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Abstract

Fast Field-Cycling Nuclear Magnetic Resonance relaxometry is a non-de-

structive technique to investigate molecular dynamics and structure of sys-

tems having a wide range of applications such as environment, biology, and

food. Besides a considerable amount of literature about modeling and ap-

plication of such technique in specific areas, an algorithmic approach to the

related parameter identification problem is still lacking. We believe that a ro-

bust algorithmic approach will allow a unified treatment of different samples

in several application areas. In this paper, we model the parameters iden-

tification problem as a constrained L1-regularized non-linear least squares

problem. Following the approach proposed in [Analytical Chemistry 2021

93 (24)], the non-linear least squares term imposes data consistency by de-

composing the acquired relaxation profiles into relaxation contributions as-

sociated with 1H − 1H and 1H − 14N dipole-dipole interactions. The data
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fitting and the L1-based regularization terms are balanced by the so-called

regularization parameter.

For the parameters identification, we propose an algorithm that computes,

at each iteration, both the regularization parameter and the model parame-

ters. In particular, the regularization parameter value is updated according

to a Balancing Principle and the model parameters values are obtained by

solving the corresponding L1-regularized non-linear least squares problem by

means of the non-linear Gauss-Seidel method. We analyse the convergence

properties of the proposed algorithm and run extensive testing on synthetic

and real data. A Matlab software, implementing the presented algorithm, is

available upon request to the authors.

Keywords: parameter identification, L1 regularization, non-linear

Gauss-Seidel method, Fast Field Cycling NMR relaxation, Free-model,

quadrupole relaxation enhancement.

1. Introduction

Fast Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxom-

etry is a non-destructive magnetic resonance technique particularly useful

in revealing information on slow molecular dynamics, carried out at very

low magnetic field strengths. Standard NMR relaxation experiments are

only performed in a relatively large fixed magnetic field that determines the

resonance frequency of the molecules under investigation. Conversely, FFC-

NMR relaxometry [1, 2] provides relaxation studies in a remarkably wide

frequency range from approximately 1 kHz to 40 MHz. The FFC technique

allows one to evaluate how the rate R1 (also referred to as longitudinal re-
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laxation rate) of a sample varies by changing the strength of an applied

magnetic field, so forming the NMR Dispersion (NMRD) profiles. Therefore,

FFC-NMR relaxometry measurements can detect the motion across a wide

range of timescales (from millisecond to picoseconds) within an experiment.

In addition, frequency-dependent relaxation studies have the exceptional po-

tential to reveal the underlying mechanisms of molecular motion (not just

its timescale). Provided that the proper constraints are fulfilled [3], spin

relaxation can be described as a linear combination of spectral density func-

tions (Fourier transform of the time correlation function) characterising the

motional frequencies and their intensities present in the correlation function.

However, complex spins dynamical interactions may occur such as the

Quadrupole Relaxation Enhancement (QRE) due to their intramolecular

magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1

[4, 5]. In the case of nitrogen-containing systems, for instance, the presence

of QRE is represented by local maxima or peaks of the R1 profiles due to

1H− 14N interactions. The positions of the peaks depend on the quadrupole

parameters which are determined by the electric field gradient tensor at the

14N position. Consequently, even subtle changes in the electronic structure

around 14N reflect in changes of the position and shape of the quadrupole

peaks. The QRE is a very sensitive fingerprint of molecular arrangement

which has a wide range of applications ranging from environmental science

[6], the study of ionic liquids, proteins [5] and food [7, 8].

Despite the consistent literature about the modeling of relaxation rate R1

of protons fluids within a confined environment (see for instance [9, 10, 11])
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and applications of FFC-NMR (see for example [12] and references therein),

the study of a computational framework for the automatization of the FFC-

NMR analysis is still missing. To the authors’ best knowledge, only P. Lo Meo

et al. [13] propose a computational approach where, following the “model-

free” approach introduced by [14, 15], the relaxation rate R1 is represented

as the sum of a constant term (offset) accounting for very “fast” molecular

motion, a term describing proper 1H − 1H relaxation as an integral function

of the correlated time distribution function, and a non-linear term depending

on several characteristic parameters related to the QRE occurence.

Therefore, the analysis of the NMRD profiles requires the solution of a pa-

rameter identification problem dealing with the estimation of the offset term,

the correlation time distribution and the QRE parameters. In the present

contribution, we formulate the parameter identification problem as a regu-

larized non-linear least squares problem with box constraints and we propose

a completely automatic strategy for its solution. In particular, the objective

function contains a non-linear least squares term, imposing data consistency,

and a L1-based regularization term. An L1-based regularization term, added

to the L2-data fitting term, promotes sparse solutions since it forces only

some components to be non-null while pushing all the other components to

zero. Since the correlation time distribution function is known to be sparse,

i.e. to have only a few non-null values, L1-based regularization is a suitable

choice compared to L2-based regularization, also known as Tikhonov regu-

larization, which indeed promotes smooth solutions. For a deeper discussion

on regularization approaches based on L1 and L2-norms we refer the reader

to [16, 17, 18, 19]. The data-fitting and regularization terms are balanced by
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the so-called regularization parameter. Physical constraints on the unknown

parameters lead to bound constraints in the optimization problem.

The parameter identification problem crucially depends on the regulariza-

tion parameter whose value has to be properly identified in order to perform

a meaningful NMRD analysis. Therefore, our mathematical model depends

on several parameters: the NMRD parameters (i.e. the offset, the correlation

time distribution), the QRE parameters, and the regularization parameter.

The estimation of all these parameters is carried out by an iterative process

where, at each iteration, the regularization parameter is computed according

to a balancing principle [20]. The NMRD and QRE parameters are esti-

mated solving the corresponding constrained optimization problem by the

constrained two-blocks non-linear Gauss-Seidel (GS) method [21, 22], since

the unknown NMRD and QRE parameters can be naturally partitioned into

two blocks. In the GS method, the objective function is iteratively minimized

with respect to the offset and the correlation time distribution while the QRE

parameters are held fixed; then, fixed the updated values for the offset and

the correlation time distribution, the objective is minimized with respect to

the QRE parameters. The first subproblem involves solving a constrained

linear least squares problem, obtained by the model-free approach [13], with

an L1 regularization term. The second subproblem requires the solution of a

constrained non-linear least squares problem.

This computational approach, separating the contribution due to the off-

set and the relaxation distributions from the parameters of the quadrupolar

relaxation, is able to provide a very accurate fit not only of the overall NMRD

profile, but also of the local maxima due to the QRE.
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Besides analysing the convergence of the proposed approach, we tested it

on synthetic and real data aiming to illustrate the algorithm efficiency and

its robustness to data noise.

The main contributions of the present paper can be summarized as fol-

lows.

• We formulate the problem of identifying the offset, the correlation time

distribution and the QRE parameters from the NMRD profiles as a

L1-regularized non-linear least squares problem with box constraints

related to physical properties of the parameters.

• We derive an automatic procedure, named AURORA (AUtomatic L1-

Regularized mOdel fRee Analysis) for the identification of all the pa-

rameters of mathematical model, i.e, the NMRD parameters (the offset

term, the correlation time distribution), the QRE parameters and the

regularization parameter and we analyse its convergence properties.

• We prove the robustness of the proposed approach to data noise by

testing it on synthetic and real NMRD profiles.

The remainder of this paper is organised as follows. In section 2 we present

the parameter identification problem; in section 3 we introduce the solution

method, analyse its properties and present the AURORA algorithm. The

results from several numerical experiments are reported and discussed in

section 4. Finally, in section 5, we draw some conclusions.
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2. The parameter identification problem

In the following, we first describe the continuous model for NMRD pro-

files, then we derive its discretization and, finally, we present the parameter

identification problem.

2.1. The continuous model of NMRD profiles

Following the model-free approach, [13] proposes a model for the NMRD

profiles R1 made of three components:

R1(ω) = R0 +RHH(ω) +RNH(ω) (1)

where R0 is nonnegative offset keeping into account very fast molecular mo-

tions, the term RHH(ω) describes the correlation distribution function f(τ)

as:

RHH(ω) =

∫ ∞

0

[
τ

(1 + (ωτ)2)
+

4τ

(1 + 4(ωτ)2)

]
f(τ) dτ (2)

where τ is the correlation time, i.e., the average time required by a molecule

to rotate one radiant or to move for a distance as large as its radius of

gyration.

Noticeably, the typical approach to data analysis in FFC NMR relaxom-

etry relies on using an ad-hoc mathematical model containing information

about both the number and meaning of the correlation times that describe a

given system. Conversely, the approach described by equation (2) reverts the

philosophy of the elaboration process. In fact, the integral form of equation

(2) unconstrainedly retrieves only the number of possible correlation times

describing the dynamics of the overall physical system. In other words, with-
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out any ad-hoc pre-defined physical model, the proposed free-model anal-

ysis affords a fingerprint of the possible motion regimes regardless of their

physical-chemical interpretation. The latter, in turn, can be reasonably at-

tempted ex-post by interpreting the chemistry of the investigated system.

The term RHN(ω) describes the occurrence of the quadrupolar peaks [12]:

RHN(ω) = CHN
(

1
3
+ sin2(Θ) cos2(Φ), 1

3
+ sin2(Θ) sin2(Φ), 1

3
+ cos2(Θ)

)
·

τQ
1 + (ω − ω−)2τ 2Q

+
τQ

1 + (ω + ω−)2τ 2Q
τQ

1 + (ω − ω+)2τ 2Q
+

τQ
1 + (ω + ω+)2τ 2Q

τQ
1 + (ω − (ω+ − ω−))2τ 2Q

+
τQ

1 + (ω + (ω+ − ω−))2τ 2Q

 (3)

where

i) CHN refers to “the gyromagnetic ratios and the average interaction

distance of the nuclei”;

ii) Θ and Φ are two angles accounting for “ the orientation of the 1H −14

N dipole-dipole axis with respect to the principal axis system of the

electric field gradient at the position of 14N ”;

iii) τQ is the correlation time for the 1H − 14N quadrupolar interaction;

iv) ω− and ω+ are the angular frequency position of the peaks on the

NMRD profiles.

(We remark that in (3) the · operator denotes the scalar product of two

vectors.)
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Simply speaking, the interpolation of the experimental data by applying

equation (1) can be considered as a combination of the free model approach

given by equation (2) for the homonuclear RHH term, with the non-linear

function developed in reference [4] and described by equation (3) for the

quadrupolar RNH term.

2.2. The discrete model for NMRD profiles

Before describing the discretization of the continuous model (1), let us

introduce the following notation. Let ω ∈ Rm be the vector of the m Larmor

angular frequency values (ω = 2πν, ν in Mhz) at which R1 is evaluated,

and let y ∈ Rm be the corresponding observations vector, i.e., yi = R1(ωi),

i = 1, . . . ,m. Let f ∈ Rn be the vector obtained by sampling f(τ) in n

logaritmically equispaced values τ1, . . . , τn. Finally, let ψ ∈ R6 be such that

ψ1 ≡ CHN , ψ2 ≡ sin2(Θ), ψ3 ≡ sin2(Φ), ψ4 ≡ τQ, ψ5 ≡ ω−, ψ6 ≡ ω+. The

discrete model, obtained by discretizing the equations (2) and (3), is

y = F(f ,ψ, R0) ≡ F1(f) + F2(ψ) +R0 (4)

where F : Rn+6+1 → Rm. The first term F1 : Rn → Rm, only depending on

f , is a linear function of f deriving from the discretization of the integral for

RHH in (2):

F1(f) ≡ Kf , with K ∈ Rm×n, f ∈ Rn (5)

and

Ki,j =
τj

(1 + (ωiτj)2)
+

4τj
(1 + 4(ωiτj)2)

, i = 1, . . . ,m, j = 1, . . . , n.
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In a typical FFC-NMR experiment, m≪ n.

The second term F2(ψ) : R6 → Rm represents the quadrupolar compo-

nent RHN (3) and only depends on the parameters ψj, j = 1, . . . , 6:

(F2(ψ))i = ψ1

(
1
3
+ ψ2(1− ψ3),

1
3
+ ψ2 · ψ3,

1
3
+ (1− ψ2)

)
·

ψ4

1 + (ωi − ψ5)2ψ2
4

+
ψ4

1 + (ωi + ψ5)2ψ2
4

ψ4

1 + (ωi − ψ6)2ψ2
4

+
ψ4

1 + (ωi + ψ6)2ψ2
4

ψ4

1 + (ωi − (ψ6 − ψ5))2ψ2
4

+
ψ4

1 + (ωi + (ψ6 − ψ5))2ψ2
4)

 (6)

for i = 1, . . . ,m.

The last term in F is the constant parameter R0 ≥ 0 representing the

offset in the NMRD curve.

2.3. The parameter identification problem

Mathematically, the problem of identifying the parameters f , ψ and R0

from the observations y is an ill-conditioned non linear inverse problem (4).

In order to stabilize the parameter identification procedure, we use a regular-

ization approach adding some a priori information on the unknown parame-

ters. In particular, we use L1 regularization to induce sparsity of f since the

distribution f(τ) is known to be a sparse function with only a few non-null

terms. Therefore, the parameter identification problem is reformulated as
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the following optimization problem

min
f ,ψ,R0

∥y − (F1(f) + F2(ψ) +R0)∥22 + λ∥f∥1

s.t. f ≥ 0,

ψ ∈ Bψ,

R0 ≥ 0,

(7)

where the set Bψ defines the box constraints on ψ:

Bψ =
{
ψ : ψ1 ∈ [0, C̄]; ψ2, ψ3 ∈ [0, 1]; ψ4 ∈ [0, τ̄ ]; ψ5, ψ6 ∈ [ωℓ, ωu]

}
. (8)

The bounds on the parameters ψi, i = 1, . . . , 6, can be derived from the

physical properties of the system and from the data y; a deeper discussion

on this topic will be given in the Section 4.

The regularization parameter λ > 0 weights the contribution of the L1

regularization term; the parameters (f ,ψ, R0) obtained by solving (7) depend

critically on the value of λ.

3. The solution method

The presented parameter identification method is an iterative procedure

where, at each iteration, a value of the regularization parameter λ is pro-

vided and the corresponding parameters (fλ,ψλ, R0,λ) are computed by solv-

ing problem (7). The constrained two-blocks non-linear Gauss-Seidel (GS)

method [21, 22] is used for its solution. In the following, we firstly describe

the GS method and recall its convergence properties, then we introduce the

iterative procedure for the regularization parameter computation, and, fi-
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nally, we draw the overall parameter identification procedure.

3.1. The constrained two-blocks Gauss-Seidel method

In this subsection, we describe the GS method used for the solution of the

constrained optimization problem (7) for a fixed value of the regularization

parameter λ. To this end, we partition the unknowns of (7) into two blocks

such that the data fitting term is linear with respect to the first block and non-

linear with respect to the second block. Therefore, we reformulate problem

(7) as follows:

min
x1,x2

g(x1,x2) = ∥y −Kex1 −F2(x2)∥22 + λ∥x1∥1 + η∥x1∥22

s.t. x1 ∈ X1,

x2 ∈ X2,

(9)

where

x1 ≡ (f , R0), x2 ≡ ψ (10)

X1 = {x1 ≥ 0}, X2 ≡ Bψ (11)

and

Ke =
[
K 1

]
∈ Rm×(n+1). (12)

The last L2-based penalty term η∥x1∥22 in the objective function has been

introduced to ensure that KT
eKe + ηI is a definite positive matrix; to this

and, a small value for η, as η = 10−10 for example, can be fixed. Moreover,

observe that in (9), the parameter R0 has been included in the L1-based

penalty term.
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The closed subsets X1 ⊆ Rn+1 and X2 ⊆ R6 are both convex; the objec-

tive function g(x1,x2) is continuous and it is convex with respect to x1 for

fixed x2, but it is not convex with respect to x2 for fixed x1. However, since

KT
eKe + ηI is definite positive and X2 is bounded, it is easy to show that g

is coercive on X1 ×X2.

Definition 3.1. A function g : Rq → R is called coercive in X if, for every

sequence {x(k)} ∈ X such that ∥x(k)∥ → ∞, we have

lim
k→∞

g(x(k)) = +∞

Proposition 3.1. The function g : Rn+1+6 → R such that

g(x1,x2) = ∥y −Kex1 −F2(x2)∥22 + λ∥x1∥1 + η∥x1∥22

is coercive in X1 ×X2.

Proof. The function g can be rewritten as

g(x1,x2) = xT1 (K
T
eKe+ηI)x1+2xT1K

T
e (F2(x2)−y)+∥F2(x2)−y∥2+λ∥x1∥1

where KT
eKe + ηI is positive definite. Let {(x(k)

1 ,x
(k)
2 )} be a sequence in

X1 ×X2 such that limk→∞ ∥(x(k)
1 ,x

(k)
2 )∥ = ∞. Since X2 is bounded, we have

lim
k→∞

∥x(k)
1 ∥ = ∞ and lim

k→∞
∥x(k)

2 ∥ <∞. (13)
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Let µ > 0 be the smallest eigenvalue of KT
eKe + ηI. It holds

g(x
(k)
1 ,x

(k)
2 ) ≥ µ∥x(k)

1 ∥2 − 2∥KT
e (F2(x

(k)
2 )− y)∥∥x(k)

1 ∥+ λ∥x(k)
1 ∥+

+ ∥KT
e (F2(x

(k)
2 )− y)∥2

≥
(
µ∥x(k)

1 ∥ − 2∥KT
e (F2(x

(k)
2 )− y)∥+ λ

)
∥x(k)

1 ∥

From (13) we have µ∥x(k)
1 ∥ − 2∥KT

e (F2(x
(k)
2 ) − y)∥ + λ > 0 for sufficiently

large k, then

lim
k→∞

g(x
(k)
1 ,x

(k)
2 ) = +∞

Continuity and coerciveness ensure the existence of at least one global

minimizer of g(x1,x2) in X1 ×X2 [23].

In the constrained two-blocks Gauss-Seidel method, at each iteration, the

objective function is minimized with respect to each of the block coordinate

vectors xi over the subsets Xi, i = 1, 2, as summarized in Algorithm 1, where

the convergence condition is:

|g(x(k)
1 ,x

(k)
2 )− g(x

(k−1)
1 ,x

(k−1)
2 )| ≤ TolGS|g(x(k)

1 ,x
(k)
2 )|. (14)

We observe that the GS method is well defined since each subproblem

has solutions. Indeed, the function g is strictly convex with respect of x1 and

hence there exist at most one global minimum of f over X1 for fixed x2. On

the other hand, Weierstrass’s theorem guarantees the existence of at least

one global minimum of g over X2 for fixed x1 since g is continuous and X2
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Algorithm 1 Constrained two-blocks non-linear Gauss-Seidel method

1: function GS(x
(0)
1 ,x

(0)
2 )

2: Set k = 0 and x(0) = (x
(0)
1 ,x

(0)
2 ).

3: repeat
4: k = k + 1
5: Set x

(k)
1 ∈ arg min

z∈X1

g(z,x
(k−1)
2 )

6: Set x
(k)
2 ∈ arg min

z∈X2

g(x
(k)
1 , z)

7: until convergence condition (14)

8: return (x
(k)
1 ,x

(k)
2 )

9: end function

is a closed and bounded set.

For general nonconvex, constrained problems, convergence of sequences

generated by the GS method to critical points has been proved in [22]. For

the reader’s convenience, we report here the main convergence result for the

GS method and we refer to [22] for its proof.

Theorem 3.2. Consider the problem

min
x1,x2

g(x1,x2)

s.t. x1 ∈ X1,

x2 ∈ X2,

(15)

where g is a continuously differentiable function and the subsets Xi are closed,

nonempty and convex for i = 1, 2. Suppose that the sequence {(x(k)
1 ,x

(k)
2 )}

generated by the two-blocks GS method has limit points. Then, every limit

point of {(x(k)
1 ,x

(k)
2 )} is a critical point of the problem.

We have already observed that the objective function g of (9) is coercive;

since the level sets of continuous coercive functions are compact, the sequence

15



{(x(k)
1 ,x

(k)
2 )} generated by the GS method has limit points (eventually, it has

a convergent subsequence); hence, the GS method converges to critical points

of (9).

We conclude this subsection with a remark on the solution of the two

constrained subproblems to be solved at each iteration of algorithm 1. The

first subproblem at step 3 is a L1-regularized least squares problem with

nonnegativity constraints:

min
z

∥w −Kez∥22 + λ
m+1∑
i=1

zi

s.t. zi ≥ 0, i = 1, . . . ,m+ 1

(16)

where w = y − F2(x
(k)
2 ). For its solution, we use the truncated Newton

interior-point method described in [24].

The second subproblem at step 4 is a bound constrained non-linear least

squares problem:

min
z

∥F2(z)−w∥2

s.t. z ∈ X2

(17)

where w = Kex
(k+1)
1 − y. For its solution, we use the Newton Projec-

tion method [25, 26] where the Hessian matrix is approximated as in the

Levenberg-Marquardt method [27] since the Jacobian of F2 is ill-conditioned.

3.2. Computation of the regularization parameter λ

In order to correctly analyse the NMRD profiles, it is necessary to choose

an appropriate value for the regularization parameter λ. Even if several pa-

rameter selection rules have been proposed in the literature for L2-regularized
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minimization problems (see [28, 29, 30] for a theoretical discussion of such

rules), the case of L1-based regularization still remains largely unexplored.

In [31, 32], the discrepancy principle has been investigated for nonsmooth

regularization. This principle is difficult to be realized since it requires the

prior knowledge of the noise norm and a solution of the discrepancy equation

is not guaranteed to exist. In [20], the Balancing Principle (BP) has been

proposed where the regularization parameter is selected by balancing, up to

a multiplicative factor γ, the data fidelity and the regularization term, i.e,:

γλ∥x1∥1 = ∥y −Kex1 −F2(x2)∥22 + η∥x1∥22 (18)

The regularization properties of the BP has been deeply investigated and a

convergent fixed-point iterative scheme for its realization has been proposed

in [20]. We set γ = 1 which gives the following rule for the regularization

parameter selection:

λ =
∥y −Kex1 −F2(x2)∥22 + η∥x1∥22

∥x1∥1
.

3.3. The parameter identification method

The proposed iterative method for the identification of both the NMRD

parameters f , ψ and R0 and the regularization parameter λ is outlined in

algorithm 2 where, given an initial guess for λ, at each iteration, the NMRD

parameters are computed by solving problem (7) by the GS method, and

the regularization parameter value is updated by the BP until the following

17



convergence condition is met:

|λ(k+1) − λ(k)| ≤ Tolλ|λ(k)|, T olλ > 0. (19)

We refer to this method as AURORA (AUtomatic L1-Regularized mOdel

fRee Analysis).

Algorithm 2 AURORA

1: Set k = 0, η = 10−10 and choose a starting guess λ(0).

2: repeat

3: k = k + 1

4: NMRD and QRE parameters update

By algorithm 1 compute (x
(k)
2 ,x

(k)
2 ) = GS(x

(k−1)
1 ,x

(k−1)
2 ) i.e.

(x
(k)
1 ,x

(k)
2 ) ∈ arg min

x1∈X1
x2∈X2

∥y −Kex1 −F2(x2)∥22 + λ(k)∥x1∥1 + η∥x2∥22

5: Regularization parameter update

λ(k+1) =
∥y −Kex

(k)
1 −F2(x

(k)
2 )∥22 + η∥x(k)

2 ∥22
∥x(k)

1 ∥1

6: until convergence condition (19)

7: return (f , R0) = x
(k)
1 and ψ = x

(k)
2 ▷ Result (f , R0,ψ)

Following the analysis of the BP performed in [20], algorithm AURORA

can be viewed as a fixed point-like scheme for the problem

(x∗
1,x

∗
2) = arg min

x1∈X1
x2∈X2

∥y −Kex1 −F2(x2)∥22 + λ∗∥x1∥1 + η∥x1∥22,

λ∗ =
∥y −Kex

∗
1 −F2(x

∗
2)∥22 + η∥x∗

1∥22
∥x∗

1∥1
.

(20)
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The monotone convergence of the sequence {λ(k)} generated by the fixed

point scheme has been proved in [20] when λ(0) is chosen in an interval con-

taining only one solution of equation (18).

4. Results and Discussion

In this section, we present and discuss the results obtained by a set of

numerical experiments to assess the accuracy, robustness and efficiency of

the proposed algorithm. In paragraph 4.1, we describe the experimental set-

ting. In paragraph 4.2, we test AURORA on a synthetic NMRD profile R1

computed by the model (1) with assigned values of the parameters ψ, f and

R0. We evaluate computational efficiency and accuracy of AURORA com-

paring it with some algorithms available in the Matlab optimization Toolbox.

Moreover, we investigate the algorithm robustness in presence of data noise.

Then, in paragraph 4.3, we report the results of the analysis of NMRD profiles

from two different samples: Dry Nanosponge (DN) and Parmigiano-Reggiano

(PR) cheese.

4.1. Numerical Experimental setting

All numerical computations are carried out using Matlab R2022a on a

laptop equipped with Apple M1 processor and 16 GB 2133 MHz RAM.

For all tests, the values C̄ and τ̄ in the constraints set Bψ (8) are set equal to

a value large enough so that the intermediate solutions ψ
(k)
1 and ψ

(k)
4 never

reach such bounds. In our tests C̄ = τ̄ = 100 are suitable values. The inter-

val [ωℓ, ωu] in (8), representing the region where R1 interrupts its decaying

behaviour due to QRE, is defined by inspection of the NMRD profile.
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The starting guess for the parameter ψ
(0)
1 ≡ CHN is obtained by the literature

[5]:

CHN =
2

3

(
µ0

4π

γHγNℏ
r3NH

)2

≈ 0.18
[µs
s2

]
(21)

where the value of the physical constants is reported in table 1. Concerning

Constant Description Value
µ0 permeability of vacuum 10−7 T 2J−1m3

γH
1H gyromagnetic factor 2.577 106 T−1s−1

γN
14N gyromagnetic factor 3.078 106 T−1s−1

ℏ reduced Planck’s constant 1.05472 10−34 J s
rHN

1H −14 N inter-spin distance 1.4 10−10 m

Table 1: Characteristic constants for CHN in (21).

the quadrupolar parameters, ψ
(0)
2 ≡ sin2Θ(0), ψ

(0)
3 ≡ sin2Φ(0), the initial

values are equal to the mean of the corresponding upper and lower bounds

in Bψ, i.e. 1/2. The initial value of ψ
(0)
4 ≡ τQ, is set to 1, while ψ

(0)
5 ≡ ω

(0)
− ,

and ψ
(0)
6 ≡ ω

(0)
+ are defined as follows:

ψ
(0)
5 = ωℓ +

1

4
|ωu − ωℓ|, ψ

(0)
6 = ωu −

1

4
|ωu − ωℓ|.

The computed results are evaluated by the Mean Squared Error (MSE)

MSE =
∥R1 −F(f ,ψ, R0)∥2

m
,

and the Parameter Relative Error (PRE):

PRE(x) =
∥xexact − xcomputed∥2

∥xexact∥2
(22)
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with x representing either the vector f or the scalars R0, ψi, i = 1, . . . , 6.

The components of the vector ψ are referenced by the name in the physical

model (3), according to the mapping introduced in section 2.2, and reported

in table (2) for convenience. All the tests apply algorithm 2 with Tolλ = 10−2

CHN Φ Θ τQ ω− ω+

ψ1 asin(
√
ψ2) asin(

√
ψ3)) ψ4 ψ5 ψ6

Table 2: Quadrupolar parameters mapping.

in (19) and algorithm 1 with TolGS = 10−6 in (14).

The computational cost is evaluated in terms of execution time and iterations

number.

4.2. Synthetic test Problem

To investigate the properties of AURORA, we first test it on the syn-

thetic NMRD profile R1 represented in figure 1(a), and obtained by setting

the parameters of model (1) as in the second column of table 3, with the

distribution function f∗ represented in red in figure 2(a). Throughout the

paragraph we use the frequencies ν instead of the angular frequencies ω, i.e.

ν− ≡ ω−/(2π) and ν+ ≡ ω+/(2π).

The accuracy of the computed results can be appreciated in the correla-

tion distribution f and R1 curves shown in figure 2. To test the convergence

behaviour we evaluate the PRE and MSE at each step of the GS method in al-

gorithm 1. Figure 3(a) shows the the behaviour of the relative errors for each

parameter (f , R0, C
HN ,Φ,Θ, τQ, ν−, ν+) compared to their reference values.

The convergence to reference parameters values is initially non monotonic for

most parameters with the exception of τQ and ν−. On the contrary, MSE has
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reference computed PRE
R0 3.69 3.6868 7.0267 10−4

CHN 18.84 18.8453 6.1449 10−5

τQ 0.96 0.9554 8.5033 10−6

Θ 1.09 1.0901 6.1449 10−5

Φ 0.57 0.5696 6.9199 10−4

ν− 2.15 2.1502 5.7363 10−6

ν+ 2.87 2.8696 1.1316 10−6

Table 3: Model parameters: reference (second column), AURORA computed values (third
column) and PRE (fourth column).

Figure 1: Synthetic sample. (a) Full NMRD profile (b) Zoom of NMRD profile in the
reference interval [νℓ, νu] represented by the left and right green vertical lines. Left and

right black vertical lines represent the values ψ
(0)
5 /(2π), ψ

(0)
6 /(2π) respectively.

monotonic decrease as reported in figure 3(b). The values of the computed

parameters and relative errors reported in the third and fourth columns of

table 3 confirm the excellent accuracy obtained by the proposed algorithm.

The computed value of the regularization parameter is λ∗ = 1.216 10−9 with

computation time of 90.44± 0.3 s.

The computation cost, evaluated in terms of inner iterations of the two

Gauss-Seidel blocks in algorithm 1, consists of 147 iterations of the Newton

Projection method and 74258 iterations of the truncated Newton interior
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Figure 2: Synthetic sample. (a) Reference (red) and computed correlation distribution
(blue). (b) Reference and computed R1 profiles.

Figure 3: Synthetic R1. (a) PRE values per iteration (b) MSE values per iteration.

point method. Note that the greater computational weight lies in truncated

Newton interior point iterations due to the larger size of problem (16) com-

pared to (17).

Although the convergence of the update formula (18) depends on the initial

guess λ(0), we experimentally found convergence for λ(0) in a quite large in-

terval ([10−16, 100]). In figure 4 we represent the sequences λ(k), k = 0, . . . , 15

obtained by algorithm 2 with λ(0) ∈ {10−16, 10−6, 10−4, 10−2, 100}. Optimal

convergence (k = 1) is obtained for 10−16 ≤ λ(0) ≤ 10−4 while λ(0) > 10−4
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causes a slight increase of the iterations number, still preserving the conver-

gence up to λ(0) = 1, which is usually considered as a standard starting guess.

Therefore, to keep computations efficient, λ(0) = 10−6 is used throughout the

numerical experiments of this section.

Figure 4: Synthetic R1. Sequence {λ(k)}, obtained by AURORA with λ(0) ∈{
10−16, 10−6, 10−4, 10−2, 100

}
.

Comparison with Matlab solvers. With this test problem, we aim to com-

pare AURORA with several methods implemented by the Matlab function

fmincon: such as interior-point (ip), the active-set (as), the sequential

quadratic programming (sqp) and trust-region-reflective (trr) methods. We

highlight that AURORA automatically computes the value of the regulariza-

tion parameter λ while the Matlab function fmincon solves the optimization

problem (7) for a fixed value of λ. Therefore, we compare the GS algorithm

1 with ip, as, sqp trr for the same fixed value λ = 1. 10−8, which we

heuristically found to be a good value for all the methods.
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Besides the automatic computation of the regularization parameter λ,

AURORA splits the unknown parameters in two blocks and alternatively

minimizes the objective function for (R0, f), the offset and correlation distri-

bution, and for the quadrupolar parameters ψ. Two different methods are

used for the solution of the corresponding sub-problems. On the contrary,

fmincon computes all the parameters applying the same method.

Table 4 shows the PRE and MSE values (last row) obtained by AURORA

(second column) and by the Matlab solvers, highlighting the smallest values.

The distribution f computed by sqp is shown in figure 5.

PRE
Parameter AURORA ip active-set sqp trr

f 4.2834 10−1 1.5509 1.4497 1.3020 8.5279 10−1

R0 7.0032 10−4 9.9629 10−1 1.0000 2.7930 10−1 1.3671 10−1

CHN 5.8238 10−5 4.2908 9.6353 10−1 1.5045 10−5 1.1591 10−2

Θ 6.9108 10−4 6.5929 10−2 7.7862 10−2 7.2072 10−4 1.5758 10−2

Φ 8.7093 10−6 5.5535 10−1 2.1372 2.6548 10−5 7.2619 10−3

τQ 1.5660 10−4 9.9228 10−1 3.1584 101 1.8903 10−4 1.1033 10−2

ν− 5.7679 10−6 4.0856 10−1 2.2756 10−1 5.6228 10−6 5.9438 10−5

ν+ 1.1391 10−6 5.5197 10−2 3.3362 10−2 1.2084 10−6 1.8516 10−5

MSE 2.8131 10−6 9.1906 9.0766 3.1658 10−6 2.8289 10−3

Table 4: Parameter relative errors and MSE of AURORA and methods implemented by
the Matlab function fmincon.

We observe that AURORA has globally superior accuracy both in data

fitting and parameter estimation. Only sqp has MSE value similar to AU-

RORA (3.1658e− 06 compared to 2.8131e− 06), and a slightly better PRE

for parameters CHN and ν−, but the amplitude distribution in figure 5 shows

too many spurious peaks.
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Figure 5: Correlation time distribution f computed by sqp method.

Test with noisy data. In this paragraph we test the algorithm robustness

to data perturbations by computing noisy data yδ ∈ Rm from a random

uniformly distributed vector v ∈ Rm with values in the interval [−1, 1] s.t.

yδi = yi(1 + δvi), i = 1, . . . ,m

and consider the cases δ = 1%, 5%, 10%. The computation times (averaged

over 10 runs) and the iteration numbers, reported in table 5, show that both

iteration numbers and computation times decrease with increasing noise per-

centage. This is due to the effect of increasing noise values on the computed

regularisation parameters, as shown in the third column of table 5. The re-
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δ
Time Total iterations Total iterations

λ
[s] Subproblem (16) Subproblem (17)

1. 10−2 38.39± 0.28 52217 89 5.8405 10−5

5. 10−2 14.39± 0.16 44414 72 1.8803 10−3

1. 10−1 4.90± 0.10 16846 28 9.3561 10−3

Table 5: Computation times and iteration numbers with noise δ = 1%, 5%10%.

lations between the execution times are not found precisely in the number

of iterations because they do not take into account the backtracking steps

internal to the Newton method.

Computing 500 noisy samples yδj , we run AURORA and compare the

errors on the estimated parameters as well as reconstructed NMRD profiles.

For the noise values δ = 1%, 5%, 10%, we compute the mean PRE for each

parameter and represent the mean values in the bar plot shown in figure 6

together with the product CHN · τQ. The mean PRE and MSE are reported

Figure 6: Mean parameter values computed by 500 noisy NMRD profiles with noise δ =
1%, 5%10%.
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PRE
1% 5% 10%

f 5.9019 10−1 1.1816 1.4509
R0 3.6393 10−2 1.6726 10−1 1.8099 10−1

CHN 3.3625 10−2 2.7021 10−1 4.7742 10−1

Θ 2.3023 10−2 1.0678 10−1 2.1726 10−1

Φ 3.5151 10−2 4.0280 10−1 6.5910 10−1

τQ 4.4998 10−2 1.8862 1.1095 101

ν− 4.3917 10−3 4.8712 10−2 7.2441 10−2

ν+ 3.0889 10−3 3.8712 10−2 5.6856 10−2

MSE 1.5980 10−1 3.1441 1.0055 101

Table 6: Mean PRE and MSE on 500 noisy NMRD profiles with δ = 1%, 5%, 10%.

in table 6. The computed R1 curves and the zoom in the QRE interval are

shown in figures 7,8 and 9 for δ = 1%, 5%, 10% respectively.

Figure 7: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise
δ = 1%. (a) Light gray: 500 fitted R1 curves, Red line: Reference NMRD curve. Blue
line: average over 500 fitted R1 values. (b) zoom in QRE interval.

In figure 6, we observe that data noise affects mainly CHN , τQ and Φ

values. However, considering the value of the product CHNτQ, represented

by the second group in figure 6, we see that the value is preserved when

δ = 1%, 5%. This feature is a physical characteristic and allows us to consider
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Figure 8: Fit of NMRD obtained from 500 noisy Synthetic NMRD curves with noise
δ = 5%. (a) Light gray: 500 fitted R1 curves, Red line: Reference NMRD curve. Blue
line: average over 500 fitted R1 values. (b) zoom in QRE interval.

Figure 9: Fit of R1 obtained from 500 noisy synthetic NMRD profiles with noise δ = 10%.
(a) Light gray: 500 fitted R1 curves, Red line: Reference NMRD curve. Blue line: average
over 500 fitted R1 values. (b) zoom in QRE interval.

accurate the related parameters.

Although the average MSE increase with data noise, the computed aver-

age R1 curves show a very good agreement to the reference NMRD profiles

(figures 7, 8 and 9). The QRE is well reproduced even with high noise (figures

7(b), 8(b) and 9(b)).
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4.3. NMRD profiles from FFC measures

In this paragraph we consider the NMRD profiles obtained from two

different materials described in [13].

• A sample of 24-month aged Parmigiano-Reggiano (PR) cheese. The

NMRD profile represented in figure 10(a) has m = 48 values with

confidence intervals ranging from ±0.35% to ±3.07% of the value. The

quadrupolar peaks, represented in figure 11(a), correspond to frequency

values ν− = 2.1 and ν+ = 2.8 of values R1− = 32.2 s−1 and R1+ =

30.7 s−1 respectively.

• Dry nanosponge (DN). In this case the NMRD profile represented in

figure 10(b) has m = 44 values with confidence intervals ranging from

±0.47% to ±1.54% of the value. The quadrupolar peaks, represented

in figure 10(b), correspond to frequency values ν− = 2.4991 MHz and

ν+ = 3.1488 MHz of values R1− = 104.85 s−1 and R1+ = 104.85 s−1

respectively.

(a) (b)

Figure 10: NMRD profiles. (a) Parmigiano Reggiano sample. (b) Dry nanosponge sample.
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(a) (b)

Figure 11: Zoom of quadrupolar dips. (a) Parmigiano Reggiano Cheese. (b) Dry
nanosponge sample.

The proposed AURORA method has been used to compute the model

parameters reported in table 7. The obtained correlation distributions are

Parameter values
PR DN

R0 3.23 2.73
CNH 5.66 69.00
Θ 1.25 0.91
Φ 0.86 0.87
τQ 1.02 0.74
ν− 2.1 2.56
ν+ 2.8 3.17

MSE 7.8887 10−2 2.7853

Table 7: Values of the parameters fitted by AURORA and MSE in the last row.

represented in figure 12 in dark green line.

Concerning the fit of the NMRD profiles we measured the MSE reported

in the last row of table 7. The fitted NMRD profiles, represented in figure

13, show in blue line the data and error bars while the fitted curves are

represented in red line for both samples.
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(a) (b)

Figure 12: Correlation distribution (dark green lines). (a) Parmigiano Reggiano sample.
(b) Dry nanosponge sample.

(a) (b)

Figure 13: NMRD data and error bars (blue lines) and fitted curve (red lines). (a)
Parmigiano Reggiano sample. (b) Dry nanosponge sample.

The zoom in the frequencies of QRE interval is shown in figure 14. The

results confirm the excellent fit to the NMRD profile (figure 13) also in the

QRE interval (figure 14).
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(a) (b)

Figure 14: Zoom of data and fitted curves in the QRE intervals. NMRD data and error
bars (blue lines) and fitted curve (red lines). (a) PR sample. (b) DN sample.

5. Conclusion

The present contribution investigates an automatic approach for analyz-

ing the NMRD profiles in the presence of the quadrupolar relaxation en-

hancement. This feature yields a non-linear model whose parameters require

the solution of a constrained non-linear least squares problem. Coupling

the model-free approach and L1 regularization, we tackle the constrained

problem by a two-blocks non-linear Gauss-Seidel method. We assess the

well-posedness of the optimization problem (existence of a minimum) and

the convergence of the GS iterations to a critical point. Finally, we introduce

an automatic convergent update rule of the regularization parameter based

on the Balancing Principle.

The proposed algorithm is investigated both with synthetic and real data

and the results state that it is a robust, fast approach to obtain accurate esti-

mates of the correlation times distributions as well as modeling the quadrupo-

lar function.
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Moreover, we highlight that AURORA can be viewed as a reference frame-

work to construct parameter estimation procedures when the model parame-

ters can be split into independent blocks allowing the use of different compu-

tational approaches for each block. In this regard, future work will include

the extension of such a framework to different models of NMRD profiles

where the number of correlation times τ in (2) is assigned, and their values

are to be estimated together with the corresponding component f(τ).

Given the very accurate and promising results, AURORA will be included

in the Matlab software tool FreeModelFFC Tool for the inversion of NMRD

profiles with QRE (available in https://site.unibo.it/softwaredicam/

en/software).
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