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METHODS FOR NEMATIC LIQUID CRYSTALS: THE ERICKSEN

MODEL∗
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Abstract. The Ericksen model for nematic liquid crystals couples a director field with a scalar
degree of orientation variable and allows the formation of various defects with finite energy. We
propose a simple but novel finite element approximation of the problem that can be implemented
easily within standard finite element packages. Our scheme is projection-free and thus circumvents
the use of weakly acute meshes, which are quite restrictive in three dimensions but are required
by recent algorithms for convergence. We prove stability and Γ-convergence properties of the new
method in the presence of defects. We also design an effective nested gradient flow algorithm for
computing minimizers that controls the violation of the unit-length constraint of the director. We
present several simulations in two and three dimensions that document the performance of the
proposed scheme and its ability to capture quite intriguing defects.
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minimization
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1. Introduction.

1.1. Liquid crystals with variable degree of orientation. Liquid crystals
(LCs) are a mesophase between crystalline solid and isotropic liquid. There are nu-
merous potential applications in engineering and science, in particular in materials
science [1, 5, 10]. Nematic LCs are made of rod-like molecules with no positional
order that tend to point in a preferred direction. LC materials are thus anisotropic.

We consider the one-constant Ericksen model for nematic LCs with variable de-
gree of orientation [17], which lies between the Oseen–Frank director model and the
Landau–de Gennes Q-tensor model [16, 29]. The state of the LC is described in terms
of a vector field n and a scalar function s, which satisfy the constraints |n| = 1 and
−1/(d − 1) < s < 1 for the space dimension d = 2, 3. The director n indicates the
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Fig. 1. Schematic illustration of n(x) and s(x), in microscopic scale near a fixed x ∈ Ω ⊂ Rd.
Note that s = 1 represents the state of perfect alignment in which all molecules in the local ensemble
are parallel to n. Likewise, s = −1/(d − 1) represents the state of perpendicular alignment. The
case s = 0 corresponds to a defect in the LC material, an isotropic distribution of molecules in the
local ensemble that do not lie along any preferred direction.

preferred orientations of the LC molecules, while s represents the degree of alignment
that the molecules have with respect to n, both in the sense of local probabilistic av-
erage. A schematic illustration of their meaning is given in Figure 1. The equilibrium
state is given by an admissible pair (s,n) that minimizes the Ericksen energy

E[s,n] =
1

2

�
Ω

(
κ|∇s|2 + s2|∇n|2

)
+

�
Ω

ψ(s),(1.1)

where κ > 0 is constant; the constraint on s is enforced by the double well potential
ψ. We refer to [4, 21] for early analysis of the Ericksen model.

If s can be approximated by a nonvanishing constant, then the energy (1.1) re-
duces to the Oseen–Frank energy E[n] ∝

�
Ω
|∇n|2, whose minimizers are harmonic

maps and have been extensively studied, e.g., in [27, 14]. However, the simpler Oseen–
Frank model has severe limitations in capturing defects: It only admits point de-
fects with finite energy for d = 3. In contrast, the Ericksen model (1.1) allows for
n /∈H1(Ω) and compensates blow-up of ∇n by letting s vanish, which is the mecha-
nism for the formation of a variety of line and plane defects; see, e.g., [21] for a proof
of the fact that the singular set of a minimizer of (1.1) can have positive Hausdorff
dimension. This physical process leads to a degenerate Euler–Lagrange equation for
n that poses serious difficulties in formulating mathematically sound algorithms to
approximate (1.1) and study their convergence.

1.2. Numerical analysis of the Ericksen model. Several numerical methods
for the Oseen–Frank model have been proposed [22, 3, 7, 9]. Finite element methods
(FEMs) for the Ericksen model are designed in [6, 23, 24, 30, 15]; see also the recent
review [12]. In contrast to [6], a fundamental structure of (1.1) is exploited in [23, 24]
to design and analyze FEMs that handle the inherent degeneracy of (1.1) without
regularization and enforce the constraint |n| = 1 robustly. Stability and convergence
properties via Γ-convergence are proved in [23, 24], pioneering results in this setting.
They hinge on a clever discrete energy that mimics the structure of (1.1) discretely
but, unfortunately, is cumbersome to implement in standard software packages and
requires weakly acute meshes. The latter ensures that the projection of discrete
director fields onto the unit sphere is energy decreasing, and thus compatible with the
quasi-gradient flow, but is quite restrictive and difficult to implement for d = 3 and
domains with nontrivial topology.

1.3. Contributions. In this work, we propose a projection-free FEM that avoids
dealing with weakly acute meshes. Without the projection step, the unit-length con-
straint |n| = 1 is no longer satisfied exactly but instead is relaxed at each step of our
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858 RICARDO H. NOCHETTO, MICHELE RUGGERI, AND SHUO YANG

iterative solver, a nested gradient flow. The latter guarantees control of the violation
of |n| = 1 and asymptotic enforcement of it. We summarize the chief novelties and
advantages of our approach as follows.

• Shape-regular meshes. Partitions of Ω are assumed to be only shape-regular,
which allows for the use of software with general mesh generators such as Netgen [26].
Avoiding weakly acute meshes is important in three dimensions (3D) to deal with
interesting but nontrivial geometries as documented in section 5. An earlier work
achieving this goal is [30], which presents a mass-lumped FEM with a consistent
stabilization term involving s2∇n⊤n for the generalized Ericksen energy.

• Standard algorithm. Our novel discretization of (1.1) is straightforward, requires
no stabilization, and is easy to implement in standard software packages such as
NGSolve [26]. In contrast to [23, 24], our FEM no longer exploits the structure
of (1.1), but its analysis does.

• Γ-convergence. The analysis of our FEM hinges heavily on the underlying
structure of (1.1), which is fully discussed in section 2 and relies on the notion of
L2-gradient on n [18, Theorem 6.2]; see Proposition 2.1 below. Such a notion was
already used in [11] in the context of the uniaxial Q-tensor LC model. We prove
stability and Γ-convergence. Our results are similar to those in [23, 24, 30], but the
use of the discrete structure is new.

• Linear solver. We propose a nested gradient flow that, despite the nonlinear na-
ture of the problem, is fully linear to compute minimizers. The inner loop to advance
the director n for fixed degree of orientation s is allowed to subiterate. This turns
out to induce an acceleration mechanism for the computation and motion of defects.
For a recent acceleration technique based on a domain decomposition approach, we
refer to [15]. Our nested gradient flow iterations fall within the Γ-convergence frame-
work provided a CFL-type condition is imposed on the discretization parameters (see
Proposition 4.3). However, well-posedness and stability of the algorithm are guaran-
teed without any such CFL restriction.

• Numerical experiments. We present several simulations in section 5. Some aim
to compare the new algorithm with the existing literature in terms of performance
and ability to capture defects. Other experiments explore three-dimensional intriguing
configurations such as the propeller defect and challenging variations of the Saturn
ring defect.

• Boundary conditions. Since we do not impose the unit-length constraint |n| = 1,
the treatment of boundary data could be simplified and their properties weakened.
This potentially affects the regularization procedure for the lim-sup property and the
possible presence of defects at the boundary of Ω. We do not explore these issues in
this paper but rather in future extension to the Q-tensor model.

1.4. Outline. The remainder of this work is organized as follows. In the next
subsection, we collect some general notation used throughout the paper. In section 2,
we describe the Ericksen model for LCs with variable degree of orientation and discuss
its key structure. In section 3, we introduce our discretization of the model and
state our Γ-convergence result. In section 4, we present our iterative scheme for the
computation of discrete local minimizers. In section 5, we show numerical experiments
illustrating effectiveness and efficiency of our method, as well as its flexibility to deal
with complex defects in 3D. We postpone the proofs of most results to section 6.

1.5. General notation. We denote by N = {1, 2, . . . } the set of natural num-
bers and set N0 := N ∪ {0}. For d = 2, 3, we denote the unit sphere in Rd by
Sd−1 = {x ∈ Rd : |x| = 1}. We denote by Br(x) the ball of radius r > 0 centered at
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x ∈ Rd. For (spaces of) vector- or matrix-valued functions, we use bold letters, e.g.,
for a generic domain Ω ⊂ Rd, we denote both L2(Ω;Rd) and L2(Ω;Rd×d) by L2(Ω).
We denote by ⟨·, ·⟩ both the scalar product of L2(Ω) and the duality pairing between
H1(Ω) and its dual, with the ambiguity being resolved by the arguments. We use
the notation ≲ to denote smaller than or equal to up to a multiplicative constant, i.e.,
we write A ≲ B if there exists a constant c > 0, which is clear from the context and
always independent of the discretization parameters, such that A ≤ cB.

2. Problem formulation. Let Ω ⊂ Rd (d = 2, 3) be a bounded Lipschitz do-
main. In the Ericksen model, the state of the LC is described in terms of a unit-length
vector field n : Ω → Sd−1 and a scalar function s : Ω → (−1/(d− 1), 1). Equilibrium
configurations are minimizers of the energy E[s,n] = E1[s,n] +E2[s] in (1.1), where

E1[s,n] :=
1

2

�
Ω

(
κ|∇s|2 + s2|∇n|2

)
, E2[s] :=

�
Ω

ψ(s).(2.1)

The double well potential ψ : (−1/(d − 1), 1) → R≥0 satisfies the following proper-
ties [17]:

• ψ ∈ C2(−1/(d− 1), 1),
• lims→1− ψ(s) = +∞ = lims→−1/(d−1)+ ψ(s),
• ψ(0) > ψ(s∗) = mins∈(−1/(d−1),1) ψ(s) = 0 for some s∗ ∈ (0, 1),
• ψ′(0) = 0.

In (2.1), E1[s,n] is the one-constant approximation of the elastic energy proposed
in [17], while E2[s] is a potential energy which confines the variable s within the
physically admissible interval (−1/(d − 1), 1). The presence of the weight s2 in the
second term of E1[s,n] allows for blow-up of ∇n, namely n /∈H1(Ω), in the singular
set Σ, where defects may occur:

Σ := {x ∈ Ω : s(x) = 0}.(2.2)

To complete the setting, we define the set of admissible functions where we seek
minimizers of (2.1). Note that, allowing for a director n /∈H1(Ω), one encounters at
least two difficulties: On the one hand, it is not clear how to interpret the gradient of
n appearing in E1[s,n]. On the other hand, the trace of n on the boundary of Ω is
not well defined, so that one cannot impose Dirichlet conditions on n in the standard
way. To cope with these problems, following [4, 21], we introduce the auxiliary variable
u = sn. Then, the product rule formally yields that

∇u = n⊗∇s+ s∇n.(2.3)

Since |n| = 1, the identities ∇n⊤n = 0 and |n⊗∇s| = |∇s| are valid. It follows that
the above decomposition of ∇u is orthogonal, i.e.,

|∇u|2 = |n⊗∇s|2 + s2|∇n|2 = |∇s|2 + s2|∇n|2.(2.4)

In particular, E1[s,n] can be rewritten in terms of s and u = sn as

E1[s,n] = Ẽ1[s,u] =
1

2

�
Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
.(2.5)

In the latter, the degree of orientation and the auxiliary field are decoupled. In
particular, this reveals that, for (s,n) such that E1[s,n] <∞, u = sn ∈H1(Ω) even
though n /∈H1(Ω).
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860 RICARDO H. NOCHETTO, MICHELE RUGGERI, AND SHUO YANG

We say that a triple (s,n,u) satisfies the structural condition if

− 1

d− 1
< s < 1, |n| = 1, and u = sn a.e. in Ω.(2.6)

In view of the above discussion, we are led to consider the following admissible class:

A :=
{
(s,n,u) ∈ H1(Ω)×L∞(Ω)×H1(Ω) : (s,n,u) satisfies (2.6)

}
.(2.7)

For triples (s,n,u) ∈ A, it is possible to characterize the gradient of n occurring in
E1[s,n] using a weaker notion of differentiability. To this end, we recall the following
definition [18, Theorem 6.2]: We say that n is L2-differentiable at x ∈ Ω, and we
denote its L2-gradient at x by ∇n(x), if

 
Br(x)

|n(y)− n(x)−∇n(x)(y − x)|2 dy = o(r2) as r → 0.

It is well known that the notion of L2-differentiability is weaker than the existence of
an L2-integrable weak gradient, in the sense that everyH1-function is L2-differentiable
almost everywhere and its L2-gradient coincides with the weak gradient; see, e.g., [18,
Theorem 6.2].

In the following proposition, we establish that if (s,n,u) ∈ A, then n is L2-
differentiable and the decomposition (2.4) holds almost everywhere outside of the
singular set Σ in (2.2). Its proof will be presented in subsection 6.1.

Proposition 2.1 (orthogonal decomposition). Let (s,n,u) ∈ A. Then, n is
L2-differentiable a.e. in Ω \ Σ. In particular, its L2-gradient is given by

∇n = s−1(∇u− n⊗∇s) a.e. in Ω \ Σ.(2.8)

Moreover, the following identity holds:

|∇u|2 = |∇s|2 + s2|∇n|2 a.e. in Ω \ Σ.(2.9)

This allows us to give a precise meaning to E1[s,n] in (2.1). Depending on the
context, we interpret ∇n in the sense of L2-gradient in Ω \ Σ and

�
Σ
s2|∇n|2 = 0,

or we alternatively replace Ω by Ω \ Σ as domain of integration or even use the

representation Ẽ1[s,u] of (2.5).
Turning to boundary conditions, let ΓD ⊆ ∂Ω be a relatively open subset of the

boundary such that |ΓD| > 0, where we aim to impose Dirichlet boundary conditions.
These, in the context of LCs, are usually referred to as strong anchoring conditions.
To this end, given a triple (g, q, r) ∈W 1,∞(Rd)×L∞(Rd)×W 1,∞(Rd) satisfying the
structural condition (2.6), we consider the following restricted admissible class that
incorporates boundary conditions:

A(g, r) :=
{
(s,n,u) ∈ A : s|ΓD

= g|ΓD
and u|ΓD

= r|ΓD

}
.(2.10)

Overall, we are interested in the following constrained minimization problem: Find
(s∗,n∗,u∗) ∈ A(g, r) such that

(s∗,n∗,u∗) = argmin
(s,n,u)∈A(g,r)

E[s,n].(2.11)

To conclude this section, let δ0 > 0 be sufficiently small. Some of our results
below will require the following technical assumptions on the Dirichlet data, namely
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− 1

d− 1
+ δ0 ≤ g(x) ≤ 1− δ0 for all x ∈ Rd,(2.12)

g ≥ δ0 on ΓD,(2.13)

and on the double well potential, namely

ψ(s) ≥ ψ(1− δ0) for all s ≥ 1− δ0,

ψ(s) ≥ ψ

(
− 1

d− 1
+ δ0

)
for all s ≤ − 1

d− 1
+ δ0,

(2.14)

and ψ is monotone in (−1/(d−1),−1/(d−1)+δ0) and in (1−δ0, 1). Note that (2.13)
implies that q = g−1r is W 1,∞ on ΓD so that imposing the Dirichlet condition
n|ΓD

= q|ΓD
on the physical variable n is equivalent to imposing u|ΓD

= r|ΓD
on

the auxiliary variable u. Finally, the property (2.14) is consistent with the fact that
ψ(s) → +∞ as s→ −1/(d− 1) and s→ 1.

3. Γ-convergent finite element discretization. We assume Ω to be a poly-
topal domain and consider a shape-regular family {Th} of simplicial meshes of Ω (in the
sense of, e.g., [8, Definitions 3.3–3.4]) parametrized by the mesh size h = maxK∈Th

hK ,
where hK = diam(K). We stress that we do not require any mesh to be weakly acute
(we refer to [8, Remark 3.12] for a discussion of this assumption for d = 2, 3). We
denote by Nh the set of vertices of Th. For any K ∈ Th, we denote by P1(K) the
space of first-order polynomials on K. We consider the space of Th-piecewise affine
and globally continuous functions

Vh :=
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ Th

}
.

Let Vh := (Vh)
d be the corresponding space of vector-valued polynomials. We denote

by Ih both the nodal interpolant Ih : C0(Ω) → Vh and its vector-valued counterpart
Ih : C0(Ω) → Vh.

For sh ∈ Vh and nh ∈ Vh, let the discrete energy be Eh[sh,nh] = Eh
1 [sh,nh] +

Eh
2 [sh] with

Eh
1 [sh,nh] :=

1

2

�
Ω

(
κ|nh ⊗∇sh|2 + s2h|∇nh|2

)
, Eh

2 [sh] :=

�
Ω

ψ(sh).(3.1)

Note that Eh is consistent, in the sense that Eh[s,n] = E[s,n] if (s,n,u) ∈ A(g, r).
We say that a triple (sh,nh,uh) ∈ Vh ×Vh ×Vh satisfies the discrete structural

condition if

− 1

d− 1
< sh(z) < 1, |nh(z)| ≥ 1, and uh(z) = sh(z)nh(z) for all z ∈ Nh.

(3.2)

In (3.2), the requirements prescribed by the continuous structural condition (2.6) are
imposed only at the vertices of the mesh, which is practical. Moreover, the unit-length
constraint for the director is relaxed, since nh may attain also values outside of the
unit sphere.

Let ε > 0, gh = Ih[g], and rh = Ih[r]. We consider the following discrete
minimization problem: Find (s∗h,n

∗
h,u

∗
h) ∈ Ah,ε(gh, rh) such that

(s∗h,n
∗
h,u

∗
h) = argmin

(sh,nh,uh)∈Ah,ε(gh,rh)

Eh[sh,nh],(3.3)
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where the discrete restricted admissible class is defined as

(3.4) Ah,ε(gh, rh) :=
{
(sh,nh,uh) ∈ Vh ×Vh ×Vh :

(sh,nh,uh) satisfies (3.2), ∥Ih
[
|nh|2

]
− 1∥L1(Ω) ≤ ε,

sh(z) = gh(z), and uh(z) = rh(z) for all z ∈ Nh ∩ ΓD

}
.

In the following theorem, we show that the discrete energy (3.1) converges toward
the continuous one (2.1) in the sense of Γ-convergence.

Theorem 3.1 (Γ-convergence). Suppose that ε → 0 as h → 0. Then, the
following two properties are satisfied:
(i) Lim-sup inequality (consistency): Let ΓD = ∂Ω. Let the assumptions (2.12)–(2.14)
hold. If (s,n,u) ∈ A(g, r), then there exists a sequence {(sh,nh,uh)} ⊂ Ah,ε(gh, rh)
such that ∥nh∥L∞(Ω) = 1, sh → s in H1(Ω), nh → n in L2(Ω \ Σ), uh → u in

H1(Ω), as h→ 0, and

E[s,n] ≥ lim sup
h→0

Eh[sh,nh].(3.5)

(ii) Lim-inf inequality (stability): Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be a sequence such
that Eh[sh,nh] ≤ C and ∥nh∥L∞(Ω) ≤ C, where C ≥ 1 is a constant independent
of h. Then, there exist (s,n,u) ∈ A(g, r) and a subsequence of {(sh,nh,uh)} (not
relabeled) such that sh ⇀ s in H1(Ω), nh → n in L2(Ω \ Σ), uh ⇀ u in H1(Ω) as
h→ 0, and

E[s,n] ≤ lim inf
h→0

Eh[sh,nh].(3.6)

The proof of Theorem 3.1 is deferred to subsections 6.2 and 6.3. The assump-
tion ΓD = ∂Ω in part (i) is needed to apply a regularization result from [23] (see
Lemma 6.2 below). The properties established in Theorem 3.1 are slight variations
of the properties required by the standard definition of Γ-convergence; see, e.g., [13,
Definition 1.5]. However, they still allow us to prove the convergence of discrete global
minimizers.

Corollary 3.2 (convergence of discrete global minimizers). Let ΓD = ∂Ω and
suppose that the assumptions (2.12)–(2.14) hold. Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be
a sequence of global minimizers of the discrete energy (3.1) such that ∥nh∥L∞(Ω) ≤ C,
where C ≥ 1 is a constant independent of h. Then, every cluster point (s,n,u) belongs
to A(g, r) and is a global minimizer of the continuous energy (2.1).

4. Computation of discrete local minimizers. In this section, we propose
an effective algorithm to compute discrete local minimizers of (3.1). The method is
based on a discretization of the (nonphysical) energy-decreasing dynamics driven by
the system of gradient flows

∂tn+ δnE
h[s,n] = 0,

∂ts+ δsE
h[s,n] = 0,

where δnE
h[s,n] and δsE

h[s,n] denote the Gâteaux derivatives of the energy with
respect to the order parameters, i.e.,〈

δnE
h[s,n],ϕ

〉
=
〈
δnE

h
1 [s,n],ϕ

〉
= κ⟨n⊗∇s,ϕ⊗∇s⟩ + ⟨s∇n, s∇ϕ⟩,〈

δsE
h[s,n], w

〉
=
〈
δsE

h
1 [s,n], w

〉
+
〈
δsE

h
2 [s,n], w

〉
= κ⟨n⊗∇s,n⊗∇w⟩ + ⟨s∇n, w∇n⟩ + ⟨ψ′(s), w⟩.
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Let us introduce the ingredients of the scheme. First, let

Vh,D := {vh ∈ Vh : vh(z) = 0 for all z ∈ Nh ∩ ΓD} and Vh,D := (Vh,D)d

be the spaces of discrete functions satisfying homogeneous Dirichlet conditions on ΓD.
Given nh ∈ Vh, we consider the subspace of Vh,D consisting of all discrete functions
with nodal values orthogonal to those of nh at all vertices:

Kh[nh] := {ϕh ∈ Vh,D : nh(z) · ϕh(z) = 0 for all z ∈ Nh} .
The space Kh[nh] can be interpreted as a discretization of the space of tangential vari-
ations K[n] :=

{
ϕ ∈H1(Ω) : n · ϕ = 0 a.e. in Ω

}
, which naturally occurs in the vari-

ational formulation of problems with a unit-length constraint; see, e.g., [8, Lemma 7.1]
for the harmonic map equation.

For the treatment of the double well potential, we follow a convex splitting ap-
proach (see, e.g., [31]): We assume the splitting ψ = ψc − ψe, where ψc and ψe are
both convex and ψc is quadratic.

The time discretization of the gradient flow for the director and the degree of
orientation are based on the constant time-step sizes τn > 0 and τs > 0, respectively.
Moreover, we consider the difference quotient dts

i+1
h := (si+1

h − sih)/τs.
In the following algorithm, we state the proposed numerical scheme for the com-

putation of discrete local minimizers of (3.1). We assume that (2.13) is satisfied so
that imposing Dirichlet boundary conditions directly for the director is allowed. Let
tol > 0 denote a tolerance.

Algorithm 4.1 Alternating direction discrete gradient flow

Input: s0h ∈ Vh, n
0
h ∈ Vh such that |n0

h(z)| = 1 for all z ∈ Nh, n
0
h(z) = rh(z)/gh(z)

and s0h(z) = gh(z) for all z ∈ Nh ∩ ΓD.
Outer loop: For all i ∈ N0, iterate (i)–(ii):

(i) Inner loop: Given (ni
h, s

i
h), let n

i,0
h = ni

h. For all ℓ ∈ N0, iterate (i-a)–(i-b):

(i-a) Compute ti,ℓh ∈ Kh

[
ni,ℓ

h

]
such that

⟨ti,ℓh ,ϕh⟩∗ + τn κ⟨ti,ℓh ⊗∇sih,ϕh ⊗∇sih⟩ + τn⟨sih∇t
i,ℓ
h , sih∇ϕh⟩

= −κ⟨ni,ℓ
h ⊗∇sih,ϕh ⊗∇sih⟩ − ⟨sih∇n

i,ℓ
h , sih∇ϕh⟩

(4.1)

for all ϕh ∈ Kh

[
ni,ℓ

h

]
;

(i-b) Update ni,ℓ+1
h := ni,ℓ

h + τn t
i,ℓ
h ;

until ∣∣Eh
1 [s

i
h,n

i,ℓ+1
h ]− Eh

1 [s
i
h,n

i,ℓ
h ]
∣∣ < tol.(4.2)

If ℓi ∈ N0 denotes the smallest integer for which the stopping criterion (4.2)

is satisfied, define ni+1
h := ni,ℓi+1

h .
(ii) Compute si+1

h ∈ Vh such that si+1
h (z) = gh(z) for all z ∈ Nh ∩ ΓD and

⟨dtsi+1
h , wh⟩ + κ⟨ni+1

h ⊗∇si+1
h ,ni+1

h ⊗∇wh⟩
+ ⟨si+1

h ∇ni+1
h , wh∇ni+1

h ⟩ + ⟨ψ′
c(s

i+1
h ), wh⟩ = ⟨ψ′

e(s
i
h), wh⟩

(4.3)

for all wh ∈ Vh,D.
Output: Sequence of approximations

{
(sih,n

i
h)
}
i∈N0
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In Algorithm 4.1, ⟨·, ·⟩∗ denotes the scalar product of the metric used in the
discrete gradient flow (4.1) for the director. In this work, we consider the following
two choices for ⟨·, ·⟩∗, dictated by numerical convenience:

⟨ϕ,ψ⟩∗ = ⟨ϕ,ψ⟩ (L2-metric),(4.4)

⟨ϕ,ψ⟩∗ = ⟨hα∇ϕ,∇ψ⟩ with 0 < α ≤ 2 (weighted H1-metric).(4.5)

In (4.5), the H1-metric is weakened by a positive power of the mesh size h. Note that
the choice α = 0 corresponds to a full H1-gradient flow, which is not appropriate since
the director does not belong to H1(Ω) in general (e.g., in the presence of defects).
On the other hand, if α = 2, a standard scaling argument shows that the resulting
metric is equivalent to the L2-metric in (4.4).

In the convex splitting of ψ, we adopt a semi-implicit approach: The convex and
quadratic part ψc is treated implicitly, while the concave one ψe is treated explic-
itly. This leads to a linear and positive definite contribution to the left-hand side
of (4.3). Moreover, the resulting discretization is unconditionally stable (see, e.g.,
[23, Lemma 4.1]). Altogether, both (4.1) and (4.3) are linear symmetric positive def-

inite systems in the unknowns ti,ℓh and si+1
h . The orthogonality constraint in (4.1)

can be imposed at the linear algebraic level by introducing a Lagrange multiplier
associated with it (see, e.g., the discussion in [8, section 7.2.5]) or via a null-space
method as done, e.g., in [25, 23, 20]. In this work, we implement it using a Lagrange
multiplier.

Although in most of our numerical experiments we will set τn = τs, we observed
that in some situations the flexibility of choosing different time-step sizes in (4.1)
and (4.3) is decisive in order to move defects in numerical simulations (see, e.g., the
experiment in subsection 5.3 below).

In the following proposition, we prove well-posedness and an energy-decreasing
property of Algorithm 4.1.

Proposition 4.1 (properties of Algorithm 4.1). Algorithm 4.1 is well-posed and
energy decreasing. Specifically, for all i ∈ N0, the following assertions hold:
(i) For all ℓ ∈ N0, (4.1) admits a unique solution ti,ℓh ∈ Kh

[
ni,ℓ

h

]
.

(ii) The inner loop terminates in a finite number of iterations, i.e., there exists ℓ ∈ N0

such that the stopping criterion (4.2) is met.
(iii) (4.3) admits a unique solution si+1

h ∈ Vh such that si+1
h (z) = gh(z) for all z ∈

Nh ∩ ΓD.
(iv) There holds

Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h] ≤ −

(
τs∥dtsi+1

h ∥2L2(Ω) + τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗

)

−

(
τ2s E

h
1 [dts

i+1
h ,ni+1

h ] + τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ]

)
.

(4.6)

In particular, there holds Eh[si+1
h ,ni+1

h ] ≤ Eh[sih,n
i
h] and equality holds if and only

if (si+1
h ,ni+1

h ) = (sih,n
i
h) (equilibrium state).

Remark 4.2 (energy decrease). The right-hand side of (4.6) characterizes the en-
ergy decrease guaranteed by each step of Algorithm 4.1 and comprises two contribu-
tions: The term
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−

(
τs∥dtsi+1

h ∥2L2(Ω) + τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗

)

is the energy decrease due to the gradient-flow nature of Algorithm 4.1. The term

−

(
τ2s E

h
1 [dts

i+1
h ,ni+1

h ] + τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ]

)

is the numerical dissipation due to the backward Euler methods used for the time
discretization.

In practical implementations of Algorithm 4.1, the outer loop is terminated when∣∣Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h]
∣∣ < tol.(4.7)

Since the algorithm fulfills a monotone energy-decreasing property, the stopping cri-
terion is met in a finite number of iterations.

The approximations ni+1
h of the director generated by Algorithm 4.1 do not sat-

isfy the unit-length constraint at the vertices of the mesh, as in [23, 24]. However,
the following proposition, proved in subsection 6.4, shows that violation of this con-
straint can be controlled by the time-step size τn, independently of the number of
iterations. Moreover, the uniform boundedness in L∞(Ω) of the sequence required by
the Γ-convergence result (cf. Theorem 3.1(ii)) can be guaranteed if the discretization
parameters satisfy a suitable CFL-type condition. However, we stress that such a
condition is not necessary for the well-posedness and the stability of the algorithm.

Proposition 4.3 (properties of discrete director field). Let j ≥ 1. The following
holds.
(i) Suppose that the norm induced by the metric ⟨·, ·⟩∗ used in (4.1) is an upper bound
for the L2-norm, i.e., there exists C∗ > 0 such that

∥ϕh∥L2(Ω) ≤ C∗∥ϕh∥∗ for all ϕh ∈ Vh,D.(4.8)

Then, the approximations generated by Algorithm 4.1 satisfy

∥Ih
[
|nj

h|
2 − 1

]
∥L1(Ω) ≤ C1τnE

h[s0h,n
0
h],(4.9)

where C1 > 0 depends only on C∗ and the shape-regularity of {Th}.
(ii) Suppose τn fulfills the following CFL-type condition:

τnh
−d
min ≤ C∗ if ⟨·, ·⟩∗ is chosen as (4.4),

τnh
2−d−α
min | log hmin|2 ≤ C∗ if ⟨·, ·⟩∗ is chosen as (4.5),

(4.10)

where hmin := minK∈Th
hK and C∗ > 0 is arbitrary. Then, the approximations

generated by Algorithm 4.1 satisfy

∥nj
h∥L∞(Ω) ≤ 1 + C2E

h[s0h,n
0
h],(4.11)

where C2 > 0 is proportional to C∗ > 0 in (4.10) with proportionality constant de-
pending on the shape-regularity of {Th}.

To conclude this section, we discuss the design of Algorithm 4.1 with special em-
phasis on its nested structure and distinct roles of τn and τs. Obviously, τn controls
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the violation of the unit-length constraint according to (4.9), but the roles of subiter-
ations in (4.1) and τs in (4.3) are more subtle and deserve further elaboration. The
presence of defects is associated with values sih(xj) close to zero at nodes xj , which

in turn act as weights in (4.1) for the tangential updates ti,ℓh of the director field

ni,ℓ
h . The fast decrease to zero of sih(xj), relative to the growth of ∇ni

h in its vicin-
ity, impedes further changes of ni

h(xj) because they are not energetically favorable:
The defect is thus pinned at the same location xj for many iterations. Experiments
with Algorithm 4.1 reveal defect pinning if τn = τs and one step of (4.1) per step

of (4.3) is utilized. The subiterations within the inner loop (4.1) allow ni,ℓ
h to ad-

just to the current value of sih. This mimics an approximate optimization step but
with unit length and max norm control dictated by Proposition 4.3. In contrast, full
optimization has been proposed in [23, 24, 30] instead of (4.1), followed by nodal
projection onto the unit sphere, whereas one step of a weighted gradient flow (4.1)
has been advocated in [11] for the Q-tensor model. On the other hand, since τs pe-
nalizes changes of sih, smaller values of τs relative to τn delay changes of sih in favor
of changes of ni

h. This does not fix the stiff character of (4.1), studied in [15], but
does remove defect pinning. Several numerical experiments in section 5 document this
finding.

5. Numerical experiments. In this section, we present a series of numerical
experiments that explore the accuracy of Algorithm 4.1 and its ability to approximate
rather complex defects of nematic LCs in 2D and 3D. In both cases, these results
complement the theory of sections 3 and 4 and extend it.

We have implemented Algorithm 4.1 within the high performance multiphysics
finite element software Netgen/NGSolve [26]. To solve the constrained variational
problem (4.1), we adopt a saddle point approach. The ensuing linear systems are
solved using the built-in conjugate gradient solver of Netgen/NGSolve, while the
visualization relies on ParaView [2].

All pictures below obey the following rules. The vector field depicts the director
n, whereas the color scale refers to the degree of orientation s. Blue regions indicate
areas with values of s close to zero, which signify the occurrence of defects, while
the red ones indicate regions with largest values of s (s ≈ 0.75 in our simulations),
where the director encodes the local orientation of the LC molecules. We generate
unstructured, generally non–weakly acute, meshes within Netgen with desirable mesh
size h0 but the effective maximum size h of tetrahedra in 3D may only satisfy h ≈ h0.
For the sake of reproducibility, we will specify h0 when dealing with unstructured
three-dimensional meshes.

We stress that, unlike FEMs proposed in previous works [24, 23], the energy-
decreasing property of Algorithm 4.1 (cf. Proposition 4.1) does not rely on meshes
being weakly acute. Except for simple three-dimensional geometries, such meshes
are hard, to impossible, to construct. This is the case of the cylinder domain in
subsection 5.3 and the Saturn ring configurations in subsection 5.5, for which mesh
flexibility is of fundamental importance to capture topologically complicated defects.

Throughout this section, we consider the double well potential ψ(s) = cdw(ψc(s)−
ψe(s)) with

ψc(s) := 63s2, ψe(s) := −16s4 +
64

3
s3 + 57s2 − 0.5625,(5.1)

where cdw ≥ 0. Note that, for cdw > 0, ψ has a local minimum at s = 0 and a
global minimum at s = ŝ := 0.750025 such that ψ(ŝ) = 0. Moreover, in view of
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Proposition 4.3, we measure the violation of the unit-length constraint in terms of the
quantity

errn := ∥Ih
[
|nN

h |2 − 1
]
∥L1(Ω),(5.2)

where nN
h denotes the final approximation of the director generated by Algorithm 4.1.

Furthermore, unless otherwise specified, we choose the L2-metric (4.4) in (4.1), and
we set the tolerance tol = 10−6 in both (4.2) and (4.7).

5.1. Point defect in 2D. In striking contrast with the Oseen–Frank model, the
Ericksen model allows point defects to have finite energy in 2D: The blow-up of |∇n|
near a defect is compensated by infinitesimal values of s for the energy E[s,n] in (1.1)
to stay bounded. We examine this basic mechanism with simulations of a point defect
in 2D and study the influence of the discretization parameters on the performance of
Algorithm 4.1.

We consider the unit square Ω = (0, 1)2 and set κ = 2 in (1.1) as well as cdw =
0.1(0.3)−2 in (5.1). We impose Dirichlet boundary conditions for s and n on ∂Ω,
namely

g = ŝ and q = r/g =
(x− 0.5, y − 0.5)

|(x− 0.5, y − 0.5)|
on ∂Ω.(5.3)

To initialize Algorithm 4.1, we consider a constant degree of orientation s0h = ŝ
in Ω and a director n0

h exhibiting an off-center point defect located at (0.24, 0.24).
Due to the imposed boundary conditions and for symmetry reasons, we expect that
an energy-decreasing dynamics moves the defect to the center of the square; see
Figure 2.

In our first experiment, we consider a uniform mesh Th of the unit square con-
sisting of 2048 right triangles. The resulting mesh size is h =

√
2 2−5. Moreover, we

set τn = τs = 0.1 and compare the results obtained for different choices of the metric
⟨·, ·⟩∗ in (4.1); cf. (4.4)–(4.5). Table 5.1 displays the outputs for each run. On the
one hand, we observe that using the L2-metric leads to the fastest dynamics in terms
of both number of iterations and CPU time. On the other hand, the violation of the
unit-length constraint is smaller for the weighted H1-metrics. For smaller values of α
in the weighted H1-metric, Algorithm 4.1 terminates with a configuration exhibiting
defect pinning at an off-center location. The expected equilibrium state, depicted in
Figure 2 (right), can be restored when reducing the time-step size τs.

Fig. 2. Point defect experiment of subsection 5.1: Plot of the approximation (s1h,n
1
h) after the

first iteration (left) and of the final approximation (sNh ,nN
h ) (right). The gradient flow algorithm

moves the defect to the center of the domain.
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Table 5.1
Point defect experiment of subsection 5.1: Final outputs of Algorithm 4.1 for different choices

of metric ⟨·, ·⟩∗, namely total number of iterations N , value of the energy Eh[sNh ,nN
h ] for the equi-

librium state, smallest value of the final sNh , error in the unit-length constraint in (5.2), and the
CPU time.

Metric N Eh[sNh ,nN
h ] min(sNh ) errn CPU time

L2 60 2.984 0.0757 0.0404 64.83

weighted H1, α = 2.0 67 2.944 0.0750 0.0370 98.65

weighted H1, α = 1.9 65 2.938 0.0754 0.0362 111.69

weighted H1, α = 1.8 67 2.932 0.0755 0.0353 130.17

weighted H1, α = 1.7 80 2.926 0.0760 0.0342 154.92

Table 5.2
Point defect experiment of subsection 5.1: final outputs of Algorithm 4.1 for different uniform

meshes with mesh size h and time steps τn = Ch2 (top) and different time-step sizes τn with fixed
mesh size h =

√
2 2−5 (bottom).

h N Eh[sNh ,nN
h ] min(sNh ) errn CPU time

√
2 2−5 60 2.984 0.0757 0.0404 64.83

√
2 2−6 61 2.940 0.0422 0.0232 592.23

√
2 2−7 133 2.939 0.0289 0.0100 7919.25

τn errn

(0.1)2−5 0.00610

(0.1)2−6 0.00346

(0.1)2−7 0.001927

In our second experiment, we investigate the effect of mesh refinement and changes
of the time-step size on the results. To this end, we first repeat the simulation using
three uniform meshes with h =

√
2 2−5−ℓ (ℓ = 0, 1, 2); we set τn = 0.1 2−2ℓ, in

agreement with the CFL condition in (4.10) for the L2-metric and d = 2. We collect
the results of computations in Table 5.2 (top) and observe that both min(sNh ) and
errn decrease about linearly with h, whereas the energy Eh[sNh ,n

N
h ] slightly decreases.

The linear decay of errn with respect to τn established in (4.9) is not observed. This
can be explained by the increase of Eh[s0h,n

0
h] upon refinement, attributable to the

fact that n0
h has a point defect while s0h is constant and does not compensate the

blow-up of ∇n0.
In our third experiment, we aim to empirically confirm the first-order convergence

of the error errn in (5.2) with respect to τn established in Proposition 4.3; see (4.9).
To this end, we consider a fixed mesh with h =

√
2 2−5, and we set τn = (0.1)2−5−ℓ

(ℓ = 0, 1, 2) as well as tol = 10−5τn in both (4.2) and (4.7). The computational results,
collected in Table 5.2 (bottom), confirm the expected linear decay of the error.

5.2. Plane defect in 3D. We simulate a plane defect in the unit cube Ω =
(0, 1)3 located at {z = 0.5}, according to [29, section 6.4]. We set κ = 0.2 in (1.1) and
cdw = 0 in (5.1). We impose Dirichlet boundary conditions on the top and bottom
faces ΓD of the cube

g = ŝ, q = r/g = (1, 0, 0) on ∂Ω ∩ {z = 0},
g = ŝ, q = r/g = (0, 1, 0) on ∂Ω ∩ {z = 1}.
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0.2

Fig. 3. Plane defect of subsection 5.2: plots of the three components of nk
h (first row) and plots

of skh (second row) for iterations k = 1, 31, 79. In the final configuration (k = N = 79), the energy

is Eh[sNh ,nN
h ] = 0.247, min(sNh ) = 0.0101, and errn = 0.0556. Moreover, there is a transition layer

between about z = 0.4 and z = 0.6, and sh is almost linear in (0, 0.4) and (0.6, 1).

The exact solution is n(z) = (1, 0, 0) for z < 0.5 and n(z) = (0, 1, 0) for z > 0.5, while
s(z) = 0 on z = 0.5 and linear on (0, 0.5) ∪ (0.5, 1) [29, section 6.4]. Our numerical
results are consistent with those in [23, section 5.3]. To initialize Algorithm 4.1, we
set s0h = ŝ and n0

h to be a regularized point defect away from the center of the cube.
Figure 3 displays the three components of nk

h and skh evaluated along the vertical line
(0.5, 0.5, z) for iterations k = 1, 31, 79 computed on a uniform mesh with h =

√
3 0.05

and τn = τs = 0.01.

5.3. Effect of κ on equilibria. The value of the constant κ > 0 in (1.1) plays
a crucial role in the formation of defects. For large values of κ, the dominant term
in E1[s,n] is

�
Ω
κ|∇s|2 that prevents variations of s. Typically s tends to be close

to a (usually positive) constant and the model behaves much like the simpler Oseen–
Frank model, where defects are less likely to occur (and no defects with finite energy
beyond point defects are allowed in 3D). On the other hand, for small values of κ,
the energy is dominated by

�
Ω
s2|∇n|2, which allows s to become zero to compensate

large gradients of n, and defects are then more likely to occur. In this section, we
investigate this dichotomy numerically.

We consider a cylindrical domain Ω in 3D with lateral boundary ΓD

Ω = {(x, y, z) ∈ R3 : (x− 0.5)2 + (y − 0.5)2 < 0.52, 0 < z < 1},
ΓD = {(x, y, z) ∈ R3 : (x− 0.5)2 + (y − 0.5)2 = 0.52, 0 < z < 1},

and impose the Dirichlet conditions on ΓD

g = ŝ and q = r/g =
(x− 0.5, y − 0.5, 0)

|(x− 0.5, y − 0.5, 0)|
,(5.4)

The top and bottom faces of Ω are treated as free boundaries and the double well
potential ψ is neglected, i.e., cdw = 0 in (5.1). The analysis in [29, section 6.5] predicts
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Fig. 4. Effect of κ in subsection 5.3: equilibria for κ = 0.2 (left) and κ = 2 (right). Both
pictures show sNh and nN

h on the slices z = 0.2, 0.5, 0.8. If κ = 0.2, the final configuration exhibits a

line defect along the central axis of the cylinder; the final energy is Eh[sNh ,nN
h ] = 0.806, min(sNh ) =

−7.33 × 10−4, errn = 0.0778, and N = 226. If κ = 2, the z-component of the director is not
zero. This behavior is usually referred to as the fluting effect or escape to the third dimension [29,
section 6.5.1]. Moreover, the degree of orientation is bounded well away from zero; the final energy
is Eh[sNh ,nN

h ] = 2.635, min(sNh ) = 0.224, errn = 0.044, and N = 17.

that minimizers of the energy exhibit a line defect along the central axis of the cylinder
if κ is sufficiently small, whereas they are smooth (no defects) if κ is sufficiently large.

Figure 4 displays the final configurations obtained for κ = 0.2 and κ = 2. To
discretize Ω, we consider an unstructured mesh generated by Netgen with h0 = 0.05.
For both values of κ, we set ŝ as initial condition for the degree of orientation. For
κ = 0.2, we set τn = 0.1 and τs = 10−3 and take as initial condition for the director
field an off-center point defect located at the slice z = 0.5. For κ = 2, we set
τn = τs = 0.01 and initialize n0

h as an off-center point defect located at the slice
z = 0.25. These computational results are consistent with those in [23] and confirm
the predicted effect of κ [29, section 6.5].

5.4. Propeller defect. In this section, we investigate a new defect discovered
in [23, section 5.4]. We consider a setup similar to the one discussed in subsection 5.3,
except that the domain is the unit cube Ω = (0, 1)3, and we again set cdw = 0 in (5.1).
The top and bottom faces of the cube are treated as free boundary, while the same
strong anchoring conditions as in (5.4) are imposed on the vertical faces ΓD of the
cube (lateral boundary). The initial conditions are s0h = ŝ for the degree of orientation
and an off-center point defect located on the slice z = 0.5 for the director. The domain
is discretized using an unstructured mesh generated by Netgen with h0 = 0.025, and
we set τn = 0.02. We consider the values κ = 2 and κ = 0.1. For κ = 2 and τs = 0.2,
the computational results agree with those of subsection 5.3: The equilibrium state
is smooth and is characterized by a nonzero z-component (fluting effect).

For κ = 0.1, the final configuration reported in [23, section 5.4, Figure 5] con-
sists of two plane defects intersecting at the vertical symmetry axis of the cube, the
so-called propeller defect. Whether this was a numerical artifact due to the inherent
symmetries of the structured uniform weakly acute meshes used in [23] for simulation
was an intriguing open question that we now answer. Owing to the flexibility of our
approach regarding meshes, we repeated the experiment using an unstructured non-
symmetric mesh with τs = 10−4. Our computational results confirm the emergence
of the propeller defect in Figure 5, which in turn displays the director field nk

h at
iterations k = 0, 1, 2766 with colors indicating the size of skh.
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Fig. 5. Propeller defect of subsection 5.4: evolution of the order parameters on the top face of
the cube (z = 1). Plots of the initial state (s0h,n

0
h) (left), of the intermediate approximation (s1h,n

1
h)

obtained after the first iteration (middle), and of the equilibrium state (sNh ,nN
h ) after 2766 iterations

(right). In the initial state, due to the off-center point defect at z = 0.5, there is a corresponding
region on the slice for z = 1 where n is aligned with the z-direction. After the first iteration, in
which n is minimized for fixed s = ŝ, by symmetry the defect has moved to the center on z = 0.5.
Correspondingly, on the top surface of the cube, the region where n is aligned with the z-axis has
moved to the center. The final state is a propeller defect consisting of a planar X-like configuration
extruded in the z-direction. The final energy is Eh[sNh ,nN

h ] = 0.592, min(sNh ) = −1.575 × 10−4,
errn = 0.0265, and N = 2766.

5.5. Colloidal effects in nematic LCs. Colloidal particles suspended in a
nematic LC can induce interesting topological defects and distortions [19, 28]. One
prominent example is the so-called Saturn ring defect, a director configuration char-
acterized by a circular ring singularity surrounding a spherical particle and located
around its equator. Such defects are typically nonorientable and captured within the
Landau–de Gennes Q-tensor model [11, 12], but the Ericksen model yields similar
orientable defects under suitable boundary conditions [24]. We confirm the ability of
Algorithm 4.1 to produce similar configurations.

In this section, we exploit the flexibility of Algorithm 4.1 regarding meshes, to-
gether with the built-in constructive solid geometry approach of Netgen/NGSolve, to
explore numerically the formation of Saturn-ring-like defects induced by nonspherical
or multiple particles.

5.5.1. One ellipsoidal particle. Let Ωc = (0, 1)3 be the unit cube and let
Ωs ⊂ Ωc be an ellipsoid centered at (0.5, 0.5, 0.5) with axes parallel to the coordinate
axes and semiaxis lengths equal to 0.3 (x-direction), 0.075 (y-direction), and 0.075
(z-direction); Ωs has an aspect ratio 1 : 4. The computational domain is then Ω :=
Ωc \ Ωs. We set κ = 1 in (1.1) as well as cdw = 0.2 in (5.1). On ∂Ω = ∂Ωc ∪ ∂Ωs, we
impose strong anchoring conditions

g = ŝ on ∂Ω, q = r/g = ν on ∂Ωs, and q = r/g = nsr on ∂Ωc,(5.5)

where ν : ∂Ωs → S2 denotes the outward-pointing unit normal vector of Ωs and
nsr : ∂Ωs → S2 smoothly interpolates between the constant values (0, 0,−1) on the
bottom face and (0, 0, 1) on the top face of the cube (see [24, Figure 11]). These
boundary conditions are essential in order to induce the defect. The initial conditions
for Algorithm 4.1 are given by

s0h = ŝ in Ω and n0
h(z) =


(0, 0, 1), z ∈ Ω and z3 ≥ 0.5,

(0, 0,−1), z ∈ Ω and z3 < 0.5,

q(z), z ∈ ∂Ω,

(5.6)D
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Fig. 6. Saturn ring experiment of subsection 5.5.1. Three different perspectives of the Saturn
ring defect around an ellipsoidal particle: slice z = 0.5 (left), a three-dimensional view clipped at
y = 0.5 (middle), and a three-dimensional view clipped at x = 0.5 (right). The blue ring surrounding
the particle, the iso-surface for s = 0.15, provides a good approximation of the defect. We stress that
neither the distance between the defect and the particle nor the defect diameter is constant, which
is a consequence of the anisotropic shape of the particle. The final energy is Eh[sNh ,nN

h ] = 7.263,

min(sNh ) = 0.0128, errn = 0.145, and N = 33.

Fig. 7. Two-particle experiment of subsection 5.5.2. Fat figure “8” defect around two spherical
colloids viewed from different perspectives: slice y = 0.5 (left), slice z = 0.5 (middle), and a three-
dimensional view clipped at y = 0.5 (right). The blue ring surrounding the particle is the iso-surface
for s = 0.12, which provides a good approximation of the defect. The final energy is Eh[sNh ,nN

h ] =

7.656, min(sNh ) = 0.0146, errn = 0.0972, and N = 57.

for z = (z1, z2, z3) ∈ Nh. Figure 6 displays cuts of the final configuration obtained
using Algorithm 4.1 with an unstructured mesh with h0 = 0.05 and time-step sizes
τn = τs = 0.01.

5.5.2. Multiple spherical particles. We conclude this section with two novel
and challenging simulations involving multiple spherical colloidal particles. In both
cases, the domain has the form Ω := Ωc \ Ωs, where Ωc ⊂ R3 denotes a simply
connected domain (representing the LC container), whereas Ωs ⊂ Ωc denotes the
region occupied by spherical colloidal particles. We set κ = 1 in (1.1) and cdw = 0.2
in (5.1). Moreover, boundary and initial conditions are suitable extensions to the
multiple particle case of (5.5) and (5.6) considered in subsection 5.5.1.

Figure 7 shows the equilibrium state corresponding to Ωc = (0, 1)3 and a pair
of disjoint spherical colloids Ωs with radii 0.1 and centered at (0.3, 0.5, 0.5) and
(0.7, 0.5, 0.5). Algorithm 4.1 employs an unstructured mesh with h0 = 0.025 and
time-step sizes τn = τs = 0.0025. A novel fat figure “8” defect forms.

Figure 8 depicts the equilibrium state corresponding to Ωc = (−0.1, 1.1)3 and
a colloidal region consisting of six spheres. The latter have radii 0.1 and centers
located at (0.2, 0.5, 0.5), (0.8, 0.5, 0.5), (0.5, 0.2, 0.5), (0.5, 0.8, 0.5), (0.5, 0.5, 0.2), and
(0.5, 0.5, 0.8) distributed symmetrically with respect to the cube center. Algorithm 4.1
utilizes an unstructured mesh with h0 = 0.05 and time-step sizes τn = τs = 0.005.
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Fig. 8. Six-particle experiment of subsection 5.5.2. Defect around six spherical colloids viewed
from different perspectives: slice y = 0.5 (left), slice z = 0.5 (middle), and a three-dimensional view
clipped at y = 0.5 (right); the slice x = 0.5 is similar to y = 0.5. The blue ring surrounding the
particles is the iso-surface for s = 0.22, which provides a good approximation of the defect. Therefore
the defect appears to be a combination of a large Saturn ring defect around particles with center in
the plane z = 0.5 and a planar X-like configuration with axis x = 0.5, y = 0.5,−0.1 < z < 1. The
final energy is Eh[sNh ,nN

h ] = 12.562, min(sNh ) = −0.0079, errn = 0.163, and N = 61.

6. Proofs. In this section, we present the proofs of the results discussed in
sections 2 to 4.

6.1. L2-differentiability of admissible directors. We now prove that any
admissible director field, despite not being inH1(Ω), is L2-differentiable in Ω\Σ. We
refer to [11] for a similar argument for a line field.

Proof of Proposition 2.1. Since (s,n,u) ∈ A, we have that s ∈ H1(Ω) and u =
sn ∈ H1(Ω). Then, for almost all x ∈ Ω (specifically, for all Lebesgue points of
(s,u,∇s,∇u)), s and u are L2-differentiable and their L2-gradients coincide with
their respective weak gradients for a.e. x ∈ Ω, i.e., as r → 0, it holds that

 
Br(x)

|s(y)− s(x)−∇s(x) · (y − x)|2 dy = o(r2),

 
Br(x)

|u(y)− u(x)−∇u(x)(y − x)|2 dy = o(r2);

see [18, Theorem 6.2]. For almost all x ∈ Ω \ Σ (specifically, for all Lebesgue
points of (s,n,u,∇s,∇u) in x ∈ Ω \ Σ), in view of the identity (2.3), we define the
quantity

∇n(x) := ∇u(x)− n(x)⊗∇s(x)
s(x)

.(6.1)

Let r > 0. It holds that 
Br(x)

|n(y)− n(x)−∇n(x)(y − x)|2 dy

≲
1

s(x)2

 
Br(x)

|u(y)− u(x)−∇u(x)(y − x)|2dy

+
1

s(x)2

 
Br(x)

|s(y)− s(x)−∇s(x) · (y − x)|2|n(y)|2dy

+
|∇s(x)|2

s(x)2

 
Br(x)

|n(y)− n(x)|2|y − x|2dy = o(r2)
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as r → 0. This shows that ∇n(x) is the L2-gradient of n at x. Moreover, (2.9) follows
from a direct computation. In fact, in view of (6.1), there holds that

s(x)2|∇n(x)|2 = |∇u(x)− n(x)⊗∇s(x)|2

= |∇u(x)|2 + |n(x)⊗∇s(x)|2 − 2∇u(x) : [n(x)⊗∇s(x)]

= |∇u(x)|2 − |∇s(x)|2,

where the last equality follows from the identities

|n(x)⊗∇s(x)|2 =

d∑
i,j=1

ni(x)
2
(
∂js(x)

)2
=

d∑
j=1

(
∂js(x)

)2
= |∇s(x)|2

and for a.e x ∈ Ω \ Σ

∇u(x) : [n(x)⊗∇s(x)] =
d∑

i,j=1

∂jui(x)ni(x) ∂js(x) =
1

s(x)

d∑
i,j=1

∂jui(x)ui(x) ∂js(x)

=
1

2s(x)

d∑
i,j=1

∂j |ui(x)|2 ∂js(x) =
1

2s(x)

d∑
j=1

∂j |u(x)|2 ∂js(x)

=
1

2s(x)

d∑
j=1

∂j
(
s(x)2

)
∂js(x) =

d∑
j=1

(
∂js(x)

)2
= |∇s(x)|2.

This concludes the proof.

6.2. Lim-sup inequality (consistency). We start with two results from [23]
that we state without proofs. The first one shows that the degree of orientation s
can be truncated near the end points of the domain of definition (−1/(d− 1), 1) of ψ
without increasing the energy E[s,n]. We refer to [23, Lemma 3.1] for a proof.

Lemma 6.1 (truncation of s). Let the assumptions (2.12) and (2.14) hold. Let
(s,n,u) ∈ A(g, r). For all 0 < ρ ≤ δ0, define

sρ(x) := min

{
1− ρ,max

{
− 1

d− 1
+ ρ, s(x)

}}
and uρ(x) := sρ(x)n(x)

for a.e. x ∈ Ω. Then, (sρ,n,uρ) ∈ A(g, r) and E1[sρ,n] ≤ E1[s,n], E2[sρ] ≤ E2[s].

A simple consequence of Lemma 6.1, based on the convergence of the charac-
teristic function χ{sρ=s} → χΩ as ρ → 0, is that ∥(s,u) − (sρ,uρ)∥H1(Ω)1+d → 0 as
ρ → 0. The second result is about regularization of admissible functions but pre-
serving the structural condition (2.6) and boundary values. This is a rather tricky
two-scale process fully discussed in [23, Proposition 3.2].

Lemma 6.2 (regularization of functions in A(g, r)). Let the assumptions (2.12)
and (2.13) hold, and suppose that ΓD = ∂Ω. Let (s,n,u) ∈ A(g, r) and ρ ≤ δ0 such
that −1/(d − 1) + ρ ≤ s(x) ≤ 1 − ρ for a.e. x ∈ Ω. Then, for all σ > 0, there
exists a triple (sσ,nσ,uσ) ∈ A(g, r) such that sσ ∈ W 1,∞(Ω) and uσ ∈ W 1,∞(Ω).
Moreover, there holds ∥(s,u) − (sσ,uσ)∥H1(Ω)1+d ≤ σ, ∥n − nσ∥L2(Ω\Σ) ≤ σ, and
−1/(d− 1) + ρ ≤ sσ(x) ≤ 1− ρ for all x ∈ Ω.
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We recall the following classical local inverse estimates (see, e.g., [8, Lemma 3.5]),
which will be used in several points of the upcoming analysis: For all vh ∈ Vh,
1 ≤ p, r ≤ ∞, and K ∈ Th, there holds

∥∇vh∥Lp(K) ≤ Ch−1
K ∥vh∥Lp(K) and ∥vh∥Lp(K) ≤ Ch

d(r−p)/(pr)
K ∥vh∥Lr(K),

where C > 0 is a constant depending only on the shape-regularity of {Th}.
It is well known that the Lagrange interpolation operator Ih : C(Ω) → Vh is not

stable in H1(Ω) unless d = 1. We exploit stability in L∞(Ω) to derive stability in
W 1,p(Ω) for p > d.

Lemma 6.3 (W 1,p-stability of Lagrange interpolant). Let v ∈ W 1,p(Ω) for d <
p ≤ ∞. Then

∥∇Ih[v]∥Lp(K) ≤ C∥∇v∥Lp(K) for all K ∈ Th,(6.2)

where C > 0 depends only on the shape-regularity of {Th}.
Proof. Let K ∈ Th be an arbitrary element and let vK =

�
K
v. An inverse

estimate gives

∥∇Ih[v]∥pLp(K) ≤ |K|∥∇Ih[v − vK ]∥pL∞(K) ≲ hd−p
K ∥v − vK∥pL∞(K).

The Bramble–Hilbert estimate yields ∥v − vK∥L∞(K) ≲ h
1−d/p
K ∥∇v∥Lp(K) and ends

the proof.

Applying a standard density argument in W 1,p(Ω), for d < p <∞, we deduce

lim
h→0

∥v − Ih[v]∥W 1,p(Ω) = 0 for all v ∈W 1,p(Ω).(6.3)

We have collected all the ingredients to show the existence of a recovery sequence
(lim-sup inequality).

Proof of Theorem 3.1(i). For the sake of clarity, we decompose the proof into
seven steps.

Step 1: Regularization. Let (s,n,u) ∈ A(g, r). For all k ∈ N such that 1/k ≤ δ0,
let 0 < σk ≤ 1/k be sufficiently small. Applying successively Lemma 6.1 (with
ρ = 1/k) and Lemma 6.2 (with σ = σk), we obtain (sk,nk,uk) ∈ A(g, r) satisfying
(sk,uk) ∈ [W 1,∞(Ω)]1+d and −1/(d−1)+1/k ≤ sk ≤ 1−1/k in Ω for all k. Moreover,
we have that

∥(s,u)− (sk,uk)∥H1(Ω)1+d ≤ σk and ∥n− nk∥L2(Ω\Σ) ≤ σk.

Since (s,n,u) ∈ A(g, r), Proposition 2.1 guarantees that n is L2-differentiable a.e. in
Ω \Σ, with its L2-gradient given by (2.8) and that the identity (2.9) holds. The same
result is valid for nk a.e. in Ω \ Σk, where Σk := {x ∈ Ω : sk(x) = 0}.

We have convergence of the energy: E[sk,nk] → E[s,n] as k → ∞. To see this,
we first observe that, thanks to (2.5), we have that

E1[sk,nk] = Ẽ1[sk,uk] =
1

2

�
Ω

(κ− 1)|∇sk|2 + |∇uk|2

→ 1

2

�
Ω

(κ− 1)|∇s|2 + |∇u|2 = Ẽ1[s,u] = E1[s,n] as k → ∞.
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Fig. 9. A schematic illustration of the mutual relations of the sets defined in Steps 1–2 of
the proof of Theorem 3.1(i) (lim-sup inequality). Note that the set Σk ⊂ Ω is closed, as it is the
preimage of a closed set with respect to the continuous function sk, but it might be more topologically
complicated than in the picture.

Moreover, the monotonicity of ψ in (−1/(d − 1),−1/(d − 1) + δ0) and in (1 − δ0, 1)
translates into ψ(sk) ≥ 0 increasing and converging pointwise to ψ(s), whence the
monotone convergence theorem gives

E2[sk] =

�
Ω

ψ(sk) →
�
Ω

ψ(s) = E2[s] as k → ∞.

Let ϵ > 0 be arbitrary. The above convergences guarantee the existence of k ∈ N
such that σk < ϵ, |E[sk,nk]− E[s,n]| < ϵ, and |(Σk \ Σ) ∪ (Σ \ Σk)| < ϵ. Let such a
k ∈ N be fixed for the rest of the proof.

Step 2: Discretization. Let sk,h := Ih[sk] and uk,h := Ih[uk]. Let nk,h ∈ Vh be
defined as

nk,h(z) :=

{
uk,h(z)/sk,h(z) = uk(z)/sk(z) if z ∈ Nh ∩ (Ω \ Σk),

an arbitrary unit vector if z ∈ Nh ∩ Σk.

Note that, by construction, (sk,h,nk,h,uk,h) satisfies the discrete structural condi-
tion (3.2) and ∥nk,h∥L∞(Ω) = 1. Moreover, since 0 = ∥Ih

[
|nk,h|2

]
− 1∥L1(Ω) ≤ ε as

well as sk,h(z) = gh(z) and uk,h(z) = rh(z) for all z ∈ Nh ∩ ΓD, we deduce that
(sk,h,nk,h,uk,h) ∈ Ah,ε(gh, rh).

Given δ > 0, we consider the sets

Σk,δ := {x ∈ Ω : |sk(x)| ≤ δ} and Ωh
k,δ :=

⋃
{K ∈ Th : K ∩ Σk,δ = ∅}.

Note that, by construction, there holds Ωh
k,δ ⊂ Ω \ Σk,δ; see Figure 9.

Let K ∈ Th such that K ∩ Σk,δ ̸= ∅. In particular, there exists x0 ∈ K ∩ Σk,δ.
For x1 ∈ K arbitrary, the Lipschitz continuity of sk yields

|sk(x1)| ≤ |sk(x0)|+ |sk(x1)− sk(x0)| ≤ δ + ∥∇sk∥L∞(Ω)h.

Hence, Ω\Ωh
k,δ ⊂ Σk,2δ provided h and δ are such that h∥∇sk∥L∞(Ω) ≤ δ; see Figure 9.
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Now, for any x ∈ Ωh
k,δ, we infer that

|sk(x)− sk,h(x)| ≤ ∥sk − sk,h∥L∞(Ωh
k,δ)

= ∥sk − Ih[sk]∥L∞(Ωh
k,δ)

≲ h∥∇sk∥L∞(Ωh
k,δ)

,

whence

|sk,h(x)| ≥ |sk(x)| − |sk(x)− sk,h(x)| > δ − Ch∥∇sk∥L∞(Ωh
k,δ)

> δ/2

provided h and δ are such that Ch∥∇sk∥L∞(Ω) < δ/2. Hence, for this range of

parameters, we can define ñk := uk,h/sk,h in Ωh
k,δ. Note that, by definition, the

relation nk,h = Ih[ñk] in Ωh
k,δ holds.

To conclude this step, we observe that the L2-gradient ∇nk of nk exists a.e. in
Ω \ Σk and

�
Ωh

k,δ

|∇nk −∇nk,h|2 ≲
�
Ωh

k,δ

|∇nk −∇ñk|2 +
�
Ωh

k,δ

|∇ñk −∇nk,h|2,(6.4)

where ∇ñk and ∇nk,h denote the weak gradients of ñk and nk,h, respectively, which
coincide elementwise with their classical gradients in Ωh

k,δ. In the following two steps,
we will show that, for fixed k ∈ N (cf. Step 1), both terms on the right-hand side
of (6.4) converge to 0 if h, δ → 0 in an appropriate way (note that we are completely
free to choose the speed of convergence of the parameters).

Step 3: Proof of limh,δ→0

�
Ωh

k,δ
|ñk −nk,h|2 + |∇ñk −∇nk,h|2 = 0. Since nk,h =

Ih[ñk] in Ωh
k,δ, a classical local interpolation estimate yields that

�
Ωh

k,δ

|∇ñk −∇nk,h|2 =
∑

K∈Th

K∩Σk,δ=∅

�
K

∣∣∇(ñk − Ih[ñk])
∣∣2 ≲

∑
K∈Th

K∩Σk,δ=∅

h2K
∥∥D2ñk

∥∥2
L2(K)

.

Similarly, there holds�
Ωh

k,δ

|ñk − nk,h|2 ≲
∑

K∈Th

K∩Σk,δ=∅

h4K
∥∥D2ñk

∥∥2
L2(K)

.

Moreover, in view of ñk = uk,h/sk,h in Ωh
k,δ, explicit computations reveal that

∂iñk = s−1
k,h ∂iuk,h − s−2

k,h ∂isk,h uk,h = s−1
k,h

(
∂iuk,h − ∂isk,h ñk

)
,

∂j∂iñk = s−1
k,h

(
s−1
k,h ∂jsk,h ∂isk,h ñk − ∂ish ∂jñk − s−1

k,h ∂jsk,h ∂iuk,h

)
,

for all 1 ≤ i, j ≤ d (note that the second derivatives of the piecewise affine functions
sk,h and uk,h vanish). Several applications of the generalized Hölder inequality, sta-
bility (6.2) in W 1,p of the Lagrange interpolation operator Ih when d < p ≤ ∞, in
conjunction with the lower bound |sk,h| > δ/2 in Ωh

k,δ and the uniform boundedness
of uk,h in L∞(Ω), thus yield∥∥D2ñk

∥∥
L2(K)

≲ δ−3∥∇sk,h∥2L8(K)∥uk,h∥L4(K)

+ δ−1∥∇sk,h∥L4(K)

(
δ−1∥∇uk,h∥L4(K) + δ−2∥uk,h∥L8(K)∥∇sk,h∥L8(K)

)
+ δ−2∥∇sk,h∥L4(K)∥∇uk,h∥L4(K)

≲ |K|1/2
(
δ−3∥∇sk∥2L∞(K) + δ−2∥∇sk∥L∞(K)∥∇uk∥L∞(K)

)
.
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Altogether, we thus obtain the estimate

�
Ωh

k,δ

|∇ñk −∇nk,h|2 +
∑

K∈Th

K∩Σk,δ=∅

h−2
K

�
K

|ñk − nk,h|2 ≲
∑

K∈Th

K∩Σk,δ=∅

h2K
∥∥D2ñk

∥∥2
L2(K)

≲ h2
(
δ−3∥∇sk∥2L∞(Ω) + δ−2∥∇sk∥L∞(Ω)∥∇uk∥L∞(Ω)

)2
,

which yields the desired convergence, if hδ−3 goes to 0 as h, δ → 0.

Step 4: Proof of limh,δ→0

�
Ωh

k,δ
|nk − ñk|2 + |∇nk −∇ñk|2 = 0. We first observe

that

∥ñk − nk∥Lp(Ωh
k,δ)

= ∥s−1
k,huk,h − s−1

k uk∥Lp(Ωh
k,δ)

≲ δ−2∥sk − sk,h∥Lp(Ωh
k,δ)

∥uk,h∥L∞(Ωh
k,δ)

+ δ−1∥uk,h − uk∥Lp(Ωh
k,δ)

≲ δ−2h∥∇sk∥L∞(Ω) + δ−1h∥∇uk∥L∞(Ω)

for all 1 ≤ p < ∞. This shows that ∥ñk − nk∥Lp(Ωh
k,δ)

→ 0 if δ−2h → 0 as h, δ → 0.

To deal with the gradient part, we resort to available expressions of ∇nk and ∇ñk

to write

�
Ωh

k,δ

|∇nk −∇ñk|2 =

�
Ωh

k,δ

|s−1
k (∇uk − nk ⊗∇sk)− s−1

k,h(∇uk,h − ñk ⊗∇sk,h)|2

≤ T1 + T2 + T3,

where

T1 :=

�
Ωh

k,δ

|s−1
k,h(∇uk −∇uk,h)|2, T2 :=

�
Ωh

k,δ

|s−1
k,h(ñk ⊗∇sk,h − nk ⊗∇sk)|2,

T3 :=

�
Ωh

k,δ

|(s−1
k − s−1

k,h)(∇uk − nk ⊗∇sk)|2.

Recalling again |sk|, |sk,h| > δ/2 in Ωh
k,δ, as well as (6.2)–(6.3), the asserted conver-

gence follows from

T1 ≲ δ−2∥∇(uk − Ih[uk])∥2L2(Ω),

T2 ≲ δ−2
(
∥∇sk,h∥2L4(Ωh

k,δ)
∥ñk − nk∥2L4(Ωh

k,δ)
+ ∥nk∥2L4(Ωh

k,δ)
∥∇(sk − Ih[sk])∥2L4(Ωh

k,δ)

)
,

T3 ≲ δ−4∥sk − Ih[sk]∥2L4(Ω)∥∇uk − nk ⊗∇sk∥2L4(Ω)

and the fact that the right-hand sides of these estimates converge to 0 for a suitably
faster convergence of h to 0 relative to that of δ.

Step 5: Proof of limh,δ→0

�
Ω
s2k,h|∇nk,h|2 =

�
Ω\Σk

s2k|∇nk|2. Let us assume that

h, δ → 0 in such a way (h sufficiently faster than δ) that the definitions and the
convergence results established in Steps 2–4 are valid. Combining Steps 3–4 gives

lim
h,δ→0

�
Ωh

k,δ

|∇nk −∇nk,h|2 = 0.(6.5)
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In order to exploit this property, we split the integral under consideration as

�
Ω

s2k,h|∇nk,h|2 =

�
Ωh

k,δ

s2k,h|∇nk,h|2 +
�
Ω\Ωh

k,δ

s2k,h|∇nk,h|2.(6.6)

The fact that sk,h → sk strongly in Lp(Ω) as h → 0 for d < p < ∞, according to
(6.3), together with sk,h ∈ L∞(Ω) uniformly in h, ∇nk ∈ L∞(Ω \ Σk,δ), and (6.5),
yields

lim
h,δ→0

∣∣∣∣ �
Ωh

k,δ

s2k,h|∇nk,h|2 −
�
Ωh

k,δ

s2k|∇nk|2
∣∣∣∣ = 0.

Since Ω \ Σk,2δ ⊂ Ωh
k,δ ⊂ Ω \ Σk,δ (recall Figure 9), we deduce

lim
h,δ→0

�
Ωh

k,δ

s2k,h|∇nk,h|2 =

�
Ω\Σk

s2k|∇nk|2.

Now, we consider the second term on the right-hand side of (6.6). Since Ω \ Ωh
k,δ ⊂

Σk,2δ and sk,h∇nk,h = ∇(sk,hnk,h)−nk,h⊗∇sk,h, using uk,h = Ih[sk,hnk,h], we see
that

�
Ω\Ωh

k,δ

s2k,h|∇nk,h|2

≲
�
Σk,2δ

|∇(sk,hnk,h)|2 +
�
Σk,2δ

|nk,h ⊗∇sk,h|2

≲
�
Σk,2δ

|∇(sk,hnk,h)−∇Ih[sk,hnk,h]|2 +
�
Σk,2δ

|∇uk,h|2 +
�
Σk,2δ

|∇sk,h|2.

Combining an interpolation estimate with the fact that sk,h and nk,h are piece-
wise affine, and exploiting an inverse estimate to bound ∥∇nk,h∥L∞(K) in terms
of ∥nk,h∥L∞(K) = 1, yields

�
Σk,2δ

|∇(sk,hnk,h)−∇Ih[sk,hnk,h]|2 ≲
∑

K∈Th

K∩Σk,2δ ̸=∅

h2K∥D2(sk,hnk,h)∥2L2(K)

≲
∑

K∈Th

K∩Σk,2δ ̸=∅

h2K∥∇sk,h∥2L2(K)∥∇nk,h∥2L∞(K) ≲
∑

K∈Th

K∩Σk,2δ ̸=∅

∥∇sk,h∥2L2(K).

Using the W 1,p-stability (6.2) of the nodal interpolant with p > d for all elements
K ∈ Th with K ∩ Σk,2δ ̸= ∅, we end up with, as h, δ → 0,

�
Ω\Ωh

k,δ

s2k,h|∇nk,h|2 ≲ ∥∇uk∥2Lp(Σk,3δ)
+ ∥∇sk∥2Lp(Σk,3δ)

→ ∥∇uk∥2Lp(Σk)
+ ∥∇sk∥2Lp(Σk)

= 0

(cf. [18, Theorem 4.4 (iv)]), because the Lipschitz continuity of sk implies that all
elementsK ∈ Th withK∩Σk,2δ ̸= ∅ are contained in Σk,3δ provided hδ

−1 is sufficiently
small (cf. Step 2).
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Step 6: Proof of limh,δ→0

�
Ω
|nk,h ⊗∇sk,h|2 =

�
Ω
|∇sk|2. We split the integral as

�
Ω

|nk,h ⊗∇sk,h|2 =

�
Ωh

k,δ

|nk,h ⊗∇sk,h|2 +
�
Ω\Ωh

k,δ

|nk,h ⊗∇sk,h|2.

Exploiting the identity nk,h⊗∇sk,h−nk⊗∇sk = (nk,h−nk)⊗∇sk+nk,h⊗(∇sk,h−
∇sk), and using the convergence results for sk,h and nk,h in Ωh

k,δ from Steps 2–4, we
readily see that

lim
h,δ→0

�
Ωh

k,δ

|nk,h ⊗∇sk,h|2 =

�
Ω\Σk

|nk ⊗∇sk|2 =

�
Ω

|∇sk|2.

Moreover, employing Ω \ Ωk,δ ⊂ Σk,2δ together with (6.2) implies

�
Ω\Ωh

k,δ

|nk,h ⊗∇sk,h|2 ≲ ∥∇sk,h∥2L2(Σk,2δ)
≲ ∥∇sk,h∥2Lp(Σk,2δ)

≲ ∥∇sk∥2Lp(Σk,3δ)
.

Finally, taking h, δ → 0 yields ∥∇sk∥Lp(Σk,3δ) → ∥∇sk∥Lp(Σk) = 0, which leads to the
desired limit.

Step 7: End of the proof. Let ϵ > 0 be the arbitrary value fixed in Step 1. The
triangle inequality yields that

∥nk,h − nk∥L2(Ω\Σ) ≲ ∥nk,h − nk∥L2(Ωh
k,δ)

+ ∥nk,h − nk∥L2(Σk,2δ\Σ).

For the first term, the convergences in Steps 3–4 guarantee that ∥nk,h−nk∥L2(Ωh
k,δ)

< ϵ

if h, δ are chosen properly and sufficiently small. For the second term, we have

∥nk,h − nk∥L2(Σk,2δ\Σ) ≤ 2|Σk,2δ \ Σ|1/2 → 2|Σk \ Σ|1/2 as δ → 0.

Since |Σk \ Σ|1/2 < ϵ1/2, we deduce that ∥nk,h − nk∥L2(Ω\Σ) ≲ ϵ+ ϵ1/2 provided h, δ
are sufficiently small.

Next, recall that (sk,h,uk,h) → (sk,uk) in H
1(Ω)1+d as h → 0 (thanks to (6.3))

as well as Eh
1 [sk,h,nk,h] → E1[sk,nk] as h, δ → 0 (thanks to Steps 5–6). Furthermore,

since −1/(d − 1) + 1/k ≤ sk ≤ 1 − 1/k in Ω, assumption (2.14) guarantees that 0 ≤
ψ(sk,h) ≤ max{ψ(−1/(d− 1)+ 1/k), ψ(1− 1/k)}. Hence, the dominated convergence
theorem implies that

lim
h→0

Eh
2 [sk,h] = lim

h→0

�
Ω

ψ(Ih[sk]) =

�
Ω

lim
h→0

ψ(Ih[sk]) =

�
Ω

ψ(sk) = E2[sk].

Altogether, we can therefore find sufficiently small δ > 0 and h > 0 such that
∥sk,h − sk∥H1(Ω) < ϵ, ∥uk,h − uk∥H1(Ω) < ϵ, ∥nk,h − nk∥L2(Ω\Σ) ≲ ϵ + ϵ1/2, and

|Eh[sk,h,nk,h] − E[sk,nk]| < ϵ. Combining these inequalities with those estab-
lished in Step 1, we conclude that ∥sk,h − s∥H1(Ω) < 2ϵ, ∥uk,h − u∥H1(Ω) < 2ϵ,

∥nk,h−n∥L2(Ω\Σ) ≲ ϵ+ϵ1/2, and |Eh[sk,h,nk,h]−E[s,n]| < 2ϵ. Since ϵ was arbitrary,
this shows that the sequence (sh,nh,uh) := (sk,h,nk,h,uk,h) ∈ Ah,ε(gh, rh) satisfies
the desired convergence toward (s,n,u) ∈ A(g, r) as well as limh→0E

h[sh,nh] =
E[s,n]. This implies the lim-sup inequality (3.5) and concludes the proof.
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6.3. Lim-inf inequality: Stability. To show the lim-inf inequality, we first
prove that admissible discrete pairs (sh,nh) with uniformly bounded energy are uni-
formly bounded in H1. In constrast to [23], we do not need to assume that Th is
weakly acute.

Lemma 6.4 (coercivity). Let {(sh,nh,uh)} ⊂ Vh × Vh × Vh satisfy uh =
Ih[shnh] and |nh(z)| ≥ 1 for all z ∈ Nh. Then, there exists a constant C > 0
depending only on the shape-regularity of {Th} and κ such that

Cmax
{
∥∇uh∥2L2(Ω), ∥∇(shnh)∥2L2(Ω), ∥∇sh∥

2
L2(Ω)

}
≤ Eh

1 [sh,nh].

Proof. Since ∥nh∥L∞(K) ≥ 1 for all K ∈ Th and ∇sh is piecewise constant, it
holds that

∥∇sh∥2L2(Ω) ≤
∑

K∈Th

∥nh∥2L∞(K)∥∇sh∥
2
L2(K) =

∑
K∈Th

|K| ∥nh∥2L∞(K)|∇sh|K |2

≲
∑

K∈Th

|∇sh|K |2∥nh∥2L2(K) = ∥nh ⊗∇sh∥2L2(Ω) ≤
2

κ
Eh

1 [sh,nh],

where the hidden multiplicative constant depends only on the shape-regularity of
{Th}. Let ũh = shnh and use the Hölder inequality in conjunction with (6.2) for
p > d and an inverse estimate to obtain

∥∇Ih[ũh]∥L2(K) ≲ |K|
p−2
2p ∥∇Ih[ũh]∥Lp(K) ≲ |K|

p−2
2p ∥∇ũh∥Lp(K) ≲ ∥∇ũh∥L2(K)

for all K ∈ Th. Consequently, for uh = Ih[ũh] we deduce

∥∇uh∥2L2(Ω) ≲ ∥∇ũh∥2L2(Ω) ≲ ∥nh ⊗∇sh∥2L2(Ω) + ∥sh∇nh∥2L2(Ω) ≲ Eh
1 [sh,nh].

This completes the proof.

We are now ready to extract convergent subsequences and characterize their lim-
its.

Lemma 6.5 (characterization of limits). Let {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) be a
sequence such that Eh

1 [sh,nh] ≤ C and ∥nh∥L∞(Ω) ≤ C, where C > 0 is a constant
independent of h. Then, there exist a triple (s,n,u) ∈ A(g, r) and a subsequence (not
relabeled) of {(sh,nh,uh)} satisfying the following properties:

• as h→ 0, (sh,uh, shnh) converges toward (s,u,u) weakly in H1(Ω)×H1(Ω)×
H1(Ω), strongly in L2(Ω)×L2(Ω)×L2(Ω), and pointwise a.e. in Ω;

• nh converges toward n strongly in L2(Ω \ Σ) and pointwise a.e. in Ω \ Σ as
h→ 0 and ε→ 0;

• n is L2-differentiable a.e. in Ω\Σ and the orthogonal decomposition |∇u|2 =
|∇s|2 + s2|∇n|2 is valid a.e. in Ω \ Σ,

where Σ ⊂ Ω is given by (2.2).

Proof. For the sake of clarity, we divide the proof into three steps.

Step 1: Convergence of {sh}, {uh}, and {shnh}. Since the energy Eh
1 [sh,nh]

is uniformly bounded, Lemma 6.4 (coercivity) gives uniform bounds in H1(Ω) ×
H1(Ω) ×H1(Ω) for the the sequence {(sh,uh, shnh)}. With successive extractions
of subsequences (not relabeled), one can show that there exists a limit (s,u, ũ) ∈
H1(Ω) ×H1(Ω) ×H1(Ω) such that (sh,uh, shnh) converges to (s,u, ũ) weakly in
H1(Ω)×H1(Ω)×H1(Ω), strongly in L2(Ω)×L2(Ω)×L2(Ω), and pointwise a.e. in
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Ω. Moreover, weak H1-convergence guarantees attainment of traces, namely s = g
and u = ũ = r on ΓD. To see this, note that gh = Ih[g] → g in W 1,p(Ω) for p > d,
according to (6.3), and so in H1(Ω). Therefore sh − gh ∈ H1

0 (Ω) satisfies

sh − gh ⇀ s− g ∈ H1
0 (Ω),

because H1
0 (Ω) is closed under weak convergence. Hence s = g on ΓD in the sense

of traces, as asserted. Dealing with uh and ũh is identical. Since uh = Ih[shnh],
interpolation and inverse estimates yield

∥uh − shnh∥2L2(Ω) ≲
∑

K∈Th

h4K∥D2(shnh)∥2L2(K)

≲
∑

K∈Th

h2K∥∇(shnh)∥2L2(K) ≲ h2Eh
1 [sh,nh] ≤ Ch2.

This shows that shnh and uh converge strongly in L2(Ω) toward the same limit, i.e.,
ũ = u. Moreover, shnh converges to u weakly in H1(Ω) and pointwise a.e. in Ω.

Step 2: |s| = |u| a.e. in Ω. The triangle inequality yields

∥|uh|2 − |sh|2∥L1(Ω) ≤ ∥|uh|2 − Ih
[
|uh|2

]
∥L1(Ω)

+ ∥Ih
[
|uh|2 − |sh|2

]
∥L1(Ω) + ∥|sh|2 − Ih

[
|sh|2

]
∥L1(Ω).

For the first and third terms on the right-hand side, standard interpolation estimates
yield

∥|sh|2 − Ih
[
|sh|2

]
∥L1(Ω) ≲ h2∥∇sh∥2L2(Ω), ∥|uh|2 − Ih

[
|uh|2

]
∥L1(Ω) ≲ h2∥∇uh∥2L2(Ω).

On the other hand, since {sh} is uniformly bounded in L∞(Ω), we infer that

∥Ih
[
|uh|2 − |sh|2

]
∥L1(Ω) = ∥Ih

[
|sh|2(|nh|2 − 1)

]
∥L1(Ω)

≤ ∥sh∥2L∞(Ω)∥Ih
[
|nh|2 − 1

]
∥L1(Ω) ≤ ε∥sh∥2L∞(Ω) → 0

as ε→ 0. As |sh| → |s| and |uh| → |u| a.e. in Ω, we conclude that |s| = |u| a.e. in Ω.

Step 3: Convergence of {nh}. We now define n : Ω → R3 as n := s−1u in
Ω \ Σ and as an arbitrary unit vector in Σ. Step 2 implies, by construction, that
|n| = 1 a.e. in Ω. This shows that (s,n,u) satisfies the structural condition (2.6),
i.e., (s,n,u) ∈ A.

We now observe that s(x) ̸= 0 for a.e. x ∈ Ω \ Σ by definiton of Σ. Since
sh(x) → s(x) as h → 0, if h is sufficiently small (depending on x), then sh(x) ̸= 0 is
valid. Consequently,

nh(x) =
sh(x)nh(x)

sh(x)
→ u(x)

s(x)
= n(x),

i.e., nh → n pointwise a.e. in Ω \Σ. Since {nh} is uniformly bounded in L∞(Ω), the
Lebesgue dominated convergence theorem yields nh → n strongly in L2(Ω \ Σ).

Finally, the L2-differentiability of n and the orthogonal decomposition of ∇u,
both valid a.e. in Ω\Σ, follow from Proposition 2.1 (orthogonal decomposition). This
concludes the proof.

We are now in position to prove the lim-inf inequality.
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Proof of Theorem 3.1(ii). The sequence {(sh,nh,uh)} ⊂ Ah,ε(gh, rh) satisfies
the assumptions of Lemma 6.5 (characterization of limits). Hence, we can apply it
to obtain subsequences (not relabeled) converging to the respective limits (s,n,u) ∈
A(g, r). Moreover, since also the sequences {nh ⊗∇sh} and {sh∇nh} are uniformly
bounded in L2(Ω), there exist subsequences (not relabeled) and functions M ,N in
L2(Ω) such that nh ⊗∇sh ⇀M and sh∇nh ⇀N weakly in L2(Ω). Combining the
equality sh∇nh = ∇(shnh)− nh ⊗∇sh, which is valid in every element of Th, with
shnh ⇀ u weakly in H1(Ω), helps identify the limits N = ∇u−M .

Let Φ ∈ C∞
c (Ω \ Σ) be an arbitrary d× d tensor field. We can thus write

⟨nh ⊗∇sh − n⊗∇s,Φ⟩Ω\Σ = ⟨(nh − n)⊗∇sh,Φ⟩Ω\Σ + ⟨n⊗ (∇sh −∇s),Φ⟩Ω\Σ.

We note that nh → n strongly in L2(Ω \ Σ) implies

⟨(nh − n)⊗∇sh,Φ⟩Ω\Σ ≤ ∥nh − n∥L2(Ω\Σ)∥∇sh∥L2(Ω)∥Φ∥L∞(Ω\Σ) → 0,

whereas sh ⇀ s weakly in H1(Ω) yields ⟨n ⊗ (∇sh − ∇s),Φ⟩Ω\Σ → 0. Hence, we
infer that ⟨nh ⊗ ∇sh − n ⊗ ∇s,Φ⟩Ω\Σ → 0, whence nh ⊗ ∇sh ⇀ n ⊗ ∇s weakly

in L2(Ω \ Σ). This in turn identifies the limit M = n ⊗ ∇s and gives thus the
identity N = ∇u − n ⊗ ∇s a.e. in Ω \ Σ. We deduce that ∇n = N/s, where ∇n
is understood in the L2-sense according to Proposition 2.1. Exploiting the fact that
norms are weakly lower semicontinuous, along with |n ⊗∇s|2 = |∇s|2 a.e. in Ω \ Σ,
and ∇s = 0 a.e. in Σ, it holds that

lim inf
h→0

Eh
1 [sh,nh] = lim inf

h→0

{κ
2
∥nh ⊗∇sh∥2L2(Ω) +

1

2
∥sh∇nh∥2L2(Ω)

}
≥ lim inf

h→0

{κ
2
∥nh ⊗∇sh∥2L2(Ω\Σ) +

1

2
∥sh∇nh∥2L2(Ω\Σ)

}
≥ κ

2
∥n⊗∇s∥2L2(Ω\Σ) +

1

2
∥s∇n∥2L2(Ω\Σ) = E1[s,n].

Since sh → s a.e. in Ω and ψ is continuous, ψ(sh) → ψ(s) a.e. in Ω. The Fatou lemma
yields

E2[s] =

�
Ω

ψ(s) =

�
Ω

lim
h→0

ψ(sh) ≤ lim inf
h→0

�
Ω

ψ(sh) = lim inf
h→0

Eh
2 [s].

Altogether, we thus obtain the lim-inf inequality (3.6). This finishes the proof.

6.4. Properties of the numerical scheme. To start with, we prove the well-
posedness and stability of Algorithm 4.1.

Proof of Proposition 4.1. Let i ∈ N0 and ℓ ∈ N0. For fixed sih ∈ Vh (resp.,
ni+1

h ∈ Vh), the left-hand side of (4.1) (resp., of (4.3)) is a coercive and continuous
bilinear form on Vh,D (resp., on Vh,D). Therefore, the variational problem admits a

unique solution ti,ℓh ∈ Kh[n
i,ℓ
h ] (resp., si+1

h ∈ Vh) by the Lax–Milgram theorem. This
shows parts (i) and (iii) of Proposition 4.1.

Choosing the test function ϕh = τn t
i,ℓ
h = ni,ℓ+1

h − ni,ℓ
h ∈ Kh[n

i,ℓ
h ] in (4.1) yields

τn∥ti,ℓh ∥2∗ + κ⟨ni,ℓ+1
h ⊗∇sih, (n

i,ℓ+1
h − ni,ℓ

h )⊗∇sih⟩Ω
+ ⟨sih∇n

i,ℓ+1
h , sih∇(ni,ℓ+1

h − ni,ℓ
h )⟩Ω = 0.D
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Using the identity 2a(a− b) = a2 − b2 + (a− b)2, valid for all a, b ∈ R, we obtain

Eh
1 [s

i
h,n

i,ℓ+1
h ]− Eh

1 [s
i
h,n

i,ℓ
h ] + τn∥ti,ℓh ∥2∗ + τ2nE

h
1 [s

i
h, t

i,ℓ
h ] = 0.(6.7)

In particular, Eh
1 [s

i
h,n

i,ℓ+1
h ] ≤ Eh

1 [s
i
h,n

i,ℓ
h ] is valid. Since Eh

1 [s
i
h,n

i,ℓ
h ] ≥ 0 for all

i ∈ N0, the sequence {Eh
1 [s

i
h,n

i,ℓ
h ]}ℓ∈N0 is convergent (as it is monotonically decreasing

and bounded from below). In particular, it is a Cauchy sequence, which entails that
the stopping criterion (4.2) is met in a finite number of iterations. This shows part (ii)
of the proposition.

Let ℓi ∈ N0 be the smallest integer for which the stopping criterion (4.2) is

satisfied. Recall that ni+1
h = ni,ℓi+1

h and ni
h = ni,0

h . Summation of (6.7) over ℓ =
0, . . . , ℓi yields

Eh
1 [s

i
h,n

i+1
h ]− Eh

1 [s
i
h,n

i
h] + τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ + τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ] = 0.(6.8)

Choosing the test function wh = τsdts
i+1
h = si+1

h − sih ∈ Vh,D in (4.3) and performing
the same algebraic computation as above, we arrive at

Eh
1 [s

i+1
h ,ni+1

h ]− Eh
1 [s

i
h,n

i+1
h ] + τs∥dtsi+1

h ∥2L2(Ω) + τ2s E
h
1 [dts

i+1
h ,ni+1

h ]

+ ⟨ψ′
c(s

i+1
h )− ψ′

e(s
i
h), s

i+1
h − sih⟩Ω = 0.

Applying [23, Lemma 4.1], which yields the inequality

Eh
2 [s

i+1
h ]− Eh

2 [s
i
h] ≤ ⟨ψ′

c(s
i+1
h )− ψ′

e(s
i
h), s

i+1
h − sih⟩Ω,

we obtain

Eh
1 [s

i+1
h ,ni+1

h ]− Eh
1 [s

i
h,n

i+1
h ] + τs ∥dtsi+1

h ∥2L2(Ω) + τ2s E
h
1 [dts

i+1
h ,ni+1

h ]

+ Eh
2 [s

i+1
h ]− Eh

2 [s
i
h] ≤ 0.

Adding the latter with (6.8), and exploiting cancellation of Eh
1 [s

i
h,n

i+1
h ], we deduce

Eh[si+1
h ,ni+1

h ]− Eh[sih,n
i
h] ≤− τn

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ − τ2n

ℓi∑
ℓ=0

Eh
1 [s

i
h, t

i,ℓ
h ]

− τs∥dtsi+1
h ∥2L2(Ω) − τ2sE

h
1 [dts

i+1
h ,ni+1

h ] ≤ 0.

(6.9)

This shows (4.6) and concludes the proof.

We recall that Algorithm 4.1 does not enforce the unit-length constraint of the
director field nj

h. We finish this paper with a proof that violation of such constraint is

controlled by τn and that ∥nj
h∥L∞(Ω) is uniformly bounded provided the parameters

h and τn are suitably chosen.

Proof of Proposition 4.3. Let j ≥ 1. Summation of (6.9) over i = 0, . . . , j − 1
yields

Eh[sjh,n
j
h] + τn

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ ≤ Eh[s0h,n
0
h].(6.10)
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Moreover, the tangential update ti,ℓh (z) is perpendicular to ni,ℓ
h (z) for all z ∈ Nh,

whence ni,ℓ+1
h (z) = ni,ℓ

h (z) + τnt
i,ℓ
h (z) satisfies |ni,ℓ+1

h (z)|2 = |ni,ℓ
h (z)|2 + τ2n|t

i,ℓ
h (z)|2.

Iterating in ℓ and i gives

|nj
h(z)|

2 = |n0
h(z)|2 + τ2n

j−1∑
i=0

ℓi∑
ℓ=0

|ti,ℓh (z)|2 = 1 + τ2n

j−1∑
i=0

ℓi∑
ℓ=0

|ti,ℓh (z)|2 ≥ 1.

Then, using the equivalence of the Lp-norm of a discrete function with the weighted
ℓp-norm of the vector collecting its nodal values (see, e.g., [8, Lemma 3.4]), for hz
being the diameter of the nodal patch associated with z ∈ Nh, we see that

∥Ih[|nj
h|

2]− 1∥L1(Ω) ≲
∑
z∈Nh

hdz
(
|nj

h(z)|
2 − 1

)
≤ τ2n

∑
z∈Nh

hdz

j−1∑
i=0

ℓi∑
ℓ=0

|ti,ℓh (z)|2

≲ τ2n

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2L2(Ω).

Combining (4.8) with (6.10) leads to

∥Ih[|nj
h|

2]− 1∥L1(Ω) ≲ C∗τ
2
n

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2∗ ≤ C∗τnE
h[s0h,n

0
h],

which turns out to be (4.9).
It remains to estimate ∥nj

h∥L∞(Ω). Let us consider first the weighted H1-metric
in (4.5). Using a global inverse estimate (see, e.g., [8, Remark 3.8]) and the Poincaré
inequality, we obtain

∥nj
h∥

2
L∞(Ω) − 1 = max

z∈Nh

|nj
h(z)|

2 − 1 ≤ τ2n

j−1∑
i=0

ℓi∑
ℓ=0

max
z∈Nh

|ti,ℓh (z)|2

≲ τ2n

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2L∞(Ω) ≲ τ2n h
2−d
min | log hmin|2

j−1∑
i=0

ℓi∑
ℓ=0

∥ti,ℓh ∥2H1(Ω)

≲ τ2n h
2−d−α
min | log hmin|2

j−1∑
i=0

ℓi∑
ℓ=0

∥hα/2∇ti,ℓh ∥2L2(Ω)

≤ τn h
2−d−α
min | log hmin|2Eh[s0h,n

0
h].

Therefore, (4.11) is satisfied if τn h
2−d−α
min | log hmin|2 ≤ C∗ with C∗ arbitrary. For the

L2-metric (4.4), the result follows analogously, provided that τn h
−d
min ≤ C∗.
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