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Metabolomics can describe the molecular phenome and may contribute to dissecting the biological pro-
cesses linked to economically relevant traits in livestock species. Comparative analyses of metabolomic 
profiles in purebred pigs can provide insights into the basic biological mechanisms that may explain dif-
ferences in production performances. Following this concept, this study was designed to compare, on a 
large scale, the plasma metabolomic profiles of two Italian heavy pig breeds (Italian Duroc and Italian 
Large White) to indirectly evaluate the impact of their different genetic backgrounds on the breed meta-
bolomes. We utilised a high-throughput untargeted metabolomics approach in a total of 962 pigs that 
allowed us to detect and relatively quantify 722 metabolites from various biological classes. The molec-
ular data were analysed using a bioinformatics pipeline specifically designed for identifying differentially 
abundant metabolites between the two breeds in a robust and statistically significant manner, including 
the Boruta algorithm, which is a Random Forest wrapper, and sparse Partial Least Squares Discriminant 
Analysis (sPLS-DA) for feature selection. After thoroughly evaluating the impact of random components 
on missing value imputation, 100 discriminant metabolites were selected by Boruta and 17 discriminant 
metabolites (all included within the previous list) were identified with sPLS-DA. About half of the 100 
discriminant metabolites had a higher concentration in one or the other breed (48 in Italian Large 
White pigs, with a prevalence of amino acids and peptides; 52 in Italian Duroc pigs, with a prevalence 
of lipids). These metabolites were from seven distinct super pathways and had an absolute mean value 
of percentage difference between the two breeds (|D|%) of 39.2 ± 32.4. Six of these metabolites had |D| 
%> 100. A general correlation network analysis based on Boruta—identified metabolites consisted of 31 
singletons and 69 metabolites connected by 141 edges, with two large clusters (> 15 nodes), three med-
ium clusters (3–6 nodes) and eight additional pairs, with most metabolites belonging to the same super 
pathway. The major cluster representing the lipids super-pathway included 24 metabolites, primarily 
sphingomyelins. Overall, this study identified metabolomic differences between Italian Duroc and 
Italian Large White pigs explained by the specific genetic background of the two breeds. These biomark-
ers can explain the biological differences between these two breeds and can have potential practical 
applications in pig breeding and husbandry.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 
Implications metabolomic data analysis approaches provided comprehensive 
This study aimed to compare the metabolomic profiles of two 
Italian heavy pig breeds (Italian Duroc and Italian Large White) 
used in crossbreeding programmes. The differences observed 
may shed light on the complementarities needed to turn on the 
heterotic effect in the resulting crossbred pigs. The developed 
overviews of the metabolome features of the two breeds that 
aligned with some of their known characteristics. This suggests 
that overall metabolomic profiles could serve as important descrip-
tors of breed—specific molecular traits. 
Introduction 

The pig breeding industry has been driving the sustainability of 
the global pork production system by focusing on the efficiency
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and performance of boars, sows, and market pigs (Rauw et al., 
2020; Kumar et al., 2023). Selective breeding programmes aim to 
enhance various traits in a variety of specialised breeds. These 
breeds are then typically used in crossbreeding schemes to max-
imise the heterotic effect on economically relevant traits (Sellier, 
1976; Buchanan and Stalder, 2011). Large White and Duroc are 
cosmopolitan pig breeds, that, along with a few other breeds, make 
up the genetic background of many different specialised nuclei 
(developed at national or breeding industry levels) and synthetic 
sire and dam lines that serve a variety of crossbreeding pro-
grammes (Kim et al., 2020; Mote and Rothschild, 2020; Fabbri 
et al., 2024). Large White pigs have been traditionally selected to 
enhance sow productivity, in addition to other complementary 
traits, while Duroc pigs have been mainly selected for efficiency, 
growth, meat quality and carcass traits and adaptation (Mote and 
Rothschild, 2020). Peculiar characteristics of the Duroc pigs are 
the high levels of inter and intramuscular fat that may lead to 
excessive fatness covering the muscle fibres of the legs (Armero 
et al., 1999; Suzuki et al., 2003; Alonso et al., 2015). These two 
breeds constitute important cosmopolitan breeds, genetically very 
different, as described by several studies that have analysed their 
genomes (Wilkinson et al., 2013; Muñoz et al., 2018; Bovo et al., 
2020; Zhang et al., 2020). However, what is still missing is an 
extended phenotyping analysis of their basic physiological and 
metabolic characteristics that could be captured by more detailed 
molecular or internal phenotypes that constitute their respective 
molecular phenomes, which may be at the origin of their differ-
ences in terms of performance and production traits. 

Recent technological developments have prompted the charac-
terisation of the animal metabolome as part of the molecular phe-
nome aimed to obtain a detailed description of many metabolites 
(small chemical compounds) present in a biological matrix at a 
given time (Houle et al., 2010; Fontanesi, 2016; Pérez-Enciso and 
Steibel, 2021; Hollywood et al., 2006). Metabolites that are consid-
ered phenotypes are referred to as metabotypes. These metabo-
types represent intermediate internal molecular phenotypes, as 
opposed to external or end-phenotypes (Fiehn, 2002; Houle 
et al., 2010; Fontanesi, 2016). The analysis of hundreds of metabo-
lites can produce metabolomic fingerprints that are useful for 
exploring differences between animals and breeds (Fontanesi, 
2016; Goldansaz et al., 2017). 

Multivariate statistical methods, particularly machine learning 
approaches, have been widely used and compared for analysing 
untargeted metabolomic data (Gromski et al., 2015, Trainor et al., 
2017; Mendez et al., 2019; Vu et al., 2019, Galal et al., 2022). 
Among them, methods of the Partial Least Squares (PLS) family 
(e.g. PLS Regression and PLS Discriminant Analysis) are currently 
the most widely employed state-of-the-art tools for reducing the 
dimensionality of noisy and multicollinear data (such as metabolo-
mic datasets). To directly identify a subset of key variables, these 
approaches were modified and evolved into their sparse versions, 
which involve feature selection through regularisation (Chung 
and Keles, 2010). Recently, the Boruta algorithm, a Random Forest 
wrapper, has emerged as a solution for all-relevant problems of 
feature selection, allowing the identification of the full set of fea-
tures carrying information usable for prediction (Kursa et al., 
2010). This is of great relevance in metabolomics, where the pri-
mary focus is on identifying the complete set of metabolites that 
are associated with and can explain the observed phenomena 
rather than just identifying the minimal set of metabolites needed 
for creating a predictive model (minimal-optimal model). For these 
features, the Boruta algorithm has been utilised in the analysis of 
various omics data, including metabolomics (Gromski et al., 
2015; Degenhardt et al., 2019; Wenck et al., 2021; Schiavo et al., 
2024), resulting in a complementary approach to adopt and further 
exploit in metabolomic data analysis. 
2

In pigs, metabolomics has been successfully used for various 
purposes that range from the general characterisation of biofluids 
to more specific applications, such as intra-breed exploration of 
meat quality traits, stress and resilience, feed nutrition, sexual 
dimorphisms and reproductive performance, among others (Bovo 
et al., 2015, 2023; Carmelo et al., 2020; Goldansaz et al., 2017; 
Luise et al., 2020; Metzler-Zebeli et al., 2023; Peukert et al., 
2021; Wang et al., 2021; Zhang et al., 2021). Moreover, considering 
that pig breeds are genetically different, comparative metabolo-
mics has been used to explore breed differences in order to evalu-
ate the impact of the genetic background on the metabolome and 
overall metabolism (D’Alessandro et al., 2011; Straadt et al., 2014; 
Bovo et al., 2016, Carmelo et al., 2020; Lefort et al., 2020; Xie et al., 
2023). As a result, new opportunities are emerging for the develop-
ment of nutrigenetics and precision feeding strategies tailored to 
the breed differences. However, metabolomics is still in its early 
stages, particularly in pigs where only very recently have global 
untargeted metabolomics analyses begun to take place (e.g. 
Carmelo et al., 2020; Deng et al., 2023; Xie et al., 2023). 

In our previous work (Bovo et al., 2016), we conducted a pilot 
study to explore metabolomic differences between two pig breeds: 
Italian Large White and Italian Duroc. We used targeted metabolo-
mics to quantify approximately 180 metabolites. These Italian 
breeds, derived from the cosmopolitan Large White and Duroc 
breeds, have been specifically constituted (starting from the 
1990 ’s) to serve as maternal and paternal lines to produce final 
heavy crossbred pigs (slaughtered at approximately 170 kg of live 
weight and 9 months of age) that are then used to obtain dry-cured 
hams. 

In this study, we expanded the information on the molecular 
phenome of pigs by examining the plasma metabolome of Italian 
Large White and Italian Duroc breeds on a much larger scale than 
our previous work using an untargeted metabolomics approach. 
We analysed approximately 800 metabolites from plasma samples 
collected from over 950 animals. The data were processed using 
specifically designed bioinformatic pipelines to select metabolites 
that provide breed—specific metabolomic fingerprints. The pipe-
line we developed methodologically considered the impact of ran-
domness, including random states in algorithms, subpopulations, 
and data imputation, on metabolite selection. Additionally, we 
assessed the metabolites within their biological networks and 
pathways to provide a comprehensive view of the metabolism of 
these two divergent pig breeds. 
Material and methods 

Animals and blood samples 

All animals used in this study were kept in accordance with the 
Italian and European legislations for pig production. All procedures 
described here were compliant with Italian and European Union 
regulations for animal care and slaughter. Animals were slaugh-
tered in a commercial abattoir following standard procedures. 
Fasting of the animals was not specifically conducted for this study, 
but rather as part of the standard preslaughtering procedure. The 
pigs were not raised or treated in any way for the purpose of this 
study; therefore, no additional ethical statement is required. 

This study involved a total of 962 healthy pigs: 694 Italian Large 
White pigs (466 entire gilts and 228 castrated males) and 268 Ital-
ian Duroc pigs (191 entire gilts and 77 castrated males) slaugh-
tered over 23 different days. The pigs were part of the sib-testing 
programmes based on triplets of pigs from the same litter, two 
females and one castrated male that were individually 
performance-tested at the Central Station of the National Pig Bree-
der Association. Performance evaluation started when the pigs
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were 30–45 days of age and ended when the animals reached 
about 155 ± 5 kg live weight. During the performance period, all 
pigs were handled in the same way and fed semi-ad libitum with 
a commercial fattening diet from about 100 kg live weight to the 
slaughtering weight. When animals were about 155 ± 5 kg live 
weight, they were subjected to a fasting period of ~12 h, trans-
ported to a commercial abattoir and slaughtered, after electrical 
stunning, in the morning at about 0800 h Animals entered the 
slaughtering plant within 5 min. Blood samples were collected into 
an EDTA—containing tube from the draining carotid artery imme-
diately after jugulation. The tubes were inverted eight to ten times 
and centrifuged within 2 h, at 2 420 g for 10 min at + 4 °C. 

Metabolomic profiling of plasma samples 

Untargeted metabolomics profiling of plasma samples was con-
ducted at Metabolon, Inc (Durham, NC, USA). The HD4 metabolo-
mics panel was utilised for this analysis. 

Initially, a methanol extraction was performed to eliminate pro-
teins and extract metabolites. The resulting extract underwent var-
ious ultra-performance liquid chromatography – tandem mass 
spectrometry (UPLC-MS/MS) steps, including reverse phase 
UPLC-MS/MS with positive and negative ion mode electrospray 
ionisation, and Hydrophilic Interaction Liquid Chromatography 
UPLC-MS/MS with negative ion mode ESI. The samples were anal-
ysed in four separate batches, each containing common quality 
control samples (constituted by a pool of plasma samples). Raw 
data were extracted, peaks were identified, and quality control 
was processed using Metabolon’s hardware and software. For each 
metabolite, the raw peak area was divided by the median raw peak 
area of the quality control samples. Metabolite annotations, includ-
ing chemical names, database identifiers and biological pathways, 
were provided by Metabolon. 

A total of 722 metabolites were assessed in at least one breed, 
including 654 named and 68 unnamed metabolites from different 
metabolite classes belonging to seven metabolic super pathways 
(lipids, amino acids, nucleotides, peptides, carbohydrates, cofactors 
and vitamins, energy and partially characterised molecules), were 
identified in at least on breed. Unnamed metabolites are those that 
have been detected and measured, but their chemical identity has 
not yet been elucidated (Krumsiek et al., 2012). Metabolites from 
the xenobiotic class were not included in the subsequent analyses. 
This was done because xenobiotic metabolites are not produced 
directly by the organism but are instead introduced via diet (speci-
fic components), drugs, or pollutants. As a result, their presence 
and concentration in an organism are not solely determined by 
genetic background but rather by the environment in which the 
animal is raised. 

Data quality control, imputation and cleaning 

Quality control and data imputation were conducted on the 
Italian Large White and Italian Duroc datasets, separately. Follow-
ing the methodology outlined in our previous works (Bovo et al., 
2015), the data were filtered as follows: (i) outlier metabolites 
were identified as values that deviated by 5 times the interquartile 
range below or above the median for each metabolite; (ii) these 
outlier values were then removed from the dataset and marked 
as missing data; (iii) metabolites with more than 25% missing val-
ues were excluded from the dataset; (iv) samples with more than 
30% missing values were also removed. Missing values were 
imputed using the method described by Faquih et al. (2020), which 
involved the Multivariate Imputation by Chained Equations 
approach (Azur et al., 2011) using the MICE R package (Van 
Buuren and Groothuis-Oudshoorn, 2011). The procedure is based 
on an iterative series of predictive models where each specified 
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variable in the dataset is imputed using the other variables in the 
dataset. These iterations should be run until it appears that conver-
gence has been met. MICE requires a predictor matrix that defines 
which columns (metabolites) of the dataset will be used to impute 
each column with missing values. For each metabolite with miss-
ing values, we selected the top ten metabolites with the highest 
Pearson’s correlation coefficient (r) along with the animal sex 
and sampling date as predictors. Only metabolites of endogenous 
origin (as defined by Metabolon) were used as predictors. Follow-
ing the suggestion of Faquih et al. (2020), we used Predictive Mean 
Matching as the imputation algorithm generating five different 
datasets, as recommended by MICE authors. Predictive Mean 
Matching works well for imputing quantitative variables that are 
not normally distributed and produces imputed values that are 
much more like real values. The approach works by imputing miss-
ing values iteratively using regression models, in which each vari-
able with missing data is modelled conditionally on all other 
variables in the dataset. Moreover, as part of the MICE strategy, five 
(or more) imputed datasets are produced, subjected to the 
intended statistical analysis, and results are then combined 
(pooled) and reported. To account for the random component of 
the imputation process, the data were imputed five separate times, 
each with a different random state seed, resulting in a total of 25 
imputed datasets for each breed. Based on the specific random 
state seed and cycle of imputation, the Italian Large White and Ital-
ian Duroc datasets were merged, and confounding factors were 
removed by regressing each metabolite abundance on covariates 
(such as sex, animal weight and sampling day) as previously 
described by Bovo et al. (2015). Residuals were obtained and used 
in the subsequent statistical analyses. The analyses were con-
ducted in the R v.4.2.3 (R Core Team, 2022) environment and 
Python v3.11.7. 

Selection of differentially abundant metabolites between pig breeds 

Differentially abundant metabolites between breeds were iden-
tified using unsupervised multivariate statistics and Machine 
Learning approaches. In the first step of evaluation, we conducted 
a Principal Component Analysis (PCA). The dataset of residuals was 
analysed in R v.4.2.3 (R Core Team, 2022) through the function 
prcomp; before PCA, variables were scaled to have unit variance. 
The first two principal components were extracted and analysed. 
Subsequently, we utilised two Machine Learning methods for fea-
ture selection: Boruta (Kursa et al., 2010), which is a wrapper for a 
Random Forest classification algorithm, and sparse Partial Least 
Squares Discriminant Analysis (sPLS-DA) (Chung and Keles, 2010). 

Boruta analysis consisted of several iterative applications of 
Random Forest where shadow features were artificially created 
and compared to the original one to estimate their importance. 
Features that emerged from the comparison are labelled as ‘Con-
firmed’, ‘Tentative’ and ‘Rejected’. Analyses were run in Python 
v3.11.7, using the BORUTA_py and scikit_learn packages with 
default parameters except for (i) the max_iter parameter (maxi-
mum iterations to perform), which was increased to 1 000 (default: 
100), and the alpha parameter (the level at which the corrected P-
values will get rejected in the two—step correction adopted in fea-
ture selection), which was set to a more stringent value of 0.01 (de-
fault: 0.05) to obtain more robust statistics. Metabolites labelled as 
‘‘confirmed” by Boruta were considered selected and relevant for 
classification. 

sPLS-DA analyses were performed in the R v.4.2.3 environment 
using the function splsda of the R package spls (Chung and Keles, 
2010). They included an internal 10-fold cross-validation (internal 
10CV) procedure to identify, through a grid search (function cv. 
splsda), the optimal eta (thresholding parameter; ranging from 
0.1 to 0.9) and K (number of hidden components; ranging from 2
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to 10) parameters. As a result, metabolites with a non-zero regres-
sion coefficient were considered selected and relevant for 
classification. 

Feature selection was performed on each of the 25 datasets 
with missing data imputed (Supplementary Figure S1). To account 
for the random component of the feature selection methods, we 
ran each analysis five times with five different random seeds, for 
a total of 125 feature selection runs on the original dataset. To eval-
uate the stability of selected metabolites, each run included an 
addition 10CV procedure (external 10CV), by randomly splitting 
each of the 25 imputed datasets into ten equal parts. Thus, each 
approach tested the discriminative power of metabolites a total 
of 1 250 times (Supplementary Figure S1), accounting for random 
components nested in both imputation and selection methods 
(Supplementary Figure S1). For the two algorithms, we considered 
informative sets as (i) metabolites classified as confirmed in all 
1 250 runs (Boruta) and (ii) metabolites with the sign of the regres-
sion coefficient identical in all 1 250 runs (sPLS-DA). 

Following the study by Schiavo et al. (2024), the Boruta 
approach was then coupled with a standard Random Forest analy-
sis of the reduced informative set, meaning that residuals of 
metabolites selected by Boruta/sPLS-DA were used as starting set 
for the analysis. The function randomForest included in the R pack-
age randomForest (Breiman, 2001) was used, with default param-
eters. This approach allowed for the computation of the Mean 
Decrease Gini (MDG) parameter, which was used to score the 
importance of the metabolites and rank them accordingly. The 
Out-Of-Bag (OOB) score and error, two indexes measuring the pre-
diction error of Random Forest (and consequently Boruta), was 
adopted to assess the ability of the metabolite sets to accurately 
assign each animal to its breed. This metric provides a computa-
tionally convenient approach to evaluate Random Forest without 
using a testing dataset or cross-validation procedures (Huang and 
Deng, 2021). In addition to the MDG parameter, discriminant 
metabolites were assessed for their predictive performance using 
a Receiver Operating Characteristic curve analysis and the area 
under the curve (AUC) value, a summary metric of the Receiver 
Operating Characteristic curve, as implemented in the R v.4.2.3 
environment with the function auc (default parameters) of the R 
package pROC (Robin et al., 2011). 

We also evaluated the relative difference in concentration 
between breeds (D%; Bovo et al., 2016) for each metabolite (i), 
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—S 
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P 
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Metabolite networks and pathway analysis 

After selection, metabolite residuals were subjected to network 
and pathway analyses. Different networks based on Pearson’s cor-
relation coefficients (r) were computed: (i) a network including all 
pigs of the two breeds (Italian Large White and Italian Duroc), (ii) 
another network including all animals but with the inclusion of 
the breed as a fixed effect (in addition to sex, animal weight and 
sampling day) in the linear model used to clean the data and (iii) 
two separate networks, one for Italian Large White pigs and one 
for Italian Duroc pigs. Pearson’s correlation coefficients were com-
puted in R v.4.2.3. Edges of the network were considered informa-
tive when presenting r > 0.5 (medium correlation). Networks were 
drawn using Cytoscape 3.0.1 (Shannon et al., 2003) and basic 
statistics (e.g. node degree and betweenness centrality) were 
obtained. 

Over-representation analysis was conducted to identify biolog-
ical features characterising the selected metabolites. The analyses 
were performed using MetaboAnalyst v.6.0 (Pang et al., 2022). 
4

The Human Metabolome Database identifiers were utilised as the 
input set. The interrogated metabolite sets belonged to the 
RaMP-DB resource, a comprehensive collection of 3 694 metabolite 
and lipid pathways from various pathway databases (Zhang et al., 
2018). Terms that included at least 2 metabolites from the input 
set and had a False Discovery Rate corrected P < 0.05 were consid-
ered statistically over-represented. 

Results 

Overview of metabolomic profiles 

Out of 722 metabolites profiled in both breeds, 594 (82%) were 
metabolites of endogenous origin, 60 (8%) were metabolites of 
xenobiotic origin, and 68 (9%) were unnamed metabolites of 
unknown origin. The distributions of metabolites across super-
pathways and sub-pathways are illustrated in Fig. 1A. Endogenous 
metabolites were categorised into eight super pathways: lipids 
(49% of the endogenous set), amino acids (30%), nucleotides (7%), 
peptides (4%), carbohydrates (4%), cofactors and vitamins (4%), 
energy (1%) and partially characterised molecules (1%). A total of 
102 sub-pathways were covered (Supplementary Table S1). 
Metabolites of xenobiotic origin were excluded from further 
analyses. 

On average, endogenous and unnamed metabolites had very 
few outlier values across the analysed pigs. For each metabolite 
the outlier pigs were on average 2.87 ± 6.89 and 2.82 ± 5.85, with 
median 1 for both endogenous and unnamed metabolites in the 
Italian Large White breed; 0.92 ± 2.37 and 0.43 ± 0.98 with median 
0 for both classes of metabolites in Italian Duroc breed. Outlier val-
ues were removed and labelled as missing values. A total of 82 
metabolites were discarded because they had a percentage of miss-
ing values greater than 25% in at least one of the two breeds. The 
proportional composition of the different super pathways did not 
change (Fig. 2A) and 101 sub-pathways (Supplementary 
Table S1) were still covered. The analysis of the entire metabolomic 
profile did not identify any outlier samples. After the filtering steps, 
a high-quality dataset was obtained, including 962 animals and 
580 metabolites from the eight super pathways mentioned above. 
This dataset was used for all subsequent analyses. 
Detection of metabolites differentiating the two pig breeds 

Differences between the metabolomic profiles of the two breeds 
were initially examined by conducting a PCA on the entire metabo-
lomic dataset that passed the filtering steps. The first two principal 
components represented 14.2 and 8.7% of the total variance, 
respectively. From this first analysis, these initial and global meta-
bolomic profiles, including all metabolites that passed the applied 
quality filtering steps, did not separate the two breeds into distinct 
clusters, and the clouds constituted by the two pig groups com-
pletely overlapped (Fig. 1C). 

Following this initial assessment, we utilised the Boruta 
Machine Learning approach and the sPLS-DA multivariate 
approach to identify the most discriminating metabolites within 
the initial metabolite dataset, which could differentiate the two 
breeds. Boruta identified a total of 100 metabolites (17.2% of the 
analysed metabolite dataset; Table 1, Supplementary Table S2) 
that were stably selected and confirmed across the analysis of 
the datasets that involved five randoms seeds of analysis (125 
runs; 25 datasets × 5 Boruta seeds each) and a 10-fold cross—val-
idation to each Boruta analysis (1 250 runs in total). These 100 
stable metabolites derived from the combination (i) of the analyses 
across the 125 runs, where a total of 163 metabolites were globally 
selected as having discriminative features (ranging from 134 to
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Fig. 1. Metabolomic panel and metabolites differentiating Italian Large White (ILW) and Italian Duroc (IDU) pigs. (A) Distribution of metabolites across super-pathways; (B) 
Distribution of metabolites across sub-pathways; (C) Principal component analysis (PCA) before feature selection (n. 580 metabolites); (D) Statistics of selection; percentage 
is given considering the full metabolite set (n. 580 metabolites); (E) PCA based on metabolites selected by Boruta (n. 100); (F) PCA based on metabolites selected only by 
sparse Partial Least Squares Discriminant Analysis (sPLS-DA) (n. 17). Abbreviations: Part. char. molecules = Partially characterised molecules. 

Fig. 2. Biological features of selected metabolites in pigs (n. 100). (A) Distribution of selected metabolites in relation to the super-pathways and the breeds having high 
concentrations of metabolites; (B) Distribution of selected metabolites in relation to the sub-pathways and the breeds having high concentrations of metabolites. 
Abbreviations: IDU = Italian Duroc, ILW = Italian Large White, Part. char. molecules = Partially characterised molecules, POP = Whole population. 
148 in the single runs, with a mean of 140, representing 24% of the 
global metabolite dataset; Fig. 1D), and (ii) of the analyses with all 
10 rounds of the external 10CV, where a total of 124 metabolites 
were globally confirmed (ranging from 105 to 113 in the single 
runs, with a mean of 109, representing 19% of the global metabolite 
dataset, Fig. 1D). These results indicated that feature selection and 
confirmation were quite stable despite the random component 
used for data imputation and analysis and data subsampling via 
the external 10CV. Approximately, half of the selected metabolites 
5

had a higher concentration in Italian Large White pigs (n. 52) while 
the other half had a higher concentration in Italian Duroc pigs (n. 
48). 

The sPLS-DA—based analyses led to the identification and con-
firmation of 17 metabolites as discriminating features (3% of the 
global metabolite dataset). Similar to the Boruta results, these 
metabolites were derived from the combination of the analyses 
(i) across the 125 runs, where all the 722 metabolites were selected 
at least once (with an average of 295 metabolites selected per run,



S. Bovo, M. Bolner, G. Schiavo et al. Animal 19 (2025) 101393

Table 1 
The list of 100 metabolites showing differences in concentration between the two pig breeds. Metabolites are sorted based on the Area Under the Curve value (from highest to 
lowest). Additional details are reported in Supplementary Table S2. 

First 50 breed-related metabolites Second 50 breed-related metabolites 

No.1 Metabolite name SP2 Breed3 No.1 Metabolite name SP2 Breed3 

1 Glycosyl ceramide (d18:2/24:1, d18:1/24:2) Lip IDU 51 Phenylacetylalanine Pept IDU 
2 X-15503 U ILW 52 N-acetyltaurine AA IDU 
3 Kynurenate AA ILW 53 Leucylglycine Pept ILW 
4 3-methoxytyrosine AA IDU 54 Gamma-glutamylcitrulline Pept ILW 
5 Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) Lip IDU 55 Gamma-glutamyl-alpha-lysine Pept ILW 
6 Kynurenine AA ILW 56 Palmitoyl sphingomyelin (d18:1/16:0) Lip IDU 
7 Gamma-glutamylvaline Pept IDU 57 Sphingomyelin (d18:1/19:0, d19:1/18:0) Lip IDU 
8 Glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) Lip IDU 58 4-methyl-2-oxopentanoate AA IDU 
9 Glycosyl ceramide (d18:1/20:0, d16:1/22:0) Lip IDU 59 Linoleoylcarnitine (C18:2) Lip IDU 
10 N-delta-acetylornithine AA ILW 60 X-25172 U IDU 
11 X-24736 U ILW 61 Cystine AA ILW 
12 Glycosyl-N-stearoyl-sphingosine (d18:1/18:0) Lip IDU 62 Gamma-glutamylglutamine Pept ILW 
13 1-methyl-5-imidazolelactate AA ILW 63 X-23423 U ILW 
14 N-acetylmethionine AA ILW 64 3-methyl-2-oxobutyrate AA IDU 
15 N-acetylkynurenine (2) AA ILW 65 Anthranilate AA ILW 
16 3-methylhistidine AA ILW 66 Sphingomyelin (d18:1/24:1, d18:2/24:0) Lip IDU 
17 3-hydroxy-3-methylglutarate Lip ILW 67 Sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) Lip IDU 
18 3-methylglutaconate AA ILW 68 Sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2) Lip IDU 
19 Glycine conjugate of C6H10O2 (2) PCM IDU 69 Cystathionine AA IDU 
20 Sphingomyelin (d18:2/24:2) Lip IDU 70 1,5-anhydroglucitol (1,5-AG) C IDU 
21 Palmitoyl dihydrosphingomyelin (d18:0/16:0) Lip IDU 71 6-bromotryptophan AA IDU 
22 1-methyl-5-imidazoleacetate AA ILW 72 Gamma-tocopherol/beta-tocopherol C&V IDU 
23 N-methylalanine AA ILW 73 Gamma-glutamyltyrosine Pept ILW 
24 S-methylcysteine AA IDU 74 Glutamate AA IDU 
25 Campesterol Lip IDU 75 2R,3R-dihydroxybutyrate Lip ILW 
26 5-methylcytidine PCM ILW 76 Gamma-glutamylthreonine Pept ILW 
27 Carnosine AA ILW 77 X-18913 U ILW 
28 Creatinine AA ILW 78 Sphingomyelin (d18:1/20:0, d16:1/22:0) Lip IDU 
29 Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) Lip IDU 79 Isobutyrylglycine AA IDU 
30 Cysteinylglycine disulfide AA ILW 80 Ascorbic acid 3-sulfate C&V IDU 
31 20-O-methylcytidine Nucl IDU 81 3-hydroxybutyrate (BHBA) Lip IDU 
32 Sphingomyelin (d18:1/20:1, d18:2/20:0) Lip IDU 82 2-hydroxyheptanoate Lip ILW 
33 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) Lip IDU 83 Gamma-glutamylglycine Pept ILW 
34 Sphingomyelin (d18:2/23:1) Lip IDU 84 Picolinoylglycine Lip ILW 
35 Hexanoylglycine Lip IDU 85 X-11850 U IDU 
36 20-O-methyluridine Nucl IDU 86 Aspartate AA IDU 
37 X-17354 U ILW 87 N6-methyllysine AA IDU 
38 Homocitrulline AA ILW 88 Alpha-tocopherol C&V ILW 
39 trigonelline (N’-methylnicotinate) C&V ILW 89 Sarcosine AA ILW 
40 2-hydroxyoctanoate Lip ILW 90 X-22162 U IDU 
41 Thymidine Nucl ILW 91 3-indoxyl sulfate AA IDU 
42 Dimethylglycine AA IDU 92 Pro-hydroxy-pro AA ILW 
43 Methionine sulfone AA ILW 93 1-arachidonoyl-GPE (20:4n6) Lip ILW 
44 Cytidine Nucl ILW 94 Anserine AA ILW 
45 Sphingomyelin (d18:2/24:1, d18:1/24:2) Lip IDU 95 Sphinganine-1-phosphate Lip ILW 
46 X-23593 U ILW 96 Isoleucine AA IDU 
47 Sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1) Lip IDU 97 X-11843 U IDU 
48 Leucylhydroxyproline Pept ILW 98 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4) Lip ILW 
49 Tryptophan AA IDU 99 2-O-methylascorbic acid C&V IDU 
50 Sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1) Lip IDU 100 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) Lip ILW 

1 Metabolites are ranked by the Area Under the Curve value (see Supplementary Table S2). This identifier is used also for identifying nodes at the network level. 
2 Super-pathway as defined by the Metabolon platform. AA: amino acid; C: carbohydrate; C&V: cofactors and vitamins; Lip: lipid; Nucl: nucleotide; Pept: peptide; PCM: 

partially characterised molecules; U: unknown. 
3 IDU: higher concentration in Italian Duroc pigs; ILW: higher concentration in Italian Large White pigs. 
representing 51% of the global metabolite dataset; ranging from 42 
to 578 in the single runs; Fig. 1D) and (ii) with all 10 rounds of the 
external 10CV, where an average of 35 metabolites were confirmed 
(6% of the global metabolite dataset; ranging from 27 to 67 in the 
single runs; Fig. 1D). These results indicate that there was high 
variability before the application of the CV due to the random com-
ponent used in selection (rather than the effect of the imputation). 
However, the instability was resolved when an external 10CV pro-
cedure was implemented, as evidenced by the consistent confirma-
tion of a small set of 17 metabolites. Of the selected metabolites, 6 
had a higher mean concentration in Italian Large White pigs while 
the remaining 11 had a lower mean concentration in this breed 
(and vice versa in the Italian Duroc breed). It is worth mentioning 
that all 17 metabolites selected with the sPLS-DA analysis are 
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included within the metabolite set chosen with the Boruta analysis 
(Table 1). 

Considering the predictive performance, both selected metabo-
lite sets (one derived from Boruta analyses and one derived from 
sPLS-DA analyses) were quite effective in separating the pigs of 
the two breeds: both PCAs based on the two metabolite subsets 
showed two distinct clusters of pigs representing the two breeds 
(Fig. 1E and Fig. 1F for Boruta and sPLS-DA, respectively). The sep-
aration was primarily driven by Principal Component 1 (as 
expected), capturing a significant portion of the variance (19.5% 
for Boruta and 34.2% for sPLS-DA). 

As quantitative measures of discrimination power, we calcu-
lated the OOB and MDG values as well as the Receiver Operating 
Characteristic curve for the two sets of metabolites. The metabo-
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lites chosen by Boruta had an OOB score of 0.985 (OOB error of 
0.015), which was nearly identical to the OOB score value (0.984) 
obtained with the metabolites selected by sPLS-DA. For the 100 
metabolites selected by Boruta, the MDG values ranged from 
0.00053 to 0.04878, while the Receiver Operating Characteristic 
analysis yielded AUC values ranging from 0.53 to 0.92 (mean = 0.74) 
(Supplementary Figure S2). The correlation between MDG and AUC 
values was strong (r = 0.83). Out of the 100 metabolites selected 
with Boruta, the 17 metabolites chosen by sPLS-DA ranked within 
the top 60, based on MDG (that ranged from 0.003 to 0.04878) and 
the top 50 based on AUC values (that ranged from 0.74 to 0.93) 
(Supplementary Figure S2). However, for the remaining 83 
metabolites from the Boruta dataset, we also assessed their specific 
discriminative power. The PCA conducted solely with the 83 
metabolites displayed a clear separation of the two breeds (Supple-
mentary Figure S3), with Principal Component 1 explaining 17.2% 
of the variance and an OOB score of 0.985. The AUC values ranged 
from 0.53 to 0.89, with approximately 70% of the metabolites hav-
ing AUC values 0.7. 

Biological features of discriminant metabolites 

The metabolites selected by Boruta (100 metabolites) were 
spread across seven different super-pathways, with amino acids 
accounting for approximately ~6% of the total profile and lipids 
also making up around 6%. Within this metabolite dataset, super-
pathways were distributed as follows: amino acids (35%), lipids 
(33%), peptides (10%), nucleotides (5%), cofactors and vitamins 
(5%), carbohydrates (1%), and partially characterised molecules 
(1%) (Fig. 2A, grey bars). Unnamed compounds accounted for 10% 
of the selected metabolites, and no metabolites from the Energy 
super-pathway were selected. In the case of sPLS-DA (17 metabo-
lites), only four super-pathways were represented, with no nucleo-
tides, cofactors/vitamins and carbohydrates included. Amino acids 
accounted for ~4% of the total profile, while lipids made up ~3%, 
similar to Boruta. Within this selection set, super-pathways were 
distributed as follows: lipids (47%), amino acids (35%), peptides 
(6%), and partially characterised molecules (6%). Unnamed com-
pounds made up 6% of the selected metabolites. 

Stratified by breed, approximately half of the Boruta—identified 
metabolites showed higher concentrations in Italian Large White 
pigs (n. 48) while the other half had higher concentrations in Ital-
ian Duroc pigs (n. 52). When classified by super-pathways and 
evaluated in relation to the breed, the relative distributions of 
metabolites showed some differences. For example, there was a 
higher concentration of amino acids (n. 20) and peptides (n. 16) 
in Italian Large White pigs compared to Italian Duroc (n. 15 and 
n. 2, respectively). Conversely, there was a higher concentration 
of lipids (n. 24) in Italian Duroc pigs compared to Italian Large 
White pigs (n. 9) (Fig. 2A). The distribution of selected metabolites 
in relation to the sub-pathways and breeds is shown in Fig. 2B. 

Metabolites had absolute values ofD% ranging from 6.3 to 193.6 
(Table 1), with an average value of 39.2 ± 32.4. Metabolites with a 
high |D|% also showed high MDG and AUC values, with correlations 
of r = 0.64 and r = 0.58, respectively. A total of 19 metabolites had a 
|D|%>50 and six metabolites had |D|% > 100. Specifically, these six 
metabolites were (i) more abundant in Italian Duroc than Italian 
Large White, (ii) selected by both Boruta and sPLS-DA [with the 
exception of glycosyl-N-stearoyl-sphingosine (d18:1/18:0) and 
glycosyl-N-palmitoyl-sphingosine (d18:1/16:0), which were only 
selected by Boruta] and belonged to the lipid class except one, 
the peptide gamma-glutamylvaline. In particular, four lipids 
belonged to the sub—pathway of hexosylceramides and one (hex-
anoylglycine) belonged to the Fatty Acid Metabolism (Acyl Gly-
cine). Exosylceramides showed a high correlation with each other 
but did not correlate with hexanoylglycine. Considering the 
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extreme D% values, glycosyl ceramide (d18:2/24:1, d18:1/24:2), a 
hexosylceramide, had the lowest D% value (indicating high con-
centrations in Italian Duroc pigs), whereas 1-methyl-5-
imidazoleacetate, belonging to the histidine metabolism, had the 
highest D% (indicating high concentrations in Italian Large White 
pigs). 

Metabolite networks 

The biological characterisation of the selected metabolites ini-
tially relied on the construction of a correlation network (based 
on Pearson’s correlation coefficients) annotated by super-
pathways. Correlations were calculated initially for each breed, 
separately, and then at the population level (including all pigs of 
the two breeds). Within each breed, correlations were normally 
distributed (Supplementary Figure S4A-B) and similar to each 
other (Supplementary Figure S4C). At the population level, the dis-
tribution was bimodal due to the differential abundance between 
breeds of metabolites (Supplementary Figure S4D). Correcting for 
the breed effect removed this bias and allowed true correlations 
to emerge resulting in a normal distribution (Supplementary Fig-
ure S4E). Supplementary Figure S4F shows the relationship 
between corrected and uncorrected correlations at the population 
level. Supplementary Figure S5A-B and Supplementary Figure S5C-
D show, within each single breed, the relationship with corrected 
and uncorrected correlations at the population level. 

A general correlation network was obtained by retaining only 
moderate to high correlations (|r|> 0.5) from the three different 
correlation sets (the two computed within breed and one general 
metabolite dataset corrected for the breed effects). The network 
consisted of 31 singletons and 69 metabolites connected by 141 
edges (Fig. 3A). The metabolites were grouped into two large clus-
ters (>15 nodes), three medium clusters (3–6 nodes) and eight 
additional pairs, with most metabolites belonging to the same 
super pathway (Fig. 3A) or having high abundance in one breed 
or the other (Fig. 3B). Network statistics can be found in Supple-
mentary Table S2. The first major cluster representing the lipids 
super-pathway included 24 metabolites, primarily sphin-
gomyelins. This cluster was highly connected and characterised 
by a high node degree (7.0 ± 4.3). Palmitoyl sphingomyelin 
(d18:1/16:0) and sphingomyelin (d18:1/24:1, d18:2/24:0) were 
the two metabolites with the highest node degree, both equal to 
14. Two subclusters emerged, connected by the glycosyl-N-
palmitoyl-sphingosine (d18:1/16:0) (node n. 8) and palmitoyl sph-
ingomyelin (d18:1/16:0) (node n. 56), which are the two lipids 
with the highest betweenness centrality. The second major cluster 
connected several amino acids and urea cycle metabolites. It 
included 15 metabolites and was less connected (node degree of 
3.3 ± 1.9) compared to the cluster of lipids. In this cluster, the 
un-named compound X-23593 (node n. 46) resulted in the 
metabolite with the highest node degree (equal to 7) whereas cre-
atinine (node n. 28) resulted in the metabolite with the highest 
betweenness centrality (0.48) and constituted a central node link-
ing different metabolic routes. Two other un-named metabolites 
(X-23423 and X-24736) were included in this second—largest clus-
ter. The third major cluster was related to the peptides super path-
way and included six metabolites that were highly connected 
(node degree equal to 4.0 ± 0.8). All of them were classified as 
gamma-glutamyl amino acids. The other two small clusters 
included other molecules mainly belonging to the amino acids 
super pathway. One cluster, that also included an un-named 
metabolite (X-15503), was constituted by other three metabolites 
of the kynurenine pathway, related to the tryptophan metabolism 
and picolinoylglycine. The other small cluster included metabolites 
related to the leucine, isoleucine and valine metabolism. We did 
not identify any relationship between node features at the network
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Fig. 3. Connected components of the correlation network involving selected metabolites (n.100) in pigs. (A) Metabolites are coloured by super-pathway (as provided by 
Metabolon). Major clusters are evidenced; (B-D) Metabolites are coloured respectively by breed (breed having a higher concentration of the metabolite), MDG (from Random 
Forest) and AUC (from ROC analysis), respectively. Node identifiers are given in Table 1. Abbreviations: AUC = Area under the curve, MDG = Mean decrease Gini, ROC = 
Receiver operating characteristic. 
level (e.g. node degree, centrality, etc.) and MDG, AUC or |D|%. 
However, we observed that important metabolites tend to be con-
nected with each other as part of subclusters (Fig. 3C–D). 

Functional characterisation of discriminant metabolites 

The functional characterisation of metabolites was carried out 
using Metabolon’s annotations. The metabolites were grouped into 
38 subpathways, six of them containing at least five metabolites 
each, including Sphingomyelins (n. 14), Gamma-glutamyl Amino 
Acid (n. 7), Tryptophan Metabolism (n. 7), Methionine, Cysteine, 
SAM and Taurine Metabolism (n. 6), Histidine Metabolism (n. 5), 
and Leucine, Isoleucine and Valine Metabolism (n. 5). 

In addition to this classification, metabolites were also analysed 
for over—representation in biological pathways using the 
MetaboAnalyst webserver. Only 57 metabolites were successfully 
mapped to the pathway libraries and metabolite sets available in 
MetaboAnalyst v.5.0; the majority of excluded metabolites were 
lipids. 

A total of 57 pathway libraries and metabolite sets, including 28 
out of 57 metabolites, were found to be significantly overrepre-
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sented (False discovery rate corrected P < 0.05; Supplementary 
Table S3). It is worth mentioning that metabolite sets in RaMP-
DB come from various sources and may contain overlapping infor-
mation (e.g. the metabolism of amino acids and derivatives from 
the Reactome database and the amino acid metabolism from 
WikiPathways). As a result, the ability to link pathways in a net-
work context allowed for the identification of clusters of pathways 
(Fig. 4). The top enriched metabolite sets (False discovery rate cor-
rected P < 0.01; Table 2) included general pathways, that annotated 
hundreds of molecules each, and featured several of the selected 
metabolites. Examples include pathways related to the metabolism 
of amino acids (annotating 109–283 metabolites) and the trans-
port of molecules (annotating 90–208 metabolites). However, 
more specific sets of metabolites characterised by a lower number 
(<30) of annotated metabolites emerged. These sets include leu-
cine, isoleucine and valine metabolism, the tryptophan catabo-
lism/metabolism and beta-alanine metabolisms. Considering 
these smaller sets, a cluster related to tryptophan emerged 
(Fig. 4), encompassing and linking four metabolite sets (tryptophan 
metabolism, tryptophan catabolism, tryptophan catabolism lead-
ing to NAD + production and the kynurenine pathway with links
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Fig. 4. Relationships between enriched metabolite sets, based on the metabolites discriminating between the two pig breeds. The colour of nodes represents the P-value 
whereas the size of the nodes represents the enrichment ratio (Supplementary Table S3). Abbreviation: SLC = Solute carrier, GABA = Gamma-aminobutyric acid. 

Table 2 
Over-represented pathways (PFDR < 0.01) on the RaMP-DB database, based on the metabolites discriminating between the two pig breeds. Full results are given in Supplementary 
Table S3. 

Metabolite Set Total1 Hits2 Enrichment ratio3 P FDR corrected P 

Metabolism of amino acids and derivatives 283 14 6.83 2.12E-09 7.04E-06 
SLC transporter disorders 80 8 13.82 5.81E-08 9.64E-05 
Disorders of transmembrane transporters 98 8 11.27 2.89E-07 2.71E-04 
Leucine, isoleucine and valine metabolism 67 7 14.43 3.27E-07 2.71E-04 
Amino acid metabolism 109 8 10.14 6.62E-07 3.90E-04 
Biochemical pathways: part I 445 14 4.35 7.07E-07 3.90E-04 
SLC-mediated transmembrane transport 155 9 8.04 8.64E-07 4.09E-04 
Amino acid transport defects (IEMs) 27 5 25.51 1.03E-06 4.25E-04 
Tryptophan catabolism 33 5 20.92 2.93E-06 0.00108 
Urea cycle and metabolism of amino groups 34 5 20.33 3.41E-06 0.00113 
Transport of small molecules 208 9 5.96 1.01E-05 0.00303 
Tryptophan catabolism leading to NAD+production 23 4 23.95 1.81E-05 0.005 
Transcription/Translation 25 4 22.10 2.56E-05 0.00653 
Transport of inorganic cations/anions and amino acids/oligopeptides 52 5 13.26 2.91E-05 0.00677 
Tryptophan metabolism 53 5 13.02 3.20E-05 0.00677 
beta-Alanine metabolism 28 4 19.70 4.08E-05 0.00677 
Carnosinuria, carnosinemia 28 4 19.70 4.08E-05 0.00677 
GABA-Transaminase Deficiency 28 4 19.70 4.08E-05 0.00677 
Ureidopropionase Deficiency 28 4 19.70 4.08E-05 0.00677 
Kynurenine pathway and links to cell senescence 28 4 19.70 4.08E-05 0.00677 
Amino acid transport across the plasma membrane 32 4 17.24 7.03E-05 0.0111 

Abbreviations: FDR = False Discovery Rate, SLC = Solute carrier, GABA = Gamma-aminobutyric acid. 
1 No. of metabolites annotated in the set. 
2 Selected metabolites belonging to the set. 
3 Enrichment Ratio is computed by Hits / Expected, where hits = observed hits; expected = expected hits. Details are given in Supplementary Table S3.
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to cell senescence). In these pathways, kynurenate and kynurenine 
were found to be the metabolites with the highest correlation 
(r = 0.76). Beta-alanine metabolism was part of a different cluster 
(Fig. 4) also encompassing four disease—related pathways (includ-
ing GABA-Transaminase deficiency, Ureidopropionase deficiency, 
carnosinuria and carnosinemia). This cluster also included other 
four of the selected metabolites: carnosine, anserine, glutamate 
and aspartate. In particular, anserine and carnosine showed a high 
correlation (r = 0.96) as well as glutamate and aspartate (r = 0.70).
Discussion 

In recent years, metabolomics has been used to gain valuable 
insights into the biological complexity of the mammalian metabo-
lism, including the pig, contributing to the dissection of some of 
the molecular mechanisms underlying economically relevant traits 
in this livestock species (Bovo et al., 2015, 2016, 2023; Carmelo 
et al., 2020; Luise et al., 2020; Metzler-Zebeli et al., 2023; 
Peukert et al., 2021; Wang et al., 2021; Zhang et al., 2021). Metabo-
lomics has opened up the possibility to analyse hundreds of molec-
ular phenotypes that contribute to the dissection of the animal 
phenome, with a great potential for application in animal breeding 
and selection (Fontanesi, 2016; Goldansaz et al., 2017; Pérez-
Enciso and Steibel, 2021). Different breeds or lines are also typi-
cally used in crossbreeding programmes. Therefore, it is crucial 
to characterise breed-specific metabolomic fingerprints that can 
offer an overall view of the fundamental metabolic differences 
between breeds that, when combined, contribute to enhance pro-
duction performances in crossbred pigs (D’Alessandro et al., 
2011; Straadt et al., 2014; Bovo et al., 2016; Carmelo et al., 2020; 
Lefort et al., 2020; Xie et al., 2023). Because of their relevance for 
the pig industry, we previously carried out a pilot study where 
we initially characterised part of the metabolome of the same 
two heavy pig breeds investigated in this study, i.e. Italian Duroc 
and Italian Large White. Despite the relatively small number of 
investigated animals and molecules (12 pigs per breed and ~180 
targeted metabolites), we showed that metabolomics can disclose 
the effect of different genetic backgrounds (represented by the two 
breeds) on metabolic features (Bovo et al., 2016). 

In this study, we scaled up the investigation of the molecular 
phenome characterisation of the Italian Duroc and Italian Large 
White breeds by applying MS-based untargeted global metabolo-
mics approach on a total of~950 pigs. The applied high throughput 
metabolomic platforms measured ~800 metabolites (722 were 
then retained) covering seven metabolic super pathways 
and ~100 specific pathways, analysed with two supervised multi-
variate machine learning—based approaches. One approach, 
namely sPLS-DA, derives from PLS discriminant analysis, a popular 
and ubiquitously applied chemometric method used in the field of 
metabolomics for dimensionality reduction. Briefly, PLS-DA finds a 
linear regression model by projecting the predicted variables and 
the observed variables into a new space and providing several 
statistics (e.g. loading weights and variable importance on projec-
tion scores) for the selection of relevant variables (Brereton and 
Lloyd, 2014). However, while in PLS discriminant analysis the cri-
teria and threshold for extracting these variables are left to the 
user, sPLS-DA applies regularisation for the simultaneous dimen-
sionality reduction and variable selection (Chung and Keles, 
2010). Thus, this new algorithm was introduced to shift from solely 
classification and prediction to variable selection (sPLS-DA). 
Despite being highly performant, one major drawback of these 
techniques is class separation and classification, even when a data-
set does not contain any relevant variables (e.g. a dataset contain-
ing n random data points), highlighting the need for careful 
evaluation of results and the need to involve other steps in (s) 
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PLS-DA (Yi et al., 2016). This includes the implementation of an 
additional cross-validation procedure (Ruiz-Perez et al., 2020). 
Moreover, as mentioned at the beginning, sPLS-DA is characterised 
by the minimal-optimal problem, which leads to selecting only 
those variables relevant for obtaining a good model rather than 
all variables related to the analytical problem (all-relevant prob-
lem). To better understand the biological problem as well as 
address algorithmic purposes, features, and popularity, we used a 
second approach for data analysis. We chose the Random Forest 
algorithm, specifically Boruta (Kursa et al., 2010), because (i) it is 
an all-relevant algorithm and (ii) it does not require (in principle) 
any additional CV procedure (Huang and Deng, 2021). As for other 
algorithms, despite having performance comparable to the PLS 
family and being around for a similar length of time (Trainor 
et al., 2017; Mendez et al., 2019; Vu et al., 2019, Galal et al., 
2022), Random Forest has not achieved the same level of popular-
ity as PLS methods, resulting in its underuse. To address the biolog-
ical problem, we established a bioinformatic pipeline to evaluate 
and mitigate the randomness introduced by (i) the algorithm (as 
part of its workflow), (ii) the animals under investigation and (iii) 
the imputed data. 

Application of sPLS-DA let to the identification of a small num-
ber of discriminating metabolites (n. 17) whereas Boruta returned 
a larger number (n. 100) that included all the metabolites coming 
from sPLS-DA. The first results highlight how the two algorithms 
provide complementary outputs (Gromski et al., 2015; Mendez 
et al., 2019). Specifically, 17 metabolites relate to the minimal-
optimal problem, while the remaining 83 metabolites relate to 
the all-relevant problem. Both sets of metabolites demonstrated 
good and similar classification performance despite differing in 
size. Secondly, the application of a pipeline evaluating random 
components at different levels highlighted the instability of sPLS-
DA in the selection of relevant features. This result supports the 
findings of a previous study where the random seed of analysis 
was shown to impact the selection of optimal tuning parameters 
by influencing the required tuning parameters of the algorithm 
(Olson Hunt et al., 2014). Instability is also exacerbated by multi-
collinearity, due to the presence of correlated variables (which is 
common in metabolomics data) and affects the stability and accu-
racy of coefficient estimates (Olson Hunt et al., 2014). This multi-
collinearity has been shown to degrade the performance of 
regularisation in sPLS-DA (Fan and Lv, 2008; Lee et al., 2021), 
which may explain some of the instability observed in our results. 
A stable core of metabolites was only achieved by sPLS-DA after 
applying an external CV procedure, underscoring the importance 
of additional validation steps in (s)PLS-DA (Yi et al., 2016, Ruiz-
Perez et al., 2020). In contrast, Boruta remained highly stable both 
before and after the external CV procedure, highlighting how the 
Random Forest algorithm typically does not require CV, as each 
tree is grown from a bootstrapped sample. A direct example that 
indicates how the larger metabolite set identified by Boruta is 
stable and weakly affected by randomness and addresses the all-
relevant problem derived from metabolites of the kynurenine 
pathway. Both algorithms (sPLS-DA and Boruta) selected trypto-
phan and kynurenine, but only Boruta selected other three corre-
lated key molecules of the kynurenine pathway (i.e. kynurenate, 
N-acetylkynurenine, and anthranilate). 

Based on these considerations, we thereafter illustrated differ-
ences between breeds and biological pathways defined on all 100 
metabolites selected by Boruta, which provide a more comprehen-
sive picture of the biological systems that differ between the two 
investigated breeds. About half of these 100 metabolites had a 
higher concentration in one or the other breed, with some peculiar 
features at the super-pathway level. The level of plasma lipids was 
typically higher in Italian Duroc pigs whereas peptides and amino 
acids had higher concentration in Italian Large White pigs.
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Specifically, molecules of two classes of sphingolipids, namely 
hexosylceramides and sphingomyelins (SM), were among the 
lipids with higher level in Italian Duroc than in Italian Large White 
pigs. Within these classes, glycosyl ceramide (d18:2/24:1, 
d18:1/24:2) and hydroxypalmitoyl sphingomyelin (d18:1/16:0 
(OH)) resulted to be the metabolites with the highest |D%| and dis-
criminative power. Among the sphingomyelins, as a proof of con-
cept, the palmitoyl sphingomyelin (d18:1/16:0; also indicated as 
SM C16:0) confirmed its higher abundance in Italian Duroc pigs 
reported in our previous study that used another metabolomic 
platform (Bovo et al., 2016). Sphingolipids are involved in the mod-
ulation of several biological processes including immune functions 
among other roles, and in humans, they have been implicated in 
pathological states, such as neurodegenerative processes and 
metabolic disorders (Hannun and Obeid, 2018). The general higher 
content of circulating lipids in Italian Duroc pigs reflects some 
characteristics of this breed on other phenotypic traits related to 
meat and carcass traits. For example, a peculiar characteristic of 
the Duroc breed is the higher level of intermuscular and intramus-
cular fat content (Armero et al., 1999; Suzuki et al., 2003; Alonso 
et al., 2015). The relationship between subcutaneous and intra-
muscular fat content and composition and blood (serum or 
plasma) lipid molecule concentration in this breed has been pre-
liminarily investigated (e.g. Alonso et al., 2009, 2015; Muñoz 
et al., 2012; Tor et al., 2021; Hou et al., 2023). The results obtained 
in this study enlarge the number of lipids to be considered to pro-
vide a better comparative evaluation of lipid composition between 
different pig tissues (blood vs fat depots). 

On the other hand, Italian Large White pigs had a higher plasma 
content of molecules belonging to the amino acid super-pathways. 
These molecules include those of the kynurenine pathway, several 
biogenic amines and gamma-glutamyl amino acids, among several 
other metabolites, some of which with important roles in modulat-
ing the activity of the mammalian immune, reproductive, and cen-
tral nervous systems (Savitz, 2020), indicating potential peculiar 
biological characteristics and specialisations of the pigs of this 
breed. The higher level of creatinine, carnosine and the derived 
anserine might be indirectly interesting for the pork industry, con-
sidering that these molecules can be useful as indicators of muscle 
metabolism and meat quality attributes, including pH, colour and 
flavour (Ma et al., 2010; D’Astous-Pagé et al., 2017). Additionally, 
the higher level of N-delta-acetylornithine and kynurenine in Ital-
ian Large White pigs confirms the results reported in our previous 
exploratory study (Bovo et al., 2016), further supporting the more 
detailed picture obtained in the current study. 

The network and enrichment analyses described all these 
molecular features that contributed to identifying the metabolic 
profiles that discriminate between the two breeds. These profiles 
also showed that not all discriminating lipids or amino acids/pep-
tides within the Boruta list had a higher content exclusively in one 
breed or the other. This suggests that the different genetic back-
grounds of the two breeds may affect, at least in part, the lipid 
and amino acid metabolisms in different ways. 

The constructed network shed light on several unnamed 
metabolites, particularly those included in amino acid/pep-
tide—enriched networks. For example, the connection of three 
unnamed metabolites that clustered together (X-23423, X-23593, 
and X-24736) is indirectly supported in terms of potential func-
tion/role. This is evidenced by genome-wide association studies 
in humans identifying that their levels in urine are all associated 
with the same chromosome region, including the N-
acetyltransferase 8 (putative) (NAT8) gene (Schlosser et al., 2020). 
This gene encodes an enzyme that catalyses the N-acetylation of 
cysteine conjugates (Veiga-da-Cunha et al., 2010). Genetic variants 
11
in the same gene are associated with an increased risk of Chronic 
Kidney Disease and related molecular markers, such as the circu-
lating level of several N-acetylated amino acids, including N-
delta-acetylornithine (Schlosser et al., 2020). N-delta-
acetylornithine is connected in the same cluster with all three 
unnamed metabolites in our pig study. Another example comes 
from X-15503, which showed high correlations with kynurenine, 
kynurenate and N-acetylkynurenine. To support its functional link 
with these metabolites of the kynurenine pathway, genome-wide 
association studies in humans have reported the association 
between all these metabolites (including X-15503) and key genes 
involved in the kynurenine pathway (Yin et al., 2022; Chen et al., 
2023). Therefore, by integrating this genetically relevant informa-
tion with the clustering results we obtained in pigs, as well as 
other supporting information in humans, it could potentially be 
possible to assign a biochemical name to some of the metabolites 
that have not yet been biochemically characterised. 

In conclusion, this study has contributed to establishing a com-
parative metabolomic profile between pig breeds, indicating sev-
eral significant biochemical differences that are indirectly 
influenced by the breed—specific genetic background. These differ-
ences could be useful to integrate molecular phenotypes in 
explaining heterosis when these two pigs are crossed. Other stud-
ies are currently being conducted to dissect the genetic factors that 
underlie the metabolic mechanisms shaping the molecular phe-
nome of Italian Duroc and Italian Large White pigs. Once this infor-
mation becomes available, potential practical applications of these 
results are also envisioned in designing novel breeding pro-
grammes in pigs that include metabotypes. 
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