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Abstract - This work focuses on the positive bias temperature instability of SiC-based MOSFETSs
under different stress voltages and temperatures. Stress experiments demonstrate that the threshold
voltage shift (AV;) does not follow a conventional power law for long stress time, but exhibits a
saturating log- time dependence attributed to the charge trapping in the pre-existing defects at the
S1C/S10, interface or in the Si0, layer. The maximum V7, shift (AV,..), which is a function of the
total trap density, increases with the stress voltage (V,,,...) and decreases for temperatures higher than

50 °C. The time constant of the traps (7p) also shows an uptrend with V,, ... with a maximum value

around 50 °C. Moreover, the trap energy distribution (y) slightly increases with temperature. The
recovery analysis shows that an empiric universal relaxation function well describes the data with a
dispersion parameter (/) that follows the Arrhenius law. Finally, the ¥, recovery, after the same

14

stress>

1s enhanced with temperature and also depicts a linear behavior on the Arrhenius plot. This

indicates that the charge de-trapping process is thermally activated and explains the low degradation

observed at high temperatures during the stress phase.
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1. Introduction

Silicon Carbide (SiC) metal-oxide semiconductor-field-effect-tran-
sistors (MOSFETs) are innovative devices with excellent wide-bandgap
properties, as well as a higher critical electric field (Ec = 3 x 10° v/
cm) and superior thermal conductivity (k = 5 W/cmK) compared to Si
and GaN technologies. Furthermore, they feature a very tight variation
of on-resistance vs. temperature, very high operation junction tem-
perature capability, very fast and robust intrinsic body diode and low
capacitance [1]. Therefore, SiC devices have captured important at-
tention in the market because they fulfill most of the required proper-
ties for high-power and high-temperature applications. Moreover, SiC is
the only compound whose native oxide is 5i0, (the same insulator as
Silicon), which eases the fabrication of the entire family of MOS-based
electronic devices.

In the last decades, many efforts have been focused on developing
SiC with better features such as different presentations of crystals (3C-
SiC, 4H-SiC and 6H-SiC) and processing device technology based on this
material. Due to the number of breakthroughs obtained in industrial
and academic research during the 1980s and 1990s, first SiC Schottky
barrier diodes (SBDs) were commercially released in 2001. From that

on, SiC power switching devices, primarily JFETs (junction field-effect
transistors) and MOSFETs have been employed in a variety of power
systems since the size and weight can be reduced by a factor of 4-10
with a substantial power dissipation reduction [1].

One of the main concerns from the industrial point of view is the
reliability of SiC-based devices in different processes and is the main
motivation for this work because new power devices with wide
bandgap could offer great monetary and space savings. Recent relia-
bility studies in SiC MOSFET use positive bias temperature instability
(PBTI) and the recovery phase analysis to determine the traps con-
tribution in reducing oxide reliability [2,3]. It has been concluded that
the measuring action can cause de-trapping in PBTI or even trapping
during the recovery, so new measurement methods have been devel-
oped [4]. This paper aims to provide a more comprehensive analysis of
the PBTI in SiC-based MOSFETs, under different stress conditions
(temperature and voltage) by using DC characterization and in-
dependently analyzing the stress and the recovery phase. This paper
examines the dynamics of the threshold voltage V, to find appropriate
models that correctly describes the stress and relaxation behavior for
prolonged test periods (10" s) beyond the conventional ones [5] and
allows extracting information about the degradation mechanisms of this
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Fig. 1. Testing procedure diagram for (a) the stress and (b) the recovery phase.

device. Since this work also uses an initial stabilization phase and a
recovery behavior analysis with an uninterrupted stress phase, a more
accurate PBTI degradation can be extracted.

The remainder of this paper is organized as follows: in Section 2, we
provide details of the device fabrication and characterization metho-
dology; in Section 3, we discuss the results obtained under different
conditions; and finally, in Section 4 the main achievements of this paper
are summarized.

2. Device specifications and characterization methodology

BTI measurements were carried out on packaged commercial SiC
power MOSFETs, characterized by a breakdown voltage of 1200 V and
a maximum Rpg,, at Vgg = 20V, I, = 40A and T = 25 °C equal to 69
mQ. The electrical characterization was performed by using the mea-
surement routines of the parameter analyzer Keithley 4200-SCS.

Fig. 1 shows the flow diagram of the measurement procedure to
acquire data during the stress and recovery phase, respectively.

Before performing PBTI stress, an initial stabilization phase was
done. This phase consists of applying a negative gate voltage (—1 V) for
10s to release charges originally contained in trapping centers [6]. The
stabilization allows the device to reach a reproducible reference state
for the subsequent experiments. After this phase, we measured a com-
plete I5-Vgs curve by sweeping Vgs from —5 V to 5 V. PBTI stress
measurements were done by applying different Vs (from 8 V to 20 V),
different temperatures (from 20 °C to 150 °C) and biasing Vps = 50 mV.
The stress was interrupted at fixed time intervals (2 samples per decade
until 10* s) to monitor the threshold voltage shift (V,,) by sensing I, at
Vgs = 3.5V [7,8].

In order to monitor the recovery evolution, devices were stressed at
Vgs = 8 V for 10* s without interruptions and afterward were biased at
Vgs = 0. The relaxation was interrupted at fixed time intervals to sense
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Fig. 2. Experimental (markers) and fitting curves (lines) of the AV, evolution during the stress phase under different stress voltages and temperatures (a,b,c,d).

Ip at Vgg = 3.5 V and consequently AVy,.

3. Results and discussion
3.1. Stress phase

Fig. 2 shows the evolution of PBTI induced AV, under different
stress voltage and temperatures. A AVy, saturation behavior is observed
for prolonged stress time over 1000 s, which agrees with the charge-
trapping process in pre-existing defects located in the gate dielectric
without the generation of extra traps described by Zafar et al. [9]. This
model predicts the dependence of threshold voltage shift on injected
charge carrier density (Njy;) as follows:

AVin = AVax [1 = exp(—=(Niyj. 50)F)] (¢))

where AV, is related to the total trap density and the centroid of the
trap-charge distribution in space, B is a dependent constant of the gate
stack, and oy, is the characteristic capture cross-section for the ensemble
of traps with a continuous distribution [10].

Eq. (1) can also be expressed as a function of the total stress time t
by the expression:

wm s en-2))]

where 1, is the time constant of the traps and y describes the trap en-
ergy distribution through y = (1 — a)B, where a is determined from
gate leakage current density vs. time plot [9].

According to the previously described model, AV, (Fig. 3) ob-
tained from the stress phase exhibits upward behavior until 50 °C and
then decreases at higher temperatures. This indicates an initial charge-
trapping that is diminished by a natural thermal-activated de-trapping
process [5].

Furthermore, as depicted in Fig. 3, 1o exhibits a maximum value
around 50 °C and a decreasing behavior for elevated temperatures such
as 100 °C and 150 °C.

Finally, y (Fig. 3), which describes the distribution of traps, slightly
increases with temperature and is ascribed to faster charge de-trapping
during the measurement delay between the stress and sense.

It is important to mention that according to Zafar's model B is
constant for all AVy, vs. tyress curves. Since it depends on the gate stack
structure and materials, different values have been reported in the lit-
erature [10].

Summarizing the stress results (AV,ax, To and y), one can say that
the investigated SiC Power MOSFET shows maximum degradation at
20 °C and 50 °C as indicated in Table 1. Meanwhile, the minimum
degradation is obtained at high temperatures (100 °C and 150 °C) at low
Vitress due to the fast natural de-trapping process. These results agree
with previous work in SiC devices as illustrated in Fig. 4.

3.2. Recovery phase

The partial recovery once the stress is removed to perform the
characterizing I;,-Vgg curve cannot be neglected because it results in an
underestimation of the PBTI degradation even at ultra-fast measure-
ment techniques. Therefore, the universal relaxation model that is
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Fig. 3. Evolution of Zafar's parameters (markers): (a) AVmax, (b) To and (c¢) Y under different stress voltages and temperatures. Lines are for eye guidance.
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covery values fitted with the universal relaxation function.

r({) = R('E.i.tressy lErl*J'r:L.w:)
r(EM) R(t.\l‘m.n'y rM) (4)
where & = treiax/totress A0d Ev = tw/toress. Several empirical expressions

have already been proposed to fit the measured relaxation data [7], but
in this work, the generalized form given by

1

r@) =13 T ©)

is used since it covers a larger range of measurement data and exhibits
an asymptotic limit for large and/or small &. By introducing the above
function into Eq. (4), the scaling B and the dispersion parameter can be
easily obtained. Once the relaxation data is fitted, it is possible to get a
rough estimation of the recoverable component R(tsyress, trelax = 0) ata
relaxation time to., = 0.

The BTI relaxation property of scaling with the universal relaxation
time, &, allows fitting the complete AV, recovery with a single set of
parameters B and B by using the expression:
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AV = Rltaress: tretax = 0)F (§) + P (Lress) (6)

where P(t,,..) is the permanent component. Since the I;,-Vgg curve
always comes back to the original reference state after the stress phase
under different stress conditions (not shown for the sake of brevity), we
assumed P(tgess) = 0 for the analyzed stress voltages and tempera-
tures. It is worth mentioning that this assumption also coincides with
the model of the stress phase where there is no generation of new traps.

Fig. 5 depicts that the recovery values are well described by the
universal relaxation model under different stress temperatures and can
be explained by the electron de-trapping from the defect sites located at
the interface and in the gate oxide.

As illustrated in Fig. 6, the scaling parameter B does not follow a
clear trend with the temperature, while the dispersion parameter fol-
lows the Arrhenius law with relatively low activation energy
E., = 13.45 meV. The latter temperature dependence agrees with the
predictions of dispersive hydrogen transport models [11,12]. The AV},
evolution during the recovery phase at different temperatures is well
adjusted by using the Eq. (6) as shown in Fig. 7. As previously men-
tioned (stress phase results), the temperature acts as an accelerating
factor of the de-trapping process. Therefore, the first measured value
during the recovery (FMVR) for the same Vgiess and toress decreases
with temperature and also exhibits an Arrhenius behavior as observed
in the example of Fig. 8.

4. Conclusions

This study evaluated PBTI in market packaged SiC MOSFETs. The
presented measurement methodology allows separately analyzing and
understanding the trapping (stress) and de-trapping (recovery) pro-
cesses. Since the recovery data are obtained with no measurement in-
terruption during the stress, a closer value to the true threshold voltage
degradation is acquired. The observed AVy, is mainly ascribed to elec-
tron trapping at the interface or border traps. The PBTI evolution shows
a saturation behavior for prolonged stress time (10* s) well described by
Zafar's model. The anomalous decrease with temperature is ascribed to
faster de-trapping at higher temperatures during the measurement
delay between stress and sense. During the recovery phase, high tem-
perature accelerates the charge de-trapping process and the Vy, dy-
namics is properly described by the empirical universal relaxation
function, where the dispersive parameter and the FMVR follow the
Arrhenius law. The acquired data during the stress and recovery phase

261 _

281 1
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~.3.0+ .\_\ E
=

-3.2¢ 1

-3.4r .

26 28 30 32 34 36 38 40
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Fig. 6. Temperature dependence of the scaling B (a) and dispersion parameter 3 (b).
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indicates no permanent damage. Therefore, the observed degradation
could be exclusively ascribed to pre-existing defects.
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