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ON THE ∞-LAPLACIAN ON CARNOT GROUPS

FAUSTO FERRARI, NICOLÒ FORCILLO, AND JUAN J. MANFREDI

Dedicated to Professor Vladimir Maz’ya on the occasion of his 85th birthday.

Abstract. We prove Lipschitz estimates for viscosity solutions to Poisson problem for the
infinity Laplacian in general Carnot groups.
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1. Introduction

The∞-Laplacian operator has the property that viscosity sub- and super-solutions are Lipschitz
continuous. This property holds in those settings where viscosity ∞-harmonic functions are
absolute minimizers. These include the Euclidean space Rn ([ACJ04]), Riemannian vector fields
([Bie08]), the Heisenberg group ([Bie02]), Carnot groups ([Wan07], [Bie12]), and Grušin-type
spaces ([Bie09]). We note that the case of general Carnot-Carathéodory spaces remains open.
The converse direction, that absolute minimizers are ∞-harmonic functions was established in
[BC05] for Carnot groups and in [DMV13] for general Carnot-Carathéodory spaces. Recently,
this result was extended to more general Aronsson equations in [PVW22].

In the Euclidean case, solutions to the non-homogeneous equation

(1.1) ∆∞u = f,
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2 F. FERRARI, N. FORCILLO, AND J. MANFREDI

where f is bounded, continuous and does not change sign, are automatically Lipschitz contin-
uous, since they are either sub- or super ∞-harmonic functions. In the Euclidean space Rn,
we can always add extra variables to reduce to this case. Suppose u(x1 . . . , xn) is a viscosity
solution to (3.4) in a ball B ⊂ Rn, then the function

v(x1, . . . , xn, xn+1) = u(x1, . . . , xn) + C(xn+1)4/3,

where C is a constant, is a viscosity solution to

(1.2) ∆∞v = f + C3 64

81

in the domain B × R+ ⊂ Rn+1. This is based on the identity

(1.3) ∆∞

(
(xn+1)4/3

)
=

64

81

followed by an easy calculation assuming u is smooth, which requires justification in the viscosity
sense (see [HF18]). We conclude that by choosing appropriate C, we can assume f is nonnegative.
Then, the function v is a ∞-subhamonic, thus v and u are Lipschitz continuous. A variation of
this argument works also in the case of Riemannian vector fields [FM21].

In this manuscript we extend the above argument to the case of Carnot groups.

2. Preliminaries and Statements of Results

A Carnot group (G, ·) is a connected and simply connected Lie group whose Lie algebra g
admits a stratification

(2.1) g =

ν⊕
i=1

V i ,

where ν ∈ N, ν ≥ 2 and V i is a vector subspace such that

(i) [V 1, V i] = V i+1 if i ≤ ν − 1,

(ii) [V 1, V ν ] = {0} .
(2.2)

Letting ni = dim(V i) and n = n1 + · · ·+nν , it is always possible to identify (G, ·) with a Carnot
group whose underlying manifold is Rn, and that satisfies the properties we describe next (see
Chapter 2 of the book [BLU07]). A vector h ∈ g can be written uniquely as

h = h1 + h2 + . . .+ hν ,

where hi ∈ V i for 1 ≤ i ≤ ν.

We write points x ∈ G (identified with Rn) as follows:

x = (x(1), . . . , x(ν)) = (x11, . . . , x1n1 , x21, . . . , x2n2 , . . . , xν1, . . . , xνnν ),

where x(i) stands for the vector (xi1, . . . , xini) for all i = 1, . . . , ν. The identity of the group is
0 ∈ Rn and the inverse of x ∈ Rn is x−1 = −x.

The anisotropic dilations {δλ}λ>0, defined as

δλ(x) = (λx(1), . . . , λνx(ν)),
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are group automorphisms. The number Q =
∑ν

i=1 ini is the homogeneous dimension of the
group, and it agrees with the Hausdorff dimension of the metric space (G, dCC), where dCC is
the Carnot-Carathéodory metric induced by the horizontal layer V 1, see Definition 2.1 below
and [BLU07]. The Lebesgue measure of a measurable set A ⊂ G is denoted by |A|. It is left and
right invariant, and δλ-homogeneous of degree Q; that is, we have |δλ(A)| = λQ|A| for all λ > 0.

The Jacobian basis of g consists of left invariant vector fields

(2.3) {X11, . . . , X1n1 , . . . , Xν1, . . . , Xνnν} = {Xij}i=1,...,ν
j=1,...,ni

,

which coincide with {∂xij}
i=1,...,ν
j=1,...,ni

at the origin x = 0 and are adapted to the stratification;

that is, for each i = 1, . . . , ν the collection {Xi1, . . . , Xini} is a basis of the i-th layer V i. As a
consequence X11, . . . , X1n1 are Lie generators of g, and will be referred to as horizontal vector
fields. We shall relabel the horizontal layer as X1, . . . , Xn1 .

The exponential map Exp: g −→ G written with respect to this basis is the identity, i.e.

(2.4) Exp(
∑
ij

hijXij) = x and xij = hij .

and xij = hij . In the above formula we used the convention that the sum
∑

ij is extended to
all indexes i = 1, . . . , ν and j = 1, . . . , ni, which we will use throughout this exposition. By a
slight abuse of notation we also denote by Xij(x) the vector in Rn whose components are the

components of the the vector field Xij with respect to the frame {∂xkl}
k=1,...,ν
l=1,...,nk

at the point

x ∈ Rn. Denoting by ? the group law in G, the mapping (x, y) 7→ x ? y has polynomial entries
when written in exponential coordinates.

Definition 2.1. For x, y ∈ G and r > 0, let AC0(x, y, r) denote the set of all absolutely contin-
uous functions ϕ : [0, 1] 7→ G such that ϕ(0) = x, ϕ(1) = y and

(2.5) ϕ′(t) =

n1∑
j=1

a1j(t)X1j(ϕ(t)) for a.e. t ∈ [0, 1]

for a vector of measurable functions a = (a11, . . . , a1n1) ∈ L∞([0, 1],Rn1) with

(2.6) ‖a‖L∞([0,1],Rn1 ) = ess sup

|a(t)| =

 n1∑
j=1

a2
1j(t)

1/2

: t ∈ [0, 1]

 < r.

Define the Carnot-Carathéodory distance as

dCC(x, y) = inf{r > 0 | AC0(x, y, r) 6= ∅} .

Note that by the bracket generating property of V 1 = span{X1, . . . , Xn1} there is always an
r > 0 such that AC0(x, y, r) 6= ∅. The distance dCC if left-invariant

dCC(z ? x, z ? y) = dCC(x, y)

and homogenous

dCC(δλ(x), δλ(z)) = λ dCC(x, y).

We denote by B(x0, r) the open ball with respect to the metric dCC centered at x0 ∈ G with
radius r > 0. Observe that

B(x0, r) = x0 ? B(0, r).
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In this manuscript we consider the ∞-Laplacian determined by the horizontal distribution V 1

in a Carnot group G. The horizontal gradient of a function u is denoted by

Xu = X1u = (X11u, . . . ,X1n1u) ∈ V 1.

For the Taylor development in Carnot group we will need the second layer

X2u = (X21u, . . . ,X2n2u) ∈ V 2.

The second order horizontal derivative XXu = X2u of u is the n1 × n1 matrix with entries
XiXju. Notice that we use the super-index 2 for second derivatives in the first layer V 1 and the
sub-index 2 for first derivatives in the second layer V 2.

For a smooth function f : G 7→ R and x0 ∈ G the Taylor development of f at x0 is

(2.7) f(x0 ? δt(h)) = f(x0) + t 〈X1f(x0), h1〉+ t2 〈X2f(x0), h2〉+ t2
1

2
〈X2f(x0)h1, h1〉+ o(t2).

Note that if we set x = x0 ? δt(h), we have x−1
0 ? x = δt(h) = (t h1, t

2 h2, . . . , t
νhν). Formula

(2.7) follows from Chapter 20 in [BLU07].

The horizontal ∞-Laplacian is the left-invariant operator

(2.8) ∆X,∞u = 〈X2uXu,Xu〉 =

n1∑
i,j=1

XiXjuXiuXju.

We consider the local regularity of viscosity solutions of the Poisson problem in a domain Ω ⊂ G

(2.9) ∆X,∞u = f in Ω

where f is a continuous function.

Definition 2.2. An upper semi-continuous function u is a viscosity subsolution of (2.9) in a
domain Ω if whenever φ ∈ C2(Ω) touches u from above at a point x0 ∈ Ω we have

∆X,∞φ(x0) ≥ f(x0).

A lower semi-continuous function v is a viscosity supersolution of (2.9) in a domain Ω if when-
ever φ ∈ C2(Ω) touches v from below at at a point x0 ∈ Ω we have

∆X,∞φ(x0) ≤ f(x0).

Recall that φ touches u from above at x0 means φ(x) ≤ u(x) for all x in a neighborhood of
x0 and φ(x0) = u(x0). To define φ touches u from below at x0 just reverse the inequality. A
viscosity solution is both a viscosity supersolution and a viscosity subsolution.

Theorem 2.3. Let Ω ⊂ G be a domain in a Carnot group G and f : Ω 7→ R be a continuous
function. Let u be a continuous viscosity solution of the Poisson equation

(2.10) ∆X,∞u(x) = f(x) in Ω.

Then, the function u is locally Lipschitz continuous. More precisely, for all x0 ∈ Ω such that
B(x0, 2r) ⊂ Ω we have

(2.11) |u(x)− u(y)| ≤ ‖u‖L∞(B(x0,2r)) dCC(x, y),

for x, y ∈ B(x0, r).
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Remark 2.4. It would be expected that we can bound ‖u‖L∞(B(x0,2r)) by some function of
‖f‖L∞(B(x0,4r)). This is indeed the case in the Euclidean case ([LW08]), but the proof is based

on knowing explicitly that ∆∞(|x|4/3) is a positive constant, a fact that is lacking in the case of
general Carnot groups.

Remark 2.5. Note that this is an a-priori estimate. In general, uniqueness for the Poisson
problem

(2.12)

{
∆X,∞u(x) = f(x) in Ω

u(x) = g(x) on ∂Ω

fails in the Euclidean case when f changes sign, even when Ω is a ball and g = 0. See the
counterexample in [LW08] and the discussion in [LW10].

When f does not change sign on Ω, the solutions of (3.1) are either viscosity subsolutions
(when f ≥ 0) of viscosity supersolutions (when f ≤ 0) of the equation

(2.13) ∆X,∞u(x) = 0 in Ω.

In this case Theorem 2.3 follows from the Lipschitz regularity of viscosity subsolutions of the
equation (2.13). For the sake of completeness we will show below how this Lipschitz regularity
follows from the comparison principle of Wang ([Wan07], and Bieske [Bie12]) and equivalence
between absolute minimizer and comparison with cones of Champion-De Pascale [CDP07] .

To reduce the general case to the case when f ≥ 0 we will lift the equation to the group R ⊕ G.
Elements in this group are pairs (s, x) ∈ (R,G) with following group law

(s, x) · (t, y) = (s+ t, x ? y),

and the homogeneous dilations are given by

δλ(s, x) = (λs, δλ(x)).

The group R ⊕ G is a homogeneous stratified group of step r (Carnot group of step r) with
horizontal layer { ∂∂s , X1, . . . , Xn1} and ambient manifold Rn+1. See Section 4.1.5 in [BLU07] for
a general discussion on the sum of Carnot groups.

For a function U : R ⊕ G 7→ R the horizontal gradient is the vector

YU =

(
∂U

∂s
,X1U, . . . ,Xn1U

)
and we define the horizontal second derivative as the (n1 + 1)× (n1 + 1) matrix

Y2U =


∂2U
∂s2

, ∂
∂sX1U, . . . , ∂

∂sXn1U

X1
∂U
∂s , X1X1U, . . . , X1Xn1U

. . . . . . . . . , . . .

Xn1
∂U
∂s , Xn1X1U, . . . , Xn1Xn1U

 .

Recall that this matrix, in general, Y2U is not symmetric, but that the quadratic form associated
to is the same as that of its symmetrization 1

2

(
Y2U + (Y2U)t

)
of Y2U .
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The horizontal infinity Laplacian of a smooth function of the form U(s, x) = w(s) +u(x) in the
group R ⊕ G is decoupled in a term on the s-variable plus a term on the x-variable

〈Y2U · YU,YU〉(s, x) =

〈
∂2w
∂s2

, 0, . . . , 0
0, X1X1u, . . . , X1Xn1u

. . . . . . . . . , . . .
0, Xn1X1u, . . . , Xn1Xn1u

 ·


∂w
∂s
X1u
. . .
Xn1u

 ,


∂w
∂s
X1u
. . .
Xn1u


〉

= ∂2w
∂s2

(∂w∂s )2 + 〈X2uXu,Xu〉,

which we write as

∆Y,∞U(s, x) = ∆∞w(s) + ∆X,∞u(x).

In the viscosity sense, this decoupling is more subtle as we will see in the proof of Lemma 3.1
below.

3. Proofs

We begin with a generalization of the the result of Hong and Feng [HF18] that takes advantage
of the decoupling above. It will allow us to reduce the proof of Theorem 2.3 to the case f ≥ 0.

Lemma 3.1. Let Ω ⊂ G be a domain in a Carnot group G and f : Ω 7→ R be a continuous
function. Let u be a continuous viscosity solution of the Poisson equation

(3.1) ∆X,∞u(x) = f(x) in Ω.

Then, the function U(s, x) = c s4/3 + u(x) is a viscosity solution of the equation

(3.2) ∆Y,∞U(s, x) = f(x) + c3 64

81
in {s ∈ R : s > 0} × Ω.

Proof. Let us proof the subsolution case. Let φ ∈ C2({s ∈ R : s > 0} × Ω) touching U from
above at a point (s0, x0) ∈ {s ∈ R : s > 0} × Ω. We have

(3.3)

{
c s4/3 + u(x) ≤ φ(s, x) for all (s, x) ∈ {s ∈ R : s > 0} × Ω

c s
4/3
0 + u(x0) = φ(s0, x0).

Then, the C2 function ψ(x) = φ(s0, x)− c s4/3
0 touches u from above at x0. Therefore, we have

(3.4) ∆X,∞ψ(x0) ≥ f(x0).

Next, we compute ∆Y,∞φ(s0, x0). Note that the function s 7→ φ(s, x0) − c s4/3 has a local
minimum at s0. Thus, we have

(3.5)
∂

∂s
φ(s0, x0) =

4

3
c s

1/3
0

and

(3.6)
∂2φ

∂s2
(s0, x0)− 4

9
c s
−2/3
0 ≥ 0.
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Therefore, at the touching point (s0, x0), which we will often omit for the sake of notational
brevity, we have

∆Y,∞φ(s0, x0) = 〈Y2φ · Yφ,Yφ〉(s0, x0)

=

〈
∂2φ
∂s2

, ∂
∂sX1φ, . . . , ∂

∂sXn1φ
∂
∂sX1φ, X1X1ψ, . . . , X1Xn1ψ
. . . . . . . . . , . . .

∂
∂sXn1φ, Xn1X1ψ, . . . , Xn1Xn1ψ

 ·


4
3c s

1/3
0

X1ψ
. . .
Xn1ψ

 ,


4
3c s

1/3
0

X1ψ
. . .
Xn1ψ


〉

= ∂2φ
∂s2

(
4
3c s

1/3
0

)2
+ 2

(
4
3c s

1/3
0

) n1∑
j=1

Xjψ
∂

∂s
Xjφ

+ ∆X,∞ψ(x0).

If Xψ(x0) = 0, we obtain

∆Y,∞φ(s0, x0) =
∂2φ

∂s2

(
4

3
c s

1/3
0

)2

+ ∆X,∞ψ(x0) ≥ 64

81
c3 + f(x0)

by (3.4) and (3.6). We assume from now on that Xψ(x0) 6= 0. Let us write

Y (x0) =
1

|Xψ(x0)|

 n1∑
j=1

Xjψ(x0)
∂

∂s
Xjφ(s0, x0)

 .

We get

∆Y,∞φ(s0, x0) =

〈(
∂2φ
∂s2

, Y

Y ,
∆X,∞ψ

|Xψ|2

)
·
(

4
3c s

1/3
0

|Xψ|

)
,

(
4
3c s

1/3
0

|Xψ|

)〉

=

〈(
∂2φ
∂s2
− 4

9c s
−2/3
0 , Y

Y ,
∆X,∞ψ−f(x0
|Xψ|2

)
·
(

4
3c s

1/3
0

|Xψ|

)
,

(
4
3c s

1/3
0

|Xψ|

)〉
+ 4

9c s
−2/3
0

(
4
3c s

1/3
0

)2
+ f(x0)

≥ 64
81 c

3 + f(x0).

This will hold as long as we can show that the matrix

M =

(
∂2φ
∂s2

(s0, x0)− 4
9c s

−2/3
0 , Y (x0)

Y (x0),
∆X,∞ψ(x0)−f(x0
|Xψ(x0)|2

)
is positive definite.

For h ∈ B(0, 1) and s, t ∈ R in a neighborhood of (0, 0) we have

c(s0 + s)4/3 + u(x0 ? δt(h)) ≤ φ(s0 + s, x0 ? δt(h))

with equality for s = t = 0. If follows that in a neighborhood of (0, 0) we have

(3.7) u(x0 ? δt(h)) ≤ φ(s0 + s, x0 ? δt(h))− c (s0 + s)4/3.
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Note that the right hand side is smooth, so we can expand using the Taylor Theorem in Carnot
groups. Let us write h = (h1, h2, . . . , hν)

u(x0 ? δt(h)) ≤ φ(s0 + s, x0 ? δt(h))− c (s0 + s)4/3

= φ(s0, x0) + s∂φ∂s (s0, x0) + t〈Xφ(s0, x0), h1〉+ t2〈X2φ(s0, x0), h2〉

+1
2

〈
∂2φ
∂s2

, ∂
∂sX1φ, . . . , ∂

∂sXn1φ

∂
∂sX1φ, X1X1φ, . . . , X1Xn1φ
. . . . . . . . . , . . .

∂
∂sXn1φ, Xn1X1φ, . . . , Xn1Xn1φ

 ·


s
t h11

. . .
t h1n1

 ,


s

t h11

. . .
t h1n1


〉

−cs4/3
0 − c4

3s
1/3
0 s− c4

9s
−2/3
0 s2 + o(s2 + t2).

Using (3.3) and (3.5) we obtain

u(x0 ? δt(h))− u(x0) ≤ t 〈Xφ(s0, x0), h1〉+ t2〈X2φ(s0, x0), h2〉

+1
2

(∂2φ
∂s2
− c4

9s
−2/3
0

)
s2 + 2 s t

n1∑
j=1

hi
∂

∂s
Xiφ+ t2

 n1∑
i,j=1

XiXjφh1ih1j


+o(s2 + t2).

Setting s = t we obtain

u(x0 ? δt(h))− u(x0) ≤ t 〈Xφ(s0, x0), h1〉+ t2〈X2φ(s0, x0), h2〉

+1
2 t

2

(∂2φ
∂s2
− c4

9s
−2/3
0

)
+ 2

n1∑
j=1

h1i
∂

∂s
Xiφ+

 n1∑
i,j=1

XiXjφh1ih1j


+o(t2).

We conclude that

ah = lim sup
t→0

u(x0 ? δt(h))− u(x0)− t 〈Xφ(s0, x0), h1〉
1
2 t

2

≤ 2 〈X2φ(s0, x0), h2〉+
(
∂2φ
∂s2
− c4

9s
−2/3
0

)
+ 2

n1∑
j=1

h1i
∂

∂s
Xiφ+

 n1∑
i,j=1

XiXjφh1i h1j

 <∞.

We can then find th > 0 such that for for 0 < t ≤ th we have

(3.8) u(x ? δt(h)) ≤ u(x0) + t 〈Xφ(s0, x0), h1〉+ t2
1

2
(ah + ε)2.

For δ > 0 set

ξ0 =
Xφ(s0, x0)

|Xφ(s0, x0)|
∈ V1

and
Cδ = {ξ : |ξ1| = 1, |ξi| ≤ 1, i = 2, . . . ν, and 〈ξ1, ξ0〉Rn1 ≥ 1− δ} .
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Recall that we have n = n1 + n2 + . . . + nν . From the continuity of u and the compactness of
Cδ we conclude that inf{th : h ∈ Cδ} = t0 > 0. We set

(3.9) a = lim sup
ξ→ξ0

aξ

For arbitrary ε > 0 we can find δ > 0 such that for ξ ∈ Cδ we have

aξ ≤ a+ ε.

For 0 < t < t0 and ξ ∈ Cδ we have

u(x0 ? δt(ξ)) ≤ u(x0) + t 〈Xφ(s0, x0), ξ1〉+ 1
2(ah + ε)t2

≤ u(x0) + t 〈Xφ(s0, x0), ξ1〉+ 1
2(a+ 2ε)t2.

We can write ξ1 uniquely as ξ1 = 〈ξ1, ξ0〉 ξ0 + ξ⊥1 , where ξ⊥1 is horizontal and perpendicular to
ξ0. Using x = x0 ? δt(ξ) we write

t ξ⊥1 = (x−1
0 ? x)1 − 〈(x−1

0 ? x)1, ξ0〉 ξ0.

Consider the smooth function of x

g(x−1
0 ? x) = g(x0 ? δt(ξ)) = u(x0) + t 〈Xφ(s0, x0), ξ1〉+ 1

2(a+ 2ε)t2 + 1
2 t

2K|ξ⊥1 |2

= u(x0) + 〈Xφ(s0, x0), (x−1
0 ? x)1〉

+1
2(a+ 2ε)|(x−1

0 ? x)1|2 +K
∣∣(x−1

0 ? x)1 − 〈(x−1
0 ? x)1, ξ0〉 ξ0

∣∣2 .
It touches u from above at x0 for K large enough by (3.8), since |h⊥1 | ≥ δ > 0 whenever h /∈ Cδ
and we have a uniform bound for ah. Therefore the pair (Xφ(s0, x0), (a + 2ε)In1 + D) is in
the subelliptic superjet for u at the point x0. Here D is an n1 × n1 square matrix such that
D ·Xφ(s0, x0) = 0. Since ε > 0 is arbitrary, we conclude that (Xφ(x0), a In1 +D) is in the closure
of the subelliptic superjet for u at x0. Therefore, we have

(3.10) a |Xφ(s0, x0)|2 ≥ f(x0).

On the other hand, from (3.9) we deduce that given arbitrary ε > 0 we can find δ > 0 and a
sequence tj → 0 and a vector k ∈ Cδ such that

u(x0 ? δtj (k))− u(x0)− tj 〈φ(s0, x0), k1〉 >
1

2
t2j (ak − ε) >

1

2
t2j (a− 2ε).

Therefore, we can write

1
2 t

2
j (a− 2ε) ≤ 2 t2j 〈X2φ(s0, x0), k2〉

+1
2

(∂2φ
∂s2
− c4

9s
−2/3
0

)
s2 + 2 s tj

n1∑
j=1

ki
∂

∂s
Xiφ+ t2j

 n1∑
i,j=1

XiXjφkikj


+o(s2 + t2j ).

Next we set sj = α tj , divide by 1
2 t

2
j and let tj → 0 to get
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(aδ−2ε) ≤ 2〈X2φ(s0, x0), k2〉+
(
∂2φ

∂s2
− c4

9
s
−2/3
0

)
α2+2α

n1∑
j=1

k1i
∂

∂s
Xiφ+

 n1∑
i,j=1

XiXjφk1i k1j

 .

We can now let δ → 0. The vector k converges to ξ0 so that k2 → 0 and we get

(a− 2ε) ≤
(
∂2φ

∂s2
− c4

9
s
−2/3
0

)
α2 + 2α

n1∑
j=1

((ξ0)1i
∂

∂s
Xiφ+

 n1∑
i,j=1

(XiXjφ) (ξ0)1i (ξ0)1j

 .

Since this is true for every α ∈ R the matrix

Mε =

(
∂2φ
∂s2

(s0, x0)− 4
9c s

−2/3
0 ,

∑n1
j=1(ξ0)1i

∂
∂sXiφ∑n1

j=1(ξ0)1i
∂
∂sXiφ,

(∑n1
i,j=1XiXjφ (ξ0)1i (ξ0)j

)
− (a− 2ε)

)
is positive semi-definite. Letting ε→ 0 and using (3.10) we reach the desired conclusion. �

Next, we discuss the regularity of viscosity subsolutions. The Lipschitz regularity of viscosity
sub- and super-solutions follows from the fact that ∞-harmonic functions are absolute mini-
mizers with respect the dCC metric (see the general discussion in [DMV13]). As mentioned in
the Introduction, the fact that absolute minimizers are ∞-harmonic holds for general Carnot-
Carathéodory spaces, but the reverse is only known, to the best of our knowledge, for Carnot
groups and Riemannian vector fields. These are the cases when we have uniqueness of ∞-
harmonic functions with given boundary values ([Wan07, Bie12]).

Denote by ωr,x0 the ∞-harmonic function in the punctured ball B(x0, r) \ {x0} with boundary
values ωr,x0(x0) = 0 and ωr,x0(x) = r for x ∈ ∂B(x0, r). This is the metric cone with vertex x0

and base B(x0, r). Let us recall the following estimate, whose proof we include for the sake of
completeness.

Lemma 3.2. For x ∈ B(x0, r) we have

ωr,x0(x) ≤ dCC(x0, x).

Proof. By a result of Monti and Serra Cassano [MSC01] we have ‖X(dCC(x0, x))‖ = 1 for a. e.
x ∈ B(x0, r). Since ωr,x0 is ∞-harmonic it is an absolute minimizer of the functional ‖Xu‖∞,
see [Wan07, Bie12]. We conclude that ‖X(ωr,x0(x))‖∞ ≤ 1, so that

ωr,x0(x) = ωr,x0(x)− ωr,x0(x0) ≤ ‖X(ωr,x0(x))‖∞ dCC(x0, x) ≤ dCC(x0, x).

�

Lemma 3.3. Let Ω ⊂ G be a domain in a Carnot group G. Let the function u satisfy

(3.11) ∆X,∞u(x) ≥ 0 in Ω

in the viscosity sense. Then, if the function u is not identically −∞, it is locally bounded and
Lipschitz continuous with respect to the metric dCC . Moreover, if B(x0, 2r) ⊂ Ω we have the
estimate

|u(x)− u(y)| ≤ ‖u‖L∞(B(x0,2r)) dCC(x, y),

for x, y ∈ B(x0, r).



∞-LAPLACIAN 11

Proof. Let us first recall the proof of the local boundedness of u. Since u is upper semicontinuous
it is locally bounded above. We may further assume that u ≤ 0. Suppose u(x0) = −∞ for some
x0 ∈ Ω with B(x0, r) ⊂ Ω. For k > 0 we have

u(x) ≤ −k(r − ωr,x0(x))

for all x ∈ ∂B(x0, r) ∪ {x0}.
By Lemma 3.2 we conclude that this inequality holds for all x ∈ B(x0, r). Letting k → ∞ we

get u(x) = −∞ for all x ∈ B(x0, r), and thus in Ω by a connectivity argument, in contradiction
with the local boundedness of u. Therefore, we conclude that u if finite everywhere.

Next, suppose that for x0 ∈ B(x0, 2r) ⊂ Ω there exists a sequence xk ∈ Ω such that xk → x0

and limk→∞ u(xk) = −∞. Select a subsequence, also denoted by xk, such that u(xk) ≤ −k r.
By the comparison principle, we conclude that

u(x) ≤ −k(r − ωr,xk(x))

for x ∈ B(xk, r). This inequality must also hold for x0

u(x0) ≤ −k(r − ωr,xk(x0)).

Using ωr,xk(x0) ≤ dCC(xk, x0) (see [CDP07]) we obtain for k large enough

u(x0) ≤ −k r
2
.

Letting k →∞ we get u(x0) = −∞, in contradiction with the fact that u is finite everywhere.

To prove the Lipschitz bound compare u(x) − u(x0) with the function ‖u‖L∞(B(x0,r)) ωr,x0(x)
on ∂B(x0, r) ∪ {x0} and conclude

u(x)− u(x0) ≤ ‖u‖L∞(B(x0,r)) ωr,x0(x) ≤ ‖u‖L∞(B(x0,r)) dCC(x0, x).

To prove the inequality for u(x0)−u(x) compare u(y)−u(x) with the function ‖u‖L∞(B(x,r)) ωr,x(y).
�

Proof of Theorem 2.3: By Lemma 3.1 the function U(s, x) = c s4/3 + u(x) is a continuous
viscosity solution of equation (3.2). Choosing

c =
34/3

4
‖f‖L∞(B(x0,2r))

we have

f(x) + c3 64

81
≥ 0, for x ∈ B(x0, 2r).

Therefore, the function U(s, x) is ∞-subharmonic in (η, 2 η) × B(x0, 2r) for any η > 0. By
Lemma 3.3 U(s, x) is Lipschitz continuous with respect to the Carnot-Carathéodory metric in
R⊕G. Let us denote this metric by d′CC . We then have

(3.12) |U(s, x)− U(t, y)| ≤ ‖U‖L∞((η,2η)×B(x0,2r)) d
′
CC((s, x), (t, y)).

Next, we observe that for some constant C > 0 independent of η we have

‖U‖L∞((η,2η)×B(x0,2r)) ≤ Cη
4/3 + ‖u‖L∞(B(x0,2r)),

and that we have the estimate

d′CC((s, x), (t, y)) ≤ |s− t|+ dCC(x, y),
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since we can consider curves going from (s, x) to (t, x) and then from (t, x) to (t, y). Letting
s = t = 0 in (3.12), we obtain

|u(x)− u(y)| ≤
(
C η4/3 + ‖u‖L∞(B(x0,2r))

)
dCC(x, y).

Since η > 0 is arbitrary we have completed the proof. �
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