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Tutorial

Imagine you booked a horseback riding experience for 
yourself and your loved ones. You gather all the equip-
ment necessary to get you through this exciting day and 
drive your car toward the farm where an expert eques-
trian is waiting for you. Once you get there, you imme-
diately start looking around for horses, but none seem 
to be at eye distance until you see something moving 
behind a bush. It is quite far away, so you start squinting 
in that direction and catch a glimpse of a donkey. Now, 
according to a famous joke (Senn, 2007), if you are a 
Bayesian-minded person, chances are you will conclude 
that you have seen a mule. Despite simplifying a lot, this 
funny story is useful to give an immediate picture of the 
core of Bayesian thinking. Indeed, from a Bayesian per-
spective, the probability of an event is given by both the 
evidence one is presented with (the donkey) and the 
expectation one has about the event before one observes 

it (the horse). More precisely, the theorem proposed by 
the English mathematician and minister Thomas Bayes 
(Bayes, 1763) provides a formula to determine the con-
ditional (or posterior) probability of an event, that is, 
the probability of an event given that another event has 
taken place. Despite appearing unintuitive, we apply 
this reasoning in many daily life circumstances. For 
instance, we have different expectations about getting 
rain if we are having a sunny or cloudy day. That is the 
case because people use the available information to 
create an expectation (Knill & Pouget, 2004).
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Abstract
One of the most common applications of Bayes’s theorem for inferential purposes consists of computing the ratio 
between the probability of the alternative and the null hypotheses via a Bayes factor, which allows quantifying the most 
likely explanation of the data between the two. However, the actual scientific questions that researchers are interested 
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test, interpret, and report in a scientific article Bayesian informative hypotheses using JASP and R/RStudio software for 
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Formally, the Bayes theorem is represented by the 
following formula:

	     P A|B
P B|A P A

P B
,( ) = ( ) ( )

( )
	 (1)

where A and B are two events, B has a probability dif-
ferent from 0, P(A|B) is the conditional probability of 
A occurring given that B is true (posterior probability), 
P(B|A) is the conditional probability of B occurring 
given that A is true (likelihood), P(A) is the uncondi-
tional (i.e., not secondary to other events) probability 
of observing A (prior probability), and P(B) is the uncon-
ditional (i.e., not secondary to other events) probability 
of B (marginal probability).

This formula can be read as follows: The probability 
of A given B equals the probability of B given A mul-
tiplied by the probability of A over the probability of 
B. This means that the conditional probability of the 
first event (A) when the second event (B) is true 
depends on the likelihood that the second event occurs 
when the first one occurs—P(B|A)—and on the indi-
vidual probabilities of the two single events—P(A) and 
P(B).

In more concrete terms, using Bayes’s theorem, one 
could, for instance, calculate the probability of getting 
rain (A) when one sees clouds in the sky (B; Fig. 1). 
This could be achieved by taking into account the prob-
ability of seeing clouds when it rains (likelihood), the 
overall probability of getting rain (prior probability), and 
the overall probability of seeing clouds (marginal prob-
ability) in that season.

Applied to hypothesis testing, Bayes’s theorem can 
be used to estimate the posterior probability of a hypoth-
esis (H, or model) given the set of data (D, or evidence) 

that one has collected, as shown in the following 
formula:

	       P H D
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where H indicates the hypothesis at hence and D the 
data collected. Equation 2 is identical to Equation 1 in 
all other respects.

In this scenario, the prior probability represents the 
expectation (or representation of uncertainty) regarding 
the truth status of the hypothesis.1 The prior distribution 
is then combined with the information from the data 
(likelihood) to obtain the posterior distribution of the 
hypothesis, which will represent the probability of that 
hypothesis given the observed events (Wagenmakers, 
Marsman, et al., 2018). In other words, Bayes’s theorem 
is used to go from the probability of the data given the 
hypothesis (e.g., how likely it is to observe these data 
if the hypothesis is true) to the probability of the model 
given the data (i.e., how likely the hypothesis is after 
having seen the data; Kruschke, 2014).

An increasingly popular application of Bayes’s theo-
rem for inferential purposes consists of providing a direct 
comparison between two different hypotheses by com-
puting the ratio of the probability of one hypothesis over 
the other. This approach is known as the “Bayes factor” 
(BF), and it is typically used to compare the probability 
of the alternative hypothesis (H1, which assumes the 
presence of an effect or difference between parameters) 
with the probability of the null hypothesis (H0, which 
assumes the absence of an effect or difference between 
parameters; Kruschke & Liddell, 2018; Wagenmakers, 
Love, et al., 2018; Wagenmakers, Marsman, et al., 2018). 
The BF of the alternative hypothesis over the null hypoth-
esis (BF10) can be computed as follows:
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Following the same formula, the ratio of the null over 
the alternative hypothesis (BF01) can be obtained, too. 
For indications on how to interpret the BF, see Box 1.

Bayesian Informative Hypotheses

Despite presenting several advantages compared with 
other inferential approaches, the application of BFs  
as described above (BF10 or BF01) still presents some 
limitations that can be overcome by testing informative 
hypotheses.

Rain Clouds

Fig. 1.  Visualization of Bayes’s theorem on Euler diagram. The blue 
(rain) and yellow (clouds) circles represent the individual probabilities 
of the two single events, and their intersection in green represents the 
conditional probability of the two events co-occurring.
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Defining and testing meaningful 
research hypotheses

Especially in psychology and cognitive sciences, research 
hypotheses can be a lot more specific than the classically 
defined alternative (A ≠ B) and null (A = B) hypotheses. 
Bayesian informative-hypothesis testing offers a valid 
and easy way to directly compare highly specific infor-
mative hypotheses (Béland et al., 2012; Garofalo et al., 
2022; Gu et  al., 2018; Hoijtink, 2012; Hoijtink et  al., 
2016), that is, hypotheses formulated to reflect research 
expectations in terms of equality (e.g., A = B) or inequal-
ity (e.g., A > B) constraints among the parameters (Gu 
et al., 2018; Hoijtink, 2012; Hoijtink, Mulder, et al., 2019).

For instance, although factorial designs are often used 
to test highly specific hypotheses in the form of 

interaction effects, classical analysis of variance (ANOVA) 
is not necessarily the best way to go in such a case 
because the corresponding alternative and null hypoth-
esis would not really reflect the precise research expec-
tations (see Box 2; Garofalo et al., 2022). If, for example, 
one wants to test whether patients suffering from arach-
nophobia show higher anxiety levels when presented 
with spiders than cockroaches compared with a control 
group, this hypothesis can be represented as follows:

H1 patients spiders patients cockroaches

controls sp

=

>
− −

−

( )

(

µ − µ

µ iiders controls cockroaches− µ − ).

Crucially, other hypotheses might be relevant to the 
researcher as well, such as the possibility that spiders 

Box 1.  Interpreting the Bayes Factor

Interpreting Bayes factors (BFs) involves assessing the strength of evidence (or predictive performance) of one 
hypothesis relative to another. For instance, BF10 = 10 indicates that H1 is 10 times more likely than H0 given 
this set of data. Likewise, BF10 = 0 indicates that both hypotheses are equally likely, whereas BF10 < 0 indicates 
that H0 is more likely than H1. In the latter case, BF10 can also be reversed to BF01 to simplify the interpretation. 
Although some authors have suggested discrete criteria that characterize the strength of such evidence from 
weak (1 > BF < 3) to extreme (BF > 100; Andraszewicz et al., 2015; Jeffreys, 1961; van Doorn et al., 2021), we 
note that these numeric criteria are not universal and are subject to debate. One of the main advantages of the 
BF is, indeed, that it overcomes the dualistic reasoning typical of null hypothesis significance testing (accept/
reject H0) by quantifying and comparing the evidence in favor of one hypothesis over the other (van Doorn 
et al., 2021; Wagenmakers, Marsman, et al., 2018). For these reasons, the BF works at its best when interpreted 
on a continuous scale (Van Lissa et al., 2021). Even if BF10 = 3 is weaker evidence of H1 prevailing over H0 than 
BF10 = 100, it still indicates that H1 is 3 times more likely than H0. Whether this evidence is enough to support a 
conclusion strongly depends on the research question and design. Researchers may adjust and comment on 
these thresholds based on the specific context of their study or field, the specific hypotheses being tested, and 
the practical significance of the findings.

Box 2.  Interaction Effect

The first hypothesis (H1) reported as an example of informative hypothesis in the introduction and the second 
hypothesis (H2) reported in Example A are, in fact, a mathematical formulation of an interaction effect. 
Especially in psychological and cognitive sciences, factorial experimental designs (e.g., a 2 × 2 analysis of 
variance) are frequently used to test very specific predictions (i.e., higher anxiety levels to spider vs. 
cockroaches in arachnophobia patients compared with a control group). However, using interaction effects—
and follow-up post hoc analyses—should be considered as an exploratory approach, to be used when no 
specific hypotheses are present and the researcher aims to contrast all subgroups to investigate all possible 
relationships among them (Garofalo et al., 2022). When a specific research hypothesis is present, model-
selection procedures such as Bayesian informative hypotheses can more powerfully test precise expectations 
(Degni et al., 2022; Garofalo et al., 2022) by enabling the definition of all relevant hypotheses in terms of 
inequality constraints among parameters and the comparison of their associated probability within a Bayesian 
inferential framework (Gu et al., 2018; Hoijtink, 2012; Hoijtink, Mulder, et al., 2019). For more details on the 
use and misuse of interaction effects and how to use Bayesian informative hypotheses in this context, see 
Garofalo et al. (2022).
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merely elicit higher anxiety levels than cockroaches 
regardless of being a patient or a control:

H  2 patients spiders controls spiders

patients cockr

=

>
− −

−

( , )

(

µ µ

µ ooaches controls cockroaches , )µ −

or that patients present a systematically higher response 
than controls:

H3 patients spiders patients cockroaches controls spide= > >− − −µ µ µ rrs

controls cockroaches> −µ .

Informative hypotheses could go far beyond this, for 
instance, including how much bigger this difference 
should be to be considered clinically relevant (see Char-
acteristics of the Informative Hypotheses section).

Bayesian informative-hypothesis testing allows one to 
compare and contrast a set of predefined hypotheses—
similar to the one described above—via a model-selection 
procedure in which each hypothesis (or model) repre-
sents a possible explanation of the phenomenon.

For each model, the associated posterior model prob-
ability (PMP) is calculated via the BFs of all hypotheses 
tested versus the so-called unconstrained hypothesis 
(Hu; see Box 3). Specifically, considering the three 

hypotheses reported above, the formula for the PMP for 
H1 would be

	     PMP
BF

BF BF BFH1
1

1 2 3

=
+ +( )

u

u u u

. 	 (4)

PMPs are calculated as the ratio between the BF of 
the hypothesis at hence versus the Hu (BF1u) over the 
sum of all BFiu, where i indicates all informative hypoth-
eses tested. Because it is a relative index, PMPs are 
expressed as a value ranging between 0 and 1 (the sum 
of all posterior model probabilities adds up to 1), which 
can be interpreted as the relative amount of support for 
each hypothesis given the data at hand and the set of 
competing hypotheses included. The model with the 
highest PMP reflects the hypothesis with the highest 
relative probability (Béland et al., 2012; Hoijtink, 2012; 
Hoijtink, Gu, & Mulder, 2019; Hoijtink, Mulder, et  al., 
2019; Kluytmans et  al., 2012). All PMPs are based on 
equal prior probabilities because it is assumed that each 
hypothesis is equally likely.

Having a fail-safe test

Another advantage of Bayesian informative-hypothesis 
testing consists in the possibility to check whether there 

Box 3.  Definitions

Hu: Unconstrained hypothesis, a model that contains all possible sets of relationships between the 
parameters. Thus, it also contains the informative hypotheses defined by the researcher.

Hc: Complement hypothesis, a model that contains all possible sets of relationships between the parameters 
except the one represented by the hypothesis being tested. For example, the complement hypothesis of H1 is 
not –H1. Note that if a hypothesis is specified using equality constraints (=) alone or in addition to inequality 
constraints (> or <), then Hc corresponds to Hu.

BFu: Bayes factor (BF) of any hypothesis (i) against its unconstrained hypothesis (u). It is given by the ratio 
between the two respective marginal likelihoods. This can also be seen as the ratio between the fit and the 
complexity of the hypothesis (see definitions below). In formula, BFiu = P(Hi|D) / P(Hu|D) = fi/ci.

BFc: BF of each hypothesis versus its complement hypothesis (Hc), which is a model that contains all sets of 
restrictions between the parameters except the one represented by the current hypothesis.

Fit: It indicates the extent to which the data are in agreement with the restrictions specified in the hypothesis. 
It can range between 0 and 1; higher values indicate a higher fit and vice versa.

Com: Complexity indicates how specific the hypothesis is so that when two hypotheses fit the data equally 
well, the less complex hypothesis is preferred (Occam’s razor principle; Hoijtink, 2012; Hoijtink, Mulder, et al., 
2019). It can range between 0 and 1; higher values indicate a higher complexity and vice versa.

PMP: The posterior model probability associated with each hypothesis is, by default, calculated in three ways, 
that is, relative to all other hypotheses tested (PMPa), to all other hypotheses tested plus the unconstrained 
hypothesis Hu (PMPb), and to all other hypotheses tested plus the complement hypothesis Hc (PMPc).

Bayes factor matrix: The BF matrix consists of a table showing, in each cell, the BF deriving from the ratio 
between all possible pairs of hypotheses tested. For instance, the first cell in the first row shows BF11, that is, 
H1 over H1; the second cell in the first row shows BF12, that is, H1 over H2; and so on.
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are other—perhaps even more—plausible explanations 
for data compared with the ones hypothesized. Although 
the BF between any two specific hypotheses (e.g., BF10 
or BF12) merely indicates that one is more likely than 
the other, it says very little about how well the data are 
predicted by the prevailing hypothesis (van Doorn et al., 
2021). In other words, it provides no information about 
the possibility that other sets of relationships among the 
parameters may be a better fit for the data.

To prevent this loss of information, PMPs are by 
default calculated not only for the informative hypoth-
esis defined by the researcher but also for two additional 
models that can inform the inferential decision, that is, 
the unconstrained hypothesis (Hu) and the complement 
hypothesis (Hc; see Box 3). Both Hc and Hu can be 
intended as a fail-safe test (Béland et al., 2012; Hoijtink, 
Mulder, et al., 2019; Van Lissa et al., 2021) because they 
will prevail over the hypotheses specified by the 
researcher if a better explanation is possible that has not 
been currently considered (see Box 4).

Characteristics of the informative 
hypotheses

We offer a few remarks that may be useful to understand 
how to define informative hypotheses. First, it is  
critical to understand that the formulation of a model 
representing the null hypothesis (e.g., µpatients–spiders = 
µpatients–cockroaches = µcontrols–spiders = µcontrols–cockroaches) is not 
mandatory and, as for any other model, should be 
included only if meaningful from a scientific point of 
view (Béland et  al., 2012; Hoijtink, 2012; Hoijtink,  
Mulder, et al., 2019). Indeed, including a large number 
of hypotheses increases the risk that researchers will 
end up selecting the hypothesis that best fits the sampled 
data rather than one that best describes the population 
(for more information, see Box 4; Hoijtink, Mulder, et al., 
2019).

Moreover, although in the following examples we 
define fairly simple models, more complex hypotheses 
can be tested. For instance, one may be interested in 
defining a successful reduction in anxiety levels only if 
the difference between two means is higher than 2 SD 
from the mean:

H 2 4 patients spiders controls spiders: ( ) .µ − µ µ− − > + SD

Another possibility is to use the ampersand (“&”) to 
combine two predictions in one hypothesis. For exam-
ple, one may want to ensure that there is a positive 
reduction in anxiety levels (> 0), rather than just a mere 
difference, in patients presented with cockroaches 

versus spiders in addition to the fact that such reduction 
is stronger in patients than controls:

H5 patients spiders patients cockroaches

patients

=

>
− −

−

( )

& (

µ − µ

µ0 sspiders patients cockroaches

controls spiders contro

− µ

µ − µ
−

−>

)

( lls cockroaches− ).

On a final note, an important requirement is that all 
hypotheses included have to be compatible, possible, 
and nonredundant. In brief, this mainly means that  
the resulting set of equations must have a possible solu-
tion (e.g., one cannot expect µA > µC and µA < µC) and 
that the hypotheses have to be specified with the small-
est possible number of constraints (e.g., in H2, there  
is no need to specify that µC – µD > 0 because  
[µA – µB] = [µC – µD]). For a deeper understanding of this 
concept, see Gu et al. (2018) and Mulder et al. (2010). 
For the purpose of the present tutorial, it will suffice to 
say that if the hypotheses specified are not compatible, 
an error warning will be displayed in both JASP and R/
RStudio so that an incorrect use of the analysis is 
prevented.

A model-comparison approach

A BF is no other than a model-selection criterion within 
a Bayesian inferential framework (Hoijtink, 2012). Like 
many other model-comparison approaches (e.g., those 
based on Akaike information criterion or Bayesian infor-
mation criterion), it presents several advantages com-
pared with classical hypothesis testing, including those 
described in the following.

Direct comparison of multiple models.  Multiple mod-
els are evaluated simultaneously, and the model with the 
best fit is chosen. This approach allows researchers to 
directly compare the goodness of fit of multiple models 
and choose the one that provides the best explanation for 
the data, which can improve the accuracy and interpret-
ability of the results. In contrast, hypothesis testing typi-
cally considers only one null hypothesis at a time.

Increased generalizability.  By comparing multiple 
models, researchers can determine which models are 
more likely to generalize well to new data, which is impor-
tant for making accurate predictions and drawing reliable 
conclusions.

Identify important variables.  By comparing models 
that include different subsets of variables, researchers can 
determine which variables are most important in explain-
ing the data and how they interact with one another.
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Increased transparency.  Model comparison provides a 
clear and objective way to evaluate the performance of 
different models, which can increase the transparency of 
research and help to prevent the use of inappropriate or 
biased models.

Flexibility.  Model comparison allows for the use of a 
wide range of modeling techniques and assumptions, 
which can be tailored to specific research questions and 
data types.

Overcome dualistic thinking.  Hypothesis testing typi-
cally provides a binary answer (reject or fail to reject the 
null hypothesis), whereas model comparison can provide 
more nuanced results. For example, model comparison can 
provide information on the relative importance of different 
variables or the degree to which a model explains the data.

Note that both model comparison and classical 
hypothesis testing can be useful in different situations. 
Researchers should choose the approach that best suits 
their research question and data.

Box 4.  Interpreting the Results of Informative Hypotheses

There are at least three ways in which the posterior model probabilities (PMPs) and Bayes factors (BFs) 
provided in the results can inform inferential conclusions (Hoijtink, Mulder, et al., 2019; Van Lissa et al., 2021). 
Put another way, there are three main questions that a researcher can answer with Bayesian informative 
hypotheses (see Box 3 for definitions):

1. Which of a set of hypotheses is the best?
The first question can be answered by looking at the relative proportion of PMP associated with all other 

hypotheses. If the PMP associated with Hu or Hc is higher than that associated with the informative 
hypotheses defined by the researcher, this indicates that the hypotheses tested do not constitute the best 
representation of the data. More precisely, because Hu also contains the hypothesis tested, Hc is the most 
informative for this purpose; hence, to answer this first question, we want to look at PMPc.

If the greatest proportion of PMPc is associated with one of the researcher-defined informative hypotheses, 
this can be identified as the hypothesis most supported by the data relative to all other hypotheses. Whereas if 
the portion of PMPc associated with Hc is higher than that associated with the researcher-defined informative 
hypotheses, the most likely conclusion is that the proposed hypotheses do not constitute an adequate 
description of the data, which could find a better fit in other models not currently considered.

Nevertheless, not all is lost if that is the case: (a) If Hc prevails, this information can be useful to further 
explore the data set and define new hypotheses that—and this is crucial to avoid hypothesizing after results are 
known (HARKing; Kerr, 1998)—shall be tested in future experiments; and (b) a comparison between the 
informative hypotheses defined by the researcher is still possible because although better descriptions of the data 
may exist, the researcher may still be particularly interested in a comparison between those specific hypotheses to 
check whether one may prevail. PMPa may be useful for this purpose (see Question 3 in this Box).

2. How much more likely a given hypothesis is relative to other possible explanations?
Bayes factors (BFs) can be used to quantify the strength of support for each hypothesis (or perhaps, just 

the best one) relative to the unconstrained (BFu) and the complement (BFc) hypotheses. Because Hu—and 
thus BFu—also contains the hypothesis tested, BFc is the most informative for inferential purposes. BFc 
indicates how much more likely a given hypothesis is compared with any other set of relationships or 
restrictions among the parameters (i.e., any other possible model). For instance, BF1c = 30.5 indicates that H1 
is 30.5 times than Hc, that is, 30.5 times more likely than other possible hypotheses. On the other hand, BF1c = 
0.5 indicates that Hc is more likely than H1, thus suggesting that other relationships among the parameters 
may be a better fit for the current data. See Box 1 for more on the interpretation of the BFs.

3. How much more likely a given hypothesis is relative to another specific hypothesis?
BFs can also be used to compute a direct comparison between each pair of informative hypotheses tested 

by the researcher (thus, not considering Hu and Hc). This information is usually reported in the so-called BF 
matrix, which is a table reporting the BFs between each pair of hypotheses (e.g., BF12, BF13, BF23), calculated 
as the ratio between the two corresponding BFus (e.g., BF12 = BF1u / BF1u). Such a comparison is possible 
because all BFs have the same denominator. This can be useful to quantify how much more likely a given 
hypothesis is compared with the other tested hypotheses. For instance, BF12 = 5 indicates that H1 is 5 times 
more likely than H2.
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Model assumptions

An important question concerns the model assumptions 
(e.g., normality, sphericity, independence) that the data 
must fulfill to ensure the correct use and interpretation 
of the results. Although there is still an ongoing debate 
(Hoijtink, Mulder, et al., 2019; Van Rossum et al., 2013), 
current evidence indicates that BFs are robust if model 
violations are not too extreme. Nevertheless, they are 
still sensitive to their effect. The reader is advised to test 
in advance whether model assumptions (for ANOVA or 
regression in the context of this tutorial, but the same 
applies to any other statical model) are fulfilled. For 
more details and practical guidance on how to deal with 
outliers and violations of model assumptions, see Hoijtink, 
Mulder, et al. (2019).

Supported Statistical Models and Other 
Tutorials

At the time of writing, the bain (short for Bayesian 
informative hypothesis) package in R can be applied to 
a wide range of statistical models, including Welch’s t 
test (paired samples and one sample), ANOVA (within-
subjects and between-subjects designs), analysis of cova-
riance (ANCOVA), logistic regression, linear regression, 
structural equation modeling, and confirmatory factor 
analysis (Gu et al., 2014, 2019; Hoijtink, Gu, & Mulder, 
2019; Hoijtink, Mulder, et  al., 2019; Van Lissa et  al., 
2021). The bain package in JASP can be currently 
applied to a smaller number of models: Welch’s t test 
(paired samples and one sample), ANOVA (between-
subjects design only), ANCOVA, linear regression, and 
structural equation modeling. Note that both packages 
are still being developed, and more applications may be 
available in the near future.

Currently, there are two tutorial articles on Bayesian 
informative hypotheses. Hoijtink, Mulder, and colleagues 
(2019) covered the topic of one-way ANOVA, and Van 
Lissa and colleagues (2021) focused on structural equa-
tion modeling; both provided examples in R program-
ming language. In the present article, we aim to extend 
previous tutorials in several ways by (a) covering new 
models that are frequently used in psychological and 
cognitive sciences, such as factorial ANOVA and multiple 
linear regression; (b) providing a gradual introduction 
from a more general way of Bayesian thinking to the 
use of BFs, reaching the definition and implementation 
of Bayesian informative-hypothesis testing; (c) showing 
how to test Bayesian informative-hypothesis testing in 
both JASP ( JASP Team, 2021) and R/RStudio (Gu et al., 
2021), illustrating the same five steps in both software; 
(d) starting from scratch, thus allowing a wider reader-
ship to familiarize with these analyses, even with no 
prior knowledge of either software or Bayesian testing; 

(e) providing practical guidance not only on how to run 
the analysis but also on how to interpret and report the 
results in a research article, with a dedicated section for 
each example; and (f) guiding toward a visual explora-
tion of the data and/or get novel insights.

Downloading and Installing JASP  
and R/RStudio

The very first step consists of installing the chosen soft-
ware, in this case, either JASP ( JASP Team, 2021) or R 
(R Core Team, 2023) and R studio (RStudio Team, 2023). 
Please ensure to download and install the latest version 
available of the software that you intend to use before 
proceeding.

JASP is a free software for statistical computing and 
graphics that offers a very intuitive graphical user inter-
face. Compared with R, it is easier to use because it does 
not require programming skills; however, it offers a more 
limited set of analyses. To familiarize yourself with JASP’s 
environment, there are many online tutorials available 
on the software website. The JASP installer can be down-
loaded at https://jasp-stats.org/download/.

R is a free open-source programming language for 
statistical computing and graphics. Installing R is neces-
sary to enable your computer to process the R program-
ming language in R and RStudio. RStudio is an integrated 
development environment that offers a more convenient 
graphical user interface and additional functionalities 
compared with R. We recommend working in RStudio 
rather than R, but this is not mandatory. In this article, 
we assume basic knowledge of R programming lan-
guage. We suggest familiarizing with its functioning with 
one of the many tutorials available online or using the 
swirl package (https://swirlstats.com/). The R installer 
can be downloaded at https://cran.r-project.org/bin/. 
The RStudio Desktop installer can be downloaded at 
https://rstudio.com/products/rstudio/download/.

Open Materials

The complete R code, JASP files, and data sets used in 
the article are freely available, following FAIR (findable, 
accessible, interoperable, and reusable) data principles 
(Wilkinson et  al., 2016), at the following OSF page: 
https://osf.io/dez9b/.

Example A: 2 × 2 ANOVA

Let us assume we want to test the efficacy of a new 
anxiety treatment on different levels of symptoms. To 
this aim, we recruit 200 volunteers suffering from anxiety- 
related disorders equally divided into two groups, one 
presenting high levels of symptoms and one presenting 

https://jasp-stats.org/download/
https://swirlstats.com/
https://cran.r-project.org/bin/
https://rstudio.com/products/rstudio/download/
https://osf.io/dez9b/
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low levels of symptoms. We then randomly assign half 
of each group to the experimental group (receiving a 
real drug treatment) and the other half to the control 
group (receiving a placebo treatment). We measure the 
anxiety level before and after the treatment, and we 
compute an index of treatment efficacy by subtracting 
the score recorded before the treatment from the score 
recorded after the treatment (pre–post) so that a positive 
score would indicate an improvement (i.e., a reduction) 
in anxiety, a negative score would indicate an increase 
in anxiety, and 0 indicates no difference between before 
and after the treatment.

We thus have a 2 × 2 factorial design with treatment 
(drug/placebo) and symptoms (high/low) as between-
subjects independent variables and the treatment effi-
cacy index as the dependent variable.

The ANOVA data set

The data set is composed of five columns: (a) “ID” (con-
taining participants’ identification number), (b) “treat-
ment” (drug/placebo), (c) “symptoms” (high/low), and 
(d) “score” (containing a continuous variable reporting 
the treatment efficacy score). Note that because the bain 
package requires all the levels of a factorial design to 
be stored in one single variable, an additional column 
named (e) “groups” containing all four groups (i.e., drug 
high, drug low, placebo high, and placebo low) is 
needed.

The data were simulated by sampling 50 cases from 
a normal distribution using different means and standard 
deviations (M ± SD) for each group, that is, 7 ± 1.5 for 
the drug group with high symptoms, 6 ± 1.5 for the drug 
group with low symptoms, 0 ± 1.5 for the placebo group 
with high symptoms, and 6 ± 1.5 for the placebo group 
with low symptoms. This data set can be reproduced 
using the “creating the datasets.R” file available on the 
OSF page (https://osf.io/dez9b/).

The hypotheses

Let us assume we want to compare and contrast a set of 
three hypotheses. The first hypothesis poses that the two 
groups receiving a real treatment (drug) show a positive 
increase (> 0) in the treatment efficacy index and (&) that 
the strength of such treatment, intended as the difference 
between the two groups (drug/placebo), is similar 
regardless of symptoms level (high/low). This hypothesis 
can formally be represented as follows:

H  1 Drug High Drug Low Drug High Placebo High

D

: ( , ) & ( ). . . .µ µ µ − µ

µ

>

=

0

rrug Low Placebo Low. . .− µ( )

The second hypothesis poses again that the two 
groups receiving a real treatment (drug) show a positive 

increase (>0) in the treatment efficacy index and (&) that 
the strength of such treatment, intended as the difference 
between the two (drug/placebo), is higher for the group 
with high symptoms compared with the group with low 
symptoms:

H  2 Drug High Drug Low Drug High Placebo High: ( , ) & ( )

(

. . . .µ µ µ − µ

µ

>

>

0

DDrug Low Placebo Low. . ).− µ

The third hypothesis poses that there are comparable 
scores regardless of treatment and symptom level:

H3 Drug High Placebo High Drug Low Placebo Low: .. . . .µ µ µ µ= = =

For more information on how to define informative 
hypotheses, see the Characteristics of the Informative 
Hypotheses section.

Step-by-step tutorial in JASP

The analysis presented in this section is performed using 
the bain module on JASP ( JASP Team, 2021). The file 
“bain_ANOVAinJASP.jasp” available on the OSF page 
(https://osf.io/dez9b/) contains all the steps reported 
below and can be directly opened in JASP.

Preliminary steps.  To run Bayesian informative hypoth-
esis (bain) in JASP, you first need to add the bain module 
to the software. To do that, open JASP, click on the “+” 
icon at the top right (do not confuse it with the “+” sign to 
“add a computed column”), and select the “BaIn” module. 
This will now add a “BaIn” icon to the top menu (Fig. 2). 
After loading the data set (Step 1a), you can click on the 
icon to see the list of all the bain analyses currently avail-
able (Fig. 3).

It is important to know that many analyses require 
generating a series of random numbers for computational 
purposes. The bain package, in particular, uses sampling 
to compute BFs and PMPs. To get reproducible results, it 
is possible to set a specific seed number from which the 
series of pseudorandom numbers is generated. Knowing 
the seed and the generator makes it always possible to 
reproduce the same output. Otherwise, you can change it 
to any number you like. In the “Additional Options” sec-
tion, you will see that by default, the seed is set to “100.” 
A good practice to ensure the stability of your results is 
to repeat the analysis with different seeds and check 
whether the results are coherent. For this reason, we use 
different seeds in the JASP and R examples and ensure 
that although slightly different, the same trend should 
emerge from both analyses. To match the results obtained 
with both software, set both seeds to the same value.

Step 1a: load the data set.  The first step is to load a file 
containing the ANOVA data set described, available on the 

https://osf.io/dez9b/
https://osf.io/dez9b/
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Fig. 2.  Adding the “BaIn” module to JASP.

Fig. 3.  Loading the data set and selecting the analysis.

OSF page (https://osf.io/dez9b/). To do that, go to the 
main-menu icon on the top left, select “Open → Com-
puter,” browse to the folder on your computer in which 
you downloaded the file, and then select and load the 
“dataset_anova.txt” file. You will now visualize a spread-
sheet containing the entire data set (Fig. 3).

Step 2a: fit the model.  By selecting “BaIn → ANOVA” in 
the top menu (Fig. 3), you will be presented with a new 
graphical user interface that can be used to select the vari-
ables of interest (Fig. 4). Set the variable “score” as the 
dependent variable and the variable “group” as the fixed 
factor.

https://osf.io/dez9b/
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Step 3a: define and test informative hypotheses with 
bain.  We can now set the hypotheses defined above 
and compare them. To do that, you can type or copy 
and paste the text reported below in the “Model Con-
straints” box that you can find on the bottom of the left 
panel (Fig. 4):

(groupDrug.High, groupDrug.Low) > 0 & 
groupDrug.High - groupPlacebo.High = 
groupDrug.Low - groupPlacebo.Low

(groupDrug.High, groupDrug.Low) > 0 & 
groupDrug.High - groupPlacebo.High > 
groupDrug.Low - groupPlacebo.Low

groupDrug.High = groupPlacebo.High = 
groupDrug.Low = groupPlacebo.Low

Then press Crtl+Enter (if you use a Windows PC) or 
Cmd+Return (if you use a Mac). JASP will start testing 
the informative hypothesis specified, and the results will 
be presented on the right panel, where a table called 
“Bain ANOVA” will appear (also reported in Table 1), 
containing all the information outlined in Box 3.

For more complete results, check the boxes on the 
left panel (Fig. 4) to display the “Bayes factor matrix” 
table (Table 2) and the “Posterior probabilities” plot (Fig. 
5), which provide a pie chart of the proportion of the 
three PMPs reported in Table 1.

Step 4a: interpret and report the results.  In the fol-
lowing, we show how to interpret and report these results 
based on the indications outlined in Box 4.

Fig. 4.  Selecting the variables, defining the informative hypothesis, and visualizing the results.

Table 1.  Bain Analysis of Variance

BFu BFc PMPa PMPb PMPc

H1 2.21 2.21 0.221 0.201 0.221
H2 7.778 438.875 0.779 0.708 0.777
H3 3.20 × 10–238 3.20 × 10–238 3.20 × 10–239 2.91 × 10–239 3.20 × 10–239

Hu 0.091  
Hc 0.018 0.002

Note: BFu = Bayes factor versus Hu; BFc = Bayes factor versus Hc; PMPa = posterior model probability 
excluding Hu and Hc; PMPb = posterior model probability including Hu; PMPc = posterior model 
probability including Hc. Because the values reported here are particularly high (e+) or particularly low 
(e–), scientific notation is used for convenience.



Advances in Methods and Practices in Psychological Science 7(4)	 11

All results obtained point in the same direction, indi-
cating that H2 is the hypothesis (or model) most sup-
ported by the data. H2 is indeed associated with a largely 
higher relative PMP (Fig. 5) not only when considering 
the set of informative hypotheses tested (77.9%; Table 
1: PMPa) but also when including Hc (77.7%; Table 1: 
PMPc). This last result, in particular, indicates that other 
models would not best represent the data (see Box 4, 
Question 1: Which of a set of hypotheses is the best?). 
In addition, H2 resulted 438.857 times more likely than 
Hc (Table 1: BFc), thus showing strong support for this 
hypothesis compared with other possible models (see 
Box 4, Question 2: How much more likely a given 
hypothesis is relative to other possible explanations?). 
Finally, H2 resulted 3.519 times more likely than H1 
(Table 2: BF21) and 2.432 × 10+238 times more likely than 
H3 (Table 2: BF23), thus showing stronger support for H2 
relative to the other hypotheses tested (see Box 4, Ques-
tion 3: How much more likely a given hypothesis is rela-
tive to another specific hypothesis?). Overall, these 
results indicate strong support for a higher treatment 
efficacy in the group presenting high levels of symptoms 
compared with the one presenting low levels of 
symptoms.

Step 5a: visual exploration of the data.  Visually 
informative plots, such as estimation plots (Ho et  al., 
2019), raincloud plots (Allen et al., 2021), or plots repre-
senting model-estimated marginal means with confidence 
intervals (Garofalo et al., 2022), offer an immediate repre-
sentation of the results based on a measurement scale that 
makes sense for the research question (Cumming, 2007, 
2009; Cumming & Finch, 2005; Degni et al., 2022; Garofalo 
et al., 2022; Loftus & Masson, 1994; Masson, 2007). Thus, 
they can support data interpretation and possibly suggest 
new insights if our hypotheses result in a poor explana-
tion of the data (see Box 4). Based on the software 
adopted, there are different options available to the user. 

In JASP, by clicking on the relative boxes available on the 
left panel, it is possible to obtain a “Descriptives” table and 
a “Descriptive plots,” respectively, containing descriptive 
statistics in text or visual format.

The results thus generated (Fig. 6) confirm that 
although the strongest difference is predictably between 
the two drugs and the two placebo groups, there is a 
higher difference between the drug and placebo treat-
ments in the high-symptoms group compared with the 
low-symptoms group.

Step-by-step tutorial in R

There are two ways to proceed with this example: (a) 
Open a new R script and use the following lines of code 
to play along with the tutorial or (b) open and use the 
file “BaIn_ANOVAinR.R” available on the OSF page 
(https://osf.io/dez9b/), which contains all the steps and 
code reported below.

Preliminary steps.
Clear workspace.  Before starting any new analysis, it 

is generally considered good practice to clear all the vari-
ables, data sets, functions, and so on possibly loaded in 
the R environment. To do that, you can use the rm() func-
tion as follows:

rm(list=setdiff(ls(), ". . ."))

H1
H3H3

H2
H2

H2

H1 H3 H1
Hu

Excluding Hu and Hc Including Hu Including Hc

Fig. 5.  Posterior model probabilities (PMPs). Posterior model probabilities associated with 
the set of hypotheses tested (PMPa), also including Hu (PMPb) or Hc (PMPc).

Table 2.  Bayes Factor Matrix

H1 H2 H3

H1 1 0.284 6.91 × 10–237

H2 3.519 1 2.43 × 10–238

H3 1.45 × 10–238 4.11 × 10–239 1

Note: Because the values reported here are particularly high (e+) or 
particularly low (e–), scientific notation is used for convenience.

https://osf.io/dez9b/
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Install and/or load the necessary packages.  Once R is 
installed, it comes with several built-in functions, such 
as sum(), which returns the sum of the values inserted 
between the brackets, or sqrt(), which returns the square 
root of all the values present in its arguments. To know 
what a function is used for, you can type “?” before the 
function name (i.e., ?sum) in the R console to open the 
help. Sets of functions that work together are usually 
grouped and contained in so-called packages (or librar-
ies). For instance, sum() and sqrt() are part of the base 
package, which is automatically loaded when you use R. 
Packages for more specific analysis or plots have to be 
directly installed and loaded. For this tutorial, you need 
to install and load the bain package (Hoijtink, Mulder, 
et al., 2019), which contains all the functions needed to 
run Bayesian informative-hypotheses analyses. To do so, 
you can use the install.packages() function by running in 
R or RStudio the following line:

install.packages("bain")

This line of code is needed only if you have not 
already installed this package. Once a package is installed 
on your computer, you can use the library() function to 
load it and access its functions. This loading needs to be 
done every time you start a new R session.

library(bain)

These two steps are required each time you need to 
use functions that are not part of base R but need to be 
loaded from an external package. In this tutorial, a few 
more packages will be used to generate plots or manipu-
late the data. These packages are not strictly required to 
run Bayesian informative hypotheses but can be very 
useful for several purposes. Each time, we suggest one 
of these packages, we explain their purpose and how 
to use them. However, the same results could be obtained 
with different packages.

Step 1a: load the data set.  There are several options to 
load the file containing your data. The easiest one is to use 
the RStudio graphical user interface by clicking on “File → 
Import dataset” and choosing your file type (e.g., text, 
excel, SPSS; see Fig. 7). For this example, the data set is 
saved in a .txt file named “dataset_anova.txt.” To open it, 
go to “File → Import dataset → From Text (base)” and 
browse to the folder on your computer that contains the 
“dataset_anova.txt” file (downloaded from OSF page 
https://osf.io/dez9b/) and then click on “Import” to load 
the file. If you accept the default values, your data set will 
now appear in the R Environment with the same name as 
the original file name.

If you prefer to use R code for loading a file, there 
are dedicated packages containing functions that can be 
used based on the file extension (e.g., a .txt file can be 
loaded with the read.table() function). An overview of 

Fig. 6.  Visual exploration of the data in JASP.

https://osf.io/dez9b/
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such functions would go beyond the scope of this tuto-
rial, but in the R script available online, you will find a 
few commented lines that can be used for this 
purpose.

Once the file has been loaded, an object named “data-
set_anova” should appear in your R environment. By 
clicking on this object, the entire data set will appear 
(Fig. 8) containing the variables described above in the 
ANOVA Data Set section. The str() function can be used 
to familiarize with your data set. This function shows 
the structure of your data set and has the additional 
benefit of showing the data type for each variable:

str(dataset_anova)

Step 2a: fit the model.  The following code can be used 
to fit a linear model, with the function lm(), which returns 
estimated means for each level contained in the column 
“group.” The outcome of the fitted model will be stored in 
an object called “fit.” Note that the –1 is used to estimate 
the means for each level of the variables. The subsequent 
line uses the coef() function to store the means estimated 
by the model for each group and session in an object 
called “estimated”:

fit = lm(score ~ group - 1, data = 
dataset_anova)

Step 3a: define and test informative hypotheses with 
bain.  We can now set the hypotheses defined above and 
compare them. Before doing that, you can use the coef() 
function to take a look at the estimated means and their 
names because these are the variable names to use to 
define the informative hypotheses:

coef(fit)

It is also important to know that many analyses 
require generating a series of random numbers for 
computational purposes. The bain package, in particu-
lar, uses sampling to compute BFs and PMPs. To get 
reproducible results, it is possible to use the set.seed() 
function, which sets a specific seed number from 
which the series of pseudorandom numbers is gener-
ated. Knowing the seed and the generator makes it 
always possible to reproduce the same output. It can 
be set to any number you like. A good practice to 
ensure the stability of your results is to repeat the 
analysis with different seeds and check whether the 
results are coherent. For this reason, we may use dif-
ferent seeds in the JASP and R examples and ensure 
that although slightly different, the same trend should 
emerge from both analyses. The following code can 
be used to set the seed to 123:

set.seed(123)

Fig. 7.  Loading the data set from the graphical user interface of RStudio.
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The following code can be used to test the informa-
tive hypotheses described above. The output is stored 
in an object called “results”:

results <- bain(x = fit,

hypothesis =

"(groupDrug.High, groupDrug.Low) > 0 & 
groupDrug.High - groupPlacebo.High = 
groupDrug.Low - groupPlacebo.Low;

groupDrug.High, groupDrug.Low) > 0 & 
groupDrug.High - groupPlacebo.High 
> groupDrug.Low - groupPlacebo.Low;

groupPlacebo.High = groupDrug.High = 
groupPlacebo.Low = groupDrug.Low")

In this code, the first argument “x” is a vector contain-
ing the estimated means for each group and condition, 
and the second argument “hypothesis” contains the 
hypotheses.

There are a few options available to display the 
results. The function print() returns in the console the 
main results or bain ANOVA table (Table 3):

print(results)

This table is identical to Table 1 reported above in 
Step 4a except for the presence of fit (Fit) and complex-
ity (Com) scores. For more information and definitions, 
see Box 3.

A pie chart displaying the three PMPs reported in 
Table 1 can be created using the pie() function or similar 

Fig. 8.  Data set loaded in RStudio.

Table 3.  Bain Analysis of Variance

Fit Com BFu BFc PMPa PMPb PMPc

H1 0.097 0.044 2.212 2.212 0.225 0.204 0.224
H2 0.986 0.129 7.637 472.992 0.775 0.704 0.774
H3 0.000 0.012 0.000 0.000 0.000 0.000 0.000
Hu 0.092  
Hc 0.014 0.871 0.016 0.002

Note: Hu = unconstrained hypothesis; Hc = complement hypothesis; fit = model fit; com =  
model complexity; BFu = Bayes factor versus Hu; BFc = Bayes factor versus Hc; PMPa = 
posterior model probability excluding Hu and Hc; PMPb = posterior model probability including 
Hu; PMPc = posterior model probability including Hc.
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ones (Fig. 9). A detailed explanation of how to generate 
plots in R falls beyond the scope of the present article; 
however, the code used to generate Figure 9 is available 
on the R script associated with this example.

To further support model selection, PMPs can also be 
compared via a BF matrix (Box 3) in which all hypoth-
eses are compared with each other (Table 4). The fol-
lowing code can be used to extract this information from 
the “results” object created in the previous steps:

results$BFmatrix

Step 4a: interpret and report the results.  Please refer 
to Step 4a of the JASP example above for a complete guide 
on how to interpret and report these results.

Step 5a: visual exploration of the data.  Please refer 
to Step 4a of the JASP example reported above for more 
on the importance of visual exploration of the data and 
how to interpret the results obtained.

In R/RStudio, in particular, several packages can be 
used for this purpose. Figure 10 shows a raincloud plot 
generated with the ggplot() and geom_rain() functions 
from the ggplot2 and ggrain packages (Allen et al., 2021). 
A detailed explanation of how to generate plots in R 
falls beyond the scope of the present article; however, 
the code used to generate Figure 10 is available on the 
R script associated with this example.

The following line of code can be used to print a table 
with descriptive statistics:

summary(results, ci = 0.95)

Example B: Multiple Linear Regression

Let us assume we have already established that the pre-
viously tested anxiety treatment works (drug > placebo) 
and now wish to investigate if factors other than symp-
tom severity can affect its effectiveness. To this aim, we 
want to evaluate on a continuous scale the impact of 
symptom severity along with drug dosage and age (inde-
pendent variables). To this aim, we recruit 100 volun-
teers currently undergoing such anxiety treatment and 

obtain the same treatment-efficacy index used before 
(dependent variable). Because all our variables are con-
tinuous, multiple linear regression is a viable approach 
to test the influence that each independent variable and 
their combination can exert on the dependent 
variable.

The regression data set

The data set is composed of five columns: “ID” (contain-
ing participants’ identification number), “treatment.
effect” (containing the treatment-efficacy score), “age” 
(containing participants’ age), “dosage” (containing par-
ticipants’ drug dosage), and “symptoms” (containing 
participants’ symptoms). All variables are on a continu-
ous scale.

The data were simulated by sampling 100 cases from 
a normal distribution using different means and standard 
deviations (M ± SD) for each variable: 0 ± 10 for the 
treatment effect, 40 ± 15 for age, 10 ± 5 for dosage, and 
50 ± 5 for symptoms. All variables were subsequently 
standardized as z scores. This data set can be repro-
duced using the “creating the datasets.R” file available 
on the OSF page (https://osf.io/dez9b/).

The hypotheses

The first hypothesis poses that dosage has a higher 
impact than symptoms on treatment effect, which has a 
higher impact than age on treatment effect:

H dosage symptoms age1: .> >

PMPa PMPb PMPc

H1 (22%) H1 (20%)

Hu (9%)

H1 (22%)

H2 (78%)
H2 (71%)

H2 (78%)

Fig. 9.  Posterior model probabilities (PMPs). PMPs associated with the set of hypotheses 
tested (PMPa), also including Hu (PMPb) or Hc (PMPc). The code used to generate this figure 
is available on the R script associated with this example.

Table 4.  Bayes Factor Matrix

H1 H2 H3

H1 1 0.275 6.87E+237

H2 3.639 1 2.50E+238

H3 0.000 0.000 1

Note: Because the values reported here are particularly high (e+) or 
particularly low (e–), scientific notation is used for convenience.

https://osf.io/dez9b/
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The second hypothesis poses that symptoms have a 
higher impact than dosage on treatment effect, which 
has a higher impact than age on treatment effect:

H symptoms dosage age2: .> >

The third hypothesis poses that dosage and symptoms 
have a comparably higher impact than age on treatment 
effect:

H dosage  symptoms age3: , .( ) >

For more on how to define informative hypotheses, 
see the Characteristics of the Informative Hypotheses 
section.

Step-by-step tutorial in JASP

The analysis presented in this section is performed using 
the bain module on JASP ( JASP Team, 2021). The file 
“bain_REGRESSIONinJASP.jasps” available on the OSF 
page (https://osf.io/dez9b/) contains all the steps 
reported below and can be directly opened in JASP.

Preliminary steps.  Follow the Preliminary Steps section 
of the JASP tutorial for Example A.

Step 1b: load the data set.  Follow Step 1a of the JASP 
tutorial to load the file “dataset_regression.txt.” You will 
now visualize a spreadsheet containing the entire data set 
(Fig. 11) described above in The Regression Data Set 
section.

Step 2b: fit the model.  By selecting “Linear Regression” 
in the bain menu (Fig. 11), you will be presented with a 
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Fig. 10.  Visualizing the data. Raincloud plots of the data set repre-
senting the groups divided based on treatment (drug/placebo) and 
symptoms (high/low). The code used to generate this figure is avail-
able on the R script associated with this example.

Fig. 11.  Loading the data set and choosing the analysis in JASP.

https://osf.io/dez9b/
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new graphical user interface that can be used to select the 
variables of interest (Fig. 12). Set the variable “treatment.
effect” as the dependent variable and the variables “age,” 
“dosage,” and “symptoms” as covariates.

Step 3b: define and test informative hypotheses with 
bain.  Follow Step 3a of the JASP tutorial to set the hypoth-
eses reported below, visualize the bain linear regression 
results (Table 5), display the BF matrix (Table 6), and plot 
the PMPs (Fig. 13):

dosage > symptoms > age
symptoms > dosage > age
(symptoms, dosage) > age

Step 4b: interpret and report the results.  In the fol-
lowing, we show how to interpret and report these results 
based on the indications outlined in Box 4.

Although all results obtained point in the same direc-
tion, indicating that H3 is the hypothesis most supported 
by the data, the strength of the evidence is not clear-cut 
in this case, thus suggesting careful consideration. H3 is 
indeed associated with the highest relative PMP (Fig. 13) 
both when considering only the set of informative 
hypotheses tested (39.9%; Table 5: PMPa) and when 
including Hc (39.8%; Table 5: PMPc); however, such 
proportion is not strikingly different from that associated 
with H2 (34.9%). Despite this, the three hypotheses do 

seem to be good models for the data (Hc = 0.02%; see 
Box 4, Question 1: Which of a set of hypotheses is the 
best?). In addition, although all hypotheses resulted to 
be more likely than the complement hypothesis (Table 
5: BFc), H3 reported a much stronger support in this 
regard, being 30,735.594 times more likely than Hc (see 
Box 4, Question 2: How much more likely a given 
hypothesis is relative to other possible explanations?). 
Finally, H3 proved to be 1.582 times more likely than H1 
(Table 6: BF31) and 1.14 times more likely than H2 (Table 
6: BF32), thus showing weak but still present support in 
its favor (see Box 4, Question 3: How much more likely 
a given hypothesis is relative to another specific hypoth-
esis?). Overall, these results indicate that although both 
symptoms and dosage undoubtedly appear to have a 

Fig. 12.  Definition of informative hypothesis and results.

Table 5.  Bain Linear Regression

BFu BFc PMPa PMPb PMPc

H1 17.276 30.565 0.252 0.248 0.252
H2 23.962 43.52 0.349 0.344 0.349
H3 27.323 30,735.594 0.399 0.393 0.398
Hu 0.014  
Hc 0.114 0.002

Note: BFu = Bayes factor versus Hu; BFc = Bayes factor versus Hc; 
PMPa = posterior model probability excluding Hu and Hc; PMPb = 
posterior model probability including Hu; PMPc = posterior model 
probability including Hc.
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stronger impact on treatment efficacy than age, whether 
the two have a significantly different impact is yet to be 
clarified.

Step 5b: visual exploration of the data.  Unfortu-
nately, at the moment of writing, the bain module does 
not allow generating a plot of the model data directly. As 
an alternative, the standard module for running linear 
regression can be used for this aim. To do that, select the 
“Regression” module and then “Linear Regression” (Fig. 
14). You will be now presented with a new graphical user 
interface that can be used to select the variables of interest 
(Fig. 14). Set the variable “treatment.effect” as the depen-
dent variable and the variables “age,” “dosage,” and “symp-
toms” as covariates. Then, go to the “Plots” section on the 
bottom left panel and check the “Partial plots” box.

Partial regression plots can be used to display the 
relationship between the dependent variable and one 
independent variable at a time while controlling for the 
presence of other independent variables in the model 
(Fox & Weisberg, 2019). By visual inspection only (Fig. 
14), it is possible to appreciate a few crucial things: (a) 
A linear estimation of the relationship between the vari-
ables appears appropriate; (b) dosage and symptoms 
appear to have the strongest relationship with the treat-
ment effect, whereas no relationship with age emerges; 
and (c) there is an outlier score that needs to be taken 
into account for a correct interpretation of the results 
(Altman & Krzywinski, 2016; Greco et al., 2019).

Step-by-step tutorial in R

There are two ways to proceed with this example: (a) 
Open a new R script and use the following lines of code 
to play along with the tutorial or (b) open and use the 
file “BaIn_REGRESSIONinR.R” available on the OSF page 
(https://osf.io/dez9b/), which contains all the steps and 
code reported below.

Preliminary steps.  Follow the Preliminary Steps section 
of the R tutorial for Example A.

Step 1b: load the data set.  Follow Step 1a of the R tuto-
rial to load the file “dataset_regression.txt” and visualize 
the data set described above in The Regression Data Set 
section.

Step 2b: fit the model.  The following code can be used 
to fit a linear model with the function lm(), which returns 
estimated coefficients for each independent variable:

fit <- lm(treatment.effect ~ age + 
dosage + symptoms, dataset_ 
regression)

Step 3b: define and test informative hypotheses with 
bain.  Follow Step 3a of the R tutorial to test the hypoth-
eses reported below, print the main results of the bain 
linear regression (Table 7), display the BF matrix (Table 8), 
and plot the PMPs (Fig. 15):

set.seed(123)
results = bain(x = fit,
hypothesis =
  “dosage > symptoms > age;
  symptoms > dosage > age;
  (symptoms, dosage) > age”,
  standardize = TRUE)

H1

Hc

H3
H3

H2 H2 H2

H1

H3

H1

Hu
Excluding Hu and Hc Including Hu Including Hc

Fig. 13.  Posterior model probabilities (PMPs). PMPs associated with the set of hypotheses tested 
(PMPa), also including Hu (PMPb) or Hc (PMPc).

Table 6.  Bayes Factor Matrix

H1 H2 H3

H1 1 0.721 0.632
H2 1.387 1 0.877
H3 1.582 1.14 1

https://osf.io/dez9b/
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Step 4b: interpret and report the results.  Please refer 
to Step 4b of the JASP example for a complete guide on 
how to interpret and report these results.

Step 5b: visual exploration of the data.  Please refer 
to Step 4b of the JASP example reported above for more 
on the importance of visual exploration of the data and 
how to interpret the results obtained. In R/RStudio, in par-
ticular, the function avPlots() from the package car can be 
used to generate partial regression plots (Fig. 16). A 

detailed explanation of how to generate plots in R falls 
beyond the scope of the present article; however, the code 
used to generate Figure 16 is available on the R script 
associated with this example.

Conclusion

Especially in—but not limited to—psychological and 
cognitive sciences, experimental hypotheses do not fit 
the conventional definitions of null (A = B) and 

Fig. 14.  Using the “Regression” module to obtain partial regression plots.

Table 7.  Bain Regression

Fit Com BFu BFc PMPa PMPb PMPc

H1 0.418 0.013 31.418 53.267 0.364 0.36 0.364
H2 0.452 0.019 24.113 43.194 0.28 0.276 0.279
H3 1 0.033 30.684 1.18e+09 0.356 0.352 0.355
Hu 0.011  
Hc 0.173 0.965 0.179 0.002

Note: Hu = unconstrained hypothesis; Hc = complement hypothesis; fit = model fit;  
com = model complexity; BFu = Bayes factor versus Hu; BFc = Bayes factor versus Hc. 
PMPa = posterior model probability excluding Hu and Hc; PMPb = posterior model 
probability including Hu; PMPc = posterior model probability including Hc. Because the 
values reported here are particularly high (e+) or particularly low (e–), scientific notation 
is used for convenience.
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alternative hypotheses (A ≠ B). Most times, actual 
research expectations involve very specific predictions 

PMPa PMPb PMPc

H3 (36%)

H1 (36%)

H2 (28%) H2 (28%) H2 (28%)

H1 (36%)

H3 (35%)

H1 (36%)

H3 (36%)

Hu (1%)

Fig. 15.  Posterior model probabilities (PMPs). PMPs associated with the three hypotheses 
(PMPa), also including Hu (PMPb) or Hc (PMPc). The code used to generate this figure with 
the pie() function is available on the R script associated with this example.

Table 8.  Bayes Factor Matrix

H1 H2 H3

H1 1 1.303 1.024
H2 0.767 1 0.786
H3 0.977 1.272 1
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Fig. 16.  Visualizing the data. Added-variable plots of the linear regression model. Each panel represents the dependent variable 
(treatment effect) on the y-axis and one of three independent variables (age, dosage, and symptoms, respectively) on the x-axis. The 
regression line in blue shows the association between the two variables displayed net of all other independent variables in the model.

that could be defined in terms of equality (=) and 
inequality (> or <) constraints among the parameters. In 
other words, these are informative hypotheses that could 
be better tested via a model-comparison approach than 
via classical hypothesis testing (Gu et al., 2018; Hoijtink, 
2012; Hoijtink, Mulder, et al., 2019; Kerr, 1998). Bayesian 

informative-hypothesis testing offers a powerful and 
easy way to directly compare predefined hypotheses 
through a Bayesian model-selection procedure in which 
each hypothesis represents a potential explanation or 
expectation for a phenomenon. Following the five steps 
outlined in the present tutorial, this can be easily 
achieved using two of the most commonly adopted soft-
ware for statical analysis: JASP and R/RStudio. In the 
present tutorial article, we encourage the adoption of 
such an inferential approach whenever specific research 

hypotheses are present (Garofalo et al., 2022) to over-
come old—and not necessarily more accurate—stan-
dards in statistical practice and embrace a richer and 
more meaningful interpretation of research results 
(Calin-Jageman & Cumming, 2019; Garofalo et al., 2022; 
Hoijtink et al., 2016).
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Note

1. The topic of prior probabilities deserves a separate discussion 
that goes beyond the aim of the present article. To read more 
about this, please see Gelman and Yao (2021), Hoijtink et al. 
(2016), Kruschke (2014), Mikkola et al. (2021), van Wesel et al. 
(2011), and Zandonella Callegher et al. (2022).
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