

PA+A⊤P ≺ 0. (1)

Such a solution P can be computed via numerical tools
(i.e., optimization solvers), but, to the best of the authors’
knowledge, it has not been solved in any direct or closed
form. As a consequence, the standard approach to obtain
P is reverted, (Rugh, 1996)[Ch.7, pg.124], i.e., rather than
directly specifying the matrix P , one has to involve an
additional positive definite matrix Q = Q⊤ ≻ 0, and look
for a solution P of the so-called Lyapunov Equation

PA+A⊤P = −Q, (2)

where Q now is a degree of freedom. For example, it can
be taken as Q = 2qI, for some real q > 0.
It is well-known, that such a P , solution of (2) and thus
of (1), exists and is unique if and only if A has all negative
real parts eigenvalues, and such a P is given by

P =

∫ ∞

0

exp(A⊤s)Q exp(As)ds.

1 This work is supported by the ANR IMPACT (ANR-21-CE48-
0018) and ANR ALLIGATOR (ANR-22-CE48-0009-01) projects.

It is also possible to numerically compute P by exploiting
the vectorization of matrices as introduced in (Bellman,
1957). Other approaches to compute the Lyapunov func-
tion for nonlinear systems can be found in (Khalil, 2002),
or (Davison and Kurak, 1971), (Blanchini, 1995), see (Giesl
and Hafstein, 2015) for a recent review on the topic.

The pair P,Q can be exploited to determine the positive
real constants κ and α, respectively, the scaling factor and
the convergence rate, in the standard definition of uniform
exponential stability, (Rugh, 1996; Khalil, 2002), i.e.,

|x(t)| ≤ κ exp(−αt)|x(0)| (3)

where | · | denotes the standard Euclidean norm. In partic-
ular, by considering σmin(Q) to be the minimum singular
value of Q, it is easy to show, by the comparison lemma
(Khalil, 2002), that

|x(t)| ≤ σmax(P )

σmin(P )
exp

(
− σmin(Q)

σmax(P )
t

)
|x(0)| ∀ t ≥ 0, (4)

where the κ is then given by the condition number of
P and the maximum eigenvalue of P is involved in the
convergence rate α, along with the minimum eigenvalue
of Q. Although very general, these constants for the norm
upper bound highly depend on the choice of the matrix Q.
To the best of the authors’ knowledge, it does not exist
any (constructive) approach to select Q to obtain the (in
some sense) optimal values of the exponential convergence,
i.e., to estimate κ and α such that the upper bound is
as close as possible to the real norm evolution. Usually,
taking Q with a large σmin(Q) (aiming at obtaining a large
convergence rate α), makes P highly ill-conditioned, thus
increasing the scaling factor κ in (3). Although this can
be accepted by common sense, or simply by intuition, we
were not able to find any result in the literature properly
describing these facts.

One particular form of the Lyapunov inequality (1), that
can be used to directly obtain the parameters of the
exponential stability in (3), is the following

PA+A⊤P ⪯ −2αP. (5)
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where α is precisely the convergence rate of the defini-
tion, while κ is the P conditioning number. However,
solving (5) has never been done analytically, and this
problem is usually addressed via numerical optimization
algorithms. Moreover, the value of α cannot be chosen
arbitrarily. When A is Hurwitz and diagonalizable, one
can select α = |ℜλmin(A)|, where λmin(A) (resp., λmax(A))
refers to the eigenvalue of A with largest (resp., smallest)
real part, but for a non-trivial geometric multiplicity of
λmin(A) one can find a positive definite solution P to (5)
only with α < |ℜλmin(A)|. To the best of the authors’
knowledge, there is no other general approach available
in the literature to explicitly relate the scaling factor
κ and the convergence rate α for linear systems to the
eigenstructure of the state matrix A in a formal way,
although the link with the system eigenvalues of A is in-
tuitive and well-understood by the community. The closer
results we were able to find are (Hu and Seiler, 2016), in
which the authors test the exponential convergence rate
using integral quadratic constraints, and (Applelby et al.,
2006) the author obtains the rate of decay of solutions
of a class of convolution Volterra difference equations.
However, none of the available results in the literature are
suitable to explicitly obtain the parameters of exponential
convergence κ and α in closed form, neither for the case
of linear time-invariant systems.

It is well known that the exponential rate of convergence
for a linear autonomous system can be deduced from the
eigenvalues of the corresponding system’s state matrix A.
However, in this paper, we want to explicitly characterize
the dependence between the eigenvalues (more properly,
the eigenstructure) of the state matrix A and the con-
vergence rate α, and provide a direct link of such an
eigenstructure of A with the scaling factor κ. The reader
can verify that this type of characterization is easy to
get in two particular cases, i.e., the symmetric part of
the state matrix A is negative definite (Rugh, 1996)[Ch.7,
pg 114], or when the matrix A is diagonalizable. Indeed,
when A is not diagonalizable, due to the structure of
its Jordan blocks, the exponential behavior due to the
system eigenvalues is “rescaled” by a polynomial function
of time whose upper bound is not trivial to characterize,
see discussion in Section 3.

Thus the aim of this paper is twofold:

(1) Provide a review of the fundamental concepts related
to the stability of linear autonomous systems;

(2) Provide a characterization of the solution of the
Lyapunov inequality (5), or equivalently (1), also for
non-diagonalizable matrices A;

The rest of this article is structured as follows. We first
collect some preliminary results in Section 2, by recalling
some instrumental notions for the definition of the Jordan
block form and the proposed modification of such a normal
form. Based on such a transformation, we then define a
Lyapunov function which allows us to obtain the explicit
exponential stability parameters (the values of κ and α) in
terms of the algebraic properties of the matrix eigenvalues
and the (generalized) eigenvectors, as shown in Section 3.
In the same section, we also discuss some properties of
the proposed solution compared to a numerical solution.
In Section 4, we show an application of the analysis in

the design of closed loop system performances. Finally,
in Section 5, we show the effectiveness of the proposed
bounds on an autonomous system with large geometric
multiplicity. Some conclusions and perspectives are given
in Section 6.

Notation. R, resp. N, resp. C, denotes the real, resp.
natural, resp. complex, numbers. Given a matrix A ∈
Rn×n, we denote the spectrum of A as σ(A), where
λi(A) ∈ σ(A) is the i-th eigenvalue of A, and σi(A) is its
i-th singular value. Furthermore, σmax(A) and σmin(A) are
respectively the maximum and minimum singular value of
A. The L2-norm of matrix M ∈ Rn×n is denoted by ∥M∥,
and we denote the condition number of M as

µ(M) :=


λmax(M⊤M)

λmin(M⊤M)

and µ(M) = µ(M−1). For two square matrices A,B ∈
Rn×n we have

µ(AB) = ∥AB∥∥(AB)−1∥
≤ ∥A∥∥B∥∥B−1∥∥A−1∥ = µ(A)µ(B).

We define M ∈ Rn×n to be orthogonally diagonalizable if
it has an orthonormal set of eigenvectors. Given a matrix
M ∈ Rn×n, sym(M) refers to the symmetric part of such
a matrix, i.e., sym(M) = (M +M⊤)/2. Given a complex
number µ ∈ C and an explicit number n ∈ N, we denote

Dn(λ) :=


diag(1, λ, . . . , λn−1), if λ ̸= 0,

In, if λ = 0,
(6)

where In is the identity matrix of dimension n. Then, the
following identity holds

NnDn(λ) = λDn(λ)Nn (7)

for any λ ∈ C/{0} and n ∈ N, where Nn ∈ Rn×n is
the matrix of zero elements with only 1 on the first super
diagonal, i.e., a shifted identity matrix of dimension n−1.
Similarly, for a matrix Λ ∈ Rr×r we can define

Dn(Λ) :=


blckdiag(Ir,Λ, . . . ,Λ

n−1), if Λ ̸= 0,

Irn, if Λ = 0,
(8)

and, in this case, the following identity can be verified for
Λ ̸= 0

Dn(Λ)
−1(Nn ⊗ Ir)Dn(Λ) = Nn ⊗ Λ . (9)

Finally, given any n ∈ N, we define the following matrix

Jn := In +Nn, Jn ∈ Rn×n. (10)

2. PRELIMINARIES

2.1 Some explicit eigenvalues

From (Meyer, 2000, Ex. 7.2.5), we have an explicit formula
for the eigenvalues of a matrix M ∈ Rn×n, with a ̸= 0 and
c ̸= 0,

M =




b a
c b a
. . .

. . .
. . .

c b a
c b



= bIn + aNn + cN⊤

n (11)

are explicitly given by

λi(M) = b+2a


c

a
cos


π

i

n+ 1


, i ∈ {1, . . . , n}. (12)



152 Mario Spirito  et al. / IFAC PapersOnLine 58-21 (2024) 150–155

For our purposes we only deal with the case c = a, as
also exploited in (Baggio and Zampieri, 2022), yielding
the explicit eigenvalues formula

λi(M) = b+ 2a cos


π

i

n+ 1


, i ∈ {1, . . . , n}. (13)

2.2 The Jordan normal form

In the next subsection, we introduce a modification of
the Jordan normal form that will be instrumental in
showing the paper’s result. We first recall and define some
quantities related to the standard Jordan normal form.
Given a matrix A of dimensions n × n, we suppose,
without loss of generality, that its eigenvalues are ordered
in decreasing order with respect to the real part, namely

ℜ{λ1} ≥ ℜ{λ2} ≥ . . . ≥ ℜ{λn}.
Let m ≤ n be the total number of linearly independent
(non-generalized) eigenvectors T 1

i ̸= 0 associated with an
eigenvalue λ̄i ∈ σ(A), i = 1, . . . ,m, such that

AT 1
i = λ̄iT

1
i ∀i = 1, . . . ,m.

Definition 1. (Jordan blocks dimension). For each i ∈
{1, . . . ,m}, we define the values gi ≥ 1 satisfyingm

i=1 gi = n, such that there exist gi − 1 linearly inde-
pendent generalized eigenvectors T k

i ̸= 0, for k = 2, . . . , gi,
associated to the corresponding eigenvalue λ̄i, i.e., satisfy-
ing

(A− λ̄iI)T
k
i = T k−1

i ∀k = 2, . . . , gi.

The introduced notation allows us to determine in advance
the number of distinct Jordan blocks m and their relative
dimensions gi, when the matrix A is transformed into
its Jordan form J . Moreover, these m distinct Jordan
blocks are associated with, differently from the standard
nomenclature, the m distinct eigenvalues λ̄i ∈ σ(A), i =
1, . . . ,m.

Lemma 1. Let A be a n× n matrix, let m be the number
of distinct eigenvalues λ̄i with associated Jordan block
dimension gi, so that

m
i=1 gi = n. Then, there exists a

T ∈ Rn×n such that

T−1AT = J,


J := blckdiag


Jλ̄1

, . . . , Jλ̄m


,

Jλ̄i
:= λ̄iIgi +Ngi , i = 1, . . . ,m.

(14)

For complex eigenvalues, one can always consider a real
Jordan form in which a Jordan block associated with a
complex pair of eigenvalues λ̄i/i+1 = ai ± ibi, with gi − 1
pairs of associated generalized eigenvectors, given by

JΛ̄i
:= Igi ⊗ Λ̄i +Ngi ⊗ I2 =




Λ̄i I2 0 . . . 0
0 Λ̄i I2 . . . 0

0 0
. . .

. . .
...

Λ̄i I2
0 . . . 0 Λ̄i



2gi×2gi

(15)
where Λ̄i is defined as

Λ̄i =


ai bi
−bi ai



for which one can verify that σ(Λ̄i) = {a + ib, a − ib}.
Note also that

Λ̄i + Λ̄⊤
i = 2aiI2 = 2ℜ{λ̄i/i+1}I2.

2.3 The modified Jordan Form

In order to construct the modified Jordan normal form,
for any non-zero distinct eigenvalue λ̄ ̸= 0 with associate
Jordan block dimension g, by implying the matrix Dg(λ̄)
defined in (6) we obtain

D−1
g (λ̄)Jλ̄Dg(λ̄) = λ̄Jg (16)

with the matrix Jg defined according to (10). Hence, by
defining the matrix

D := blckdiag

Dg1(λ̄1), . . . , Dgm(λ̄m)


(17)

the modified Jordan form J is defined as

J := T−1AT, T := TD, (18)

where T satisfies (14). One can verify, using the property
(16), that J as the following form

J = blckdiag

λ̄1Jg1 , . . . , λ̄mJgm


= Λ(I +N), (19)

with the matrix Jgi defined as in (10), for each i =
1, . . . ,m, where

Λ = diag (λ1, . . . , λn)

and
N = blckdiag (Ng1 , . . . , Ngm) .

As we shall see in the next section, the matrix J is now
in a more convenient form to study Lyapunov matrix
inequalities. Note that in the case of complex eigenvalues,
one has to define a slightly different change of coordinates
to deal with the real representation of the generalized
Jordan block (15). In particular, by using the definition
(8) one can verify the following identity

Jgi ⊗ Λ̄i = (Igi +Ngi)⊗ Λ̄i = D−1
gi (Λ̄i)JΛ̄i

Dgi(Λ̄i)

which gives

Jgi ⊗ Λ̄i =




Λ̄i Λ̄i 0 . . . 0
0 Λ̄i Λ̄i . . . 0

0 0
. . .

. . .
...

Λ̄i Λ̄i

0 . . . 0 Λ̄i



. (20)

In the following, we give two relevant properties of the
matrix Jn.

Lemma 2. For any n ∈ N, the matrix Jn satisfies the
following properties.

(1) The eigenvalues of Jn + J⊤
n satisfies

σi(Jn + J⊤
n ) = 2


1 + cos


π

i

n+ 1


, i = {1, . . . , n}.

(2) The matrix Jn + J⊤
n satisfies

2

1 + cos


π n

n+1


In ⪯ Jn + J⊤

n

⪯ 2

1 + cos


π 1

n+1


In.

Proof. The explicit formula of the eigenvalues of J + J⊤

follows from (13), showing items 1 and 2. □
Remark 1. From the first item of the Lemma right
above, one can easily check that Jn + J⊤

n is a positive
definite matrix for any n ∈ N.

Hence, as a consequence, by defining

J = blckdiag (Jg1 , . . . ,Jgm) = I +N

we can also say that sym(J) is a positive definite matrix.
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Remark 2. In some sense, we construct the modified
Jordan block form by defining theD change of coordinates.
This kind of change of coordinates is also used in the high
gain (observer/stabilizer) framework, see e.g. (Bernard
et al., 2022, Section 6) or (Isidori, 1995, Chapter 4.7). In
our case, by exploiting the transformation matrix Dgi(λ̄i),
i = 1, . . . ,m, we are able to place the value of the
eigenvalue on the super diagonal of the related Jordan
block, as shown in (16).

3. EXPONENTIAL PARAMETERS FROM A
EXPLICIT LYAPUNOV FUNCTION

Given a Hurwitz matrix A, via the Jordan block normal
form, we can explicitly write the solution of the system
dynamics

ẋ = Ax, x(0) = x0 ∈ Rn, (21)

as

x(t) = T exp(Λt)

gmax∑
k=0

Nktk

k!
T−1x(0)

where gmax = maxi∈{1,...,m}{gi}. The solution proposed in
this paper allows us to upper bound the norm of x(t) via
an exponential convergence function, i.e.,

|x(t)| =|T exp(Λt)

gmax∑
k=0

Nktk

k!
T−1x(0)|

≤κ exp(−αt)|x(0)|
such that α dependence explicitly on the eigenstructure
and not only on the system’s eigenvalues. This upper
bound cannot be obtained by exploiting the normal form
coordinates z = T−1x. Indeed, considering P = T−⊤T−1

as a solution of the Lyapunov matrix inequality (5), thus
obtaining J + J⊤ ⪯ −2αI, may not satisfy the inequality
for any α > 0. In other words, we can easily see, when
computing the eigenvalues of J + J⊤, that from (13) each
Jordan block form Jλ̄i

satisfies

σmax(Jλ̄i
+ J⊤

λ̄i
) = 2ℜ{λ̄i}+ 2 cos

(
π

gi + 1

)

which is negative only for ℜ{λi} ≤ − cos(π/(gi+1)) ≤ −1.

This problem does not arise if we take into account
the modified Jordan form coordinates z = T−1x, with
T defined in (18), and we define a Lyapunov function
candidate

V = x⊤T−⊤T−1x, (22)

that we call the explicit Lyapunov functions 2 . One can
easily notice that T−⊤T−1 is a positive definite matrix,
because T is full rank since it has all linearly independent
columns, hence V (x) > 0 for x ̸= 0, with V (0) = 0, and it
is radially unbounded with

σmin(T
−1)|x|2 ≤ V ≤ σmax(T

−1)|x|2.
Theorem 1. Consider an asymptotically stable system
(21) and the transformation matrix T defined in (18).
Then, the norm of the system state is upper bounded by
(3) with

κ = µ(T), α = −ℜ{λmax (sym(J))}. (23)
2 We denote as explicit Lyapunov function any Lyapunov function
that can be written directly in terms of the algebraic property of a
Hurwitz A without considering the solution of a Lyapunov equation
(2), or inequality (1), and thus without the choice of positive definite
matrix Q.

Proof. By taking the time derivative of V in 22, we have

V̇ = 2x⊤T−⊤T−1ẋ = 2x⊤ (
T−⊤T−1A

)
x

= 2x⊤T−⊤ (
T−1AT

)
T−1x = x⊤T−⊤(J⊤ + J)T−1x

≤
(
ℜ{λmax(J

⊤ + J)}
)
V.

Hence, V̇ is strictly less than zero for nonzero x and,
moreover, V is exponentially decreasing. Indeed, by the
comparison Lemma (Khalil, 2002)[Lemma 3.4], we have

V (t) ≤ exp(ℜ{λmax(J
⊤ + J)t)V (0)

from which we get

|x|2 ≤ σmax(T
−1)

σmin(T−1)
exp(ℜ{λmax(J

⊤ + J)t)|x(0)|2.

Finally, taking the square root of both sides of the inequal-
ity proves the theorem. □ The eigenvalues of J⊤ + J
can be explicitly written as a function of the eigenvalues
of A and of the related geometric multiplicity since each
block of J⊤ + J has the form of (11). We can thus obtain
an explicit expression for α as the following one

α = − max
i∈{1,...,m}

{
ℜ{λ̄i}

[
1− cos

(
π

gi + 1

)]}
. (24)

Remark 3. The values of α and κ given in Theorem 1
are related to properties of the eigenvalues and the (gen-
eralized) eigenvectors of the matrix A, rather than to the
properties of P and Q satisfying a Lyapunov equation (2).

Remark 4. Due to the presence of the generalized eigen-
vectors, i.e., given by the geometric multiplicity of the
associated eigenvalue λ̄i, the columns of T, i.e., Ti, i =
1, . . . , n, are not all orthogonal one each other. Thus, they
yield a bad condition number of matrix T. Only when
A is orthogonally diagonalizable, we have D = I and
we can always normalize the columns of T so to get an
orthonormal matrix, i.e., T⊤T = I. In this case, the x state
evolution norm upper bond simplifies to the one one with
standard dominant pole convergence rate, i.e. α = |λ1|,

|x| ≤ exp (−|λ1|t) |x(0)|.

3.1 Comparison with a standard solution of Eq. (5)

When we solve for (5), with a fixed convergence rate
(24), the obtained solution P can be always rewritten
as P = T−⊤P ′T−1, for some positive definite P ′. We
can thus write, from the dynamics of V ′ = x⊤Px =
x⊤T−⊤P ′T−1x, that

|x| ≤ µ(T−⊤P ′T−1) exp(−αt)|x(0)|.
However, we cannot determine a priori if µ(T−⊤T−1) ≤
µ(T−⊤P ′T−1), we can only provide a conservative upper
bound of the form µ(T−⊤P ′T−1) ≤ µ(T−⊤T−1)µ(P ′).
Thus, the condition number of P could be in principle
better than the one provided by the choice T−⊤T−1.
However, we cannot mathematically prove whether or not
other solutions of the LMI (5) can be either better or worse
than the particular choice P = T−⊤T−1. We thus report,
in Sec. 5.2, the results from a set of numerical tests showing
that most of the time P = T−⊤T−1 is better conditioned
than the numerical solution P of the LMI.

4. APPLICATION IN CONTROLLER DESIGN

Consider the controllable linear system

ẋ = Ax+Bu, x(0) = x0 (25)
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with x ∈ Rn and u ∈ Rm, and consider designing a
stabilizing state feedback gain K such that A − BK is
Hurwitz with the states’ norm guaranteeing some desired
performance for all initial conditions x0 in a ball of radius
ρ0, i.e., ∀x0 ∈ Bρ0 . These performances on |x(t)| can read
as

• limiting the ‘overshoot’ with respect to the initial
condition, i.e., the evolution of the state norm must
be constrained to remain inside a certain ball of fixed
radius ρ ≥ ρ0;

• finding a ‘good’ estimate of the time t⋆ after which
the state norm reaches a certain ball of radius ρ, i.e.,
find t⋆ ∈ R such that |x(t)| ≤ ρ for all t ≥ t⋆, when
the system is initialized in Bρ0

;
• forcing the state norm to reach a certain ball |x(t)| ≤
ρ within a prescribed fixed time t⋆.

In order to illustrate the potential of the application on
an example, let us consider, for the sake of exposition, the
case in which

A =

[
0 1
0 0

]
, B =

[
0
1

]

and take as static feedback gain K = [α1α2, α1 + α2],
with α1 = γ and α2 = 2γ, as in the standard high-gain
formalism, where γ > 0 plays the role of the high gain and
imposes the closed-loop eigenvalues to be λ1 = −γ and
λ2 = −2γ. Since the closed-loop matrix is in companion
form, it can be diagonalized (due to the presence of simple
eigenvalues) via the Vandermonde matrix

T =

[
1 1

−α1 −α2

]
, T−1 =

1

α1 − α2

[
−α2 −1
α1 1

]
,

whose conditioning number µ(T ), for α1 = γ and α2 = 2γ,
reads as

µ(T ) =

√
5γ2 + 2 +

√
25γ4 + 16γ2 + 4

5γ2 + 2−
√

25γ4 + 16γ2 + 4

and thus have |x(t)| ≤ µ(T ) exp(−γt)|x(0)|. For this choice
of the closed loop characteristic polynomial, we have a

minimum of µ(T ) at γ =
√

2
5 ≈ 0.6325, to which it

corresponds a condition number µ(T ) ≈ 6.1623.
We cannot prove that this solution is the best for this
set of parameters, although, to the best of the authors’
knowledge, this is the only constructive approach available
in the literature to achieve such a result and that does not
rely on testing all initial conditions in a compact set Bρ0 .

The proposed approach has other possible applications,
such as the design of the observer dynamics with pre-
scribed convergence performances and their employment
in output dynamical feedback controller design (motivat-
ing this work at an early stage). However, due to a lack of
space, we postpone a deeper analysis to a journal version
of this paper. Another application can be found in defining
the Hamiltonian structural matrices of a stable linear
system as shown in Spirito et al. (2024).

5. SOME NUMERICAL RESULTS

5.1 An autonomous system example

We consider the evolution of the norm of z(t) for an
eigenvalue, λ = −1, with associated geometric multiplicity

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

t

|z
|

µ(PLMI) exp(−αt)|z(0)|
µ(PI) exp(−αQt)|z(0)|

|z(t)|
exp(−αt)|z(0)|
exp(−1t)|z(0)|

Fig. 1. Evolution of the norm of z(t) compared to (3)
with different parameters, i.e., the one obtained from
(5) in dark green, from (2) in red, and the one with
parameters in (23) in orange.

g = n = 10, i.e., we consider an autonomous system
dynamics with state matrix A = −1(I + N) ∈ R10×10,
whose corresponding convergence rate, given (24), is α ≈
0.0405. The evolution of the state norm |z(t)|, from initial
conditions

z0 = [0.01001979, 0.02185996, −0.01413963

0.08315555, −0.14693675, 0.31947075

− 0.4683713, 0.59627956, −0.4827674

0.24631203]⊤.

(26)

is depicted in blue in Fig.1. When compared to the numer-
ical solution of the LMI (5), by fixing α as in (24), we get a
matrix PLMI with condition number of µ(PLMI) = 5.0957,
which is worse than the unitary condition number of
T = I. Whereas, solving (2), with Q = I or with Q = αI,
where α is given in (24), gives solutions PI and Pα whose
maximum eigenvalues are respectively λmax(PI) ≈ 5.2605
and λmax(Pα) ≈ 0.2131. Furthermore, they share the same
condition number µ(PI) = µ(Pα) ≈ 20.5959, and provide
the same convergence rate αQ = λmin(I)/λmax(PI) ≈
0.1901 which is approximately 5 times larger than the one
obtained via (24).

In Fig.1, we compare the proposed parameters (24) with
the two sets of parameters obtained from the solutions
of (5) and (2). In particular, we can notice that during
a first transient, the proposed approach provides a better
approximation of norm evolution, while the one obtained
from (2), depicted in red, performs better on a larger time
interval. Due to the fact the solution of (5) can only be
obtained numerically, depicted in dark green, it provides
by far the most conservative result 3 .

5.2 Numerical tests

We consider as numerical test a matrix A with dimension
9 with 3 distinct eigenvalues λ̄, i.e., {−0.5,−2,−4} with
associated Jordan block dimensions (g1, g2, g3) = (3, 5, 1).
That is, according to the value convergence rate formula
(24) we have

3 Note that solving (5) by fixing α = λmin(I)/λmax(PI) ≈ 0.1901,
provides a numerical solution with conditioning number µ(P ) ≈
729.4461.
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α = 0.5

(
1 + cos

(
3

4
π

))
≈ 0.1464

with P = T−⊤T−1, thus the condition number of P is
equivalent to the condition number of T. By compar-
ing the solution PLMI of Linear Matrix Inequality solver
(getlmis()) implemented in the Robust Control Toolbox™

of Matlab version R2022a with the given α, we get, over
5000 comparisons, 99% of the times a better condition
number of T than that of the numerical solution PLMI .
The numerical testing details are summarized in Table 1.
Other testing results are also available in (Spirito and As-

Table 1. Numerical results

# tests success % average µ(T⊤T) average µ(PLMI)

5000 99% 1.4839e+ 03 1.0417e+ 06

tolfi, 2024), in which we show that with a free convergence
rate α in (5), the solution T−⊤T−1 performance better
than the numerical solution obtain by the Matlab solver.

6. CONCLUSIONS

In this work, we present a modification of the Jordan block
normal form of the state matrix of an autonomous linear
system. We use this analysis to obtain, in closed form, the
constant values for the scaling factor κ and the converge
rate α in the definition of global exponential convergence
for stable linear autonomous systems. This approach thus
allows to obtain a constructive characterization of the
convergence property of a linear system. Moreover, we
discuss how this approach can be used to enhance/define
the closed-loop performances of a controlled system. Nu-
merical examples are correlated to show the effectiveness
of the analysis.
The presented result is a preliminary work that has been
extended to the case of non-Hurwitz matrices typical of
k-contraction scenarios, see e.g. (Zoboli et al., 2023), in
(Spirito and Astolfi, 2024).
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