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A B S T R A C T

Studies estimating the production cost of hydrogen-based fuels, known as e-fuels, often use renewable power
profile time series obtained from open-source simulation tools that rely on meteorological reanalysis and satellite
data, such as Renewables.ninja or PVGIS. These simulated time series contain errors compared to real on-site
measured data, which are reflected in e-fuels cost estimates, plant design, and operational performance,
increasing the risk of inaccurate plant design and business models. Focusing on solar-powered e-fuels, this study
aims to quantify these errors using high-quality on-site power production data. A state-of-the-art optimization
techno-economic model was used to estimate e-fuel production costs by utilizing either simulated or high-quality
measured PV power profiles across four sites with different climates. The results indicate that, in cloudy climates,
relying on simulated data instead of measured data can lead to an underestimation of the fuel production costs by
36 % for a hydrogen user requiring a constant supply, considering an original error of 1.2 % in the annual
average capacity factor. The cost underestimation can reach 25 % for a hydrogen user operating between 40 %
and 100 % load and 17.5 % for a fully flexible user. For comparison, cost differences around 20 % could also
result from increasing the electrolyser or PV plant costs by around 55 %, which highlights the importance of
using high-quality renewable power profiles. To support this, an open-source collaborative repository was
developed to facilitate the sharing of measured renewable power profiles and provide tools for both time series
analysis and green hydrogen techno-economic assessments.

1. Introduction

As concerns about climate change and security of energy supply are
increasing, more and more attention is geared toward hydrogen based
fuels produced from renewable electricity. Indeed, these fuels, also
referred as “e-fuels” seem to have the potential to reduce the greenhouse
gas emissions of various sectors that are difficult to electrify such as
aviation, shipping or hard to abate industry [1]. In the past years, a large
number of studies were conducted to propose optimized process design
for e-fuel production and cost estimations [2–6], and how to integrate
e-fuel into future energy systems [7–12]. Due to their low cost, tech-
nology readiness level, and widespread resources, most studies have

been focusing on techno-economic assessments of e-fuels produced via
solar and wind energy [6,13–18]. In these studies, wind and solar power
time series are commonly obtained with tools using satellite or rean-
alysis data, like the open-source tool Renewables.ninja [19] as shown in
Table 1.

Although site level inaccuracies of these tools compared to ground
measured data is already well discussed and understood in the field of
reanalysis and renewable time series generation [39–43], studies
focusing on power-to-X techno-economic assessment usually not address
this issue. In general, the quality of the solar data used is not extensively
discussed, the influence of using other weather datasets or PV power
calculation methods is not tested, and the sensitivity analyses are usually
conducted for other uncertain parameters. Some studies [22,30] did
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investigate the influence of choosing different weather years and
showed that it has a significant effect on costs and system design for
islanded systems, while being less significant for systems that are also
grid connected since in the latter electricity price uncertainties play a
larger role. This result highlights the importance of further investigating
the methods and data used to generate the renewable power time series
and the corresponding impact on the techno-economic assessment re-
sults, especially for islanded production systems.

Kies et al. [44] studied how using different meteorological datasets
to derive renewable generation profiles influences the optimal design of
the European power system. It was found that the selection of a dataset
highly influences the system design and the electricity cost estimates

with differences around 10 %. Mathews et al. [45] analysed the bias in
reanalysis derived solar profiles using the Supervisory Control And Data
Acquisition (SCADA) data obtained from electricity market operators.
They studied the error propagation occurring in energy systemmodeling
studies where long duration energy storage is considered (for example
hydrogen storage). It was found that MERRA-2 dataset tends to globally
overestimate solar PV power output while ERA-5 showed better per-
formances. In addition, it has been demonstrated that, particularly in
cloudy climates, the error propagation caused by biases in the solar PV
power profile is significant in energy systems that include long-duration
hydrogen storage. While the few existing studies on this topic provide
valuable contributions, none of them use high-resolution,

Nomenclature

Abbreviations
AC Alternating current
c-Si Crystalline silicon
CdTe Cadmium telluride
CIS Copper indium gallium selenide solar cel
CorRES Correlations in Renewable Energy Sources
DC Direct current
ECMWF European center for medium-range weather forecasts
ERA European Centre for Medium-Range Weather Forecasts

Reanalysis
LCOA Levelized Cost of Ammonia
LCOF Levelized Cost of Fuel
MERRA Modern-Era Retrospective analysis for Research and

Applications
NSRDB National Solar Radiation Database
PV Photovoltaic
PVGIS Photovoltaic Geographical Information System
SARAH The Surface Solar Radiation Data Set - Heliosat
SSE Surface meteorology and Solar Energy
STC Standard test conditions
WACC Weighed average cost of capital

Symbols
Au Annuity factor
cu Installed capacity of unit u

CFisim Simulated capacitor factor per period i
CFimeas Measured capacity factor at the experimental plant per

period i
CFdiff Annual average capacity factor difference
Consu Consumption (when negative) or the production (when

positive) of electricity or hydrogen of a unit u
Du Yearly fuel production target
Fu Fixed O&M costs
Iu Investment expenditure of unit u
Inj Subset of units used to charge a tank
Lumin Minimum load
MAE Mean Absolute Error
Min Minimum
MinD Subset of units required to produce the end-fuel
n Number of hours simulated and measured per year
Outi Subset of units used to discharge a tank
Pi Subset of units synthesizing a product using a reactant
Pu,t Hourly price of the output from unit u at time t
PPu,t Normalized power profile of the unit u at time t
RMSE Root Mean Square Error
Ti Subsets of units behaving like a tank
Vu Variable O&M costs
xu,t Output flow of mass or energy from unit u at time t
ρin Charging efficiency of unit u
ρout Discharging efficiency of unit u
ψ Subset of intermittent power units

Table 1
Literature review of selected e-fuels techno-economic assessment studies and method used for PV power profile simulation.

Ref. E-fuel
analysed

Tool used to calculate solar power profile Weather dataset Type of dataset Sensitivity analysis on PV power
time series

[5,6,17,
20]

Ammonia Renewables.ninja MERRA2 Reanalysis No

[15] Ammonia Not specified SSE [21] Satellite, reanalysis,
ground station

No

[22] Ammonia PVLib ERA-5 Reanalysis Different weather years tested
(2017–2019)

[23] Ammonia No tool specified Meteonorm [24]a Satellite, ground station No
[25] Ammonia Used a simple formula “Radiación solar”

[26]
Satellite, ground station No

[27,28] Methanol Renewables.ninja MERRA2 Reanalysis No
[2] Methanol Own calculation method NSRDB [29] Satellite, reanalysis,

ground station
Solar PV orientation

[30] Hydrogen PVLib/PVGIS Meteostat
PVGIS [31]

Ground station, satellite Different weather years tested
(2007–2016)

[32] Hydrogen Own calculation method PVGIS Satellite, reanalysis No
- [13]

- [14]
Hydrogen -Simple formula

-TRNSYS softwarea
Meteonorma Satellite, ground station No

[33–36] Hydrogen Renewables.ninja ([33] added correction factors) MERRA2 Reanalysis No
[37] Hydrogen Renewables.ninja, NASA [38], PVGIS and own calculation

method (including correction factors)
MERRA2 Reanalysis Different years considered (data

from 1981 to 2021)

a Not open source.
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ground-measured PV power data to calculate error propagation in the
techno-economic assessment of power-to-X plants. This lack of valida-
tion in literature can partially be explained by the limited availability of
high-resolution ground measured power data, which are either
non-existent, not publicly accessible, or difficult to access. However, the
use of high resolution PV measured data allows to identify error factors
that are probably not detectable with a weather station or reanalysis
data like for example dust, pollution, or the state of the solar panels
(surface temperature, cleanliness). In addition, no study provides an
open-source and accessible framework for both PV power time series
analysis and power-to-X plant techno-economic assessment. Therefore,
the aim of this work is to provide such an open-source framework to
identify and quantify the impact of inaccuracies in power time series on
the techno-economic assessments of hydrogen-based fuel. To do so, this
research uses a state-of-the-art techno-economic model for hydrogen
production fed with high-quality ground measured data or simulated
solar PV power data and compare the results obtained in these two cases
for four different sites/case studies. As a result, we give an order of
magnitude of the error propagation that can be expected from the
renewable time series imprecisions and compare it with typical other
sources of error like electrolyser efficiency, financial assumptions or
power-to-X plant component costs. The techno-economic assessment
method adopted in this study uses an open-source state-of-the-art
power-to-X plant investment and operation optimization model (Opti-
plant) presented in Ref. [6]. The high-quality ground-measured PV
power data used in this study are collected at four sites (Forlì and Turin
in Italy, Utrecht in the Netherlands and Almería in Spain) with different
weather variety and climates to give preliminary insights for result
generalization. The framework developed for the techno-economic
assessment, the power time series analysis and the input data are also
made open-access to leave the possibility to replicate the study in other
sites with high-quality measurements and complement the results ob-
tained in this work [46,47].

The paper is structured as follows. In Section 2, the methods are
explained, including site selection, on-site PV plants’ power measure-
ment and simulation, the assumptions on end-users’ hydrogen profile,
and techno-economic parameters implemented in the e-fuel plant’s
design optimization model. In Section 3, the results on the influence of
weather and PV power quality data on e-fuels plants’ design optimiza-
tion are shown and discussed. Finally, conclusions and recommenda-
tions are provided in Section 4.

2. Method

The method section comprises a detailed description of the PV plant
experimental set-up in the different measurement’s sites (Forlì, Turin,
Utrecht and Almería), a section describing how the different simulated
PV power profile have been generated for the different sites, and finally
a description of the optimization techno-economic assessment model
used in this study.

2.1. Overview

As presented in Fig. 1, one aspect of the methodology involves
comparing the characteristics of simulated time series with those
measured on-site at the PV plant. Various tools and databases are
employed to generate the simulated power profile time series to un-
derstand the power output differences related to reanalysis databases or
PV power calculation methods. The second phase of the analysis in-
volves utilizing these different time series in an e-fuel plant techno-
economic optimization model. This aims to assess how errors in the
original time series propagate into the evaluation of e-fuel costs and
system sizing.

Fig. 1. Paper methodology.
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2.2. Sites selection and description

As shown in Fig. 2, four different sites with a PV-plant and mea-
surement system are selected for this study: Almería (Spain), Forlì, Turin
(Italy), and Utrecht (the Netherlands). Each site presents different
weather and climates conditions giving the possibility to partially
generalize the results to other locations with similar features.

The first site is the applied research center on renewable energy
called “HEnergia” (HE) in Forlì (Italy, 44◦13′21″ N- 12◦02′27″ E), where
the measurements were made by the Department of Industrial Engi-
neering of the University of Bologna in collaboration with the local
multi-utility HERA S.p.a. The second site is the rooftop of the university
Politecnico di Torino in Italy (Italy, 45◦3′54″ N- 7◦39′32″ E). Following
the Köppen-Geiger climate classification [49], the climate in both Turin
and Forlì can be described as humid subtropical climate (Cfa) charac-
terized by hot and humid summers, and cool and damp winters. Loca-
tions with the same climates classification can be observed for example
in the Australian East-coast (Queensland), American gulf and lower
East-coast states in the US, or in Southern Brazil, north Argentina and
Uruguay [50].

The third site is a mounted rooftop residential PV system in the re-
gion of Utrecht in the Netherlands taken from the open-source PV
measurement database presented in Visser et al. [51]. The data base
contains measurements from 175 different PV sites, based on the system
orientation and data availability, System ID002 (approximately located
at 51◦97′ 01″ N-5◦32′17″ E) was selected for the main analysis. The
climate in the Netherlands can be characterized as temperate oceanic
climate (Cfb) featured by warm summer and cool winters. This type of
climate is typically characterized by frequent cloudy conditions and rain
precipitations. Locations with the same climate classification are for
example Western Europe, Southern Chile, or New Zealand.

The last site is a new solar power plant that was commissioned in
February 2023 in Almería (Spain, 36◦ 55′ 51″ N - 2◦ 28′ 18″ W), with an
installed capacity of 3.8 MW, directly connected to the grid. The climate
classification of Almería is between a hot semi-arid and a hot desert
climate (BSh/BWh) and is known to be one of the driest cities in Europe.
The PV plant itself is located in a climate area qualified as hot desert
(BWh). Hot desert climate can be found, among other places, in the
deserts of Northern and Southern Africa (i.e. Sahara and Kalahari
Desert), West-Asia (i.e. Arabian Desert), South Asia (in Iran, Pakistan
and north India), Australia, or the coast of Chile and Peru. This type of
climate usually presents clear sky and very high potential for solar
power production [48].

The open-source collaborative repository [46] developed as part of
this study can be used to share high-quality solar PV measurement data
from other sites and climates.

2.3. On site PV-plant power measurement

This section presents the PV plant and experimental set-up for power
output measurements at the selected locations.

2.3.1. PV plant set-up and measurements in Forlì, Italy (Cfa)
The on-site experimental PV plant consists in 8 different PV plants

installed in 2013 that were experimentally assessed in Ref. [52]. This
study focuses on the polycrystalline (poli c-Si) technology which is today
the “default” technology usually applied in energy system models. The
solar panels are installed with a fixed support on a roof with an incli-
nation angle (tilt) of 30◦ and an azimuth of 180◦ (South-exposed). A
string feeds energy via standard inverter into the grid and it is monitored
and logged on the direct current (DC) and alternating current (AC) side
of the inverter. The solar PV plant is connected to the grid through a
Power One inverter, model Aurora 3.0. The poli c-Si PV panels have a
module efficiency of 14.7 % at standard test conditions (STC) and
occupy an area of 14.73 m2.The total installed power is 2.16 kW at STC.
Due to the small plant scale, the measured output power does not ac-
count for losses that would be greater in large-scale PV plants, such as
shading, soiling, wiring, temperature losses, or lower inverter effi-
ciencies. For consistency, these losses will not be counted either when
simulating the PV power profiles in Forlì. The inverter losses in the
experimental plant are measured around 95 %. The monitoring activ-
ities are done in accordance with the international standard IEC 61724.
For every string, current and voltage (DCWattmeter Electrex Femto) are
monitored on the DC side. The power on the AC side of the inverter (AC
Wattmeter Electrex Femto) is also measured. Moreover, each PV plant is
equipped with a PT100 temperature sensor (Omega SA1-RTD-4W-120),
installed on the rear of one of the plant modules. Furthermore, envi-
ronmental conditions such as solar global radiation (Kipp & Zonen
pyranometer CMP11), ambient temperature and humidity (LSI Lastem
thermohygrometric sensor DMA675), wind speed and direction (LSI
Lastem wind speed and direction sensor DNA721) are measured through
a local meteorological station, installed on the roof. Each sensor pro-
duces signals in 4–20 mA. Signals coming from the PV plants are sent to
the datalogger, while signals coming from the local meteorological
station are sent to a dedicated datalogger. Data are acquired and stored
every 4–5 s in a PC from the dataloggers via LAN network. Data are
managed through MySQL Workbench on a PC that can be remotely
accessed via internet. The data processed in this analysis have been
recorded between the October 3, 2014 and the September 24, 2015. The
architecture of the data acquisition system is shown with more details in
Ref. [52]. The acquired data contains erroneous values that are due to
temporary sensor, system defaults, or at some point plant electrical
blackouts that deactivated the acquisition system. Erroneous data points
contain missing data or unexpected null values. Identifying missing data
is also straightforward as the measurement date is missing when the data
acquisition system is off. The identification of null values is done by
comparing the PV plant power output with the data from the meteoro-
logical station also present on-site or another PV plant on the experi-
mental site. If the direct normal irradiance measured on the
meteorological station is positive or the other PV plants are producing
while the selected PV plant power production is null, the data point is
replaced by a “missing” value. The value of the AC power output is
measured at every data point and hourly aggregated calculating the
average power produced every hour. If less than 60 data points are
recorded in an hour (less than one point per minute), the hour is counted
as “missing” when doing the hourly time aggregation. When running the
techno-economic model, the missing values are replaced with values
from a simulated time series (Renewables.ninja MERRA2) to avoid the
use of zero values. This data substitution for some of the missing values
will lead to an underestimation of the absolute error. In the measured
time series, 12 % of the data are missing, mostly during spring and
summer as it can be seen in Fig. 3.

Fig. 2. Sites selected for the study and specific photovoltaic power output [48].
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2.3.2. PV plant set-up and measurements in Turin, Italy (Cfa)
The experimental PV plant consists in photovoltaic panels installed

with a fixed support that is coplanar with a rooftop of the university
Politecnico di Torino in Turin, Italy. The plant has been installed in
2018, while the period considered by the study is between January 1,
2019 and December 31, 2020. The period was chosen to compare the
measured data with dataset like SARAH2 and ERA5. The plant has an
inclination angle (tilt) of 26◦ as the rooftop and an azimuth of 206◦

(South-West exposed). The solar panels installed are Monocrystalline
Benq (SunForte PM096B00) with an efficiency of 20.1 % at STC. There
are 27 inverters Sunny Tripower between 20 and 25 kW (20000 TL/
25000 TL) with an efficiency of 98 %. The power of each module is 327
W, the overall installed power is 604 kW, with a net occupy area of 3000
m2. The data analysed consists of energy produced by the photovoltaic
panels and recorded on the AC side of the inverters with 1 min time step
in kWh per minute measured between 2019 and 2020. The capacity
factor is therefore calculated by dividing the energy produced every
minute by the installed power capacity and multiplying by 60 min/h.
The hourly capacity factor is calculated summing the energy produced
every minute and dividing by the installed power capacity. The system
losses are 10 %. Fig. 3 shows the yearly normalized PV plant production
profile in 2019 that has been measured. No data is missing in 2019.
There was a case of a capacity factor exceeding 1 and preceded by zeros,
indicating that this value represents energy produced in previous hours
but not recorded. In such cases, the value exceeding 1 has been redis-
tributed proportionally to the previous hours, using Renewables.ninja
MERRA2 as a reference.

2.3.3. PV plant set-up and measurements in Utrecht, Netherlands (Cfb)
The data for Utrecht is collected from the open-source database

presented in Visser et al. [51]. The database holds PV power measure-
ments for 175 residential PV systems, which are rooftop mounted, over
the period 2014–2017. For the purpose of this study one system with
ID002 was selected. The selection is based on the high data availability
of the PV system over the entire period, as well as due to the orientation
of the PV system, which is more or less optimal with a tilt and azimuth
angle of 30◦ and 170◦ (south), respectively. The PV system features

monocrystalline panels with an efficiency of approximately 15 % at STC.
The system has an installed capacity of the 1.9 kWp, and an inverter
capacity of 2.0 kWp, with an efficiency of about 97 %. More specific
details on the PV system characteristics are confidential. Power mea-
surements are collected on the AC side of the inverter through a data
logger that records instantaneous power values at 0.5 Hz (approximately
one power value is recorded per 2 s) [51]. The open-source dataset
presented in Visser et al. holds filtered PV power measurements with a
1-min resolution, which are constructed considering the average of the
registered power values. In this study, the main assessment considers the
1-min filtered power values, Figs. 3 and 7 are created using unfiltered 2 s
data. From the 1-min time series, 8.6 % of data is missing. Missing values
result from disconnection or a power outage of the data logger and/or
the remote or originate from the data filtering process. This is explained
in more detail in Visser et al. [51].

2.3.4. PV plant set-up and measurements in Almería, Spain (BWh)
The grid-connected photovoltaic power plant consists of a total of

9072 monocrystalline panels, mounted on a fixed support in the prov-
ince of Almería, Spain, with a tilt angle of 22◦ and an azimuth of − 2◦.
The installed solar panels are bifacial monocrystalline Longi (Hi-MO4
LR4-72HBD-440M) with an efficiency of 20.2 % at STC. They are con-
nected to a Freesum inverter (Power Electronics), commercial reference
FS3670KH000015, with an efficiency of 98.45 %. Each module has a
power of 440 W, resulting in a total installed capacity of 3992 kWp,
occupying a net area of 54,000 m2. Performance and energy output
measurements, both on the AC and DC sides, have been conducted using
the OpenZmeter device [53], an open-source system for smart energy
metering and power quality analysis. The OpenZmeter device is
designed to comply with international standards such as IEC 61000-4-30
and EN 50160. OpenZmeter measures voltage in single or three-phase
systems with an accuracy of up to 0.1 %, including DC systems. It sup-
ports standard frequencies of 50/60 Hz and can measure with a reso-
lution of up to 10 mHz. Current measurement is determined by the
selected external probe, including options like current transformers,
Hall Effect sensors, and Rogowski coils. These probes allow for virtually
unlimited current values, provided they comply with permitted input

Fig. 3. Measured PV solar power time series in the four different sites and missing data.
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levels. OpenZmeter is configured to store data in an internal circular
database with different aggregation periods. It stores current and
voltage data for 120 days with a sampling rate of 3 s and 1 min,
respectively. Additionally, it stores aggregated data for 360 days with
periods of 10 min and 1 h for current and voltage, and 15 min and 1 h for
power measurements. In this installation, 4000A Rogowski coils and
40A current transformers were used for each of the strings. Measure-
ments were taken in AC, and current, voltage, and power values from the
inverter were recorded in parallel via Modbus communication. The
inverter comprises 6 generation modules, with a total of 112 current
measurements, one for each string, and 14 DC voltage measurements in
each of the aggregation boxes. The analysed data consists of energy
produced by the photovoltaic panels, recorded at various aggregation
periods. Power production was calculated by summing the energies from
lower aggregation levels. For example, hourly production was obtained
by summing the four 15-min intervals for each phase. During data
collection, there were recorded information losses due to communica-
tion issues, protection trips in different string lines, as well as technical
maintenance and breakdowns. For instance, on September 2nd, a major
inverter failure caused the plant to shut down. After maintenance, the
plant was restored but with only 5 operational stages of the inverter, as
one stage failed and needed replacement. During this period, the system
operated at 80 % capacity until the failed module was replaced on
September 14th.

2.4. PV-plant power time series simulation

The simulated PV-plant power time series are generated using open-
source tools commonly used: Renewables.ninja [39], CorRES [54] and
PVGIS [31]. These tools utilize different open-source dataset such as
MERRA2, SARAH, SARAH2 and ERA5. MERRA2 [55] (Modern Era
Retrospective-Analysis for Research and Application) is a global atmo-
spheric reanalysis dataset that uses advanced data assimilation tech-
niques and numerical models to combine satellite and ground-based
observation. The resolution is 0.625◦ by 0.5◦. SARAH and SARAH2 [56]
(Surface Solar Radiation Data Set Heliostat) are satellite-based dataset
derived from the observations of the geostationary Meteostat satellites.
It has a higher resolution of 0.05◦ by 0.05◦. ERA-5 [57] (European
Reanalysis) is a global atmospheric reanalysis produced by the European
center for medium-range weather forecasts (ECMWF). The spatial res-
olution is approximately 31 km. In the simulation tools considered, each
dataset covers a limited range of years. In the PVGIS tool (Photovoltaic
Geographical Information System), the SARAH dataset does not include
years beyond 2016 (2015 in Renewables.ninja). Additionally, only Re-
newables.ninja and MERRA2 cover the year 2023. Both Renewables.
ninja and Correlations in Renewable Energy Sources (CorRES) use the
PVLib library to calculate the solar PV power output from the reanalysis
data mostly based on [58]. PVGIS developed their own method to
calculate the power profile. It is important to note that the PV power
time series generated by different tools can be updated over time. In this
study, it was observed that the original time series for Forlí, downloaded
from Renewable.ninja and CorRES in July 2022, differed from those
downloaded in September 2024. The version 5.2 of PVGIS was used at
the time of the publication. Some of the simulated time series (i.e. Re-
newables.ninja SARAH in Forlí and Utrecht 2014) contained missing
(zero) data points that were replaced by values from Renewables.ninja
MERRA2.

To extract the hourly time series, both the PVGIS and Renewables.
ninja APIs were used. To compare the different tools and datasets on the
same basis, and be consistent with the experimental plant features, the
same simulation set-up was applied for each run. Thus, in all cases, the
system losses are set to the one measured on-site, and the tilt, azimuth
and GPS coordinates are the same ones as the different experimental
plants. The type of solar panels, inverter and the parametrisation used in
the different tools can however hardly be changed. The default PV-panel
technology used in Renewables.ninja and CorRES are based on

crystalline silicon (c-Si) solar cell, while PVGIS leaves the choice be-
tween c-Si, Cadmium telluride (CdTe) and copper indium gallium sele-
nide solar cell (CIS) technologies. The PV-panel technology common to
most of the experimental plants and all the tools is the c-Si solar cells.
Therefore, this is the one chosen to construct the solar PV power time
series. Finally, some modelling options are specific to the tool being
used. For example, PVGIS allows the extraction of differentiated hourly
time series through the API, providing differentiation between building-
integrated and free-standing PV plants. The building-integration option
for rooftop PV systems accounts for reduced efficiency due to higher
temperatures in systems where ventilation is limited. This level of detail
is not available in Renewables.ninja and CorRES. Furthermore, the
simulation of bifacial panels is not supported in any of the tools
considered. In this study, when possible, we use the simulation settings
that most accurately reflect the characteristics of the experimental plant.
The different combination and generated power profiles have been
presented in Fig. 1 and the set-up of the different simulation and
experimental plants are summarized in Table 2.

2.5. Comparison between simulated and measured PV power time series

The measured and simulated time series are compared using the
following annual metrics: yearly average capacity factor differences
(CFdiff ), the Mean Absolute Error (MAE), and the Root Mean Square
Error (RMSE).

The annual average capacity factor difference is calculated using
Equation (1):

CFdiff =

∑n
i=1CFsim

i
n

−

∑n
i=1CFmeas

i
n

(1)

Where CFsim
i is the simulated capacitor factor per period i (1 h), CFmeas

i
the measured capacity factor at the experimental plant per period i, and
n is the number of hours simulated and measured per year.

The yearly MAE is calculated using Equation (2):

MAE=

∑n
i=1

⃒
⃒CFsim

i − CFmeas
i

⃒
⃒

n
(2)

The yearly RMSE is calculated according to Equation (3):

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
CFsim

i − CFmeas
i

)2

n

√

(3)

2.6. Fuel plant set-up and techno-economic assessment model

The idea of this study is to use an e-fuel plant techno-economic
assessment method that is one of the most commonly used in the liter-
ature. Therefore, this study uses a linear programming model that
minimizes investment and operation costs for storage, power supply,
and fuel production under constraints. The model used for this study, is
an open-source model [47] used and presented in Refs. [6,60], and [61].
This type of optimization model is state-of-the-art for e-fuel plant
techno-economic assessment and similar to the approach used in Refs.
[17,22,30,62] among others. Linear programming models (and in some
cases mixed integer linear programming models) have the advantage to
be fast solving and relatively easy to implement which explains their
relative popularity in the research community. However, these models
have the limitation to use only one weather year as input assuming
perfect foresight, thus not addressing power profiles uncertainties and
multi-year variations. Still, the objective of this study is not to assess the
relevance of using a method or another but to study the influence of
using simulated power data or measured ones when applying this widely
used method.

The power supply only consists in solar PV and the studied system is
off-grid (islanded). It is assumed that the fuel producer owns all the
production facilities that include a desalination plant, hydrogen and
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battery storages (if necessary), an electrolyser park, and a hydrogen end-
user. Three different hydrogen end-user profiles are investigated in the
study: “non-flexible”, “flexible” or “completely flexible”. In this work, a
non-flexible end-user needs a constant supply of hydrogen all year round
to ensure full load operation. A completely flexible end-user can handle
a variable hydrogen supply and shut down its operation if required. A
flexible user can handle a variable hydrogen supply but must operate
above a given minimal load and is therefore not allowed to rapidly shut-
down completely. The end-user taken for example in this study is an
ammonia plant (Haber-Bosch) and its air separation unit (ASU). How-
ever, the conclusions of the study would remain valid for other end-users
with similar hydrogen demand profiles. Based on [6], the minimal load
of the flexible user (ammonia plant) is 40 % of the nominal capacity.

A simplified flowchart of the e-fuel plant set-up is presented in Fig. 4,
where the three consumption profiles under investigation are schemat-
ically shown.

The mathematical formulation of the linear model is taken from
Campion et al. [6]. The objective function minimizes the total system
costs and is written as:

Minxu,t ,cu =
∑

u
(Iu*Au + Fu)*cu +

∑

u,t

(
Vu +Pu,t

)
*xu,t

Where t is the set of time (hours of the year) and u is the set of units
composing the e-fuel plant. The variable (positive) are xu,t , the output
flow of mass or energy from unit u at time t and cu, the installed capacity
of unit u. Pu,t is the hourly price of the output from unit u at time t. Fu and

Table 2
Set-up of the different PV power experimental plants and PV simulation tools.

Experimental PV plant Simulation tools

Forlì, Italy Turin, Italy Utrecht, The
Netherlands

Almería, Spain Renewable ninja PVGIS CorRES

Available years 2014–2015a 2019–2020 2014–2017 2023b Set identical to the experimental PV plant
Latitude 44.223 45.065 51.970c 36.931
Longitude 12.041 7.659 5.329c − 2.472
Tiltd 30◦ 26◦ 30◦ 22◦

Azimuthd 180◦e 206◦e 170◦e 178◦e

System loss 5 % 10 %f 5 % 9.75 %
Building integration Yes Yes Yes No Not in option Same as PV

plant
Not in option

Installed peak capacity
(kWp)

2.16 604.6 kWp 1.90 kWp 3992 kWp 1 kWp 1 kWp 1 kWp

Inverter nominal capacity
(kW), inlet/outlet

3.12/3.00 635g 2.0 3.8 MVA/3.67
MVA

Information not required

Inverter model Power One
Aurora 3.0

Sunny
Tripower

Confidential Freesun
FS3670KH000015

Inverter model
from [59]

Not
specified

ABB-MICRO-0-25-I-
OUTD-US-208V

Module manufacturer CNPV Benq Confidential Longi PV panel model
from [58]

Not
specified

Canadian solar

Module model CNPV-240P SunForte
PM096B00

Confidential LR4-72HBD-440M PV panel model
from [58]

Not
specified

CS5P-220M

PV cell technology Poli c-Si Mono c-Si Mono c-Si Mono c-Sih Poli c-Si Poli c-Si Poli c-Si

a Only partially.
b Year available only in Renewable ninja.
c Midpoint of the area reported in Visser et al. [51], values are based on system with ID002.
d In all cases there is no tracking system.
e Respectively 0◦, 26◦, − 10◦ and − 2◦ on the PVGIS website.
f Estimated.
g Multiple inverters.
h Bifacial PV panels.

Fig. 4. E-fuel plant set-up.
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Vu are the fixed and variable O&M costs of unit u. Iu is the investment
expenditure of unit u and Au the annuity factor, in this study equal to the
capital recovery factor using a discount rate of 8 %.

The driving constraint is the yearly fuel production target Du that
must be satisfied, MinD being the subset of units required to produce the
end-fuel (for example an ammonia plant):
∑

t
xu,t =Du ∀u∈MinD

Due to their limited effect on the results [6], ramping constraints
have been excluded. Still, the different units of the system are con-
strained to operate between their minimal load Lmin

u and their installed
capacity at all time:

cu*Lmin
u ≤ xu,t ≤ cu ∀u,t

Then, the electricity produced by a unit u belonging to the subset of
intermittent power units ψ (here the solar PV plant) is equal to the
installed power capacity multiplied by the normalized power profile
PPu,t of the unit u at time t. Values of PPu,t are then between 0 and 1.

PPu,t*cu = xu,t ∀u∈ψ ,t

The following constraint is enforced to ensure that chemicals reac-
tion mass balances are respected. Pi is the subset of units synthesizing a
product using a reactant coming from a unit belonging to the subset Ri.

xPi ,t = xRi ,t*PRPi ∀i,t

The balance of the different storage systems is ensured by the
following constraint where Tj is the subsets of units behaving like a tank,
Inj the subset of units used to charge a tank, and Outj the subset of units
used to discharge a tank. ρin

u and ρout
u are the charging and discharging

efficiencies of unit u. At t = 0, the tanks are empty but the plant can
operate without minimal load constraints during 10 days (240 h) to
leave time for the tanks to charge.

xu∈Tj ,t = xu∈Tj ,t− 1 + ρin
u∈Inj

*xu∈Inj ,t − ρout
u∈Outj*xu∈Outj ,t ∀j,t>1

Finally additional balance constraints are added to ensure that the
power and hydrogen balances are respected at all time (one constraint
per commodity). Consu is the consumption (when negative) or the pro-
duction (when positive) of electricity or hydrogen of a unit u.
∑

u
Consu*xu,t =0 ∀t

The techno-economic input data used in the model are presented in
Table 3.

Since, the price of water supply is usually negligible compared to the
other expenses, it is neglected to simplify the case study [6,17].

3. Results and discussion

This section is divided in three subsections. The first one presents the
difference between the simulated and measured time series for the
different data set and simulation tools used. The second analyses the

error propagation from the time series data to an e-fuel plant techno-
economic assessment and compares the time series induced error with
the uncertainty of other parameters such as electrolyser and solar PV
costs, electrolyser efficiency, solar PV costs, and weighed average cost of
capital (WACC).

3.1. Comparison between simulated and measured PV power time series

Fig. 5 shows the correlation between the measured (abscissa) and
simulated (ordinate) time series for the site of Forlì, Italy, using
normalized data from various models. Each subplot corresponds to a
different simulation dataset (e.g., RN-MERRA2, RN-SARAH), and the
color gradient illustrates the density of data points through Kernel
Density Estimation (KDE). The red/yellow regions represent high-
density areas where simulated values strongly overlap, while the blue
areas indicate lower densities. The red points represent the measured
values, illustrating the ideal fit. If the high-density areas are located
above the red line, it indicates an overestimation of the simulated data,
while points below the line suggest underestimation. The proximity of
the data to this line indicates how well each model matches the real-
world observations. The same comparison for the other sites is avail-
able online by running the PV time series analysis tool from the public
repository [46].

The RN-MERRA2 (the power profile generated with Renewables.
ninja using the MERRA2 dataset) simulation shows the strongest over-
estimation, with most of the hourly data points concentrated above the
measured data points (red dots), indicating that the simulated values are
consistently higher than the observed values. MERRA2, SARAH,
SARAH2 dataset usually overestimate the solar power production and
this result is consistent with the literature [40,45,66]. Simulation based
on the ERA-5 dataset, seems however to have a better correlation with
the measured power profile. A similar behaviour has been observed in
Utrecht for the years considered; in this case, the ERA-5 dataset also
shows outputs that are more closely aligned to the measured data. In the
case of data from Turin, all tools and datasets, including ERA-5, show
capacity factors overestimation, particularly for the year 2020.

Fig. 6 shows the yearly duration curve of the capacity factors for the
measured and simulated time series for different years and locations. In
this regard, it is possible to analyze more precisely when the error
occurs.

Similarly to the previous graph, Fig. 6 confirms that RN-MERRA2
systematically overestimates the solar potential across all hourly ca-
pacity factors, for all years and sites, except Almería. In Almería, the PV
panels from the measurement station are bifacial and higher capacity
factors are expected compared to the mono-facial panels modeled in
Renewables.ninja, which does not support bifacial panel simulation.
Despite this, the simulated capacity factors are higher than the measured
values during low-capacity factor periods, suggesting that RN-MERRA2
still overestimates solar resources in Almería, particularly during those
hours. It is also evident that PV power calculation tools using the same
dataset produce significantly different power production estimates,
highlighting the importance of the methods used for power estimation,

Table 3
Main techno-economic parameters used in the model.

CAPEX Fixed O&M Electrical consumption Flexibility Lifetime

Electrolyser AEC [6] 56.5 k€/(kgH2/h)a 2 % CAPEX 51.5 kWh/kgH2 [0–100 %] 25 years
Solar PV [6] 550 €/kWp 9.1 €/kW/y – – 35 years
Hydrogen storage (underground pipes) [63] 461 €/kgH2 1 €/kgH2/y Compression 30–100 bars

0.94 kWh/kgH2

Max discharge level of 91 % 50 years

Batteries 362 €/kWh [64] 5.1 €/kWh [7] 0.09 kWh/kWhstored [65] Max discharge level of 80 % 20 years [65]
H2 end user     
Ammonia plant (incl. ASU) [6] 4192 €/(kgNH3/h) 436 €/(kgNH3/h)/y 0.38 kWh/kgNH3 [0–100 %]

[40–100 %]
[100 %]

25 years

a Includes stack replacement cost every 10 years using stack net present value.
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such as accounting for losses due to high temperatures. For instance,
PVGIS offers the option to model either building-integrated or free-
standing systems, which may explain why its results are more closely
aligned with the measured data. Another key observation is that the
discrepancy between simulated and measured capacity factors is

consistently larger for low-capacity factors (between 0.4 and 0.05),
typically occurring on cloudy days. Among the models, PG-SARAH2 and
PG-SARAH are the closest to the measured values during these low-
capacity factor periods, whereas RN-MERRA2 and PG-ERA5 tend to
estimate higher capacity factors in this range. Overall, the significant

Fig. 5. Simulated and measured time series correlation in Forlì 2014–2015.

Fig. 6. Duration curves comparing measured (PV-MEAS) with simulated data.

N. Campion et al. Renewable and Sustainable Energy Reviews 209 (2025) 115044 

9 



differences between measured and simulated power profiles may stem
from the challenges in accurately estimating hourly average capacity
factors during cloudy conditions.

Fig. 7 shows high resolution data for both a cloudy and a clear-sky
day. By analyzing the figure, it is possible to provide an interpretation
for the larger error observed, particularly in relation to the impact of
cloud cover on the simulations.

During a cloudy day, with frequent alternation between high and low
irradiance episodes (right side of Fig. 7), the calculation of the hourly
capacity factor average differs significantly between the measured and
simulated values. As noted in the PVGIS documentation, the hourly
satellite data points are not derived from an average of multiple obser-
vations but from a single data point taken at a “random” time within the
hour. If this point is captured during a cloudy period, the hourly capacity
factor will be low, whereas if it is recorded during a brief sunny period,
the hourly capacity factor will be high, even if the measured hourly
average capacity is low. This explains why, during the time steps be-
tween 9000 and 11,000 in Forlì, the measured average power (black
line) is low, while all the simulated time series overestimate the avail-
able power. It also explains the significant differences in power pro-
duction estimates from different tools within the same cloudy hour, as
each tool may select its data point at a different time within that hour.
Inaccurate cloud modelling, as notably mentioned by Ref. [40] for the

MERRA-2 dataset, may also explain the large power production values
observed during cloudy episodes, particularly with the ERA-5 and
MERRA-2 datasets. This aligns with the findings of [67], who reported
that MERRA-2 (and ERA-Interim) sometimes predicts clear-sky condi-
tions when the sky is actually cloudy.

On a generally clear-sky day (left side of Fig. 7), the simulated time
series align much more closely with the measured hourly average.
However, the “single data point measurement” approach may still
explain some differences between the measured and simulated time
series. If the data point is taken at the beginning of the hour, the hourly
capacity factor may be overestimated in the afternoon and under-
estimated in the morning, as observed with the RN-MERRA2 time series.
While, if the point is taken at the end of each hour, the capacity factor
could be overestimated in the morning and underestimated in the af-
ternoon. Ideally, this assumption could be tested by checking the exact
time of the satellite measurement point and comparing it with ground-
based measurements. However, this information is not available from
the tools assessed. It is important to note that these patterns remain
consistent across different sites and years.

The graphs in Fig. 8 present the errors in CF values between
measured data and the estimations from selected simulation tools across
various years and locations. The first graph shows the annual average CF
differences (CFdiff), with positive values indicating overestimations by

Fig. 7. Comparison of simulated and measured time series based on high-resolution data.
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the simulation tools. The average measured CF for each location and
year is provided in parentheses beneath the location name, with higher
average CF for the bifacial plant in Almería and lower for the plant in the
Netherlands. The second graph shows the mean absolute error, repre-
senting the average magnitude of errors between the measured data and
the simulation tools, with lower values indicating better accuracy. The
third graph illustrates the root mean squared error, which penalizes
larger errors more heavily by squaring the differences.

The first graph shows that most of the simulation tools have a posi-
tive CFdiff, indicating that they tend to overestimate the CF, except for
CR-ERA5 in Forlì and Utrecht 2016 and PG-SARAH in Utrecht 2016. The
graph confirms the high overestimations of RN-MERRA2 across all lo-
cations, and the exception for Almería 2023, due to the bifacial plant
that do not allow direct comparison. CorRES, using ERA5 dataset tends
to have smaller deviations from the measured data, except for a signif-
icant overestimation in Torino (between 1.3 % and 1.9 %). Other tools,
like PG-SARAH2, PG-ERA5 and PG-SARAH, also show moderate over-
estimations. The same dataset (SARAH) with the two different tools
Renewables.ninja and PVGIS gives different results, showing that the
post-processing of the weather dataset also has a significant influence on
the results.

The differences between MAE and RMSE graphs are relatively small,
suggesting that there are not many extreme outliers or large deviations
that would significantly inflate the RMSE values. RN-MERRA2 show
higher errors across most locations, while CR-ERA5 shows particularly
high MAE in Forlì 2014 (6.2 %). PG-SARAH2, PG-ERA5 and RN-SARAH
show consistent performance with MAE values ranging from 2.6 % to
4.2 %, demonstrating lower error magnitudes across all locations.

The plants in Utrecht and Turin allow comparisons between different
years: in both locations, during the year with highest average CF, the
simulated time series show lower CFdiff. In the PV plant in Turin in the
year 2019, with an average capacity factor of 14.3 %, the CFdiff is in a
range between 0.3 % and 2.8 %, with a better performance of the ERA5
dataset and PVGIS tool. While in 2020, with an average capacity factor
of 13.6 %, the CFdiff ranges from 0.9 % to 3.5 %. In Utrecht 2016 with

high average CF, the CFdiff spans from − 0.2 % to 2.5 %, while in 2017,
with low average CF, it ranges from 0.6 % to 3.2 %. This behaviour
supports the hypothesis that more cloudy days can lead to greater
uncertainties.

3.2. Error propagation to the e-fuel techno-economic assessment

As presented in the methods section, a techno-economic assessment
of an e-fuel plant is performed using both simulated and measured time
series data. The model used is a state-of-the-art linear cost optimization
model minimising both investments and plant operations [6,47].
Various hydrogen end-user consumption profiles are analysed:
non-flexible, flexible, and completely flexible. In this case, the hydrogen
end-user is an ammonia plant. A non-flexible profile means that the
ammonia plant operates at full load continuously, while the flexible
profile allows operation between 40 % and 100 % load, and the
completely flexible profile permits operation between 0 % and 100 %
load. The yearly ammonia production target is set to 100 ktonnes of
ammonia, requiring around 18.1 ktonnes of green hydrogen as input.
Fig. 9 shows the relative error in levelized cost of fuel (LCOF)—specif-
ically, in this case, the levelized cost of ammonia (LCOA)—across
different sites and years when simulated PV power time series are used
instead of measured data for the techno-economic assessment of the
e-fuel plant.

It is observed that all tools and datasets consistently underestimate
the LCOF for all sites and all years. In general, the LCOF error decreases
for hydrogen end-users that are more flexible. None of the tools appears
to consistently outperform the others across all sites and years; however,
RN-MERRA2 usually gives the largest LCOFwhen the hydrogen end-user
is completely flexible. In Almería, the LCOF error is consistently low,
primarily because the bifacial PV panels at the measurement station are
more efficient than the monofacial panels modeled in the simulations.
Measured data for monofacial PV panels from the Almería site were not
available at the time of the study but will be shared in the public re-
pository associated with this study [46] once they become available.

Fig. 8. Yearly error measurement between simulated and measured times series across various locations and years, with a focus on three metrics: the annual CF
difference (CFdiff), the mean absolute error (MAE), and the root mean squared error (RMSE).
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3.2.1. Explanation of the error propagation with the study case of Forlì
This section focuses on the study case of Forlì in the year 2014–2015

(from 03 to 10–2014 to 30-09-2015) to explain the error propagation
from PV power time series to fuel production costs estimates. Most of the
interpretations made in this section can be extrapolated to other sites
with similar characteristics. Fig. 10 provides a detailed cost breakdown
and the associated LCOF for an optimized e-fuel plant system in Forlì.

It can be observed that the underestimation of LCOF when using

simulated PV power time series is associated with underestimated costs
for the PV plant, electrolyzer, intermediate hydrogen storage, and, to a
lesser extent, the battery system. This occurs because the overestimation
of solar resources in all the simulated time series leads to an undersized
e-fuel production system compared to the one sized using measured PV
power profiles, as shown in Table 4.

In Forlì, the cost underestimation is between 9.3 and 17.3 % for
flexible hydrogen end-users and between 24.6 % and 15.1 % for non-

Fig. 9. Relative error in LCOF from using simulated instead of measured PV power time series for different sites, years, reanalysis dataset and simulation tools.

Fig. 10. Cost breakdown, LCOF and relative difference with the PV-MEAS input time series in Forlì 2014–2015 (Italy).

Table 4
Optimal installed capacities in Forlì 2014–2015 depending on the PV power profile time series.

Fuel plant unit Installed capacities for a specific PV power profile with a flexible end-user [40–100 %] load

PV-MEAS RN-MERRA2 PG-SARAH2 PG-ERA5 CR-ERA5 PG-SARAH RN-SARAH

Electrolyser AEC (tH2/h) 7.6 6.9 7.5 7.0 6.9 7.4 7.1
H2 storage (tH2) 433.3 236.4 273.1 205.7 252.6 154.0 243.3
Batteries (MWh) 84.4 72.6 73.2 69.6 79.5 78.5 77.9
Solar PV plant (MW) 991.3 787.3 850.3 824.3 968.2 885.2 906.3
Flexible ammonia plant (tNH3/h) 14.8 15.3 15.3 15.1 14.6 15.0 14.9
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flexible hydrogen end-users. For a fully flexible end-user, the cost esti-
mates error is reduced to [− 10.2, − 3.4 %]. Similarly to what Mathews
et al. [45] observed, these differences are due to how the hydrogen
storage is sized and operated. As shown in Fig. 11, when the hydrogen
end-user must operate at full load all year, the storage is used in a sea-
sonal configuration, requiring large investments in storage capacities
but also electrolyser and PV plant capacities to produce enough
hydrogen in summer to have it available in winter and produce the
required amount of ammonia. In this case, the solar PV plant must be
two times larger and the hydrogen storage six times larger compared
with the flexible end-user. For a more flexible end-user, operating above
40 % load all year round, the storage is operated with shorter cycle and
smaller capacities are required to satisfy the end-user hydrogen demand
during winter. Finally, when the end-user is completely flexible,
meaning that the ammonia (or methanol) plant would be able to be
rapidly shut down on a regular basis, the hydrogen storage needed is
much smaller and operates for daily cycles rather than seasonal storage.
In this case, overestimating the solar resources has a lower influence on
the LCOF estimates as the invested capacities for hydrogen storage (and
subsequent electrolyser and PV plant oversizing) are limited.

Similar optimal hydrogen storage operation patterns are observed in
the sites of Utrecht, Turin and Almería. In Almería, due to lower seasonal
variability, the hydrogen storage size is reduced but is still operated as
seasonal storage for non-flexible hydrogen end-users. E-fuel plants that
combine wind and solar power or have access to grid back-up power
typically observe storage operations limited to daily (or weekly) cycles
[6]. For these types of systems, the error induced by PV power time
series simulation should be reduced.

3.2.2. Comparison with the error of other uncertain parameters
Using simulated or measured solar PV data has clearly a significant

impact on the LCOF estimates and optimal system design. However,
when assessing power-to-X systems, a large variety of other techno-
economic parameters are also uncertain and can influence the results.
Comparing the influence of other parameters uncertainties with the ones
inherent to simulated power time series gives an idea on where the focus
is the most needed to obtain reliable data. Various studies performing
sensitivities analysis on power-to-X systems [15,68–70] already identi-
fied that the most sensitive parameters to the costs estimates are the
weighted average cost of capital (WACC) (or discount rate), the cost of
the electrolyser and the cost of the renewable power supply. Considering
a flexible hydrogen end-user ([40–100 %]) load, which is a common
practice in literature, the LCOF obtained in Forlì is 1132 €/tNH3 using
RN-MERRA2 and 1369 €/tNH3 using PV-MEAS (+20.9 % compared to
using RN-MERRA2). Fig. 12 shows the extent of parameter variation
required to achieve a similar change in LCOF (LCOA). The simulated
time series chosen for comparison is the default option from Renew-
ables.ninja (RN-MERRA2) which one of the most popular options in the
literature.

These results demonstrates that the error inherent to use simulated
PV power profiles instead of measured ones is rather significant
compared to the uncertainties of other parameters. Indeed, an over-
estimation of PV or AEC capex (and the associated opex increase) of 56
% is needed to have the same influence of using a measured profile
instead of a simulated one. For comparison, the Danish Energy Agengy
(DEA) technology catalogue [71] gives an uncertainty range between
− 3.5 % and +7 % for utility scale PV plant capex (between 540 and 600

Fig. 11. Optimal intermediate hydrogen storage behaviour depending on the end-user flexibility in the site of Forlì using measured PV power data. First data point is
03-10-2014 and last 30-09-2015.

Fig. 12. Influence of using a measured PV power time series (PV-MEAS) rather than a simulated (RN-MERRA2) compared to other parameters variation for a flexible
hydrogen end-user. Capex variations are associated with opex variation as opex values are expressed in percentages of capex.
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€/kW with 560 €/kW as benchmark value in 2020). The Irena reports
that the 5th and 95th percentile of 2022 total installed cost for
utility-scale PV plants ranges between 569 and 1878 USD/kW with a
weighted average of 876 USD/kW so with maximum variations between
− 35 % and +114 % [72]. Regarding large scale electrolysis (AEC) plant
Capex, the DEA technology catalogue reports min-max values between
400 and 800 €/kW [71] while Irena proposes a range between 437 and
875 €/kW [73] (excluding stack replacement costs). Using the measured
time series instead of a simulated one has the same influence on the
LCOF as difference of 614 €/kW in electrolyser capex which is actually
higher than the min-max range proposed by DEA and Irena. Similarly
[73], estimates AEC electrolysis system efficiencies between 50 and 82
kWh/kgH2 meaning that choosing the high-end electrical consumption
value instead of the low-end one is equivalent to using a measured solar
PV profile instead of a simulated one. The local WACC (or discount rate)
in most countries usually varies between 5 and 9 % [15]. A 2.6 % ab-
solute WACC difference is enough to reach the same effect as using a
measured time series, meaning that the uncertainties related to the
WACC are likely to have a greater or similar influence than the one
related to PV time series quality. The uncertainties associated with
factors like the PV or the electrolyser plants’ lifetime, as well as other
parameters that were found to have a limited impact on LCOF in prior
analyses such as ammonia plant ramping rates [6], compressors costs
[15], hydrogen storage costs [70], batteries costs [15], ammonia plant
costs [70], appear to have a much lower importance compared to the
inherent PV simulated power profile uncertainties.

3.3. Results summary and recommendations

Table 5 summarizes the key findings of this analysis, presenting a
comparison between the PV power time series generated from simula-
tions and those derived from measurements. It also compares the out-
comes of the techno-economic assessment for e-fuel (e-ammonia)

production when using simulated or measured PV power time series as
input. The table presents the result range obtained from all the different
sites and years. However, the site of Almería was removed due to the
limited number of simulations tools available for the year 2023 at the
time of the publication. New data will be added on the public repository
[46] when available.

A general observation is that, in most cases, the error propagation
from the PV power time series to the LCOF estimates is quite significant,
the effect being more pronounced for non-flexible hydrogen end-users.
Table 5 also shows that a relatively small error difference between the
measured and simulated time series can be largely amplified when
calculating the LCOF for the off-grid solar powered system analysed in
this study. Accurately measuring the annual capacity factor does not
necessarily guarantee a low error in estimating the LCOF. For example,
in Utrecht 2016, with a non-flexible end user, CR-ERA5 provided the
most accurate estimate of the annual capacity factor, with a CFdiff of
− 0.2 %. However, it ranked only third in estimating the LCOF, with an
error of − 14 %. The tools and datasets that are most accurate for LCOF
estimation also tend to vary across different sites and years. In some
cases, such as in Turin, PG-ERA5 consistently delivered the most accu-
rate LCOF estimates for all hydrogen end-user consumption profiles in
2019, but this was not the case in 2020. Some of these observations can
be attributed to how different simulations perform when estimating the
capacity factor during cloudy or winter days. If the intermediate
hydrogen storage is used seasonally or in monthly cycles, overestimating
solar resources in winter can significantly influence storage investment
decisions. This, in turn, leads to oversizing the related PV plant and
electrolyser, thereby increasing the LCOF error. As shown in Fig. 6,
which presents capacity factor duration curves, simulations that closely
match the measured time series for lower capacity factors tend to deliver
more accurate LCOF estimates. Based on these observations, it can be
concluded that when hydrogen storage is used seasonally, accurately
estimating the yearly average capacity factor is not the key factor for

Table 5
Results summary.

Site description
-Location
-Years of measurements
-Climate

Solar PV power time series comparison E-fuel techno-economic assessment comparison

Values (%) with associated time series
and year

H2 end-user
flexibility

H2 storage
operation

LCOF differencesa (%)

Min Max Min Max

Forlì, North Italy
2014–2015
Humid subtropical climate (Cfa), hot and humid
summers, cool and damp winters

CFdiff ¡0.2 %
CR-ERA5

2.2 %
RN-MERRA2

Non flexibleb Seasonal cycles ¡15.1 %
RN-SARAH

¡24.6 %
PG-ERA5

MAE 3.4 %
PG-ERA5

6.2 %
CR-ERA5

Flexiblec Monthly cycles ¡9.3 %
CR-ERA5

¡17.3 %
RN-MERRA2

RMSE 7.2 %
PG-SARAH2

11.1 %
CR-ERA5

Fully flexibled Daily cycles ¡3.4 %
CR-ERA5

¡10.2 %
RN-MERRA2

Turin, North Italy
2019–2020
Humid subtropical climate (Cfa)

CFdiff 0.3 %
PG-ERA5
(2019)

3.5 %
RN-MERRA2
(2020)

Non flexible Seasonal cycles ¡7.5 %
PG-ERA5
(2019)

¡25.6 %
RN-MERRA2
(2020)

MAE 4.0 %
PG-SARAH2
(2019)

6.6 %
RN-MERRA2
(2020)

Flexible Monthly cycles ¡7.8 %
PG-ERA5
(2019)

¡21.9 %
RN-MERRA2
(2020)

RMSE 7.8 %
PG-SARAH2
(2019)

11.8 %
RN-MERRA2
(2020)

Fully flexible Daily cycles ¡5.1 %
PG-ERA5
(2019)

¡17.0 %
RN-MERRA2
(2020)

Utrecht, The Netherlands
2014–2017
Temperate oceanic climate (Cfb), warm summer,
cool winters, frequent clouds

CFdiff ¡0.2 %
CR-ERA5
(2016)

3.3 %
RN-MERRA2
(2014)

Non flexible Seasonal cycles ¡7.0 %
PG-SARAH
(2016)

¡36.2 %
PG-ERA5
(2015)

MAE 2.6 %
RN-SARAH
(2014)

4.6 %
RN-MERRA2
(2014–2015)

Flexible Seasonal
cyclese

¡6.3 %
PG-SARAH
(2016)

¡25.3 %
PG-ERA5
(2015)

RMSE 5.4 %
RN-SARAH
(2014)

9.9 %
RN-MERRA2
(2015)

Fully flexible Daily cycles ¡0.8 %
PG-SARAH
(2016)

¡17.5 %
RN-MERRA2
(2014)

a The relative LCOF difference is obtained using the measured time series as reference. Here, the hydrogen end-user is an ammonia plant.
b Always full load operation.
c Operation between 40 and 100 % load, no possibility to shut down the plant.
d Operation between 0 and 100 % load.
e Except when using the year 2015, where monthly cycles are optimal.
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achieving reliable LCOF estimates and relying solely on this parameter
for cost predictions is misleading. Instead, the accuracy of PV power
profile simulations during cloudy and winter days plays a more critical
role, as it strongly influences the optimal sizing of hydrogen storage and
the overall plant configuration. Similar observations were also made by
Ref. [45], which comforts the conclusions of the present analysis. These
results apply to islanded (off-grid) fuel production systems. If a grid
connection is available alongside the PV power supply, the error prop-
agation to LCOF estimates from PV power simulations is likely to
decrease. This is because the need for intermediate storage and system
oversizing would be reduced [6]. For a completely flexible end-user,
where hydrogen storage sizing has less impact on the LCOF, the per-
formance of different simulation tools varies. As expected, RN-MERRA2
consistently underestimates the LCOF the most, which aligns with its
poorer performance compared to other tools across CFdiff, MAE, and
RMSE indicators.

In locations where measured data is unavailable, modellers can use
various methods to mitigate the errors inherent in simulated time series.
One approach is to assume higher PV system losses in the simulations,
which can help lower the overall error in LCOF estimates. However, this
method may still lead to undersized system designs, as simulated time
series often fail to accurately represent non-clear sky conditions and
winter days. Modelling the hydrogen end-user as a completely flexible
off-taker and avoiding seasonal use of hydrogen storage can also help
reduce the error propagation from PV power time series to LCOF esti-
mates, although errors of up to 17.5%may still occur in cloudy climates.
Finally, simulating PV panels with lower performance than actual con-
ditions (e.g., using monofacial instead of bifacial panels) could be
another strategy to minimize LCOF errors. While these approaches,
along with a critical evaluation of the LCOF estimates, may be adequate
for modelling purposes, actual investment decisions and plant sizing
should be based on high-quality, ground-measured PV power production
data from locations near the proposed hydrogen production site.
Developing open-access datasets that include validated PV generation
data from various existing production sites would help stakeholders
minimize the risk of project failure. For locations where no existing data
is available, an alternative would be to set up a small-scale PV test bench
(on the order of kilowatts) before deploying the electrolyser and other
Power-to-X components. This would allow for experimental verification
of the real renewable energy production potential.

4. Conclusion

This study has focused on assessing the impact of solar power profile
simulation bias when leading techno-economic assessment of islanded e-
fuels production systems. The study compares the effect of using PV
power time series generated with standard open-source models using
reanalysis data versus using experimental data in e-fuels techno-
economic assessments. The experimental solar PV power production
data have been obtained at the site of Forlì and Turin in Italy, Utrecht in
Netherlands and in Almería in Spain. All the sites had a high temporal
resolution leaving the possibility to analyze the influence of sub-hourly
variation of PV power production. The e-fuel plant techno-economic
assessment is done with a state-of-art investment and operation cost
optimization model and simulated or experimental are used as input. By
comparing the results, this study evaluates the influence of the time
series simulation error bias on the e-fuel system design and fuel pro-
duction costs using as an example, ammonia as a final product. One
general conclusion of the analysis is that e-fuel project developers and
modellers designing islanded e-fuel production system relying on
simulated solar PV power should expect lower performances in reality.
The results show that some PV power time series simulation tools pro-
vide accurate estimations, particularly during clear-sky days and periods
of high-capacity factors. Conversely, they tend to overestimate pro-
duction during low-capacity factor periods on cloudy days. These errors
in PV production estimation can lead to significant error amplification

when used in the techno-economic assessment of e-fuel plants. Typi-
cally, overestimating solar resources results in an undersized hydrogen
storage, electrolyser and power supply systems, and this effect is
significantly amplified when the intermediate hydrogen storage is used
seasonally. The tools and dataset tested leads to LCOF underestimation
between 7 and 36.2 % with an average of 19.8 % across all sites (except
Almería) and years, when the hydrogen end-user is constrained to run at
full load all year. When the hydrogen end-user can operate only within a
40–100 % load range, the LCOF underestimation is between 6.3 and
25.3 % with an average of 14.5 %. For a completely flexible hydrogen
end-user, the LCOF underestimation is between 0.8 and 17.4 % with an
average of 8.5 %. None of the datasets or tools tested consistently
outperform the others across different sites and years. In the specific case
of Forlì with a flexible hydrogen end-user, it was found that using
measured PV power time series instead of simulated ones is equivalent
to overestimating the capital expenditure (CAPEX) of the PV plant or the
electrolyzer by 56 %, the electrolyzer’s electrical consumption by 58.5
%, or applying a discount rate (WACC) of 10.6 % instead of 8 %. This
shows that the error inherent to using simulated PV power profiles
instead of measured ones is likely to be higher than the one caused by
other uncertainties for other parameters. The choice of the WACC is
likely to give the same or higher order of error magnitude, as literature
values usually vary between 4 and 10 %.

Further work should assess the impact of solar uncertainties across a
wider range of locations and climates where high-quality measured
power data is available. The newer and improved versions of the open-
source PV power simulation tools should also be continuously tested in
the future. To support this effort, an open-source collaborative re-
pository was developed based on the work presented in this analysis.
The repository provides open-source scripts for extracting simulated PV
power profiles, conducting solar PV time series analysis, and performing
green hydrogen techno-economic assessments using either simulated or
measured solar PV power profiles [46,47]. Finally, follow-up research
could focus on examining the impact of wind power generation un-
certainties and analysing systems that combine both wind and solar
power. Additionally, it could explore non-islanded systems that also
include a grid connection.
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[2] Svitnič T, Sundmacher K. Renewable methanol production: optimization-based
design, scheduling and waste-heat utilization with the FluxMax approach. Appl
Energy 2022;326:120017. https://doi.org/10.1016/J.APENERGY.2022.120017.

[3] Kofler R, Clausen LR. Increasing carbon efficiency for DME production from wheat
straw and renewable electricity – analysis of 14 system layouts. Energy Convers
Manag 2023;281:116815. https://doi.org/10.1016/J.ENCONMAN.2023.116815.

[4] Zhang H, Wang L, Van herle J, Maréchal F, Desideri U. Techno-economic
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[45] Mathews D, Ó Gallachóir B, Deane P. Systematic bias in reanalysis-derived solar
power profiles & the potential for error propagation in long duration energy
storage studies. Appl Energy 2023;336:120819. https://doi.org/10.1016/J.
APENERGY.2023.120819.

[46] Montanari G. giumonros/Measured-vs-simulated-PV. https://github.com/giumo
nros/Measured-vs-simulated-PV. [Accessed 18 October 2024].

[47] Campion N GitHub - njbca/OptiPlant: Optiplant is a linear optimization model that
minimize the investment and operation costs of a power-to-X system that can be
powered with wind, solar and the grid 2023. https://github.com/njbca/O
ptiPlant/(accessed June 3, 2024).

[48] World Bank. Global Solar Atlas n.d https://globalsolaratlas.info/map.
[49] Beck HE, McVicar TR, Vergopolan N, Berg A, Lutsko NJ, Dufour A, et al. High-
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[60] Letoffet A, Campion N, Böhme M, Jensen CD, Ahrenfeldt J, Clausen LR. Techno-
economic assessment of upgraded pyrolysis bio-oils for future marine fuels. Energy
Convers Manag 2024;306:118225. https://doi.org/10.1016/J.
ENCONMAN.2024.118225.

[61] Kofler R, Campion N, Hillestad M, Meesenburg W, Clausen LR. Techno-economic
analysis of dimethyl ether production from different biomass resources and off-grid
renewable electricity. Energy Fuel 2024;38:8777–803. https://doi.org/10.1021/
ACS.ENERGYFUELS.4C00311/SUPPL_FILE/EF4C00311_SI_001.PDF.

[62] Osman O, Sgouridis S, Sleptchenko A. Scaling the production of renewable
ammonia: a techno-economic optimization applied in regions with high insolation.
J Clean Prod 2020;271:121627. https://doi.org/10.1016/j.jclepro.2020.121627.

[63] Papadias DD, Ahluwalia RK. Bulk storage of hydrogen. Int J Hydrogen Energy
2021;46:34527–41. https://doi.org/10.1016/J.IJHYDENE.2021.08.028.

[64] IRENA. Electricity storage and renewables: costs and markets to 2030. 2017.
[65] DEA. Technology data energy storage. 2020.
[66] Yi Y, Kimball JS, Jones LA, Reichle RH, Mcdonald KC. Evaluation of MERRA land

surface estimates in preparation for the soil moisture active passive mission. J Clim
2011;24:3797–816. https://doi.org/10.1175/2011JCLI4034.1.

[67] Boilley A, Wald L. Comparison between meteorological re-analyses from ERA-
Interim and MERRA and measurements of daily solar irradiation at surface. Renew
Energy 2015;75:135–43. https://doi.org/10.1016/J.RENENE.2014.09.042.

[68] Mukherjee A, Bruijnincx P, Junginger M. Techno-economic competitiveness of
renewable fuel alternatives in the marine sector. Renew Sustain Energy Rev 2023;
174:113127. https://doi.org/10.1016/J.RSER.2022.113127.

[69] Bellotti D, Rivarolo M, Magistri L. A comparative techno-economic and sensitivity
analysis of Power-to-X processes from different energy sources. Energy Convers
Manag 2022;260:115565. https://doi.org/10.1016/j.enconman.2022.115565.

[70] Wang C, Walsh SDC, Longden T, Palmer G, Lutalo I, Dargaville R. Optimising
renewable generation configurations of off-grid green ammonia production
systems considering Haber-Bosch flexibility. Energy Convers Manag 2023;280:
116790. https://doi.org/10.1016/J.ENCONMAN.2023.116790.

[71] Technology Data | Energistyrelsen n.d https://ens.dk/en/our-services/projections
-and-models/technology-data (accessed September 11, 2023).

[72] Irena. Renewable generation costs in 2022. 2022.
[73] International Renewable Energy Agency. Green hydrogen cost reduction: scaling

up electrolysers to meet the 1.5C climate goal. 2020. Abu Dhabi.

N. Campion et al. Renewable and Sustainable Energy Reviews 209 (2025) 115044 

17 

https://doi.org/10.1016/J.RSER.2022.112741
https://doi.org/10.1016/J.RSER.2021.111614
https://doi.org/10.1016/J.RSER.2021.111614
https://doi.org/10.1016/J.APENERGY.2023.120819
https://doi.org/10.1016/J.APENERGY.2023.120819
https://github.com/giumonros/Measured-vs-simulated-PV
https://github.com/giumonros/Measured-vs-simulated-PV
https://github.com/njbca/OptiPlant/
https://github.com/njbca/OptiPlant/
https://globalsolaratlas.info/map
https://doi.org/10.1038/s41597-023-02549-6
https://doi.org/10.1038/s41597-023-02549-6
https://koppen.earth/
https://doi.org/10.1063/5.0100939/2848635
https://doi.org/10.1016/j.renene.2015.06.017
https://doi.org/10.1016/j.renene.2015.06.017
https://doi.org/10.1016/J.MEASUREMENT.2022.112309
https://doi.org/10.1016/J.MEASUREMENT.2022.112309
https://doi.org/10.1002/wene.329
https://doi.org/10.1175/JCLI-D-11-00015.1
https://doi.org/10.3390/RS70608067
https://doi.org/10.1002/QJ.3803
https://doi.org/10.1002/QJ.3803
https://doi.org/10.1016/J.SOLENER.2009.12.002
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref58
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref58
https://doi.org/10.1016/J.ENCONMAN.2024.118225
https://doi.org/10.1016/J.ENCONMAN.2024.118225
https://doi.org/10.1021/ACS.ENERGYFUELS.4C00311/SUPPL_FILE/EF4C00311_SI_001.PDF
https://doi.org/10.1021/ACS.ENERGYFUELS.4C00311/SUPPL_FILE/EF4C00311_SI_001.PDF
https://doi.org/10.1016/j.jclepro.2020.121627
https://doi.org/10.1016/J.IJHYDENE.2021.08.028
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref63
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref64
https://doi.org/10.1175/2011JCLI4034.1
https://doi.org/10.1016/J.RENENE.2014.09.042
https://doi.org/10.1016/J.RSER.2022.113127
https://doi.org/10.1016/j.enconman.2022.115565
https://doi.org/10.1016/J.ENCONMAN.2023.116790
https://ens.dk/en/our-services/projections-and-models/technology-data
https://ens.dk/en/our-services/projections-and-models/technology-data
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref71
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref72
http://refhub.elsevier.com/S1364-0321(24)00770-6/sref72

	Green hydrogen techno-economic assessments from simulated and measured solar photovoltaic power profiles
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Sites selection and description
	2.3 On site PV-plant power measurement
	2.3.1 PV plant set-up and measurements in Forlì, Italy (Cfa)
	2.3.2 PV plant set-up and measurements in Turin, Italy (Cfa)
	2.3.3 PV plant set-up and measurements in Utrecht, Netherlands (Cfb)
	2.3.4 PV plant set-up and measurements in Almería, Spain (BWh)

	2.4 PV-plant power time series simulation
	2.5 Comparison between simulated and measured PV power time series
	2.6 Fuel plant set-up and techno-economic assessment model

	3 Results and discussion
	3.1 Comparison between simulated and measured PV power time series
	3.2 Error propagation to the e-fuel techno-economic assessment
	3.2.1 Explanation of the error propagation with the study case of Forlì
	3.2.2 Comparison with the error of other uncertain parameters

	3.3 Results summary and recommendations

	4 Conclusion
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	datalink4
	References


