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Abstract
Although summer extreme temperatures over Europe are potentially predictable on
seasonal time-scales, state-of-the-art dynamical seasonal prediction systems (SPSs)
exhibit low skills in predicting such events in central and northern Europe. This
limitation arises from the underestimation of predictable components of climate
variability in the model ensemble. However, recent studies suggest that the skills in
predicting extratropical climate can be largely improved through statistical postpro-
cessing techniques, which increase the signal-to-noise ratio in the model ensemble.
In this study, we evaluate the potential for improving the seasonal prediction skills of
European summer extreme temperatures in a multimodel ensemble (MME) of SPSs
by applying a teleconnection-based subsampling technique in the hindcast period
1993–2016. This technique is applied to the North Atlantic Oscillation (NAO) and
East Atlantic (EA) modes, which are key drivers of summer extreme temperatures
in Europe. Results show that the subsampling substantially improves the MME pre-
diction skills of both the summer NAO and EA. Specifically, correlations between
the observed and subsampled MME NAO indices improve from −0.38 to 0.77, and
for the EA they improve from −0.11 to 0.84. Similarly, the root-mean-square error
of the subsampled MME NAO (EA) index improves from 1.06 (1.02) to 0.65 (0.56).
Moreover, retaining those ensemble members that accurately represent the NAO
teleconnections enhances the MME prediction skills for the summer European cli-
mate, including the occurrence of summer extreme temperatures. This improvement
is particularly pronounced in central and northern Europe; that is, the regions where
current SPSs show the lowest skills in predicting European heat extremes. In con-
trast, selecting ensemble members that accurately represent the EA teleconnections
does not improve the predictions of summer extreme temperatures. This is likely
associated with the model deficiencies in realistically representing the spatial pat-
tern of the summer EA and, thus, the physical processes driving summer extreme
temperatures.
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1 INTRODUCTION

The occurrence of summer extreme temperatures in
Europe has been increasing since the middle of the
20th century, and this is expected to further increase
in the future because of anthropogenic global warming
(Seneviratne et al., 2021). Thus, predicting heat extremes
and their statistics several months ahead is becoming
increasingly crucial, particularly in light of their impacts
on socio-economic and environmental systems and
human health (e.gAlbergel et al., 2019; Brás et al., 2021; Ebi
et al., 2021). As an example, several studies show that long
and frequent exposure to extreme temperatures can induce
increased mortality from cardiorespiratory diseases,
chronic kidney diseases, and mental health issues (e.g.,
Cheng et al., 2019; Thompson et al., 2018; Wong, 2023).

Summer extreme temperatures over Europe are poten-
tially predictable on seasonal time-scales. Indeed, the
summer European climate is significantly influenced by
slowly evolving components of the climate system, such
as sea-surface temperatures (SSTs) in the North Atlantic
(Duchez et al., 2016; Mecking et al., 2019), Indian Ocean
(Black & Sutton, 2007), and Mediterranean Sea (Black
et al., 2004), as well as European soil moisture (Hamilton
et al., 2012; Prodhomme et al., 2016) and Arctic sea-ice
(Screen, 2013). Moreover, the occurrence of summer
European extreme temperatures has been associated with
modes of low-frequency climate variability, such as the
North Atlantic Oscillation (NAO; Folland et al., 2009;
Alvarez-Castro et al., 2018), the East Atlantic (EA; Cassou
et al., 2005; Wulff et al., 2017), and the El Niño–Southern
Oscillation (ENSO; Luo & Lau, 2020; Martija-Díez
et al., 2021). Such influence of the low-frequency compo-
nent of climate variability on the European summer offers
a certain level of predictability for extreme temperatures,
which can be exploited for seasonal forecast.

In this context, state-of-the-art dynamical seasonal
prediction systems (SPSs) generally show good skills in
predicting summer European climate and heat extremes
in the Mediterranean and eastern Europe (Hamilton
et al., 2012; Mishra et al., 2019). The skilful seasonal fore-
cast for extreme temperatures in these regions is mainly
explained by the preconditioning of soil moisture during
the spring season and the strong atmosphere–land cou-
pling (Miralles et al., 2014; Prodhomme et al., 2016). In
particular, wet conditions and moist soils during the spring
season lead to a reduced probability of hot days in the
following summer, as the available surface energy tends
to dissipate through latent heat fluxes, thus dampening
the surface heating (Seneviratne et al., 2010). Conversely,
dry spring conditions are generally followed by a higher
frequency of hot summer days, although their occurrence
is particularly sensitive to the atmospheric circulation

(Quesada et al., 2012). In contrast, state-of-the-art SPSs
show poor skills in predicting summer European cli-
mate and heat extremes in central and northern Europe
(Prodhomme et al., 2022). This may be due to model biases
in representing persistent anticyclonic circulations that
characterise summer heat extremes (Beverley et al., 2019,
2021), especially in western Europe (Horton et al., 2015;
Rousi et al., 2022). These model biases have also been
shown to cause a mismatch between the observed warm-
ing trend of heat extremes in western Europe and the
one predicted by CMIP6 models (Boe et al., 2020; Vautard
et al., 2023). Furthermore, the low seasonal prediction
skills of summer European climate may be induced by
the underestimation of predictable components of climate
variability in the model ensemble (Dunstone et al., 2023;
Eade et al., 2014). The low signal-to-noise ratio in the
North Atlantic region has been suggested to be caused by
several factors, such as errors in the teleconnections affect-
ing the North Atlantic variability, the lack of extratropical
ocean–atmosphere coupling, errors in the parametrised
processes, weak eddy feedback in current climate models,
or weak response to boundary conditions and external
radiative forcing (Gastineau et al., 2013; Gray et al., 2013;
Minobe et al., 2008; Scaife & Smith, 2018; Swingedouw
et al., 2017).

Recent studies have shown that the skills in predict-
ing extratropical climate on different time-scales can be
largely improved by refining the ensemble-based dynam-
ical forecasts with statistical postprocessing techniques
(Dobrynin et al., 2022; Düsterhus, 2020; Neddermann
et al., 2019; Smith et al., 2020). As an example, Dobrynin
et al. (2018) have shown that the predictability of the
winter NAO in a dynamical SPS is enhanced by subsam-
pling the model ensemble; that is, by retaining only those
ensemble members that better represent the link between
the NAO and its autumn predictors. This subsampling
technique also enhances the model prediction skills for
atmospheric variables strongly influenced by the winter
NAO, such as the surface temperature on a large portion of
the Eurasian continent. The main advantages of statistical
postprocessing techniques like subsampling are their abil-
ity to accurately capture the phase of observed variability
and amplify the amplitude of predictable components of
climate variability compared with the ensemble mean.
This increases the signal-to-noise ratio in the model
ensemble and, ultimately, its prediction skills. Remark-
ably, the recent study by Dunstone et al. (2023) has shown
that the signal-to-noise ratio of the summer NAO in a
state-of-the-art SPS is particularly low, mirroring results
previously found for the winter NAO. This highlights
the significant potential for implementing postprocessing
techniques to enhance the signal-to-noise ratio during the
summer season, thereby improving overall forecasting

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4900 by C
ochraneItalia, W

iley O
nline L

ibrary on [10/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FAMOOSS PAOLINI et al. 3

accuracy. However, statistical postprocessing techniques
for ensemble-based dynamical forecasts have not been
employed in the context of summer European climate and
temperature extremes.

This study assesses whether the seasonal prediction
skill of summer extreme temperatures in Europe in
state-of-the-art dynamical SPSs can be improved through
subsampling. Specifically, we use the multimodel ensem-
ble (MME) of SPSs contributing to the Copernicus Climate
Change Service (C3S) and all the hindcast runs for the time
period 1993–2016. A hybrid statistical–dynamical predic-
tion system is presented, in which the dynamical model
ensemble is subsampled by retaining only those ensemble
members that predict the phase of NAO and EA, typi-
cally linked to summer extreme temperatures in Europe.
This approach relies on spring predictors of the weather
regimes and thus allows us to retain only those ensemble
members with a reasonable representation of summer heat
extreme teleconnections.

The article is structured as follows. In Section 2, the
data and the teleconnection-based subsampling technique
are described. In Section 3, the representation of summer
European climate in the C3S MME and the effect of the
subsampling on its prediction skills are presented. Finally,
in Section 4, we discuss some open issues related to the
results presented here, and in Section 5 we summarise the
main findings of this work.

2 DATA AND
METHODOLOGICAL APPROACH

2.1 Data

In this study, we analyse a MME consisting of seven
dynamical SPSs (Table 1), all contributing to the C3S. In

particular, we use the simulations initialised on May 1, for
a total of 141 members. This allows us to assess the ability
of the C3S MME to predict the summer European climate
on a seasonal time-scale. Specifically, we analyse the hind-
cast time period 1993–2016, common to all dynamical SPSs
analysed here. The predictions of the European climate in
the C3S MME are compared with the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis
v.5 (ERA5) atmospheric reanalysis (Hersbach et al., 2020),
used here as a surrogate for observations.

2.2 Teleconnection-based subsampling

In order to improve the skill of the C3S MME in predicting
summer extreme temperatures on a seasonal time-scale, a
teleconnection-based subsampling is adopted here, similar
to the approach suggested by Dobrynin et al. (2018, 2022).
Generally speaking, this approach relies on subsampling a
model ensemble by retaining only those ensemble mem-
bers that better represent the link between a weather
regime in a season and its predictors in the season
before. Given that this methodology combines elements of
both statistical and dynamical prediction, it is commonly
referred to as a hybrid statistical–dynamical prediction
approach.

In this study, we select the summer NAO and EA as
weather regimes of interest. Indeed, these two weather
regimes have been shown to play a key role in the develop-
ment of summer extreme temperatures in Europe (Cassou
et al., 2005). The positive phase of the NAO has been
related to a higher frequency of hot days, particularly in
northern Europe (Bladé et al., 2012; Drouard et al., 2019;
Folland et al., 2009). Conversely, the positive phase of the
EA has been associated with a higher occurrence of hot

T A B L E 1 Dynamical seasonal prediction systems (SPSs) analysed in this study. All the SPSs contribute to the Copernicus Climate
Change Service and are initialised on May 1 during 1993–2016. Columns detail the institution name, the system version, the system value
adopted on the Climate Data Store, the ensemble size, and the reference.

Institution System version

Climate
Data Store
system value

Ensemble
size Reference

Centro Euro-Mediterraneo sui Cambiamenti
Climatici

CMCC-SPS3.5 35 40 Gualdi et al. (2020)

Deutscher Wetterdienst GCFS 2.1 21 30 Fröhlich et al. (2021)

Environment and Climate Change Canada GEM5-NEMO 3 10 Lin et al. (2021)

European Centre for Medium-Range Weather
Forecasts

SEAS5 51 25 Johnson et al. (2019)

Météo-France System 8 8 25 Battè et al. (2021)

National Centers for Environmental Prediction CFSv2 2 4 Saha et al. (2014)

United Kingdom Met Office GlobSea6 602 7 Williams et al. (2018)
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4 FAMOOSS PAOLINI et al.

days in central Europe (Cassou et al., 2005), whereas its
negative phase may play a role in the occurrence of hot
days in eastern Europe and western Russia (Di Capua
et al., 2021). Northern and central Europe are the regions
where the state-of-the-art dynamical SPSs feature low
skills in predicting heat extremes on a seasonal time-scale
(Prodhomme et al., 2022). Thus, selecting only those C3S
MME members that better represent the link between
summer NAO and EA indices and their spring predic-
tors is expected to enhance the seasonal prediction skill
of the MME for the summer European climate, including
the occurrence of extreme temperatures. In this context,
in order to directly quantify the role played by the NAO
and EA modes on the summer extreme temperatures in
Europe, we project the summer extreme temperatures onto
the two weather regimes. Refer to Section 2.5 for further
details about this analysis.

The summer NAO has not received as much attention
from the scientific community as its winter counterpart.
Although numerous studies have demonstrated the con-
nection between the autumn state of the ocean (Czaja
& Frankignoul, 2002), sea-ice (Cohen et al., 2014), snow
cover (Gastineau et al., 2017), stratosphere (Baldwin &
Dunkerton, 1999), and the winter NAO, only a few stud-
ies have analysed the potential spring drivers of summer
NAO variability (Baker et al., 2019; Dong et al., 2013; Hall
et al., 2017; Matsumura et al., 2014; Screen, 2013; Wang &
Ting, 2022; Zhao et al., 2004). Nevertheless, these studies
show that the anomalous state of these climatic compo-
nents during the spring season can influence the summer
atmospheric circulation over the North Atlantic sector,
leading to NAO-like anomalies. Thus, following these
results, here we adopt as predictors of the summer NAO
the April state of the North Atlantic SST (90◦W–10◦E,
0◦–80◦N), the Arctic sea-ice concentration (SIC; north of
40◦N), the Northern Hemisphere snow cover (SNOWC;
north of 40◦N), and the zonally averaged zonal wind in the
lower stratosphere. In this context, although contrary to
the common understanding of stratosphere–troposphere
coupling (limited to the winter and spring seasons; Bald-
win & Dunkerton, 1999; Ineson & Scaife, 2009), it has
recently been shown that the influence of the strato-
spheric variability on the tropospheric circulation may
extend into the summer season (Dunstone et al., 2023;
Wang & Ting, 2022). Specifically, the anomalous state
of the lower stratospheric polar vortex during the spring
season has been shown to propagate downward in a few
weeks, inducing summer tropospheric circulation anoma-
lies resembling the NAO-like circulation. For the link
between the summer NAO and April stratospheric zonal
wind, we consider the zonal wind zonally-averaged over
the longitudinal range 75◦W–15◦E. In this way, we only
focus on the stratosphere–troposphere coupling over the

North Atlantic sector as in Wang and Ting (2022). Further-
more, the zonally averaged zonal wind is averaged in the
lower stratosphere and over the North Atlantic latitudinal
range (30–100 hPa; 35◦N–70◦N; green box in Supporting
Information Figure S7), similar to Dunstone et al. (2023).

In contrast to the summer NAO, several studies have
focused on the summer EA and its spring predictors.
Specifically, the summer EA variability has been linked to
the spring state of the North Atlantic (Cassou et al., 2005;
Gastineau & Frankignoul, 2015) and tropical Pacific Ocean
(Wulff et al., 2017), as well as the spring state of Arctic
sea-ice (Gastineau & Frankignoul, 2015; Wu et al., 2013).
For this reason, in the context of the present work, we
adopt the SST in the North Atlantic (90◦W–10◦E, 0◦–80◦N)
and tropical Pacific (100◦E–80◦W, 25◦S–25◦N) and the SIC
in the Arctic (north of 40◦N) during April as predictors of
the summer EA.

The link between the summer NAO and EA indices
and their respective predictors in April is assessed through
a leave-one-out cross-validated correlation analysis.
Specifically, for every predictor and for every left-one-out
year, we identify the regions where the correlation between
a specific weather regime index and the predictor is sig-
nificant. The correlation significance is assessed through
a two-tailed Student’s t test against the null hypothesis of
coefficients equal to zero at the 90% confidence level. It is
noted here that the locations and patterns of these regions
can vary in time. As suggested in Dobrynin et al. (2018),
we merge all the regions of significant positive correlation
computed during each cross-validation step in one region
and we calculate the predictor index as the detrended
area-weighted anomalies over that region. For the link
between the summer EA and April North Atlantic SST, we
consider the regions of significant negative correlation,
rather than positive ones, for the calculation of the predic-
tor index. In this way, we give greater importance to the
state of tropical North Atlantic, which has been shown to
play a crucial role in the variability of summer EA (Cassou
et al., 2005). In order to further assess the robustness of the
link between the summer NAO and EA and their respec-
tive April predictors, their correlation is also assessed
by applying a leave-three-out cross-validation procedure.
In the end, the predictor indices computed through the
leave-one-out cross-validation procedure are adopted for
the teleconnection-based subsampling of the MME, as
described in Section 3.

Once the April predictor indices are defined, they pro-
vide the statistical predictions (or first guesses) of the
summer NAO and EA, states. This means that, for each
left-one-out year, we have a total of four and three first
guesses (one per each April predictor) for the NAO and
EA, respectively. The C3S MME is subsampled selecting
only those ensemble members whose state of a specific
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FAMOOSS PAOLINI et al. 5

weather regime is closest to its respective first guesses.
Specifically, 10 members are selected for every April pre-
dictor. Then, for the summer NAO (EA), the four (three)
10-member ensembles are merged into a single ensem-
ble, ensuring that members selected by multiple predictors
are not counted more than once. Consequently, the max-
imum size of a subsampled ensemble is 40 members for
the summer NAO and 30 members for the summer EA
(the 10 members selected by each predictor are all dif-
ferent), whereas the minimum size is 10 members for
both the weather regimes (the 10 members selected by
each predictor are all the same). The absence of dupli-
cations in the subsampled ensemble also leads to the
number of members selected being able to vary from
year to year. The teleconnection-based subsampling tech-
nique is applied to the C3S MME for both the NAO and
EA, separately.

In order to assess whether the performance obtained
by subsampling the full MME depends on individual
models, the aforementioned teleconnection-based sub-
sampling technique is also applied to the individual SPSs
listed in Table 1, separately. In this case, 10, 7, 3, 6, 6,
1, and 5 members are selected for every April predic-
tor for the Centro Euro-Mediterraneo sui Cambiamenti
Climatici (CMCC), Deutscher Wetterdienst (DWD), Envi-
ronment and Climate Change Canada (ECCC), ECMWF,
Météo-France (MF), National Centers for Environmen-
tal Prediction (NCEP), and United Kingdom Met Office
(UKMO) SPSs, respectively.

To assess the influence of the ensemble size on the
predictive skills of the subsampled C3S MME for the
summer NAO and EA states, a sensitivity analysis is
performed. Specifically, the teleconnection-based subsam-
pling is repeated with a change in the number of members
selected by each NAO and EA April predictor within the
range 1–141. In this context, the sensitivity analysis is
carried out using the predictors both collectively and indi-
vidually, in order to assess their relative importance on
the performance obtained through the subsampling.

2.3 Weather regime indices

In ERA5, the NAO index is defined as the leading
principal component of summer geopotential height at
500 hPa (Z500) over the North Atlantic sector (25◦–80◦N,
90◦W–40◦E). Concurrently, the EA index is defined as
the second principal component of Z500 over the same
geographical domain. Prior to the computation of these
indices, we apply a scaling factor cos (latitude)1∕2 to Z500
data. This ensures that the contribution of various grid
cells to the field variance is proportionate to the areas they
represent.

In the C3S MME, we calculate the NAO and EA
indices following a similar approach as for the obser-
vational dataset. Specifically, we perform the empirical
orthogonal function (EOF) analysis for every SPS indepen-
dently, merging all the respective members along the time
dimension. This results in one common EOF pattern for
every weather regime that represents the entire ensemble
of each SPS. Subsequently, we decompose the principal
components of summer Z500 back to the number of model
ensemble members. This approach has been shown to
be more reliable compared with performing EOF analy-
sis on individual ensemble members separately (Dobrynin
et al., 2022). As for the observational dataset, the NAO
index is defined as the leading principal component of
the summer Z500 over the North Atlantic for all the SPSs.
Concurrently, the EA index is defined as the second princi-
pal component of the summer Z500 only for the ECMWF,
MF, NCEP, and UKMO SPSs. Differently, the EA index is
defined as the third principal component of summer Z500
for the CMCC and DWD SPSs, and as fourth principal
component of summer Z500 for the ECCC SPS. Indeed,
the second most relevant weather regime in the CMCC,
DWD, and ECCC SPSs is the Atlantic ridge, which is rep-
resented by the third principal component in the other
SPSs (ECMWF, MF, NCEP, and UKMO SPSs) as well as in
ERA5. For completeness, we show the Atlantic ridge pat-
tern and index both for ERA5 and the MME in Supporting
Information Figure S1. Finally, the third weather regime
for the ECCC SPS is characterised by Z500 anomalies that
cannot be identified as any known mode of the summer
low-frequency atmospheric variability (not shown).

As detailed in the following section, the results
from the EOF analysis indicate that the C3S MME
exhibits deficiencies in accurately representing the sum-
mer low-frequency atmospheric variability, especially with
regard to the EA. Given the significant role of the EA in the
occurrence of summer extreme temperatures in Europe,
this aspect should be carefully taken into account when
interpreting the results described in the following section.

2.4 Index for the summer extreme
temperatures

Several indices have been proposed in the literature to
characterise summer temperature extremes. These indices
can range from relatively simple metrics, such as count-
ing the number of days exceeding a certain temperature
threshold (e.g., Moberg et al., 2006), to more complex ones,
such as those combining both intensity and duration of
extreme temperature anomalies (e.g., Russo et al., 2014).
In our study we use the TX90p index, which counts
the number of days when the maximum temperature at
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6 FAMOOSS PAOLINI et al.

2 m height (T2m) exceeds the 90th percentile of daily
T2m during the summer season (June–August) (Lhotka
& Kyselỳ, 2015; Sulikowska & Wypych, 2020). Although
this index is simple compared with other indices that
define heat extremes, it is a good diagnostic for assessing
the tendency of a given summer to be extremely warmer
than usual or not (Prodhomme et al., 2022). However, the
methodology described in the present work can be applied
to other heat extreme indices as well.

In the C3S MME dataset, the TX90p index is computed
for every member of each SPS. Specifically, the daily T2m
climatology is computed taking into account all the mem-
bers of a single SPS, thus obtaining one T2m threshold
(the 90th percentile) for each day for every system. Then,
the number of days when the T2m exceeds the respective
threshold is computed for each member of the ensemble,
separately.

2.5 The NAO and EA role in explaining
the summer extreme temperature
variability in Europe

As already mentioned, in this study we select the sum-
mer NAO and EA as weather regimes of interest, because
they have been shown to play a key role in the European
summer extreme temperatures (e.g., Cassou et al., 2005).
In order to directly quantify their role in the summer
extreme temperature variability in Europe, we perform
a linear regression analysis of the summer TX90p index
against the summer NAO and EA indices, separately. The

statistical significance of linear regression coefficients is
assessed through a two-tailed Student’s t test against the
null hypothesis of coefficients equal to zero at the 90% con-
fidence level. Additionally, the R2 coefficient is adopted
here as a measure of the fraction of TX90p variance
explained by the NAO and EA (DelSole & Tippett, 2022).

2.6 Seasonal prediction skill
and statistical test

The performance of the individual full and subsampled
C3S SPS ensembles, as well as the full and subsampled C3S
MME, in predicting the summer NAO and EA is evaluated
here through correlation analysis and root-mean-square
error (RMSE). The correlation significance is assessed
through a two-tailed Student’s t test, providing the con-
fidence level for which the null hypothesis of correlation
equal to zero is rejected. In order to further assess the
robustness of these correlations and RMSE values, the
link between the NAO and EA indices and the corre-
sponding indices computed as ensemble mean of the full
and subsampled C3S MME are also assessed applying a
leave-one-out and leave-three-out cross-validation proce-
dure. The results of these analyses are provided in Table 2,
along with the results of the same analyses applied to the
link between the summer NAO and EA and their respec-
tive April predictors.

Furthermore, the prediction skills of the individual
full and subsampled C3S SPS ensembles, as well as the
full and subsampled C3S MME, in predicting the summer

T A B L E 2 Correlation (Corr.) and root-mean-square error (RMSE) between the North Atlantic Oscillation (NAO) and East Atlantic
(EA) indices in European Centre for Medium-Range Weather Forecasts Reanalysis v.5 and the same indices computed as the ensemble mean
of the full and subsampled multimodel ensemble (MME) as well as mean over all the respective April predictors. The teleconnection-based
subsampling is performed by selecting 10 members for every April predictor. The minimum, mean, and maximum values of the correlations
and RMSE calculated through a leave-one-out and leave-three-out cross-validation cross-validated correlation analysis are shown.

Full MME Predictors Subsampled MME

NAO EA NAO EA NAO EA

Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE

1-year out

Min −0.54*** 0.97 −0.30 0.93 0.71*** 0.57 0.80*** 0.51 0.71*** 0.61 0.80*** 0.52

Mean −0.38* 1.06 −0.11 1.02 0.78*** 0.63 0.84*** 0.55 0.77*** 0.65 0.84*** 0.56

Max -0.30 1.08 0.02 1.04 0.82*** 0.64 0.86*** 0.56 0.81*** 0.67 0.86*** 0.57

3-year out

Min −0.52** 0.94 -0.36 0.9 0.67*** 0.58 0.79*** 0.5 0.65*** 0.63 0.79*** 0.50

Mean −0.38* 1.06 -0.11 1.02 0.76*** 0.65 0.84*** 0.55 0.74*** 0.68 0.84*** 0.56

Max −0.27 1.13 0.06 1.08 0.83*** 0.69 0.87*** 0.58 0.84*** 0.72 0.88*** 0.59

Note: Correlations that are statistically significant at the 90%, 95%, and 99% confidence levels are indicate with *, **, and ***, respectively.
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FAMOOSS PAOLINI et al. 7

F I G U R E 1 (a) Linear regression coefficients for summer TX90p (days) onto the summer North Atlantic Oscillation (NAO), using
European Centre for Medium-Range Weather Forecasts Reanalysis v.5 data. Black dots denote linear regression coefficients that are
statistically significant against the null hypothesis of coefficients equal to zero at the 90% confidence level. (b) R2 coefficients (percentage) for
the summer TX90p onto the summer NAO. The R2 coefficient here is adopted as a measure of the fraction of TX90p variance explained by the
NAO (DelSole & Tippett, 2022). (c, d) As (a) and (b) but for the East Atlantic (EA). TX90p: number of days when maximum temperature at
2 m height (T2m) exceeds the 90th percentile of daily T2m during June–August (JJA).

European climate are assessed by computing the anomaly
correlation coefficients (ACCs) for Z500, T2m, and TX90p.
The ACC statistical significance is assessed through a
two-tailed Student’s t test against the null hypothesis of
ACC equal to zero at the 90% confidence level.

In order to evaluate the effect of subsampling on the
model ensemble ability to predict summer European cli-
mate, we calculate the differences between the ACCs
computed from the subsampled MME and the ones
computed from the full MME. The ACC differences
are computed for Z500, T2m, and TX90p. The statisti-
cal significance of the ACC differences is determined
using a z test on Fisher z-transformed correlation coeffi-
cients (Fisher, 1920; Hinkle et al., 2003), against the null
hypothesis of zero differences at the 90% confidence level.

3 RESULTS

Figure 1a shows that the positive phase of the NAO is
associated with greater number of hot days in north-
ern Europe, whereas its negative phase affects southern
Europe, particularly Italy and the Balkan region. The
impact of the negative NAO on southern Europe extreme
temperatures aligns with the presence of positive Z500
anomalies characterising the summer NAO pattern over
the Mediterranean region (Figure 2a). In this context,
the NAO accounts for a significant portion of summer
extreme temperature variance in northern Europe, with
R2 coefficients ranging from approximately 0.3 to 0.6
(Figure 1b). The NAO also explains a relevant portion of
summer extreme temperature variance in Italy and the
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8 FAMOOSS PAOLINI et al.

F I G U R E 2 (a) Summer (June–August, JJA) North Atlantic Oscillation (NAO) pattern, calculated as the leading empirical orthogonal
function (EOF) of summer Z500 over the North Atlantic sector (25◦–80◦N, 90◦W–40◦E) in European Centre for Medium-Range Weather
Forecasts Reanalysis v.5 (ERA5). (b) Summer East Atlantic (EA) pattern, calculated as the second EOF of summer geopotential height at
500 hPa (Z500) over the North Atlantic sector in ERA5. (c, d) As (a) and (b) but in the Copernicus Climate Change Service (C3S) multimodel
ensemble (MME). Refer to Section 2 for more details about the EOF analysis applied to the C3S MME. The variance of the summer
low-frequency atmospheric variability explained by the NAO and EA in ERA5 and in the C3S MME is shown on the top right of each subplot.
The results for the C3S MME are represented as MME mean. Hatched areas represent the regions with consistent sign in Z500 anomalies
associated with the NAO and EA across all seasonal prediction systems.

Balkan region, although this influence is smaller than that
in northern Europe.

Furthermore, Figure 1 shows that the summer extreme
temperatures can be associated with the summer EA-like
circulation. Specifically, the positive (negative) EA is asso-
ciated with greater number of hot days in central Europe
(eastern Europe and western Russia) (Figure 1c). The
variance of summer extreme temperatures explained by
the summer EA is particularly high in eastern Europe
and western Russia, with the R2 coefficient in the range
0.2–0.5. The EA also accounts for the summer extreme
temperature variability in the western Mediterranean
region and central Europe, though to a lesser degree than
in eastern Europe and western Russia, with R2 ranging
between 0.1 and 0.3.

Consistent with previous studies (Di Capua et al., 2021;
Duchez et al., 2016; Neddermann et al., 2019), these results
highlight the relevance of the NAO and EA modes in
influencing summer extreme temperatures and explaining
their variance in Europe, particularly in northern, central,
and eastern regions. Therefore, incorporating these modes
into the subsampling strategy may be beneficial to improve

the seasonal prediction of summer extreme temperatures
in state-of-the-art SPSs.

Figure 2a,c shows that the C3S MME successfully
reproduces the key features of the summer NAO pattern
in the observations, both in terms of spatial shape and
amplitudes of Z500 anomalies. The NAO pattern is well
reproduced by all single SPSs, as illustrated by the hatches
in Figure 2c representing those regions with consistent
sign in Z500 anomalies across all models. In terms of Z500
anomalies’ amplitude, a small discrepancy emerges in the
eastern portion of the Scandinavian region, where the pos-
itive Z500 anomalies are slightly lower in the MME than
in ERA5. Despite the overall good representation of the
NAO pattern, the variance of the summer low-frequency
atmospheric variability explained by the NAO in the MME
(22.1%) is lower than that in the observations (35.12%).
In this context, the NAO-explained variance in the sin-
gle SPSs ranges from a minimum of 17.91% (MF) to a
maximum of 26.78% (ECCC).

Figure 2b,d also shows that the C3S MME is only par-
tially able to capture the features of the summer EA pattern
as observed in ERA5. In particular, the MME correctly
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FAMOOSS PAOLINI et al. 9

reproduces the position of the anomalous Z500 low over
the subpolar gyre and the position of the anomalous Z500
high near the Gulf Stream region. However, the MME
incorrectly represents the position of the positive Z500
anomalies over the European continent, which are shifted
to the northeast. This is also true for the single SPSs, as
shown by the hatched regions in Figure 2d. In this context,
we specify that the absence of agreement among all models
in northern Europe (as indicated by the lack of hatches) is
only attributable to the UKMO SPS, which exhibits nega-
tive Z500 anomalies rather than positive ones (not shown).
The position of the anomalous Z500 high over central
(eastern) Europe during the positive (negative) EA phase
plays a key role in the occurrence and variance of summer
European extreme temperatures (Figure 1c,d). Specifically,
the anomalous Z500 high can induce hot days through
advection of warm air coming from lower latitudes, air
subsidence, and sensible heat fluxes due to enhanced solar
radiation (Domeisen et al., 2023; Vautard et al., 2023).
Thus, these biases should be carefully taken into account
when interpreting the MME skills in predicting the sum-
mer European climate and extreme temperatures, as well
as assessing the effect induced by the subsampling on
these skills, particularly in central and eastern Europe.
Differently from the NAO, the variance of the summer
low-frequency atmospheric variability explained by the
EA in the MME (12.4%) is comparable to the that in the
observations (14.97%). In this context, the EA-explained
variance in the single SPSs ranges from a minimum of
9.04% (MF) to a maximum of 15.12% (UKMO).

The fact that the C3S MME correctly reproduces the
NAO pattern but fails to account for the variance explained
by the NAO, and vice versa for the EA, indicates that
the C3S MME has some deficiencies in representing the
low-frequency summer atmospheric variability over the
Euro-Atlantic sector. In addition, the C3S MME generally
captures the wrong phase of the NAO and EA indices.
In fact, the correlation between the NAO indices in the
observations and in the MME mean is −0.38 (statistically
significant at 93% confidence level; Figure 3a). This cor-
relation is quite robust in time, as demonstrated by the
ranges calculated through the leave-one-out (−0.54;−0.30)
and leave-three-out (−0.52; −0.27) cross-validation proce-
dure (Table 2). The negative correlation between the NAO
indices in the observational and model datasets is also
generally present in the individual SPSs, with correlations
ranging from a minimum of −0.44 (CMCC) to a maximum
of 0.05 (UKMO) (Supporting Information Figure S2). Fur-
thermore, the C3S MME does not accurately capture the
amplitude of the NAO index, as shown by the RMSE for
the MME mean equal to 1.06 (Figure 3a) and that in the
single SPSs ranging from a minimum of 1.03 (ECMWF
and UKMO) to a maximum of 1.17 (ECCC and NCEP)

(Supporting Information Figure S2). The RMSE values are
consistent over time, with values ranging between 0.97 and
1.08 (0.94 and 1.13) for the leave-one-out (leave-three-out)
cross-validation procedure (Table 2). Similar to the NAO,
the correlation between the EA indices in the observations
and in the MME mean is negative and equal to −0.11 (not
statistically significant; Figure 3b). The fact that this value
is smaller than that for the NAO index and not statistically
significant is consistent with the fact that the correlation
between the EA indices in the observational and model
datasets is not robust in time, as shown by the ranges
calculated through the leave-one-out (−0.30; 0.02) and
leave-three-out (−0.36; 0.06) cross-validation procedure
(Table 2). This is also in line with the correlations in the
individual SPSs, ranging from a minimum of −0.38 (MF)
to a maximum of 0.32 (DWD) (Supporting Information
Figure S3). The wide range of the correlations in the C3S
SPSs shows that these models have different skills in pre-
dicting the phase of the EA. The SPSs also show deficien-
cies in capturing the amplitude of the EA index, as shown
by the RMSE for the MME mean equal to 1.02 (Figure 3b)
and that in the single SPSs ranging from a minimum of
0.95 (DWD) to a maximum of 1.23 (UKMO) (Supporting
Information Figure S3). Differently from the correlations,
the RMSE values for the EA index are consistent over time,
with values ranging between 0.93 and 1.04 (0.90 and 1.08)
for the leave-one-out (leave-three-out) cross-validation
procedure (Table 2). Finally, it is important to highlight
that the predictable signal of the interannual variability in
the C3S MME is much weaker than that in observations, as
shown by the standard deviation of the MME mean equal
to 0.13 for the NAO index and 0.10 for the EA index.

The low seasonal prediction skills of the C3S MME in
predicting the NAO and EA are reflected in poor skills
for Z500 over a large portion of the North Atlantic basin
(Figure 6a). A similar lack of skill is observed for T2m and
TX90p over central and northern Europe (Figure 6d,g).
The NAO and EA represent the two most significant
weather patterns characterising the low-frequency atmo-
spheric variability in the North Atlantic region during
the summer. Consequently, a suboptimal representation of
their variability is expected to lead to diminished predic-
tive performance for atmospheric variables strongly influ-
enced by these patterns. Here, we point out that the C3S
MME also has deficiencies in representing the third most
important regime of low-frequency atmospheric variabil-
ity over the Euro-Atlantic sector; that is, the Atlantic ridge
(Supporting Information Figure S1). This is true both in
terms of its pattern and variability and further explains
the low skills of the C3S MME in predicting the sum-
mer European climate. In this context, it is highlighted
that the low ACCs over the European region shown in
Figure 6a,d,g, as well as in Figure 7a,d,g, are consistent
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10 FAMOOSS PAOLINI et al.

F I G U R E 3 (a) The summer (June–August, JJA) North Atlantic Oscillation (NAO) index in European Centre for Medium-Range
Weather Forecasts Reanalysis v.5 (ERA5; black), in the full Copernicus Climate Change Service (C3S) multimodel ensemble (MME; orange),
and in the subsampled C3S MME (cyan). The orange (cyan) circles represent each member of the full (subsampled) MME. The orange (cyan)
solid line represents the ensemble mean of the full (subsampled) MME. The subsampling of the MME is performed using all the April NAO
predictors and selecting 10 members for every predictor. The correlation between the summer NAO index in ERA5 and the corresponding
index as ensemble mean of the full and subsampled MME is presented in the legend, along with its confidence level in parentheses. The
variability of the summer NAO index as ensemble mean of the full and subsampled MME is also shown in the legend as standard deviation
(Std). (b) As (a) but for the summer East Atlantic (EA) index. RMSE: root-mean-square error.

with previous studies assessing the SPSs’ ability in pre-
dicting the summer European climate and heat extremes
(Hamilton et al., 2012; Mishra et al., 2019; Prodhomme
et al., 2022).

In order to enhance the seasonal prediction skills of
the model ensembles in predicting the NAO and EA
phases, we apply the teleconnection-based subsampling
both to the C3S MME and individual SPSs, as described in
Section 2. The first step of this methodology is to analyse

the relationship between the summer NAO and EA and
their April predictors, and thus to define the April predic-
tor indices. The relationships between the summer NAO
and EA and their April predictors can be found in Support-
ing Information Figures S4 to S10. Specifically, Supporting
Information Figures S4 to S7 show that the mean (range)
of the leave-one-out cross-validated correlations between
the summer NAO and the North Atlantic SST, the Arctic
SIC, the Northern Hemisphere SNOWC, and the zonally
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FAMOOSS PAOLINI et al. 11

averaged zonal wind in the lower stratosphere are 0.61
(0.54–0.67), 0.65 (0.59–0.81), 0.78 (0.72–0.80), and 0.56
(0.40–0.60), respectively. When we average all April NAO
predictors together, the mean (range) of the correlation is
0.78 (0.71–0.82) (Table 2). On the other hand, Supporting
Information Figures S8 to S10 show that the mean (range)
of the leave-one-out cross-validated correlations between
the summer EA and the North Atlantic SST, the tropical
Pacific SST, and the Arctic SIC are 0.70 (0.65–0.76), 0.68
(0.66–0.74), and 0.68 (0.58–0.76), respectively. When the
April EA predictors are combined, the mean (range) of the
correlation is 0.84 (0.80–0.86). Similar values are obtained
when applying the leave-three-out cross-validation proce-
dure both for the NAO and EA. In general, these findings
demonstrate the robustness of the relationships between
the summer NAO and EA and the April predictors used in
this analysis, with none of the years examined significantly
influencing these relationships.

Once the April predictor indices are defined, they
constitute the statistical predictions (or first guesses) of
the summer NAO and EA states, through which the C3S
MME and individual SPS ensembles can be subsampled.
Figure 3 shows that the prediction skills of the C3S MME
can be largely enhanced by applying the subsampling
technique, using all the April predictors of the sum-
mer NAO and EA. In fact, the correlation between the
NAO indices in ERA5 and in the subsampled C3S MME
increases from −0.38 up to 0.77 (statistically significant
at 99% confidence level), while the RMSE reduces from
1.06 to 0.65 in the subsampled MME. Similarly, the cor-
relation for the EA index increases from −0.11 up to 0.84
(statistically significant at 99% confidence level) and the
RMSE reduces from 1.02 to 0.56. Consistently, Supporting
Information Figures S2 and S3 show that the subsampling
also improves the prediction skills of the single SPSs,
with correlations (RMSE) within the range 0.60–0.76
(0.70–0.80) and 0.60–0.85 (0.58–0.82) for the NAO and
EA indices respectively. The correlations between the
NAO and EA indices in ERA5 and in the subsampled
SPSs are all statistically significant at 99% confidence
level. The enhancement of the seasonal prediction skills
of the subsampled MME is robust in time, as shown by
the small ranges of the leave-one-out and leave-three-out
cross-validated correlation for both the NAO (0.71–0.81;
0.65–0.84) and EA (0.80–0.86; 0.79–0.88) (Table 2). The
same robustness applies to the RMSE values, with ranges
of 0.61–0.67 (0.52–0.57) and 0.63–0.72 (0.50–0.59) for
the leave-one-out and leave-three-out cross-validation
procedure applied to the NAO (EA). Finally, we point
out that the subsampling also enhances the interannual
summer variability of the NAO and EA indices in the
subsampled MME mean, reaching values of 0.67 and 0.73,
respectively.

To assess the sensitivity of the results described thus
far to the ensemble size, Figures 4 and 5 show the subsam-
pled MME skills and variability of the NAO and EA indices
with change in the number of members selected in the
subsampling. In this context, the correlation, variability
and RMSE are also computed using single April predic-
tors, in order to assess their relative importance on the
performance obtained. Specifically, Figure 4 shows that
the MME skills in predicting the NAO and EA indices are
pretty similar for a number of members selected within
the range 1–100. After that, the correlation between the
MME mean and observation indices decreases, reaching
the minimum for an ensemble size equal to 141 (i.e., the
full MME). Notably, this aspect shows that the MME mean
indices computed with a great portion of the MME mem-
bers (about 70%) generally capture the correct phases of
the observed NAO and EA and that the overall MME cor-
relation is strongly deteriorated by a very small portion
of members (about 30%). Differently from the correlation,
the interannual variability of the two indices regularly
decreases with an increase of the ensemble size. On the
other hand, the RMSE increases as the number of mem-
bers selected increases (Figure 5). This is not entirely true
for the single April predictors. Indeed, apart from using the
SNOWC as April NAO predictor, the RMSE values for the
NAO (EA) remain relatively stable for a number of mem-
bers within the range 1–80 (1–50) and start to increase
when approaching the full ensemble. These findings high-
light the importance of a careful assessment of the number
of members selected prior to implementing subsampling,
in order to ensure a compromise between skilful predic-
tions and high variability. In the context of the present
work, the sensitivity analysis described herein confirms
that using 10 members for every April predictor satisfies
both these criteria.

Moreover, Figures 4 and 5 show that the improve-
ment of the NAO prediction is mainly obtained by using
the SNOWC in the Northern Hemisphere as April predic-
tor (green line). Indeed, this April predictor allows one
to obtain the highest correlation and the most significant
reduction of the RMSE between the MME mean and obser-
vation NAO indices. At the same time, the North Atlantic
SST, the Arctic SIC, and the wind in the lower strato-
sphere have relatively smaller impacts. In this context,
the contributions of the North Atlantic SST and the Arc-
tic SIC are comparable, whereas the stratospheric wind
plays a minor role. In contrast, using all the April predic-
tors results in higher prediction skills (higher correlation
and lower RMSE) for the EA index compared with using
the single April predictors. Notably, the SST in the North
Atlantic and tropical Pacific exhibit slightly better skills in
comparison with the Arctic SIC, especially with ensemble
sizes smaller than about 60 members.
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12 FAMOOSS PAOLINI et al.

F I G U R E 4 (a) The prediction skill (correlation: solid line) and variability (standard deviation: dashed line) for the summer
(June–August, JJA) North Atlantic Oscillation (NAO) in the subsampled Copernicus Climate Change Service (C3S) multimodel ensemble
(MME). The subsampling of the C3S MME is performed using all the April NAO predictors (black) and using only the North Atlantic
sea-surface temperature (SST; red), the Arctic sea-ice concentration (SIC; blue), the Northern Hemisphere snow cover (SNOWC; green), and
the zonally averaged zonal wind in the lower stratosphere (STRAT; purple) in April. Furthermore, the subsampling is performed by changing
the number of members selected within the range 1–141 for every predictor. The prediction skill is computed with respect to the summer
NAO index in European Centre for Medium-Range Weather Forecasts Reanalysis v.5. (b) As (a) but for the summer East Atlantic (EA) index.
In this case the green lines refer to the subsampling of the C3S MME performed using the tropical Pacific SST (SST_PA) in April.

Finally, Figure 4 shows that the variability of the NAO
and EA indices obtained by using the single April predic-
tors is always higher than that obtained by using all the
predictors together. This is consistent with the fact that,
when all the predictors are considered, the subsampled
MME mean indices are typically computed over a larger
ensemble size, which tends to dampen the variability of the
indices themselves.

Based on the aforementioned results, we assess
the impact of the subsampling on the MME seasonal
prediction skills for Z500, T2m, and TX90p, with the latter
here adopted as the index to describe the summer extreme
temperatures (Lhotka & Kyselỳ, 2015; Sulikowska &

Wypych, 2020). Figure 6c shows that retaining only those
ensemble members with a good representation of NAO
teleconnections improves the MME seasonal prediction
skills for the Z500 over a large portion of the North Atlantic
region. This is especially true over the central and east-
ern North Atlantic, where the subsampled MME exhibits
positive ACCs for Z500 (Figure 6b), whereas the full MME
exhibits negative ACCs (Figure 6a). This is reflected in
higher ACCs for the T2m and, importantly, TX90p over the
land of northern Europe (Figure 6f,i). Notably, the ACC
differences are particularly pronounced and statistically
significant over regions such as the United Kingdom, parts
of the Scandinavian Peninsula and western Russia; that
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FAMOOSS PAOLINI et al. 13

F I G U R E 5 (a) The root-mean-square error (RMSE) for the summer (June–August, JJA) North Atlantic Oscillation (NAO) in the
subsampled Copernicus Climate Change Service (C3S) multimodel ensemble (MME). The subsampling of the C3S MME is performed using
all the April NAO predictors (black) and using only the North Atlantic sea-surface temperature (SST; red), the Arctic sea-ice concentration
(SIC; blue), the Northern Hemisphere snow cover (SNOWC; green), and the zonally averaged zonal wind in the lower stratosphere (STRAT;
purple) in April. The subsampling is performed by changing the number of members selected within the range 1—141. The RMSE is
computed with respect to the summer NAO index in European Centre for Medium-Range Weather Forecasts Reanalysis v.5. (b) As (a) but for
the summer East Atlantic (EA) index. In this case the green line refers to the subsampling of the C3S MME performed using the tropical
Pacific SST (SST_PA) in April.

is, those regions where the state-of-the-art SPSs have been
shown to be particularly deficient in predicting the sum-
mer European climate (e.g., Prodhomme et al., 2022).
However, it should be noted that the subsampled MME
exhibits positive and often statistically significant skills for
T2m and TX90p over a much broader area when compared
with the full MME, covering western and central Europe,
the Balkan region, and the entire Scandinavian Peninsula
(Figure 6e,h). The fact that the improvement in T2m and
TX90p ACCs, as shown by ACCs differences, is not always
significant in certain regions may be due to the already
high predictive skills of the full MME in those areas. Nev-
ertheless, this should not detract from the higher capacity

of the subsampled MME to predict the summer Euro-
pean climate compared with the full MME, thanks to the
correct representation of the NAO phase. The enhanced
prediction skills of the subsampled MME are also evident
in its improved ability to capture the anomalous states of
climatic variables during specific summers. For instance,
Supporting Information Figure S11 shows that the sub-
sampled MME more accurately represents the Z500, T2m,
and TX90p anomalies observed in ERA5 during summer
2006, here selected as an example owing to its intense pos-
itive NAO phase. The improvement is particularly evident
in the North Atlantic sector for Z500 and in northern and
southern Europe for T2m and TX90p, regions where the
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14 FAMOOSS PAOLINI et al.

F I G U R E 6 (a) Anomaly correlation coefficient (ACC) computed for the full Copernicus Climate Change Service (C3S) multimodel
ensemble (MME) mean with respect to European Centre for Medium-Range Weather Forecasts Reanalysis v.5 for geopotential height at
500 hPa (Z500). (b) As (a) but for the subsampled C3S MME mean. The subsampling of the MME is performed using all the April NAO
predictors and selecting 10 members for every predictor. (c) Difference between the ACC computed for the subsampled MME mean and the
ACC computed for the full MME mean for Z500. Black dots denote ACC and differences that are statistically significant at the 90% confidence
level. (d–f) As (a)–(c) but for temperature at 2 m height (T2m). (g–i) As (a)–(c) but for number of days when maximum temperature at T2m
exceeds the 90th percentile of daily T2m during June–August (TX90p).

NAO significantly influences summer extreme tempera-
ture variability (Figure 1). In contrast, the subsampled
MME does not capture the highest occurrence of hot days
(positive TX90p anomalies) during summer 2006 in parts
of France, Germany, Poland, and northern Italy. How-
ever, it is important to highlight that the summer extreme
temperature variability in these regions is not strongly
influenced by the NAO (Figure 1), so an improvement in
TX90p prediction with subsampling is not expected there.

On the other hand, Figure 7 reveals that retaining only
those ensemble members with a good representation of
EA teleconnections does not generally improve the MME
seasonal prediction skills for the summer European cli-
mate. In fact, even if the subsampling induces an increase
of the ACCs for Z500 in the middle of the North Atlantic, it
also deteriorates the ACCs over a large portion of eastern
Europe (Figure 7c). This is associated with a reduction of
the ACCs for T2m and TX90p in the same region, with the
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FAMOOSS PAOLINI et al. 15

F I G U R E 7 Same as Figure 6 but performing the subsampling of the Copernicus Climate Change Service multimodel ensemble
(MME) using all the April East Atlantic predictors.

latter statistically significant at the 90% confidence level
(Figure 7h,i). The ACCs’ differences for T2m and TX90p
are also negative in southern and Mediterranean Europe,
even if not statistically significant. In line with the gen-
eral decrease in the ACCs, Figure 7b,e,h reveals that the
seasonal prediction skills of the subsampled MME are con-
siderably lower and statistically significant within a more
limited geographical area than with the full MME. For
instance, the seasonal prediction skills of the subsampled
MME for TX90p remain notably high and statistically sig-
nificant in the Balkan region, but they drop to nearly zero
in the rest of Europe. In this context, it is important to high-
light that the regions experiencing the most significant
reduction in ACCs, notably eastern Europe, coincide with

the areas where the MME exhibits the least accurate rep-
resentation of the EA pattern (Figure 2d). This means
that the overall poor representation of the EA pattern
within the MME limits the potential for skill improvement
through the subsampling, particularly in those regions
where the atmospheric circulation significantly influences
T2m variability and, consequently, summer extreme tem-
peratures (as shown in Figure 1c,d). In contrast, the
skills remain high in those areas, such as the Balkan
Peninsula, where the extreme temperatures are mainly
determined by soil moisture preconditioning during the
spring season and strong atmosphere–land coupling
(Miralles et al., 2014; Prodhomme et al., 2016), whereas the
atmospheric circulation plays a less relevant role.
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16 FAMOOSS PAOLINI et al.

Before concluding this section, we specify that the
subsampling performed with predictors defined through
leave-three-out cross-validation procedures gives similar
seasonal prediction skills for Z500, T2m, and TX90p, as
shown in Figures 6 and 7 (not shown). This is consistent
with the fact that the hybrid statistical–dynamical predic-
tions of the NAO and EA conducted with leave-one-out
and leave-three-out procedures show comparable perfor-
mance, as illustrated in Table 2.

4 DISCUSSION

The results described in the previous section demonstrate
that the skills of the C3S MME in predicting the NAO
and EA phases on a seasonal time-scale can be largely
enhanced through the teleconnection-based subsam-
pling. This important aspect is summarised in Table 2,
which presents the leave-one-out and leave-three-out
cross-validated correlations and RMSE between the NAO
and EA indices in ERA5 and the corresponding indices
calculated as full and subsampled MME mean. The sub-
sampled MME mean correlations are notably higher than
the full MME mean correlations. At the same time, the
RMSE for the subsampled MME is notably lower than
the one computed for the full MME. However, Table 2
also shows that the skills achieved with the hybrid
statistical–dynamical prediction systems are comparable
to the ones obtained with the statistical prediction systems
relying only on the April predictors of the NAO and EA.
This could raise doubts about the actual utility of imple-
menting a subsampling methodology when similar results
can be achieved with much simpler statistical forecasts.
Nevertheless, it should be pointed out that the hybrid
statistical–dynamical approach provides much more
information about the climate system. This is possible by
generating subsampled ensemble means for any field of
interest from the ensemble members with a reasonable
representation of the teleconnections associated with the
NAO and EA. In contrast, once the weather regime phase
is predicted with a statistical forecast, another statistical
model has to be defined to extract the link between the
weather regime phase and any field of interest, which
increases the overall complexity of the forecast process and
may cause the loss of important dynamical information.

Regardless of whether a statistical or a hybrid
statistical–dynamical system is used to predict the summer
NAO and EA phases, the choice of appropriate April
predictors represents a key stage in providing reliable
seasonal predictions. In the present work, we adopt
the North Atlantic SST, the Arctic SIC, the Northern
Hemisphere SNOWC, and the zonally averaged zonal wind
in the lower stratosphere as summer NAO predictors, and
the SST in the North Atlantic and tropical Pacific and the

Arctic SIC as summer EA predictors. Results in Supporting
Information Figures S4 to S10 show that these variables
correlate well with the summer NAO and EA phase. This
is consistent with previous studies showing the role played
by the spring state of the North Atlantic and tropical Pacific
Ocean, Arctic sea-ice, Northern Hemisphere SNOWC, and
stratospheric circulation on the summer North Atlantic
atmospheric variability (e.g., Dunstone et al., 2023;
Gastineau & Frankignoul, 2015; Hall et al., 2017; Wulff
et al., 2017). Nevertheless, further investigation is war-
ranted to consolidate the predictors of the summer North
Atlantic variability previously suggested in literature and
to explore additional or more effective ones. This is espe-
cially true for the summer NAO, which has so far received
limited attention from the scientific community. As an
example, Dunstone et al. (2023) have recently shown that
the variability of the polar vortex during the spring season
is driven not only by the internal variability but also by
sudden stratospheric warming events occurring in late
winter. Indeed, the easterly stratospheric wind anomalies
associated with these events can propagate in the tropo-
sphere in late March–early April, reducing the upward
wave propagation and dynamical heating of the strato-
sphere. Consequently, the stratospheric cooling results in
an anomalously strong polar vortex by the end of April,
with westerly wind anomalies that propagate downward
and induce positive NAO-like tropospheric circulation
that can persist throughout the summer. Thus, the sudden
stratospheric warming events that occur in late winter
may represent windows of opportunity to further improve
the prediction of the summer NAO and extend its range
into the winter season. Research efforts in this direction
are particularly relevant in order to extend the methodol-
ogy described in this work from the retrospective forecast
(hindcast) environment to the operational seasonal
prediction systems.

Finally, it should be taken into account that whereas
the NAO and EA pattern explain around 50% of the
summer low-frequency summer (Figure 2), they are
not the only large-scale atmospheric circulation pat-
terns that influence extreme summer temperatures
across Europe. Multiple studies have shown that Euro-
pean summer extreme temperatures may also be linked
with large-scale wavelike structures propagating along
the summer upper tropospheric polar and subtropical
jet stream (e.g., Kornhuber et al., 2019; Xu et al., 2020;
Xu et al., 2021). In this context, as noted by previous arti-
cles (Neddermann et al., 2019; Wulff et al., 2017), it is
worth mentioning that the EA pattern can be seen as a
local manifestation of circumglobal wave-train patterns,
with intense geopotential height anomalies also outside
the North Atlantic sector. Therefore, incorporating the
EA pattern into the teleconnection-based subsampling
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approach described here partly accounts for the influence
of large-scale wavelike structures previously identified
as significant for European extreme temperatures. Nev-
ertheless, integrating additional large-scale atmospheric
circulation patterns besides the NAO and EA into the
hybrid statistical–dynamical approach could potentially
enhance the seasonal forecasting capabilities of the sub-
sampled MME. Obviously, this approach would rely on
the availability and understanding of seasonal predictors
for these patterns.

5 CONCLUSION

The results presented in this study show that the
teleconnection-based subsampling technique significantly
improves the seasonal prediction of the summer NAO and
EA phase in the C3S SPS MME (Figure 3; Supporting Infor-
mation Figures S2 and S3). Specifically, the correlations
between the observed and subsampled MME mean NAO
indices improve from −0.38 to 0.77, whereas for the EA
they improve from −0.11 to 0.84. Furthermore, the RMSE
for the NAO reduces from 1.06 in the full MME ensemble
to 0.65 in the subsampled MME ensemble, whereas for the
EA it reduces from 1.02 to 0.56. The enhancement of the
seasonal prediction skills is robust over time, as evidenced
by the narrow ranges of leave-one-out and leave-three-out
cross-validated correlations and RMSE for both the NAO
and EA (Table 2). It is important to highlight that the cor-
relation improvement is rather insensitive to the number
of members selected used for each April predictor ranging
from 1 to about 100 (Figure 4). This is not completely true
for the NAO and EA variability and RMSE. The variability
decreases almost linearly with an increase of the ensem-
ble size. The RMSE generally increases as the number of
members selected increases when all April predictors are
used, whereas it remains relatively stable when adopt-
ing individual April predictors for a number of members
below approximately 50–80. In this context, using all the
April NAO predictors or only the Northern Hemisphere
SNOWC provide comparable improvements of the NAO
prediction skills within the C3S MME (Figures 4a and 5a).
In contrast, all the April EA predictors contribute to the
improvement of the EA prediction skills within the C3S
MME (Figures 4b and 5b).

The results also show that retaining only those
ensemble members that accurately represent the NAO
teleconnections enhances the MME seasonal prediction
skills for the summer European climate (Z500 and T2m),
including the occurrence of summer extreme tempera-
tures as described by the TX90p index (Figure 6). This
improvement is particularly pronounced in central and
northern Europe, where both individual full C3S SPSs and

MME exhibit limitations in predicting summer European
climate and heat extremes.

Conversely, selecting only those ensemble members
that accurately represent the EA teleconnections does not
improve either the predictions of summer European cli-
mate or the predictions of summer extreme temperatures
(Figure 7). These results can be explained by the fact that
the C3S SPSs exhibits deficiencies in accurately represent-
ing the summer low-frequency atmospheric variability. In
particular, the C3S SPSs exhibit biases in the summer EA
pattern. Notably, the positive Z500 anomalies associated
with this weather regime, which are typically found over
central Europe, are displaced towards the northeastern
region of the European continent (Figure 2). This aspect
can lead to an inaccurate representation of the factors that
drive summer extreme temperatures (such as air subsi-
dence and advection of warm air from lower latitudes;
Domeisen et al., 2023) in the model environment, and
thus lower skills in predicting such events, particularly
in regions where the summer extreme temperatures are
strongly influenced by EA variability (Figure 1).

In conclusion, the current study highlights the
potential for enhancing seasonal predictions of
summer European climate by employing a hybrid
statistical–dynamical approach that involves the subsam-
pling of dynamical prediction systems. In this context, the
seasonal predictions of summer extreme temperatures are
particularly improved over northern and central Europe,
where the skills of state-of-the-art SPSs in predicting their
occurrence have been shown to be particularly low. Future
endeavours will focus on developing and adapting the
methodology presented in this study to operational sea-
sonal prediction environments, addressing the prediction
of summer extreme temperatures and, eventually, other
climate extremes across various seasons. Moreover, addi-
tional research should focus on understanding the sources
of model biases in representing the patterns of summer
low-frequency atmospheric variability, as these biases
limit the benefits provided by postprocessing techniques.
For instance, rectifying or minimising these biases could
make it reasonable to employ the subsampling technique
detailed in this study by selecting those ensemble mem-
bers that better represent both the NAO and EA phase
simultaneously.
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