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1. Introduction 

Learning from the past is essential for the advancement of every 
human activity, especially when mistakes may lead to disastrous con
sequences. In fact, lessons learned from past mistakes are vital to ensure 
safe operations in high-risk industries (Pasman, 2009). During the last 
decade, significant efforts have been made by regulators, academics, and 
industrials in order to avoid the re-occurrence of accidents involving 
dangerous substances. As an example, the Directive 2012/18/EU of the 
European Parliament and of the Council (European Union, 2012), also 
known as Seveso-III directive, stresses the importance of an effective 
learning strategy by introducing new requirements and providing 
guidelines for cross-organizational learning (Weibull et al., 2020). As an 
example, paragraph 4(c) of Annex II states that the safety report must 
include a “review of past accidents and incidents with the same sub
stances and processes used, consideration of lessons learned from these, 
and explicit reference to specific measures taken to prevent such acci
dents” (European Union, 2012). Also, the directive requires Member 
States to investigate root causes of major accidents, and report their 
findings in the European Commission’s eMARS database (European 
Commission, 2022). 

Notwithstanding the undisputed importance of this topic, several 
authors highlighted that “the chemical industry as a whole does not 
learn from past accidents” (Chung and Jefferson, 1998). More than 10 

years later, Pasman (2009) and Le Coze (2013) stated that little progress 
had been made; similar accidents reoccur, and organizations appear to 
struggle in deriving, retaining, and applying the lessons learned from the 
past. As an example, one might consider accidents related to ammonia 
production and utilization. In spite of its toxicity, ammonia is still an 
essential building block for the synthesis of nitrogen-based fertilizers, 
explosives, household cleaning solutions, and other chemicals (Patta
bathula and Richardson, 2016). Globally, there is an ever-increasing 
demand for ammonia, which is mainly produced in large-scale plants, 
where significant quantities of dangerous substances (e.g., ammonia, 
methane, hydrogen, carbon monoxide) are handled and stored during 
daily activities. Ammonia was also proposed as a green fuel for maritime 
transportation (Chiong et al., 2021). For this reason, ammonia produc
tion may be considered a representative example of industrial activities 
that have a large potential to cause major accidents. Khan and Abbasi 
(1999) analyzed 1744 accidents that occurred between 1928 and 1997; 
the results indicate that ammonia was responsible for most events. For 
instance, the failure of a storage tank in Potchefstroom, South Africa, 
caused the release of 30 tons of anhydrous ammonia, which rapidly 
formed a gas cloud with a diameter of about 150 m. Eighteen people 
died during the accident, and 34 suffered serious injuries (Khan and 
Abbasi, 1999; Lonsdale, 1975). Since the late ‘90 s, the fundamentals of 
ammonia production have not changed much (Verma et al., 2019). 
Therefore, some may expect that the lesson learned from those accidents 
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would have drastically lowered their occurrence. But unfortunately, this 
has not happened. Accidents still occur within the ammonia 
manufacturing industry: recent examples are those that took place in 
Phulpur, India (Pandya, 2020), and La Pobla de Mafumet, Spain (Eu
ropean Commission, 2019), causing two and one fatalities, respectively. 

Learning from past accidents is still a new field (Le Coze, 2013), 
which lacks integration and standardization. An effective learning 
strategy relies on the interaction between organizations, institutions, 
and employees; several steps are needed to ensure the success of the 
process, and several obstacles must be faced. One may argue that human 
factors prevent an effective learning strategy (Pasman, 2009). In facts, 
humans have proven to have inherent generalization skills (Torrey and 
Shavlik, 2014) – i.e., the ability to transfer the knowledge gained in a 
specific task to a different domain – but there is a limit to the amount of 
data that can be processed and stored in our brain. Also, human learning 
may be biased and affected by emotions and interests (Weibull et al., 
2020). 

The idea of using data to update the risk picture has already been 
proposed in the past. For example, Landucci and Paltrinieri (2016) 
proposed a methodology to update the leak frequency based on tech
nical, operational, human, and organizational factors. Recent advance
ments in IT, data science, and computational technology have led to the 
development of a new form of learning, named Machine Learning (ML), 
which relies on automated algorithms to extract knowledge from data. 
The growing interest in these algorithms has also affected the fields of 
safety and reliability. Several studies have proposed Machine Learning 
methods for predictive maintenance (Carvalho et al., 2019; Ge et al., 
2017; Xu and Saleh, 2021), fault detection and diagnosis (He et al., 
2005; Tian et al., 2015; Xu and Saleh, 2021; Zhong et al., 2014), diag
nosis and prognosis of industrial alarm systems (Langstrand et al., 2021; 
Tamascelli et al., 2021, 2020), and Dynamic Risk Analysis (Paltrinieri 
et al., 2020, 2019). 

On top of that, recent studies have focused on the application of ML 
methods to extract safety–critical knowledge from the abundance of 
accident data stored in the form of accident databases. Studies by Che
bila (2021) and Tamascelli et al. (2022) suggest that classification al
gorithms might be used to acquire and retain knowledge about past 
accidents by analyzing existing databases. Specifically, these algorithms 
might be used to predict the consequences of an accident in terms of 
fatalities and injuries. In general, the approach suggests that artificial 
learners may partially overcome the limitations linked with the role of 
human factors in the learning framework. However, a major limitation 
of these studies is that they do not investigate whether the knowledge 
gained by these algorithms could be transferred to other domains. That 
is, the algorithms proposed in these studies have been trained and tested 
using data from a particular accident database, which is eMARS (Che
bila, 2021) and MHIDAS in (Tamascelli et al., 2022). There is no guar
antee that the knowledge extracted from these databases could be used 
to predict the outcomes of events from different data sources. In fact, 
humans have inherent transfer learning skills, but most Machine 
Learning algorithms cannot generalize over multiple tasks (Pan and 
Yang, 2010). A data-driven approach may overcome the issues related to 
the limited memorization and data processing skills of human beings, 
but whether these algorithms might be tailored to multiple tasks remains 
an open question. 

In an attempt to address the challenges outlined above, a relatively 
new research line has focused on the so-called meta-learning (also 
known as learning to learn), which is a subfield of Machine Learning that 
focuses on “learning from prior experience in a systematic, data-driven 
way” (Vanschoren, 2018). The approach attempts to mimic the human 
ability to generalize and recall past experiences to increase the learning 
efficiency of new tasks (Griffiths et al., 2019). That is, meta-learning 
techniques aim to exploit the knowledge gained from previous tasks to 
improve and speed up the learning of new tasks (Lemke et al., 2015). 
These techniques may assist crucial and time-consuming stages of the 
Machine Learning Lifecycle (Ashmore et al., 2019), such as model 

selection (Stefana and Paltrinieri, 2021) and hyperparameters selection 
(Vanschoren, 2018). Several approaches have been developed to reach 
this goal; among them, there is the so-called Transfer Learning, which 
investigates methods to transfer knowledge from one task to another 
(Torrey and Shavlik, 2014). Depending on the problem under assess
ment, Transfer Learning may be divided into three categories: inductive, 
transductive, and unsupervised Transfer Learning (Pan and Yang, 2010). 

This study set out to investigate the potential of inductive Transfer 
Learning to enhance and extend the scope of Machine Learning appli
cations. To this end, a novel approach has been developed to leverage 
the knowledge extracted from nonspecific accident databases and pre
dict the outcomes of technology-specific accidents. In particular, clas
sification algorithms are trained on generic accident databases to learn 
the relationships between accident features and accident severity. Later, 
the pre-trained models are used to predict the outcomes of different, 
technology-specific accidents. Finally, performance metrics are pro
duced to quantify and evaluate the success of the Transfer Learning 
procedure, and optimization strategies are proposed. The approach has 
been applied to a specific test case. A generic database named Major 
Hazard Incident Data Service (MHIDAS) (AEA Technology, 1999) has 
been used for the learning process. A specifically developed database 
reporting accidents involving ammonia releases has been used to test the 
generalization capabilities of the pre-trained model. The latter was 
developed in the present study by collecting data on accidents that 
involved ammonia or related substances. 

The approach presented in this work will significantly accelerate the 
development of models for consequence prediction by reducing the need 
for new data and improving the generalization capabilities of Machine 
Learning algorithms. Furthermore, to the best of the authors’ knowl
edge, there is no study in the field of process safety making use and 
investigating the potential role of Transfer Learning in the field of 
Chemical Process Safety. Therefore, this study makes a major contri
bution to research on the application of data-driven methods to extract 
safety-relevant knowledge hidden in accident data. 

The overall structure of the study takes the form of six sections, 
including this introductory chapter. Section 2 provides the literature 
review. Section 3 describes the methodology, including data pre- 
processing, model training, transfer learning, performance evaluation, 
and optimization strategies. Section 4 describes the test case used to 
apply and evaluate the methodology. Results are presented and dis
cussed in Section 5. Finally, conclusions are drawn in Section 6. 

2. Related works 

The use of Machine Learning to analyze accident data has gained 
traction in recent years (Sarkar and Maiti, 2020). Most of the studies on 
this topic pursue one of the following objectives: prediction of conse
quence severity, identification of influencing factors, or identification of 
accident type. Also, based on the data source used for the analysis, we 
may distinguish between studies that analyze structured databases and 
those that focus on unstructured accident narratives. The research on 
this topic has focused on many industrial sectors, such as transportation 
(aviation, road, rail, and maritime), construction, mining, and petro
chemical. However, a recent review on Machine Learning in occupa
tional accident analysis (Sarkar and Maiti, 2020) concluded that most 
studies focus on road accidents (36.6 % of the analyzed articles), fol
lowed by construction sites (22 %), mining (6.9 %), aviation (5.2 %), 
manufacturing (5.2 %), and process industry (4.7 %). 

In the context of chemical and process industries, some studies 
focused on the analysis of structured databases (e.g., MHIDAS). For 
example, Phark et al. (2018) demonstrated the use of classification al
gorithms to predict whether an emergency evacuation order would be 
issued after a release of toxic substances. In this study, the Hazardous 
Substances Emergency Events Surveillance dataset (HSEES) and the 
National Toxic Substance Incidents Program (NTSIP) were used to train 
and compare two classification algorithms: Naïve Bayes and Multi-Layer 
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Perceptron (MLP). The results indicate that MLP achieves high accuracy 
on this specific task. Three years later, Chebila (2021) investigated the 
use of classification algorithms to predict the outcomes of major acci
dents involving dangerous substances in terms of consequences to 
humans, the environment, or material assets. To this end, the author 
analyzed the Major Accident Reporting System dataset (eMARS) (Eu
ropean Commission, 2022) with six different binary classification al
gorithms. The results indicate that the Random Forest (RF) offered the 
best performance in the prediction of damages to humans and the 
environment, while the Neural Network performed better in the “ma
terial damage” category. In spite of their remarkable performance, the 
models proposed by Chebila (2021) were not designed to discriminate 
between fatalities and injuries or to consider multiple severity levels. To 
overcome this limitation, Tamascelli et al. (2022) proposed a classifi
cation framework based on multiple discrete outcome variables to 
categorize accidents according to their severity (e.g., from 1 to 10 fa
talities, from 11 to 100 fatalities, from 1 to 10 injuries). In this study, 
MHIDAS was used as a data source, and three classification algorithms 
were tested and compared: Linear, Deep Neural Network (DNN), and a 
hybrid Wide&Deep model. The study demonstrated the potential of ML 
algorithms to differentiate between different severity levels. However, 
the authors mentioned that data availability and poor data quality are 
significant obstacles to the diffusion of ML for consequence prediction. 
Similarly, Gangadhari et al. (2022) took advantage of rough set theory 
and classification algorithms to predict the outcome of accidents in the 
Oil&Gas industry. The authors considered four severity categories, 
namely “Near Miss”, “Minor”, “Major”, and “Catastrophic”. Accident 
reports were drawn from different sources and manually converted into 
a set of structured fields. Five classification algorithms were tested and 
compared. Hyperparameter tuning was performed to increase the model 
performance. The results indicate that the best model is XGbost (Chen 
and Guestrin, 2016), which returned an F1 score larger than 0.9 in every 
category. In spite of the good results, the authors mentioned that manual 
pre-processing of accident reports is extremely time-consuming; there
fore, there is a need for techniques that can (i) automatically extract 
meaningful and accurate information from accident reports, or (ii) 
reduce the need for labeled data. A different approach was proposed by 
Nakhal A et al. (2021), who coupled ML and Business Intelligence (BI) to 
analyze MHIDAS and build a dynamic visualization tool that may 
greatly simplify information retrieval and facilitate the visualization of 
connections between accident characteristics. All of the articles 
mentioned so far take advantage of structured databases, such as 
eMARS, MHIDAS, HSEES, and NTSIP. Still, researchers have also 
focused on the analysis of unstructured accident narratives. Most of this 
research focuses on extracting accident features (e.g., the accident type, 
or the contributory factors) from textual accident reports in order to 
decrease the need for manual intervention. For example, Luo et al. 
(2020) proposed a semi-automatic algorithm to extract Natech events 
from the National Response Center (NRC). The method relies on a 
keyword extraction phase followed by a recurrent neural network for the 
classification of accident reports into different Natech categories (e.g., 
“Flood”, “Hurricane”, “Earthquake”). Kurian et al. (2020) investigated 
keyword extraction and classification algorithms to categorize un
structured accident reports based on the incident type (e.g., “Leak/ 
Spill”, “Operation”, “Communication”). Jing et al. (2022) developed a 
method to identify the accident type (e.g., “Fires”, “Explosions”, 
“Poisoning”) from unstructured chemical accident reports. They used a 
Natural Language Processing technique named word2vec to extract 
word embeddings and a Bidirectional Long Short Term Memory network 
(Bi-LSTM) with an attention mechanism to identify the accident cate
gory. Finally, Wang and Zhao (2022) focused on the extraction of 
contributory factors in confined space accidents. Accident reports were 
collected from websites such as safehoo.com and ichemsafe.com. In this 
study, Bidirectional Encoder Representations from Transformers (BERT) 
is used to extract word embeddings, which are eventually fed to a Bi- 
LSTM for the classification of contributory factors (e.g., “Improper 

tool”, “Ventilation”, “Inerting”). It is worth mentioning that most of the 
studies that focus on unstructured accident reports require manual 
intervention for labeling or converting unstructured reports into struc
tured data. Certainly, these techniques have great potential to reduce the 
need for manual intervention in later stages (i.e., when new accident 
reports are analyzed). However, it is still unclear whether these models 
might be used to analyze reports that are different (in the content or in 
the format) from those used to train the models. 

Apart from the chemical industry, it is also worth mentioning some 
contributions from other sectors, such as the transportation, mining, and 
construction industry. Significant efforts have been directed toward the 
analysis of road crashes (Assi et al., 2020; Kushwaha and Abirami, 2022; 
Wahab and Jiang, 2019; Zhang et al., 2018), aviation incidents (Andrei 
et al., 2022; Burnett and Si, 2017; Tanguy et al., 2016; Xu et al., 2020), 
and maritime incidents (Cakir et al., 2021; Lu et al., 2022; Rawson and 
Brito, 2022). In addition, many studies have focused on consequence 
prediction and influencing factors identification in construction sites 
(Choi et al., 2020; Goh and Chua, 2013; Poh et al., 2018; Tixier et al., 
2016; Zhu et al., 2021), and mining operations (Gerassis et al., 2020; 
Kahraman, 2021; Palma et al., 2021; Yedla et al., 2020). 

The literature analysis highlights several challenges that need to be 
addressed to advance the research on Machine Learning methods to 
predict the consequences of major accidents. Firstly, the research has 
mainly focused on the transportation, construction, and mining in
dustries; few studies have analyzed accidents in the chemical industry. 
Secondly, data labeling and manual processing of unstructured reports 
are extremely time-consuming. Therefore, there is an urgent need for 
techniques that can automatically label accident reports or decrease the 
need for labeled data. In this context, Transfer Learning is particularly 
appealing because it may reduce the need for labeled data. To date, 
however, most studies do not investigate the model capability to transfer 
knowledge between different domains (e.g., different types of acci
dents). Therefore, a question remains unanswered; to what extent a 
model trained on a specific accident dataset can generalize the lesson to 
predict the outcome of accidents drawn from different sources? This 
study provides an exciting opportunity to address these challenges and 
advance our knowledge of Machine Learning models for consequence 
prediction. Firstly, this investigation is one of the few contributions that 
focus on the chemical industry. Secondly, only one other study used 
MHIDAS to develop predictive models (Tamascelli et al., 2022). 
Furthermore, a novel database on ammonia accidents is described in this 
study. Thirdly, this is one of the few contributions that investigates the 
potential of Transfer Learning in the analysis of accident databases with 
ML tools. To the best of the authors’ knowledge, only Goldberg (2022) 
applied Transfer Learning in his recent work on Machine Learning 
techniques to automatically label accident narratives. However, there 
are significant differences between the approach presented in this study 
and the investigation described by Goldberg (2022). For example, this 
study analyzes structured accident data while unstructured accident 
narratives are used by Goldberg (2022). Also, occupational incidents are 
examined by Goldberg (2022), while this study focuses on major acci
dents involving dangerous substances. 

3. Methodology 

Fig. 1 reports the overall workflow of the methodology developed to 
extract information from an accident database (Source Database in 
Fig. 1) and use the acquired knowledge to predict the consequences of 
events included in a different database (Target Database in Fig. 1). The 
method involves four phases, each divided into several steps: 

Phase 1. Source database creation (orange in Fig. 1); 
Phase 2. Target database creation (blue in Fig. 1); 
Phase 3. Model selection and training (green in Fig. 1); 
Phase 4. Transfer Learning and optimization (ochre in Fig. 1). 
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In the first two phases, two databases are created: the first database 
(i.e., source) contains a large number of diverse accident data (i.e., non- 
technology-specific, non-substance-specific, and non-industry-specific), 
the second database (i.e., target) encloses accidents that occurred 
within a specific industry or involved a specific substance. In the third 
phase, a Machine Learning classification model is trained on the source 
database to learn the relationship between accident features and acci
dent consequences in terms of fatalities and injuries. Finally, the pre- 
trained model predicts the outcomes of the events in the target data
base. Performance metrics are obtained, and optimization strategies are 
undertaken in order to fit the model to the new task. 

3.1. Source database creation 

Accident data from single or multiple data sources (step 1 in Fig. 1) 
are collected and used to populate the source database. Ideally, the 
source database should contain a large number of events that occurred 
in different industrial sectors (e.g., onshore and offshore), during 
different activities (e.g., processing, storage, transportation), and 
involving different substances. Data must be stored in tabular format, 
where rows represent accidental events and columns represent accident 
features (e.g., the date of the accident, the type of accident, and the 
substance involved). 

Next, accident data must be pre-processed and cleaned (step 2 in 
Fig. 1). Accident features that are not considered important or infor
mative must be removed. Also, accidents must be reported according to 
a uniform terminology. In addition, missing values must be removed or 
imputed because they are not recognized by Machine Learning algo
rithms. In this regard, one may refer to the extensive data-science 
literature, which offers many examples of missing values imputation 
techniques (Brink et al., 2016; Bruha, 2017; Makaba and Dogo, 2019). 

Most data sources use integers to represent the number of fatalities 
and injuries. Since this study focuses on predicting the consequence 
category of the accident rather than the exact number of people 
involved, a set of categories are created in order to label the accidents 
according to their severity. As an example, one category might include 
incidents that caused no fatalities or injuries. Another category might 
contain accidents that caused from 1 to 10 fatalities or injuries, and so 
forth. The number and size of the categories can be adjusted to fit the 

user needs and the characteristics of the databases. 

3.2. Target database creation 

The target database should focus on specific accidents, such as those 
involving a particular substance. This is required in order to evaluate the 
capability of the model to generalize over different tasks. For the same 
reason, it would be preferable to use multiple data sources to populate 
the target database (step 4 in Fig. 1). However, if accidents are drawn 
from a single data source, it is critical to ensure that such data source 
was not used in the creation of the source database. Also, besides case- 
specific procedures, it is critical to ensure that source and target data
bases share the same structure. In other words, the databases must have 
the same number of attributes and same terminology; this requirement is 
represented by the connection between steps 2 and 5 in Fig. 1. 

The procedure described above leads to the creation of two databases 
(i.e., source and target, steps 3 and 5 in Fig. 1) which are in the proper 
format for use in the Machine Learning simulations. 

3.3. Model selection and training 

According to Murphy (2012), Machine Learning is defined as “a set of 
methods that can automatically detect patterns in data, and then use the 
uncovered patterns to predict future data, or to perform other kind of 
decision making under uncertainty”. That is, the term Machine Learning 
includes all the algorithms that can automatically extract knowledge 
from data and use that knowledge to make accurate predictions (Brink 
et al., 2016). The choice of the most appropriate algorithm depends on 
many factors, including the nature of the problem under assessment, 
data characteristics and availability, computational time requirements, 
and the expected output (Brink et al., 2016; Hastie et al., 2009; James 
et al., 2013; Khediri et al., 2012). In this study, the algorithm has to 
predict the severity of an accident given its main features, such as the 
amount of substance released and the equipment that originated the 
accident. Regression and classifications appear to be two feasible ap
proaches to address this problem. Regression models could be used if the 
focus is on predicting the exact number of people involved in the acci
dent. Instead, classification models should be used if the emphasis is on 
the prediction of a severity category (i.e., whether the accident has 
caused no fatalities/injuries, or whether the number of people involved 
is between 10 and 100). In this study, a classification approach has been 
adopted in order to reflect the implementation of severity categories in 
Risk Analysis techniques –e.g., the risk matrix proposed in (ARAMIS 
project team, 2004). Nevertheless, it would be advisable to investigate 
the use of Regression algorithms in further works. 

3.3.1. Model training 
Classification algorithms aim at categorizing objects into two or 

more pre-defined categories. Briefly, the purpose of a classification al
gorithm is to learn the relationship between the features (i.e., mean
ingful attributes) of the object that must be classified, and its label (i.e., 
its category). 

The development of the algorithm involves a training phase, where 
the algorithm “learns” the relationship between features and labels, and 
an evaluation phase, where the algorithm is tested against the ability to 
predict the labels of previously unseen objects. Often, the learning 
element of a classification algorithm is a function with tunable param
eters (f). During the training phase, these internal weights are adjusted 
to find the optimal mapping between features (X) and labels (Y), as 
shown in the following equation (James et al., 2013). 

Y ≈ f (X) (1) 

In this study, the source database is used to train the Machine 
Learning model (step 6 in Fig. 1); that is, the entire database is fed to the 
model. During this phase, the user might decide to reiterate the training 
in order to simulate a more extensive database. In other words, the 

Fig. 1. Methodology workflow.  
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source database could be fed to the model multiple times. The number of 
reiterations over the source database is called the “number of iteration 
steps”. A large number of iteration steps may improve the performance 
because the model has more chances to learn. In contrast, there is a risk 
of overfitting the model (TensorFlow.org, 2021). 

3.3.2. Model description 
The function f in Eq. (1) is the so-called model of the Machine 

Learning algorithm. In this study, two distinct models have been used to 
demonstrate the approach: a Linear model and a Deep Neural Network. 
Nevertheless, the methodology may be promptly adapted for use with 
different models. 

3.3.2.1. Linear model. Linear models describe the labels as a linear 
combination of features (James et al., 2013). That is, Eq. (1) can be 
written as (Hastie et al., 2009): 

Y = α0 +
∑N

i=1
xiαi = XT α (2)  

Where: 

Y = label; 
α0 = intercept (or bias); 
αi = coefficient (or weight); 
xi = feature; 
X= (N + 1)-vector of features = [1 , x1 , x2 ,⋯, xi , ⋯, xN ]; 
α= (N + 1)-vector of bias and weights =[α0, α1 , α2 , ⋯, αi , ⋯, αN ].

Linear models are one of the most simple and yet used methods 
(James et al., 2013). They are fast, robust, and suitable for analyzing 
large datasets (Hastie et al., 2009). The model coefficients can be easily 
accessed and compared to assess the relative importance of each feature 
(Brink et al., 2016). 

As a drawback, linear models cannot capture nonlinear relationships 
between features and cannot interpret combinations of features that 
never occurred during the training phase (Cheng et al., 2016). 

3.3.2.2. Deep model. The Deep model relies on Deep Neural Networks 
(DNNs) – i.e., multi-layer artificial networks whose creation had been 
loosely inspired by neuroscience (Goodfellow et al., 2016). The model 
consists of densely interconnected units that mimic the functioning of 
neurons in nervous tissues. These units – also called hidden units – are 
organized in hidden layers (Brink et al., 2016). These networks are also 
called Feedforward Neural Networks because information flows from 
features to labels through hidden units in a single direction (Goodfellow 
et al., 2016). Fig. 2 displays the structure of a Deep Neural Network. 

The input layer of a DNN is the vector of the features (orange in 
Fig. 2, X in equation (1)). The output layer contains the labels (green in 
Fig. 2, Y in equation (1)). Between the input and output layers, there are 
one or more hidden layers (H1, H2, and H3 in Fig. 2), each comprising 
several hidden units (Zk

i in Fig. 2). The mapping from features to labels 
involves both linear combinations and nonlinear transformations. 

The number of hidden units and hidden layers are design parameters. 
In general, deeper and wider networks perform better, but the compu
tational effort required to train the model increases as more hidden units 
and layers are used (Hastie et al., 2009). 

Deep Neural Networks have good generalization capabilities and can 
capture nonlinear relationships between features (Goodfellow et al., 
2016). For these reasons, they are widely used in meta-learning ap
proaches (Vanschoren, 2018). On the other hand, they are prone to 
overfitting and overgeneralization, and they are sensitive to poor- 
quality and missing input data (Goodfellow et al., 2016; Hastie et al., 
2009). 

3.4. Transfer Learning and optimization 

3.4.1. Transfer learning 
Torrey and Shavlik (2014) define Transfer Learning as “the 

improvement of learning in a new task through the transfer of knowl
edge from a related task that has already been learned”. Pan and Yang 
(2010) classify Transfer Learning techniques into three categories: 
inductive, transductive, and unsupervised transfer learning. The cate
gorization is based on label availability. Inductive transfer is used when 
the labels of source and target events are available. Instead, transductive 
learning is used if only source events are labeled. On the other hand, if 
source and target events are not labeled, unsupervised transfer is used. 
In this study, inductive transfer learning is used because both source and 
target datasets are labeled (i.e., the number of people involved in each 
event is known). 

In inductive transfer learning, a model L is initially trained on one 
or more source tasks t (e.g., classification of accidental events of a broad 
and generic dataset). In this phase, the model configuration θ is tuned to 
perform well on t; as a result, an updated configuration θ* is obtained. 
Finally, the pre-trained model L θ* is optimized to fit a new task tnew (e. 
g., classification of substance-specific accidents). If the tasks t and tnew 

are relatively similar, the optimization of L θ* will require less effort 
than starting from scratch (Torrey and Shavlik, 2014), especially in 
cases where tnew has a limited amount of data (Donahue et al., 2014). 

In this study, the model trained on the source database (i.e., L θ* ) is 
used to predict the labels of the events included in the target database 
(step 8 in Fig. 1). The success of the operation depends on different 
aspects, including the quality of the source dataset and the similarity 
between the datasets (Vanschoren, 2018). Furthermore, the No-Free 
Lunch theorem states that “if an algorithm does particularly well on 
average for one class of problems then it must do worse on average over 
the remaining problems” (Wolpert and Macready, 1997), which means 
that there is no single algorithm that is universally best for different 
tasks (Yang, 2014). Thus, it is not guaranteed that the model that per
forms best on the source task will produce better results on the target 
task. 

3.4.2. Performance evaluation 
After the Transfer Learning procedure, the algorithm performance is 

assessed by comparing predicted and true labels (step 9 in Fig. 1). From 
now on, the letter “Y” will be used to identify a positive prediction (e.g., 
“Deadly”) and the letter “N” will be used for a negative prediction (e.g., 

Fig. 2. Schematic representation of a DNN with three hidden layers (H1, H2, 
H3), P input features (Xi), and two output labels (Y1 and Y2). 
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“Not Deadly”). Four metrics can be defined to take into account different 
outcomes:  

• TP = True Positive –i.e., predicted label = Y, true label = Y;  
• TN = True Negative –i.e., predicted label = N, true label = N;  
• FP = False Positive –i.e., predicted label = Y, true label = N;  
• FN = False Negative –i.e., predicted label = N, true label = Y. 

In addition, these metrics are used to build three performance in
dicators: 

Accuracy =
TP + TN

TP + TN + FP + FN
(3)  

Precision =
TP

TP + FP
(4)  

Recall =
TP

TP + FN
(5) 

Accuracy is the fraction of objects that have been correctly classified. 
Precision represents the “success rate” of a positive prediction. Recall 
indicates the fraction of real positives that have been correctly 
predicted. 

In general, the performance of an algorithm cannot be evaluated by 
considering only one indicator (Brink et al., 2016). High accuracy does 
not ensure good performance because different problems have different 
requirements. For instance, if the problem involves the identification of 
classes that occur rarely, the indicator that must be optimized is the 
Recall (Brink et al., 2016). 

3.4.2.1. Class probability and decision threshold. It is worth recalling that 
classification algorithms consider a certain grade of uncertainty when 
performing predictions. The model does not provide a single predicted 
label. Rather, the algorithm calculates the probabilities of each category 
(James et al., 2013). For example, if accident events are classified, Y in 
Eq. (1) is not a single label (i.e., “Deadly” or “Not Deadly”) but a two- 
dimensional vector that contains the probability of each category (e. 
g., [P(Deadly) = 0.8, P(Not Deadly) = 0.2]). Therefore, a decision 
threshold is needed to convert probabilities into the predicted label. By 
default, a threshold value of 0.5 is used –i.e., if the probability of the 
class “Deadly” is greater than 0.5, the algorithm concludes that the ac
cident resulted in fatalities. The decision threshold is a design parameter 
that may be tuned to optimize the algorithm based on the problem under 
assessment (Zhang et al., 2020). 

3.4.3. Optimization 
Further optimization of the pre-trained model is required to fit the 

target task (step 10 in Fig. 1). This need for optimization is common to 
most meta-learning approaches and arises from the intrinsic differences 
between tasks (Vanschoren, 2018). If the tasks are similar, fewer efforts 
will be required to offset the differences and learn the target task. 

There are different methods to optimize and improve the perfor
mance of a Machine Learning algorithm, including hyperparameters 
tuning, thresholding, and optimizer tuning (Brink et al., 2016; Good
fellow et al., 2016; Hastie et al., 2009; James et al., 2013). In this study, 
attention has been directed toward thresholding because of its easy 
implementation. Other techniques, such as hyperparameters tuning or 
optimizer tuning, are beyond the scope of the work. 

Thresholding (or threshold moving) consists in varying the decision 
threshold to optimize one of the metrics described in Section 3.4.2. 
Lowering the threshold causes the Recall to either increase or remain 
constant. Instead, Precision may fluctuate when the threshold is 
decreased. Usually, reducing the threshold causes the Precision to 
decrease because more False Positives may be generated. That is, Pre
cision can be traded for Recall (Goodfellow et al., 2016) and vice-versa, 
but it is uncommon to improve both metrics by varying the threshold. 

Precision-Recall (PR) curves are valuable means for evaluating how 
Precision and Recall change with the decision threshold. An example of 
a PR curve is shown in Fig. 3. The coordinates of points in the curve 
represent the values of Precision and Recall obtained using a specific 
decision threshold. The rightmost side of the curve (i.e., Recall = 1) is 
obtained at threshold = 0. In this case, every object in the evaluation 
database is labeled as “Y”; therefore, FN is equal to 0 in Eq. (5). The 
leftmost side of the curve (i.e., Recall = 0) is obtained at threshold = 1, 
which means that all the objects are labeled as “N”; therefore, TP is 0 in 
Eq. (5). 

The Area Under the Curve Precision-Recall (AUC PR) is a compre
hensive indicator of the model performance and, by extension, of the 
success of the transfer-learning procedure. The larger the area under the 
curve (i.e., closer to 1), the higher Precision and Recall values can be 
obtained. By default, the model returns Precision and Recall values 
obtained at threshold = 0.5. Nevertheless, the decision threshold may be 
changed to improve the Recall or/and the Precision, depending on the 
problem under assessment. For example, if the problem requires iden
tifying rare or critical categories, the threshold might be lowered to 
increase the Recall. 

One may decide to adjust the threshold to achieve a target value of 
Recall or Precision. Instead, Precision and Recall might be considered 
together in the so-called F-score (Chinchor, 1992): 

Fβ = (1 + β2) •
Precision • Recall

(
β2 • Precision

)
+ Recall (6) 

Where: 

β = non-negative real number. 

The parameter β serves as a weight. If β = 1, the F-score represents 
the harmonic mean between Precision and Recall (Han et al., 2012). 
Therefore, F1 is mostly used when Precision and Recall are equally 
important. If  β > 1, the measure is Recall-oriented (Sasaki, 2007). For 
example, β = 2 means that Recall is twice as important as Precision 
(Chinchor, 1992). If β < 1, the measure is Precision-oriented. 

The F-score assumes values between 0 and 1: the higher, the better 
the performance. Fβ depends on the Precision and Recall values, which 
ultimately depend on the decision threshold. Thus, the best threshold 

Fig. 3. Precision-Recall curve of the Deep model for the label 1 – 10 (NPK) at 
2000 integration steps. THOLD represents the decision threshold. 
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might be identified as the one that maximizes the F-score. 

4. Test case analysis 

The following paragraphs describe the test case set out to demon
strate the approach. The first two paragraphs illustrate the datasets used 
as source and target databases. The last paragraph describes the Ma
chine Learning simulations. 

4.1. Source database: MHIDAS 

Accident data extracted from MHIDAS has been used to build the 
source accident database, as described in Section 3.1. MHIDAS is an 
accident database founded in 1986 by the Safety and Reliability Direc
torate (SRD) and the Health and Safety Executive (HSE). It contains 
information about industrial incidents involving dangerous substances 
that “resulted in, or had the potential to produce, a significant impact on 
the public at large” (AEA Technology, 1999). Data are drawn from 
public domain sources (e.g., newspapers, journals, published reports) to 
grant the broadest dissemination. AEA Technology had been responsible 
for maintaining and updating the database from its foundation until the 
early 2000s, when the database was no more updated. The latest version 
of the database contains records of more than 8900 incidents from over 
95 countries, covering a time span from the first years of the 20th cen
tury until the late nineties (AEA Technology, 1999). 

Most of the events reported took place in the 1990s in the US and 
Europe, since it was easier to access incident information from these 
areas. The public domain nature of the database also affects its quality 
and completeness (Harding, 1997). For example, generic information –i. 
e., the date, the location, and the number of fatalities– are typically 
described in detail, while more specific ones –i.e., the incident type and 
the ignition source– may not be reported. In fact, the biggest limitations 
of MHIDAS are inaccuracy and missing information (Tauseef et al., 
2011); for example, more than 40 % of the events in MHIDAS do not 
have any information on the causes of the accident (Tamascelli et al., 
2022). However, the overall quality of the database is sufficient for the 
purposes of this study. 

Incidents in MHIDAS are described by a list of attributes, each 
providing a piece of information about an incident (e.g., the location, the 
substances involved, the number of people involved). An attribute is 
described by one or more codes (i.e., standardized keywords). In total, 
22 attributes are used in the database, which are not equally meaningful 
for the purpose of this study (e.g., the Accession Number, a unique 
identifier assigned to each record, and the number of hard copy refer
ences for the incident have not been considered since they do not convey 
any useful information from the safety perspective). In total, sixteen 
attributes have been selected for use in the source database (Table 1). A 
reduced version of the database was thus obtained, which contains 16 
columns and 8972 rows. The first 14 columns represent accident fea
tures, and the last two columns (i.e., NPI and NPK in Table 1) represent 
the labels. Finally, the number of fatalities and injuries are converted 
into their respective consequence categories. To this end, the idea of 
“class of consequences” as used in risk matrices (ARAMIS project team, 
2004) has inspired the creation of three consequence categories in order 
to label the accidents according to their severity, as shown in Table 2. 
For example, if an accident caused 5 fatalities and 70 injuries, NPK is “1 
– 10”, and NPI is “10 – 100”. In addition, columns referring to multiple- 
features entries have been split so that each column includes one entry 
only. For instance, it has been found that the maximum number of en
tries for the feature “Incident Type” is three. Therefore, three columns 
have been used to represent this feature in the database (i.e., “IT1”, 
“IT2”, and “IT3”). Finally, missing values have been substituted by the 
string “NaN”. 

It is worth mentioning that the selection of attributes presented in 
Table 1 was manual and mainly guided by domain knowledge. In fact, 
each attribute represents a meaningful piece of information about an 

incident. Together, the keywords provide a synthetic but rather 
exhaustive description of the incident, from its causes to consequences 
on humans. For example, the attributes Date (DA) and Location (LO) 
may indicate something about the socio-economic status of the area 
affected by the incident. For example, Souza et al. (1996) highlighted 
that impoverished countries are more exposed to industrial risk. This 
insight is also confirmed by several accident reports, including the 
Bhopal disaster (Kalelkar, 1988) and the recent Beirut explosion (Pas
man et al., 2020). Further, the ten attributes after “Location” in Table 1 
focus on technical details, such as the origin, the source, the substance 
released, and the accident type. The effects on humans are described by 
the attributes Population Density (PO), Number of People Injured (NPI), 
and Number of People Killed (NPK), while the Number of People 
Evacuated (NPE) may indicate the effectiveness of the Emergency 
Response Plan. 

4.2. Target database: The Ammonia Plant Accident Database 

To the best of the authors’ knowledge, a specific database exclusively 
reporting accidents that affected ammonia production plants is not 
available. Thus, a new database was created – called the Ammonia Plant 
Accident Database – by collecting information about accidents and in
cidents from different sources. Only events that occurred in plants for 
ammonia production or in plants where similar technologies are used (e. 
g., Desulphurization, Reforming, Syngas Upgrading) were included in 
the database. The latter data were included to enrich the statistical 
significance of the database. Data on more than 140 relevant events 
were included in the database. The data were derived from nine main 
data sources, which are displayed in Table 3 together with the number of 
events found in each source. Specific checks were carried out to avoid 
the inclusion of duplicates and, in case, the entry was attributed to the 

Table 1 
Selection of meaningful attributes used in this study. A brief description of each 
attribute is provided. * = Multiple entry fields (e.g., “Release” AND “Pool Fire” 
for IT, “Flammable” AND “Toxic” for MH).  

Attribute Description 

DA Date Date of the incident. 
LO Location Town, region, and country of the incident 
GC General Cause The general cause - or causes - which triggered the event 

(e.g. Mechanical failure, Human Error) 
SC Specific Cause The specific cause - or causes - which triggered the event 

(e.g. Brittle fracture, Overpressure, Fire) 
GOG General Origin Area of the plant where the incident originated from (e.g. 

Process, Storage, Warehouse) 
SOG Specific Origin Equipment that originated the incident (e.g. Pump, 

Vessel, Pipeline) 
MN Material 

Name* 
Names of dangerous substances involved in the incident 

MH Material 
Hazard* 

The hazard class of the substances involved (e.g. Toxic, 
Explosive, Corrosive, Oxidizing) 

MC Material Code* Four-digit code of the substance involved 
QY Quantity The amount of substances released (tons) 
IS Ignition Source Type of ignition source (e.g. hot surface, flares, boilers) 
IT Incident Type* Incident typology (e.g. Release, BLEVE, Physical 

Explosion) 
NPE Evacuated Number of people evacuated 
PD Population 

Density 
Population density in the Area (i.e. “Rural” for low - 
sparse population, “Urban” for highly populated Area) 

NPI Injured Number of people injured in the incident 
NPK Fatalities Number of people killed in the accident  

Table 2 
Accident consequence categories.  

Category Description 

NO no fatalities/injuries 
1–10 from 1 to 10 fatalities/injuries 
10–100 from 10 to 100 fatalities/injuries  
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database that provides the largest number of significant attributes. 
The Ammonia Plant Accident Database (i.e., the target database) and 

the source database share the same structure, as suggested in Section 
3.2. Specifically, each accident is described through a list of attributes 
(Table 1) and attribute codes, which have been entirely derived from the 
source database. 

The frequency distribution of attribute codes in the target database 
(e.g., the fraction of incidents that lead to fire rather than explosion, or 
that involved syngas rather than ammonia) is a key piece of information 
to support the analysis, to interpret the results, and to highlight the 
limits of the database. As an example, the frequency distribution of the 
attributes General Origin, Incident Type, General Cause, Specific Cause, 
Material Name, and Number of People Affected are displayed in Fig. 4. 

Most of the incidents in the target database involved the release of 
Ammonia or Syngas (Fig. 4.e and Fig. 4.b) within the Process area of the 
plant (Fig. 4.a). Mechanical failures and Human factors are the most 
frequent cause of accidents (Fig. 4.c). Fig. 4.f reveals that more than 80 
% of the incidents had caused no injuries or fatalities. Considering the 
more severe accidents, the number of fatalities is always smaller than 
the number of injured, and the frequencies decrease as the number of 
people affected increases. No accident causing more than 100 injuries or 
fatalities is found in the database. 

It is important to stress that most of the accidents in the target 
database are derived from a few different sources (Table 3). More than 
half of the events have been extracted from two sources only: the NRC 
database (United States Environmental Protection Agency, 2020) and 
the Ammonia Plant Safety and Related Facilities (AIChE, 2001). Thus, 
the overall features of the database are likely to be affected by the 
characteristics of these two sources. For instance, the NRC database does 
not always include the causes or the origin of the accident. Observing 
Fig. 4, it is clear how the characteristics of NRC affect the target data
base; the attributes that describe the cause and origin of the accident are 
not always registered (Fig. 4.c, and d). 

Finally, it should be remarked that each source used to build the 
target database has its own way of describing an accident –e.g., different 
keywords, attributes, and codes. Thus, the detail level and the quality of 
information vary across different sources. In some instances, it has not 
been simple to find the most representative set of attribute codes 
because the original report uses different keywords or because the 
needed information is completely missing. Significant efforts are needed 
to gather and ensure consistency between data from different sources 
(Parmiggiani et al., 2022). It has been observed that accident reports 
were often not clear and incomplete, especially regarding detailed in
formation. The database is affected by a significant incidence of missing 
values –i.e., “NaN” in Fig. 4. The attributes that describe the cause and 
the origin of the incident (e.g., GC, SC, GOG, SOG) show a high incidence 
of missing values. For instance, nearly 15 % of the incidents in the target 
database contain no information about the General Origin or the 

Incident Type (Fig. 4.a and Fig. 4.b). Additionally, General and Specific 
causes (Fig. 4.c and Fig. 4.d) show missing values frequency larger than 
20 %. The incidence of missing values in the ammonia database is larger 
than in MHIDAS (Tamascelli et al., 2022), and the overall quality is thus 
lower. 

4.3. Model training and Transfer Learning 

The models described in Section 3.3.2 have been trained on the 
source database and evaluated on the target database, as described in 
Sections 3.3 and 3.4. The Deep Neural Network used in this study has 
three hidden layers, with 1024, 512, and 256 hidden units, respectively. 
The optimizers used in the Wide and Deep models are Ftrl and Adagrad 
(TensorFlow.org, 2020a, 2020b), respectively. 

Two sets of binary classifications have been performed. The first set 
aims to identify the number of fatalities (i.e., NPK), the latter focuses on 
the number of people injured (i.e., NPI). 

It is worth mentioning that each simulation has been performed 
using different iteration steps. Specifically, 200, 2000, 20000, and 
200’000 steps have been used. Therefore, a set of 4 binary classifications 
have been performed for each combination of model (Wide or Deep), 
label category (NPI or NPK), and label (“NO”, “1–10”, “10–100”). Five 
steps have been followed to complete a simulation:  

1. a model is selected;  
2. a label category is selected;  
3. a label is selected;  
4. an iteration step is selected;  
5. the model is trained on the source dataset;  
6. the pre-trained model is evaluated on the target dataset. 

The steps described above are reiterated in order to cover all possible 
combinations of model, label category, label, and iteration steps. Per
formance metrics and performance indicators are obtained for each 
simulation in order to evaluate the success of the Transfer Learning 
procedure. Finally, optimization strategies are assessed. 

5. Results and discussion 

The complete set of results of the transfer learning procedure is re
ported in the supplementary material. A selection of the most note
worthy simulations is displayed in Fig. 5 and Fig. 6, which focus on the 
category “NPI” and “NPK” respectively. In both figures, the performance 
indicators AUC PR, Recall, Accuracy, and Precision are displayed for 
each label and model. 

The results displayed in Fig. 5 and Fig. 6 have been selected based on 
the AUC PR value. Specifically, the number of iteration steps that led to 
the largest AUC PR has been selected. The number of iteration steps used 
to obtain the metrics in Fig. 5 and Fig. 6 is shown in Table 4. The AUC PR 
has been chosen because it is independent of the decision threshold and 
representative of the potential model performance; in other words, it is 
one of the most comprehensive indicators of the success of the Transfer 
Learning procedure. Therefore, Fig. 5 and Fig. 6 provide a visual rep
resentation of the best performances achieved by the models in absolute 
terms, allowing a qualitative comparison between the algorithms. 

From the data in Fig. 5 and Fig. 6, it is apparent that there is not a 
single model that outperforms the others in every simulation. For 
example, the Wide model shows an AUC PR higher than the Deep model 
in the category 1 – 10 NPI, while the opposite happens in category NO 
NPI (Fig. 5.a). Also, the Deep model outperforms the wide model in 
category 1 – 10 NPI (Fig. 5.a), while the opposite happens in category 1 – 
10 NPK (Fig. 6.a). The same behavior is also evident in the complete set 
of results. Therefore, a scoring system has been used to rank the model 
performance and identify the best algorithm for this specific task. 
Briefly, the ranking system is designed to reward the model that pro
duces the larger AUC PR in the most critical categories (i.e., those 

Table 3 
Number of events collected, per source, and source weight in the Ammonia Plant 
Accident Database. Source weight represents the contribution of each source to 
the database.  

Source Events Weight 
[%] 

NRC (United States Environmental Protection Agency, 2020) 39 27.9 
Ammonia Plant Safety and Related Facilities (AIChE, 2001) 31 22.1 
eMARS (European Commission, 2022) 21 15 
Aria (Bureau for Analysis of Industrial Risks and Pollutions, 

2022) 
12 8.6 

MHIDAS (AEA Technology, 1999) 11 7.9 
JFKD (Japan Science and Technology Agency, 2005) 10 7.1 
Lees’ (Lees, 2004) 5 3.6 
ZEMA (Bundesministerium für Umwelt Naturschutz Bau und 

Reaktorsicherheit, 2022) 
5 3.6 

OSHA (EU-OSHA, 1994) 4 2.8 
Other 2 1.4  
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referring to events that caused a large number of fatalities or injuries). 
The procedure generates a score for each model and label category. By 
summing the scores of the two categories (i.e., the one calculated for 
“NPK” and the one for “NPI”), it is possible to obtain an overall measure 
of the model performance; larger scores indicate better performance. 
Table 5 reports the results of the scoring system. The Wide model offered 
the best performance in both categories and obtained the highest overall 
score. This finding may seem unexpected since DNNs are advanced 
models with inherent generalization and abstraction capabilities. In fact, 
the consequence of an accident results from the combination of many 
intermediate events. Thus, the Deep model was supposed to perform 
better on a Transfer Learning task due to the ability to capture inter- 
feature relationships and nonlinearities. 

However, DNNs are prone to overfitting and overgeneralization, and 
they need high-quality input data to perform as intended. The quality of 

the source dataset is sufficient, but certainly not excellent considering 
the origin of the data (i.e., MHIDAS) and the limited details available. In 
addition, the target database has a high incidence of missing and un
certain values. The combination of relatively poor-quality input data 
and inherent model sensitiveness may have caused performance 
degradation. Differently, the more robust Wide model seems to have 
learned and assigned the right weights to the most significant and 
accessible features. 

The results suggest that the approach benefits from a model capable 
of assessing the weights of each feature (or groups of features) inde
pendently, rather than generalizing over all the features. Linear models 
seem to be particularly suitable for addressing the problem considered in 
this study, especially when the dataset has uncertain and missing data. 
Future research should test whether higher-quality databases may 
improve the performance of the models. In addition, the Deep models 

Fig. 4. Frequency distribution of the attributes GOG (a), IT (b), GC (c), SC (d), MN (e), NPK and NPI (f) (see Table 1 for the description of the attributes). Attribute 
codes are represented on the x-axis. “NaN” refers to missing values, “Other” refers to attribute codes that have not been represented in the figure for the sake 
of brevity. 
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may need more optimization and hyperparameters tuning to perform 
adequately. A different number of hidden units and layers, a different 
optimizer, learning decay, and optimization function may be tested to 
overcome the limitations of the Deep model and enhance its qualities. 

In addition to these general considerations, the results in Fig. 5 and 
Fig. 6 offer interesting insights. A particular trend can be identified for 
the AUC PR curves: in most cases, the Area Under the Curve decreases as 
more critical events are considered. This fact is evident in Fig. 6.a, where 
AUCs decrease as a larger number of people involved is considered. Such 
behavior has also been observed and discussed by (Tamascelli et al., 
2022). In fact, the knowledge gained by a classification algorithm 
largely depends on the quantity and quality of examples provided during 
the training phase. If the training database contains only a few examples 
of a particular label, the algorithms have little chance to learn. Since 
accidents with a high death toll are rare, the behavior of the AUC PR 
seems reasonable. Nevertheless, a few exceptions can be identified. For 
example, Fig. 5.a shows that the AUC PR produced by the models for the 
category 10–100 is larger than the AUCs for the category 1–10. In this 
case, the AUCs obtained for the most critical (and rare) label are unex
pectedly large. This might be explained considering the extreme rarity of 
these events. In fact, only three events in the Ammonia database caused 
10–100 injuries. Therefore, identifying two of these events would 
significantly improve the performance of the algorithm. 

It is also worth noting that the accuracy follows a particular trend: 
the indicator tends to increase as more critical labels are considered. The 
reason for this is that when rare events are considered, high accuracy 
can be achieved by always performing a negative prediction. As an 
example, consider the label 10–100 in Fig. 6. Accuracy is almost 1 but 
Recall and Precision are 0 because the model never performed a positive 
prediction. In fact, the model made 127 correct predictions out of a total 
of 128 (only one event has 10–100 as a label). The accuracy is large, but 
the model failed to identify the critical event. This is an example of why 

accuracy alone is meaningless when considering unbalanced datasets. 
As previously discussed, if the approach involves the identification of 

rare and critical events, a large Recall is desirable. Fig. 5 and Fig. 6 (and 
the rest of the results in the supplementary material) show Recall values 
obtained using a decision threshold equal to 0.5, which does not guar
antee the best performance. A low Recall does not imply model inade
quateness. Provided that the AUC PR is not zero, the decision threshold 
may be lowered to increase the Recall (as shown in Section 3.4.3). 

As an example, consider the performance of the Deep model in Fig. 6. 
The Recall is zero for the label 1–10, and so is the Precision. This means 
that none of the fourteen events with label 1–10 were correctly identi
fied. The model produced True Negatives and False Negatives only, as 
shown in Fig. 7 (i.e., the model never predicted the class “Y”). This 
happened because the raw probability values for the label “Y” were al
ways smaller than 0.341, which is smaller than the standard decision 
threshold used to produce the metrics in Fig. 6. 

However, the AUC PR is larger than 0 for the same model and label 
(Fig. 6.a). This suggests that Recall can be increased by lowering the 
decision threshold. The PR curve produced by this specific simulation 
has been shown in Fig. 3. The curve indicates that if the decision 
threshold is larger than 0.341, Precision and Recall will be zero because 
no positive prediction is generated (red mark in Fig. 3). If the decision 
threshold is decreased, more events are labeled as “Y”, and more TP 
and/or FP are generated. In this example, the point at threshold = 0.317 
(green in Fig. 3) appears to be a good balance between high Recall and 
acceptable Precision. The F-score analysis confirms this insight. Specif
ically, F1, F1.5, and F2 curves are shown in Fig. 8. 

A decision threshold equal to 0.317 maximizes the Recall-oriented 
F1.5 and F2 measures. Instead, F1 shows a maximum for threshold =
0.3173, which has not been considered further. The number of TN, FP, 
TP, and FN obtained with threshold = 0.317 is displayed in Fig. 9. 

The metrics in Fig. 9 indicate that 8 out of 14 events that caused 1–10 

Fig. 5. Area Under the Curve Precision-Recall (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the label category 
“Number of People Injured” (NPI). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 
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fatalities have been correctly identified (TP in Fig. 9). According to Eq. 
(5) and (4), the Recall is 0.57, and the Precision is 0.29, as shown in 
Fig. 3. As a drawback, reducing the threshold has generated 20 False 
Positives, whose nature has been studied:  

• One of the False Positive involved the release of a relevant quantity 
of ammonia (10 to 100 tons) but did not cause any injuries or fa
talities. In this case, the model might have mislabeled the event 
because large releases are more likely to cause at least one fatality. In 
fact, the model has labeled the event as potentially critical, which 
may be considered correct, even if the accident did not have tragic 
outcomes.  

• Six events among the False Positives had caused 1–10 injured, which 
may indicate that those events had the potential to cause a low 

number of fatalities as well. Mislabeling these types of incidents is 
not deemed to be critical.  

• Five False Positives have a large incidence of missing values (40 to 41 
features out of 47 are not available). It seems reasonable and con
servative to label uncertain events as potentially critical. 

Hence, reducing the threshold to 0.317 has undeniably improved the 

Fig. 6. Area Under the Curve Precision-Recall (a), Recall (b), Accuracy (c), and Precision (d) obtained from a small selection of simulations for the label category 
“Number of People Killed” (NPK). Labels are represented on the x-axis. Recall, Precision, and Accuracy are obtained at threshold = 0.5. 

Table 4 
Numbers of iteration steps used to obtain the results presented in Fig. 5 and 
Fig. 6. “NPI” and “NPK” respectively indicate the simulations for the Number of 
People Injured and Killed.  

Models Category NO 1 – 10 10 – 100 

Wide NPI 200 200 2000 
Deep NPI 2000 20′000 20′000 
Wide NPK 200′000 20′000 2000 
Deep NPK 200 2000 200  

Table 5 
Scores assigned to the Wide and Deep model performances.  

Model Score NPI Score NPK Overall score 

Wide 55 68 123 
Deep 50 41 101  

Fig. 7. Confusion Matrix produced by the Deep model for the label 1 – 10 
(NPK) at 2000 integration steps. From top-left clockwise: True Negative (TN), 
False Positive (FP), True Positive (TP), and False Negative (FN) are obtained 
using a probability threshold equal to 0.5 and color-coded according to the 
color bar on the right. 
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performance considering that the same model produced null Precision 
and Recall (Fig. 7). It is worth mentioning that the model did not have 
any prior knowledge of the events included in the target task. Thus, the 
predictions rely entirely on the knowledge extracted from the source 
task. In this situation, a degree of uncertainty in the predictions appears 
to be reasonable. Therefore, it is not surprising that the metrics derived 
from the standard decision threshold are not satisfactory. However, the 
optimization process described in this example demonstrates that even if 
the pre-trained model may seem inadequate (i.e., a low Recall is pro
duced), thresholding and F-score optimization may be used to improve 
the performance and fit the model to the target task. In general, the 
results suggest that the classification of rare and technology-specific 
accidents through Machine Learning may benefit from a meta-learning 

approach, which would enable knowledge transfer from generic and 
readily available accident databases. Furthermore, this approach may 
assist the industry in retaining the knowledge derived from past acci
dents more effectively. 

In spite of the promising results, this study presents some limitations. 
Firstly, it must be recalled that this research has only considered acci
dents involving dangerous substances; therefore, the accident features 
described in Table 1 and the consequence categories proposed in Table 2 
may not be suitable for different kinds of accidents. Nevertheless, the 
authors believe that the methodology is sufficiently generic to be 
extended to other industries and incidents. Another limitation is that the 
accident features presented in Table 1 may not be the most meaningful 
in this context. In fact, feature selection was manual and mainly guided 
by domain knowledge. Future research should investigate the effect of 
different sets of features and different feature representations. Secondly, 
this study has only examined two classification algorithms (i.e., linear 
and DNN); it may be worth testing different models such as Support 
Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). 
Furthermore, the DNN hyperparameters have not been optimized (e.g., 
number of layers and neurons, activation function, learning decay); 
more efforts should be directed toward hyperparameter tuning to 
identify the best network configuration. Thirdly, the Transfer Learning 
approach described in this study involves training on the source dataset 
and evaluation on the target database. This simple strategy was chosen 
to assess if the models could transfer knowledge to previously unseen 
events. It would be interesting to examine if an additional training phase 
on a small number of events drawn from the target dataset might 
significantly improve performance. Finally, further studies need to be 
carried out to investigate the potential of different learning strategies, 
such as regression or unsupervised learning. 

Notwithstanding these limitations, the method described in this 
study might be used in combination with traditional techniques in 
different stages of the risk assessment and management framework. For 
example, the approach might be used to support the hazard identifica
tion phase, where information retrieval is critical, in order to avoid 
repeating mistakes in design or operations. Also, the ease of use and the 
intelligibility of results are interesting characteristics that may support 
the employees’ training process and improve risk perception and 
awareness. Finally, the model might be a useful support for risk priori
tization and residual risk management. 

6. Conclusions 

A data-driven method to extract, retain, and transfer knowledge from 
past industrial accidents involving dangerous substances is developed. 
Specifically, this study suggests that the knowledge extracted from 
generic accident databases might be used to predict the outcomes of 
technology-specific accidents in terms of injuries and fatalities. The 
method has been tested on two datasets: MHIDAS and the Ammonia 
Plant Accident Database. Two different Machine Learning classification 
models (i.e., Wide and Deep) have been used. The Wide model offered 
the best performance in the Transfer Learning process. The challenges 
linked to the identification of rare and critical events have been dis
cussed. An example of F-score optimization through thresholding has 
been described to stress the importance of threshold tuning in dealing 
with class-imbalanced datasets. Despite the limitations imposed by the 
quality and quantity of available data, the method leads to satisfactory 
performance. The results suggest that automated algorithms can learn 
from historical accident data sources and use the acquired knowledge to 
perform predictions on different types of accidents. The approach pro
posed in this study reduces the need for new data and improves the 
generalization capabilities of classification algorithms, and therefore 
makes an important contribution to the development of Machine 
Learning tools for improving process safety. More in general, the study 
indicates that improvements in IT and Industry 4.0 technologies offer 
interesting opportunities to integrate and support traditional risk 

Fig. 8. F1, F1.5, and F2 curves obtained by the Deep model for the label 1 – 10 
(NPK) at 2000 integration steps. F1.5, and F2 show a global maximum for 
Threshold = 0.317. F1 has a maximum at Threshold = 0.3173. 

Fig. 9. Confusion Matrix produced by the Deep model for the label 1 – 10 
(NPK) at 2000 integration steps. A decision threshold equal to 0.317 is used. 
From top-left clockwise: True Negative (TN), False Positive (FP), True Positive 
(TP), and False Negative (FN) are color-coded according to the color bar on 
the right. 
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assessment techniques with data-driven approaches, which are often 
faster to implement and cheaper in terms of working hours and required 
level of expertise. Furthermore, this study fits perfectly with the human- 
centric perspective of Industry 5.0 (Commission et al., 2021); ML tech
niques are not intended to substitute human judgment or threaten the 
role of safety practitioners. On the contrary, the methods proposed in 
this study have been designed to complement existing risk management 
techniques and provide practical support to workers. 
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