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aDepartment of Civil, Chemical, Environmental and Materials Engineering - DICAM, University of Bologna, 40136 Bologna, 
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bInstitute of Smart Materials and Structures, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China

Abstract

Seismic surface wave mitigation using metamaterials is a growing research field propelled by intrinsic theoretical
value and possible application prospects. Up to date, the complexity of site conditions found in engineering
practice, which can include layered stratigraphy and variable water table level, has been discarded in the
development of analytical frameworks to favor the derivation of simple, yet effective, closed-form dispersion
laws. This work provides a further step towards the analytical study of “seismic metasurfaces” in real site
conditions considering the propagation of Rayleigh waves through a layered porous substrate equipped with
local resonators. To this aim, we combine classical elasticity theory, Biot’s poroelasticity and an effective
medium approach to describe the metasurface dynamics and its coupling with the poroelastic substrate. The
developed framework naturally includes simpler configurations like seismic metasurfaces atop homogeneous dry
or saturated soils. Apart from known phenomena like wave-resonance hybridization and surface wave band
gaps, we predict the existence of an extended frequency range where surface waves are attenuated due to energy
leakage in the form of slow pressure waves, as a result of the fluid-solid interaction. Besides, we demonstrate that
the surface wave band-gap and the related surface-to-shear wave conversion is robust to variations in the water
table level. Conversely, when the dry and saturated layers have different material parameters, for example, due
to different porosity ratios, the surface-to-shear wave conversion can be accompanied by the excitation of higher-
order surface modes, which remain channeled below the metasurface. These analytical findings, augmented and
confirmed by numerical simulations, evidence the importance of accounting for fluid-solid interaction in the
dynamics of seismic metasurfaces.

Keywords: Metamaterials, Rayleigh waves, Biot’s theory, fluid-solid interaction, band gaps

1. Introduction

In the last couple of decades, studies on artificial media endowed with a periodic structure or local resonant
elements, also known as metamaterials, have fostered the development of novel devices for electromagnetic,
acoustic and elastic waves control across different length and frequency scales [1, 2, 3]. Despite their difference
in size and target frequency, all metamaterials exploit a purposely designed internal architecture to manipulate5

the dispersive properties of waves and achieve unique dynamic features, like frequency band gaps [4, 5], enhanced
waveguiding abilities [6, 7] and high energy absorption [8, 9].

When low-frequency elastic waves are of interest, as in the context of civil engineering, the use of locally
resonant materials can be particularly appealing since they allow the mitigation of vibrations with compact, i.e.,
sub-wavelength, structures. Following this idea, meter-size resonant devices either integrated into the building10

foundations [10, 11, 12, 13], or buried around target structures [14, 15, 16], have been recently proposed as
an alternative solution for ground-borne vibration reduction and seismic isolation. When the resonators are
arranged along the soil surface, to form a “metabarrier” [16] or “seismic metasurface” [17], they can be designed
to impede the propagation of surface waves. In particular, the mitigation of vertically polarized surface waves,
i.e., Rayleigh-like waves, is of primary interest since they carry the most significant portion of the elastic energy15

which propagates along the surface. The ability of mitigating their amplitude stems from the hybridization
between the surface motion and the resonator localized modes, which results in the generation of surface wave
band gaps around the resonator natural frequencies [18, 19]. The hybridization can also be exploited to tune
phase velocities and the wavelengths of propagating waves thus offering further possibilities for surface wave
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control. These unique features have been predicted and observed in natural and artificial metasurfaces, such as20

forest of trees [20, 21], rows of piles [22], resonant wave barriers [16] and “metawedges” [23].
Notwithstanding their pioneering contributions, which have greatly promoted the development of seismic

metasurfaces, existing researches have considered the metasurface substrate as a single-phase homogeneous
elastic medium, a simplistic model which is not always sufficient to capture the complexity of soils. Indeed,
soils are typically characterized by a horizontal stratification accompanied by the presence of fluids, generally25

water, which can saturate some of the layers. As both the stratigraphy and the presence of water in the soil
modify the propagation of bulk and surface waves, it is of interest to investigate the metasurface behavior in
such a context.

This work, in particular, aims at unveiling the dynamics of a metasurface coupled to a half-space which is
fully saturated up to a certain depth, thus modeling the presence of different water table levels. To this purpose,30

the soil beneath the metasurface is modeled as a dry porous layer coupled to a fully saturated half-space. While
the dry elastic layer supports a pressure (P) and a shear (S) bulk wave, according to the Biot’s theory, the
saturated porous medium supports three types of bulk waves: two pressure waves and a shear wave [24, 25].
The fast pressure wave (P1 wave) and the shear wave are almost analogous to the P and S waves of the dry
medium, while the slow pressure wave (P2 wave) is associated with a diffusion-type process [26]. Hence, in35

contrast to a single-phase elastic half-space, the dynamics of surface waves propagating in such a porous layered
system involves the interaction of multiple body waves. This interaction is expected to provide peculiar features
to the dynamics of metasurfaces which is today not yet described. Therefore, the purpose of this work is to
develop a theoretical framework to discuss the dynamics of a seismic metasurface composed of resonators placed
on a porous medium and considering part of it fully saturated. In particular, our main interest is focused on40

the determination of the dispersive properties of Rayleigh-like waves, including band gaps, mode-conversion
phenomena and wave attenuation, and their dependence on some porous medium fundamental parameters like
tortuosity, viscosity and water table.

The paper is organized as follows. Without loss of generality, we model the metasurface as an array of
vertical mass-spring resonators attached to a porous half-space with a given water table level and derive the45

dispersion equation of Rayleigh-like waves in Section 2. This derivation naturally allows the description of
two simpler configurations: the metasurface on homogeneous dry and saturated half-spaces, respectively. The
derived analytical dispersion equation is validated via comparisons with Finite Element (FE) solutions in Section
3. In Section 4, we discuss the effect of tortuosity, viscosity and water table level on dispersion curves. We
also adopt the FE model to validate the novel phenomena predicted by the dispersion equation. Finally, some50

concluding remarks are provided in Section 5.

2. Analytical framework

This section aims at deriving the surface-wave dispersion equation for a metasurface laying on a porous
medium with a given water table level. To this end, we restrict our investigation to a plane-strain problem,
considering a bi-layer system, i.e., a dry soil layer over a fully saturated half-space. Next, we prove that the55

obtained dispersion relation reduces to those of two simpler configurations (i) a dry porous half-space and (ii) a
fully saturated half-space, when the water table level is at infinite depth or at the soil surface, respectively. We
remark that our interest is on low-frequency waves, as per the seismic context, and thus the metasurface can
be modeled through an effective medium approach and the saturated soil via classical homogenized theories, as
the wavelengths involved are larger than the resonator dimensions and soil heterogeneity, respectively.60

2.1. A metasurface over a porous half-space with generic water table level

The configuration of interest is shown in Fig. 1, which schematically represents a porous half-space coupled
with a metasurface. The upper part of the half-space is a dry layer of thickness h, in which the wave propagation
can be properly described by the classical elasticity theory [25, 27]. Conversely, for z > h the porous medium
is fully saturated due to the presence of water (see the representative volume element (RVE) shown in the65

inset of Fig. 1). Within this medium, fluid-solid interaction phenomena arise, which can be treated via Biot’s
theory [28, 29] assuming an RVE characteristic length much smaller than the wavelength of interest, as per our
focus on low-frequency seismic wave propagation. For the metasurface, we consider the canonical configuration
composed of mass-spring resonators, arranged in an array with lattice distance D [19, 30]. For the porous
substrate, we consider the generic configuration of a dry layer with mechanical parameters possibly different70

from the ones of the skeleton of the saturated half-space. Indeed, our analysis will mainly focus on the simpler
scenario where the dry layer and the skeleton of the saturated half-space have the same mechanical properties.
In what follows we detail the theoretical derivation to obtain the metasurface dispersion relation.
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Fig. 1. Schematic of a seismic metasurface on a porous layered medium.

2.1.1. Wave motion in the dry layer

In the absence of body forces, the governing equation of motion in the dry porous layer can be written as:75

(λ1 + µ1)∇(∇ · u) + µ1∇2u = ρd
∂2u

∂t2
, (1)

in which λ1, µ1 are the skeleton Lamé constants, u = [ux, uz] is the displacement vector, ∇ = (∂/∂x, ∂/∂z) is
the gradient operator, and ρd = (1 − φ1)ρs1 is the dry mass density, where φ1 is the porosity and ρs1 is the
density of the grains. The components of the displacement vector, according to the Helmholtz decomposition
u = ∇Φ +∇×Ψ, can be expressed as:

ux =
∂Φ

∂x
− ∂Ψy

∂z
, uz =

∂Φ

∂z
+
∂Ψy

∂x
(2)

in which Φ is a scalar potential and Ψy is a component of the vector potential Ψ. Substituting Eq. (2) into Eq.80

(1) yields two uncoupled equations:

∇2Φ =
1

C2
P

∂2Φ

∂t2
, ∇2Ψy =

1

C2
S

∂2Ψy

∂t2
(3)

in which CP and CS represent the velocity of pressure and shear waves in the dry soil, namely:

CP =

√
λ1 + 2µ1

ρd
, CS =

√
µ1

ρd
(4)

Assuming harmonic waves propagating along the x direction with angular frequency ω and wave number k,
the potential functions can be chosen as:

Φ =
(
A1e

−pz +B1e
pz
)
ei(ωt−kx), (5a)

Ψy =
(
A2e

−qz +B2e
qz
)
ei(ωt−kx) (5b)

where A1, A2, B1, B2 are the amplitudes of the potentials, and the wave numbers components along the z-axis
are expressed as:

p =

√
k2 − ω2

C2
P

, q =

√
k2 − ω2

C2
S

. (6)

Substituting Eq. (5) into Eq. (2) yields the displacement components as:

ux =
[
−ik

(
A1e

−pz +B1e
pz
)

+ q
(
A2e

−qz −B2e
qz
)]
ei(ωt−kx) (7a)

uz =
[
−p
(
A1e

−pz −B1e
pz
)
− ik

(
A2e

−qz +B2e
qz
)]
ei(ωt−kx) (7b)
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from which the stress components, according to Hooke’s law, can be derived as follows:

σzz = λ1
∂ux
∂x

+ (λ1 + 2µ1)
∂uz
∂z

= µ1

[(
k2 + q2)(A1e

−pz +B1e
pz
)

+ 2ikq
(
A2e

−qz −B2e
qz
)]
ei(ωt−kx)

(8a)

τzx = µ1

(
∂ux
∂z

+
∂uz
∂x

)
= µ1

[
2ikp

(
A1e

−pz −B1e
pz
)
−
(
k2 + q2

) (
A2e

−qz +B2e
qz
)]
ei(ωt−kx)

(8b)

2.1.2. Wave motion in the saturated half-space85

Bulk waves in a saturated medium. Following Biot’s theory [28, 29], the governing equations for wave motion
in the saturated soil can be expressed according to the u−w formulation, where u is the displacement vector
of the solid skeleton and w is the relative displacement of the fluid to the solid skeleton, as:

(λ2 + µ2 + α2M)∇(∇ · u) + µ2∇2u + αM∇(∇ ·w) = ρ
∂2u

∂t2
+ ρf

∂2w

∂t2
(9a)

αM∇(∇ · u) +M∇(∇ ·w) = ρf
∂2u

∂t2
+m

∂2w

∂t2
+ b

∂w

∂t
(9b)

where λ2 and µ2 are the Lamé constants of the skeleton, ρf is the fluid mass density, and ρ is the total mass
density expressed as ρ = φ2ρf + (1 − φ2)ρs2, where φ2 and ρs2 are the porosity and grain density of the half-
space. The parameter m = τ∞ρf/φ2 describes the relation between the fluid density and the geometry of the
pores, where τ∞ is the tortuosity, usually determined via experiments [27]. The parameter b = η/κ describes
the viscous coupling between the solid and the fluid, with η being the fluid viscosity and κ the permeability.
The parameters α and M account for the compressibility and coupling modulus, respectively:

α = 1− Kd

Ks
;

1

M
=

(
α− φ2
Ks

+
φ2
Kf

)
(10)

where Kd is the drained bulk modulus of the solid skeleton and is given by Kd = λ2 + 2µ2/3, Ks is the bulk
modulus of solid grains and Kf is the bulk modulus of the fluid phase. Typically, the parameter α is bounded90

by φ2 ≤ α ≤ 1 and 0 ≤M < +∞ [25].
Similarly to the procedure followed for the dry layer, we consider a Helmholtz decomposition of the displace-

ment fields as:
u = ∇Φs +∇×Ψs, w = ∇Φf +∇×Ψf (11)

where Φs and Ψs represent the scalar potential and the vector potential of the solid, respectively, while Φf and
Ψf are the potentials associated with the fluid motion relative to the solid. A substitution of Eq. (11) into Eq.
(9) allows to obtain the uncoupled governing equations of motion for P waves:

(λ2 + 2µ2 + α2M)∇2Φs + αM∇2Φf = ρ
∂2Φs

∂t2
+ ρf

∂2Φf

∂t2
(12a)

αM∇2Φs +M∇2Φf = ρf
∂2Φs

∂t2
+m

∂2Φf

∂t2
+ b

∂Φf

∂t
(12b)

and for S waves:95

µ2∇2Ψs = ρ
∂2Ψs

∂t2
+ ρf

∂2Ψf

∂t2
(13a)

ρf
∂2Ψs

∂t2
+m

∂2Ψf

∂t2
+ b

∂Ψf

∂t
= 0 (13b)

We consider the general solutions of Eqs. (12) and (13) in the following form [26]:

[Φs,Φf ]
T

= [As, Af ]
T
ei(ωt−kP ·r) (14a)

[Ψsy,Ψfy]
T

= [Bs, Bf ]
T
ei(ωt−kS ·r) (14b)

where Ψsy and Ψfy are the components of the vector potential Ψ, kP and kS are wave vectors of P wave and
S wave, respectively, and r is the position vector. Substituting Eq. (14a) into Eq. (12) yields the characteristic
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equation for P waves: [
ρω2 −

(
λ2 + 2µ2 + α2M

)
k2P ρfω

2 − αMk2P
ρfω

2 − αMk2P ρcω
2 −Mk2P

] [
As

Af

]
= 0 (15)

where ρc = m− ib/ω. Eq. (15) has two nontrivial solutions:

c2P1 =
ω2

k2P1

=
R1 +

√
R2

1 − 4R2

2R2
, c2P2 =

ω2

k2P2

=
R1 −

√
R2

1 − 4R2

2R2
(16)

where cP1 and cP2 denote the velocities of P1 and P2 bulk waves in the saturated soil, respectively, whereas
the coefficients R1 and R2 are expressed as:

R1 =
(λ2 + 2µ2 + α2M)ρc − 2αMρf +Mρ

(λ2 + 2µ2)M
, R2 =

ρρc − ρ2f
(λ2 + 2µ2)M

(17)

Similarly, substituting Eq. (14b) into Eq. (13) yields the characteristic equation for the S waves:100 [
ρω2 − µ2k

2
S ρfω

2

ρfω
2 ρcω

2

] [
Bs

Bf

]
= 0 (18)

which has one nontrivial solution:

c2S =
ω2

k2S
=

µ2

(ρ− ρ2f/ρc)
(19)

where cS represents the shear wave velocity in a saturated soil.
Surface waves in a saturated half-space. Given the bulk velocities in the fluid saturated medium (Eqs. (16,

19)), we can proceed in looking for surface wave solutions. For harmonic surface waves traveling in the x
direction and decaying exponentially in the z direction, the four potential functions in the saturated half-space105

can be expressed as [31]:

Φs =
(
Ā1e

−Q1z + Ā2e
−Q2z

)
ei(ωt−kx) (20a)

Φf =
(
Ā1δ1e

−Q1z + Ā2δ2e
−Q2z

)
ei(ωt−kx) (20b)

Ψsy = Ā3e
−Q3zei(ωt−kx) (20c)

Ψfy = Ā3δ3e
−Q3zei(ωt−kx) (20d)

where Āj (j = 1, 2, 3) are the corresponding amplitudes, δi (i = 1, 2, 3) are the ratios of the potential functions
amplitudes as:

δ1 =
Af1

As1
=
ρfc

2
P1 − αM

M − ρcc2P1

(21a)

δ2 =
Af2

As2
=
ρfc

2
P2 − αM

M − ρcc2P2

(21b)

δ3 =
Bf

Bs
= −ρf

ρc
(21c)

and the wave numbers are expressed as:

Q1 =
√
k2 − k2P1, Q2 =

√
k2 − k2P2, Q3 =

√
k2 − k2S (22)

By substituting Eq. (20) into Eq. (11), the displacements in the skeleton are expressed as:110

ux =
∂Φs

∂x
− ∂Ψsy

∂z
=
[
−ik

(
Ā1e

−Q1z + Ā2e
−Q2z

)
+ Ā3Q3e

−Q3z
]
ei(ωt−kx) (23a)

uz =
∂Φs

∂z
+
∂Ψsy

∂x
=
(
−Ā1Q1e

−Q1z − Ā2Q2e
−Q2z − ikĀ3e

−Q3z
)
ei(ωt−kx) (23b)
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whereas the relative displacements in the fluid are:

wx =
∂Φf

∂x
− ∂Ψfy

∂z
=
[
−ik

(
Ā1δ1e

−Q1z + Ā2δ2e
−Q2z

)
+ Ā3δ3Q3e

−Q3z
]
ei(ωt−kx) (24a)

wz =
∂Φf

∂z
+
∂Ψfy

∂x
=
(
−Ā1δ1Q1e

−Q1z − Ā2δ2Q2e
−Q2z − ikĀ3δ3e

−Q3z
)
ei(ωt−kx) (24b)

Assuming isotropic linear elastic constitutive relationships, the total stresses and the pore pressure can be
written as:

σzz = λ2
∂ux
∂x

+ (λ2 + 2µ2)
∂uz
∂z
− αpf

=
[
−
(
λ2 + α2M + αMδ1

)
k2P1 + 2µ2Q

2
1

]
Ā1e

−Q1zei(ωt−kx)

+
[
−
(
λ2 + α2M + αMδ2

)
k2P2 + 2µ2Q

2
2

]
Ā2e

−Q2zei(ωt−kx)

+ 2iµ2kQ3Ā3e
−Q3zei(ωt−kx)

(25a)

τzx = µ2

(
∂ux
∂z

+
∂uz
∂x

)
= µ2

[
2ikQ1Ā1e

−Q1z + 2ikQ2Ā2e
−Q2z − (2k2 − k2S)Ā3e

−Q3z
]
ei(ωt−kx)

(25b)

pf = −M
(
∂wx

∂x
+
∂wz

∂z

)
− αM

(
∂ux
∂x

+
∂uz
∂z

)
=
[
M(α+ δ1)k2P1Ā1e

−Q1z +M(α+ δ2)k2P2Ā2e
−Q2z

]
ei(ωt−kx)

(25c)

2.1.3. Dynamics of the resonator

As last element of our analytical derivation, we consider the governing equation of a mass-spring resonator
coupled to the free surface (z = 0) of the soil:

M0
d2Z

dt2
+K0 (Z + uz) = 0 (26)

where M0 is the resonator mass, K0 is the spring stiffness, Z is the vertical displacement of the resonator,115

and uz is the vertical displacement at the contact point of the resonator with the free surface. Assuming a
harmonic form ei(ωt−kx) of the dry layer and resonator displacements, we obtain an expression of the resonator
displacement amplitude Z as:

Z =
ω2
0

(ω2 − ω2
0)
uz (27)

where ω0 =
√
K0/M0 is the angular resonant frequency of the mass-spring system. Note that, in the scenario

of interest, surface waves wavelengths are much larger than the characteristic resonator spacing D. Hence, we120

can approximate the normal stress σzz exerted by the resonator at the surface (z = 0) as the elastic force of the
resonator over the footprint area A:

σzz(z = 0) = σ̄zz =
K0

A
(Z + uz) (28)

For a quadratic lattice arrangement, A is equal to D2. Nonetheless, such effective medium approach is valid
whether or not the resonators arrangement is regular [18], provided that the appropriate average footprint area
A is used.125

2.1.4. Dispersion relation

Equipped with a description of the wave motion in the dry layer, saturated half-space, and resonators array,
the surface wave dispersion relation can be obtained by enforcing the boundary conditions at the surface of the
soil z = 0:

(σzz)1 = (σ̄zz)1 (29)

(τzx)1 = 0 (30)

6



and at the interface of the two layers z = h:

(σzz)1 = (σzz)2 (31)

(τzx)1 = (τzx)2 (32)

(ux)1 = (ux)2 (33)

(uz)1 = (uz)2 (34)

(pf )2 = 0 (35)

in which the indexes 1 and 2 denote the upper layer and the bottom layer, respectively. As far as the interface130

between the dry and saturated layer is concerned, we here consider an open-pore scenario, i.e., a permeable
interface at z = h. Hence, while the stresses and displacements are continuous at the interface, the pore pressure
must vanish, as per Eq. (35).

Substituting Eqs. (7, 8, 23, 25, 27) into the seven boundary conditions (Eqs. 29-35) we obtain the system:



µ1

(
k2 + q2

)
+ pΩ 2iµ1kq + ikΩ µ1

(
k2 + q2

)
− pΩ

2iµ1kp −µ1

(
k2 + q2

)
−2iµ1kp

µ1

(
k2 + q2

)
e−ph 2iµ1kqe

−qh µ1

(
k2 + q2

)
eph

2iµ1kpe
−ph −µ1

(
k2 + q2

)
e−qh −2iµ1kpe

ph

−ike−ph qe−qh −ikeph
−pe−ph −ike−qh peph

0 0 0

−2iµ1kq + ikΩ 0 0 0
−µ1

(
k2 + q2

)
0 0 0

−2iµ1kqe
qh ξ1 ξ2 −2iµ2kQ3

−µ1

(
k2 + q2

)
eqh −2iµ2kQ1 −2iµ2kQ2 µ2

(
2k2 − k2S

)
−qeqh ik ik −Q3

−ikeqh Q1 Q2 ik
0 1 −γ 0





A1

A2

B1

B2

Ã1

Ã2

Ã3


= 0 (36)

in which,
ξ1 = (λ2 + α2M + αMδ1)k2P1 − 2µ2Q

2
1 (37a)

ξ2 = (λ2 + α2M + αMδ2)k2P2 − 2µ2Q
2
2 (37b)

γ = − (α+ δ2)k2P2

(α+ δ1)k2P1

(37c)

Ω =
M0ω

2
0ω

2

A(ω2 − ω2
0)

(37d)

Ãj = Āje
−Qjh, (j = 1, 2, 3) (37e)

Nontrivial solutions (k, ω) of Eq. (36) are found by imposing the determinant of the 7× 7 matrix equal to135

zero, leading to the metasurface dispersion equation. As the closed-form solution of the system is not easily
accessible, the Newton-Raphson method [32] is adopted in this paper to numerically compute the roots.

2.2. Limit cases: kh→∞ and kh→ 0

If the water table is sufficiently far away from the surface wave motion, namely in the short-wavelength
regime kh → ∞, the layered half-space can be reduced to a homogeneous single-phase soil by setting B1 =
B2 = Ã1 = Ã2 = Ã3 = 0, so that Eq. (36) reduces to:[

µ1(k2 + q2) + pΩ 2iµ1kq + ikΩ
2ikp −(k2 + q2)

] [
A1

A2

]
= 0 (38)

7



Nontrivial solutions of Eq. (38) yields the dispersion relation for a metasurface laying on a single-phase elastic
substrate and corresponds to equation 2 in Ref. [19]:(

2− c2

C2
S

)2

− 4

√(
1− c2

C2
P

)(
1− c2

C2
S

)
=

c2

C2
S

Ω

µ1k

√
1− c2

C2
P

(39)

Conversely, if the water table approaches the free surface or similarly in the long-wavelength limit (i.e.,
kh→ 0), Eq. (36), after some algebra, reduces to:[

0 ∆12

∆21 ∆22

] [
y1

y2

]
= 0 (40)

in which the vectors y1 = [A1, A2, B1, B2]T and y2 = [Ã1, Ã2, Ã3]T , and where:

∆12 =

 −ξ1 +Q1Ω −ξ2 +Q2Ω 2iµ2kQ3 + ikΩ
2ikQ1 2ikQ2 −2k2 + k2S

1 −γ 0

 (41a)

∆21 =


µ1

(
k2 + q2

)
+ pΩ 2iµ1kq + ikΩ µ1

(
k2 + q2

)
− pΩ −2iµ1kq + ikΩ

2iµ1kp −µ1

(
k2 + q2

)
−2iµ1kp −µ1

(
k2 + q2

)
−ik q −ik −q
−p −ik p −ik

 (41b)

∆22 =


0 0 0
0 0 0
ik ik −Q3

Q1 Q2 ik

 (41c)

It is possible to show that the set of homogeneous equations ∆12y2 = 0 corresponds to the boundary
conditions at z = 0, i.e., σzz = σ̄zz, τzx = 0 and pf = 0 for a fully saturated half-space. This set of boundary140

conditions implicitly assumes that the whole resonator stress is discharged on the poroelastic medium skeleton,
in other words, we assume that the open-pore condition is not influenced by the presence of the resonators. To
obtain the nontrivial solutions of ∆12y2 = 0, we impose:

|∆12| =

∣∣∣∣∣∣
−ξ1 +Q1Ω −ξ2 +Q2Ω 2iµ2kQ3 + ikΩ

2ikQ1 2ikQ2 −2k2 + k2S
1 −γ 0

∣∣∣∣∣∣ = 0 (42)

which leads to the Rayleigh-wave dispersion of a metasurface placed on a saturated porous half-space. The
equation above coincides with equation 16 in Ref. [31] when Ω = 0, which provides the dispersion equation of145

Rayleigh waves in a bare saturated half-space.

3. Model and Validation

Before proceeding with any analytical investigations related to the influence of water table level and Biot’s
parameters on the dynamics of the metasurface, it is necessary to validate the obtained dispersion relation
(Eq. 36) via numerical simulations. To this purpose, we develop a 2D plane-strain FE model, schematized in150

Fig. 2a, using Comsol Multiphysics. The software has a built-in u − pf formulation to model the poroelastic
fluid-solid interaction which is equivalent, under harmonic wave conditions [33], to the u −w adopted on this
work. The equivalence between the two formulations is proved in Appendix A. Following the approach in Ref.
[34], we model the resonator in the unit cell using a point mass and a truss element (see Fig. 2a). The unit
cell has a width D = 1 m and a depth d = h + 6λR, in which h is the water table and λR = 2πcR/ω0 is the155

Rayleigh wavelength at the resonant frequency of the metasurface ω0 (cR is the Rayleigh wave velocity in the
saturated layer). Bloch boundary conditions are imposed on the left and right edges of the cell to simulate an
infinite array of resonators along the wave propagation direction. Clamped boundary conditions are applied to
the bottom edge to avoid undesired rigid motions. The Young’s modulus of the truss is E = M0ω

2
0/S, where

S is the cross-sectional area of the truss. The substrate domain is discretized into quadrilateral elements with160

quadratic Lagrange shape functions. The minimum mesh dimension is smaller than D/15 and is sufficient to
obtain a convergent solution at the highest frequency of interest.

Assuming the mechanical parameters in Table 1 and an ideal fluid with viscosity η = 0, we calculate
numerically (as solution of Eq. 36) and via FE the dispersion curves for vertically polarized surface waves in a
bi-layer system, with a water table at h = 20 m (see Fig. 2a). Note that FE surface wave solutions are selected165

from the whole set of Bloch modes utilizing the post-processing technique in Ref. [35].
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A first insight on the main features of the analytical dispersion curve suggests that the presence of the water
table has minor effects on the coupling between Rayleigh waves and the metasurface (see Fig. 2b). In fact,
similarly to what observed in a fully elastic half-space, the metasurface resonance couples with the Rayleigh
mode, showing an “avoided-crossing” behavior which results in a surface wave band-gap. This dynamics is170

confirmed by the FE solutions which agree well with the analytical results.
We also display the displacement field in the soil and the pressure field in the fluid for a representative mode

shape extracted at k = 0.35 rad/m along the lowest order branch. The displacement field is confined in the
vicinity of the free surface; similarly, the pore pressure is concentrated near the water table. Again, the FE
solution (Fig. 2c) agrees well with the associated analytical prediction (Fig. 2d). An extended investigation on175

the metasurface dispersive features and on their dependence on key porous mechanical parameters and water
table level is conducted in the next section, leveraging the validated analytical framework.

Fig. 2. Comparative analytical vs FEM study. (a) Unit cell used for dispersion relation calculations. (b) Dispersion curves for a
bi-layer system coupled with the metasurface: comparison between the analytical formulation (denoted by solid lines) and the FE
model (denoted by circles). (c) FE and (d) analytical mode shapes computed at k = 0.35 (highlighted with a star in Fig. 2b). The
colormap denotes the normalized pore pressure.

Table 1: Mechanical parameters of metasurface and poroelastic substrate. Some of the poroelastic parameters are taken from Ref.
[36].

Parameter Value

Resonator mass, M0 1000 kg
Angular resonant frequency, ω0 15 rad/s
Lattice spacing, D 1 m
Porosity, φ1, φ2 0.25
Tortuosity, τ∞ 2
Permeability, κ 10−11 m2

Viscosity of fluid, η 0 ∼ 10−4 Pa·s
Density of grains, ρs1, ρs2 2533 kg/m3

Mass density of fluid, ρf 1000 kg/m3

Bulk modulus of fluid, Kf 2 GPa
Bulk modulus of grains, Ks 222.2 MPa
Young modulus of skeleton, E1, E2 20 MPa
Poisson ratio of skeleton, ν1, ν2 0.35

4. Results

In this section, two scenarios of interest are investigated, namely, a metasurface laying on a saturated
half-space (i.e., water table at h = 0) and a metasurface laying on a porous layered system (i.e., water table at180

h 6= 0). The study of the first configuration aims at: (i) singling out the influence of two key parameters, namely
tortuosity and viscosity, on the surface waves dispersion properties; (ii) unveiling a surface wave attenuation
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mechanism germane of a saturated porous substrate. The analyses on the dry-saturated layered configurations
are instead conducted to understand the effect of the water table level on the wave conversion mechanism of
Rayleigh waves.185

4.1. Saturated porous half-space

In absence of the metasurface, a single Rayleigh mode can be found in a saturated poroelastic half-space
modeled according to Biot’s theory [31]. When an ideal fluid is considered, this surface mode is purely prop-
agative, i.e., characterized by a null attenuation, non-dispersive, and its velocity of propagation can be found
by solving Eq. (42) for Ω = 0. Variations of tortuosity and/or fluid viscosity within typical ranges for saturated190

porous soils have a minor influence on the dispersive properties of Rayleigh waves. Tortuosity, in fact, is a
purely geometrical factor that describes the microscopic geometry of the skeleton and the distribution of pores;
high values of tortuosity reflect a complex wave path through the porous material, which in turn yields a lower
velocity of propagation of the bulk P2 wave only. Fluid viscosity, instead, causes large energy dissipation and
dispersion of P2 waves, whereas marginally affects P1 and S waves.195

With these premises, we can now investigate the effect of tortuosity and viscosity on the dispersive properties
of the metasurface. At first, we calculate the metasurface dispersion properties considering an ideal fluid, i.e.,
null viscosity, and keeping the other parameters the same as those in Table 1. The real dispersion curve for two
distinct values of tortuosity, (τ∞ = 1.2− 2.8), selected within the characteristic range of values of tortuosity in
soils (1 ∼ 3 [36]) are shown in Fig. 3a, b. The hybridized Rayleigh-wave modes, which are solutions of Eq. (42),200

are marked with blue circles; pressure (ω = cP1k, ω = cP2k) and shear (ω = cSk) wave solutions are drawn
as dashed lines, red and black, respectively. Rayleigh waves in the bare saturated half-space are reported, as
reference, with continuous black line. As observed in single-phase elastic medium, the local resonances couple
with the Rayleigh mode yielding two repelling branches, which separate around the metasurface resonance
leaving a surface wave band-gap. The cut-on frequency of the upper branch, laying at the intersection between205

the upper hybrid mode and the shear wave line (see Fig. 3a), marks the upper edge of the band gap.
Through comparison between Figs. 3a and b, we observe that the tortuosity has no significant influence on

the hybridization phenomenon. Conversely, as anticipated in the premises, a major change in the phase velocity
of the P2 wave is observed. In particular, it is possible to calculate a critical value of tortuosity, τ̃∞ = 2.4 for the
considered example, for which the phase velocities cP2 and cS coincide. The value τ̃∞ marks the occurrence of210

a more complex scenario, which characterizes all the porous substrates with τ∞ > τ̃∞, or equivalently cP2 < cS .
In these cases, in addition to the hybridization band gap, we observe a frequency range where cP2 < c < cS
(see light blue region highlighted in Fig. 3b). Within this frequency range surface modes are characterized by
complex wavenumbers Q2, (cf. potential functions assumed in Eq. (20)). As a result, part of the surface wave
energy is leaked as a P2 wave within the bulk. Note that the extension of this frequency range increases with215

an increase in tortuosity (see Fig. 3c). The energy leakage results in a non-null attenuation (ki) of the surface
wave along the propagation direction (see Fig. 3d)
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Fig. 3. Influence of tortuosity τ∞ on the propagation of surface waves in a fully saturated soil system coupled with a metasurface:
(a) Dispersion curve for τ∞ = 1.2. (b) Dispersion curve for τ∞ = 2.8. (c) Band gap width (grey box) and P2-wave leakage (light
blue box) for different values of tortuosity. (d) Rayleigh wave attenuation due to P2-wave leakage for τ∞ = 2.8.

To evidence this novel feature introduced by the fluid-solid interaction, we carry out FE numerical simulations
considering a fully saturated porous half-space, i.e., a water table level h = 0. A metasurface with 300 resonators,
arranged as in Fig. 4, is placed on the free surface. The incident surface waves are excited by a harmonic point220

load sufficiently far away from the metasurface. Perfectly Matched Layers (PMLs) are applied to the vertical
and bottom edges of the model to mimic the half-space and avoid unwanted reflected components.

Fig. 5a shows the normalized displacement wavefield produced by an incident Rayleigh wave with angular
frequency ω = 15.5 rad/s in a saturated half-space characterized by a value of tortuosity τ∞ = 1.2. As expected,
the surface wave is converted to a downward shear bulk waves, following the prediction given by the dispersion225

curve in Fig. 3a. The same phenomenon can be observed for the half-space with a tortuosity τ∞ = 2.8, as
shown in Fig. 5b.

Conversely, the propagation of P2 waves occurs only in saturated substrates with τ∞ > 2.4, as evidenced by
comparing the normalized pore pressure fields in Fig. 6a and 6b, calculated via harmonic simulations at ω = 18
rad/s for two substrates with τ∞ = 1.2 and τ∞ = 2.8, respectively.230
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Fig. 4. Schematic of the model geometry.

Fig. 5. Normalized total displacement of the skeleton for a harmonic simulation at ω = 15.5 rad/s. (a) τ∞ = 1.2. (b) τ∞ = 2.8.
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Fig. 6. Normalized pore pressure for a harmonic simulation at ω = 18 rad/s. (a) τ∞ = 1.2. (b) τ∞ = 2.8.

We now move our investigation to the effects of fluid viscosity on the metasurface dispersive properties. As a
first example, we select a value of tortuosity τ∞ = 2.8 and two values of viscosity η = [10−6, 10−2] Pa·s, keeping
unchanged the other mechanical parameters (i.e., data in Table 1). By comparing the real dispersion curves of
the two viscous cases displayed in Fig. 7a, no significant changes are found in the hybridization phenomenon.
Conversely, as regards to the attenuation curve (ki vs. ω) in Fig. 7b, we observe that the absolute value of ki is235

larger for the lowest chosen value of viscosity (η = 10−6 Pa·s), except for frequencies close to ω0, where a larger
viscosity results in a larger attenuation. To explain this counter-intuitive result, we compare the variation of ki
with η for hybrid Rayleigh waves and shear waves at a given angular frequency. While for the Rayleigh wave
we use the dispersion relation Eq. (42) to compute ki for different values of η, for the S wave, we derive the
following closed-form relation:240

ki = −
ρ2f
2µ2

ω

kr

ω2ηκ

(τ∞κωρf/φ)
2

+ η2
(43)

which is obtained via algebraic manipulation of Eq. (19).
Figure 7c reports the variation of ki vs. η for ω = 10 rad/s where the solutions for S waves are drawn as a

solid line, and those for hybrid Rayleigh waves are marked with circles. Interestingly, surface waves travelling
within the metasurface and shear waves present a similar ki vs η trend, with a maximum attenuation (i.e., a
minimum value of ki) found at a given and finite value of viscosity, here labelled as ηmax. For S waves the
viscosity value which minimizes Eq. (43) for a given angular frequency ω is:

ηmax,S(ω) =
τ∞κρf
φ

ω (44)

Conversely, for hybrid Rayleigh waves the viscosity ηmax,hR(ω) is found via numerical solutions of Eq. (42),
performing a larger parametric study in the range η = [0 ∼ 1.0 × 10−4] Pa·s. The results of this parametric
analysis are displayed in Fig. 7d, where ηmax,hR(ω) values are marked by colored dots, together with values
of ηmax,S(ω) marked as a solid line. Note that S and hybrid Rayleigh waves show similar trends for the whole245

frequency range of interest [0 ∼ 25] rad/s, apart from frequencies close to resonance ω0 where ηmax,hR(ω) is
not bounded, i.e., the larger the viscosity the larger the attenuation. Such a result can be ascribed to the
localization of wave energy at the free surface, which in turn maximizes the wave attenuation for larger values
of viscosity.
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Fig. 7. Influence of the fluid viscosity η (τ∞ = 2.8): (a) Real dispersion curves for η = [10−6, 10−2] Pa·s. (b) Attenuation curves
for η = [10−6, 10−2] Pa·s. (c) Shear and Rayleigh wave attenuation vs. fluid viscosity at ω = 10 rad/s. (d) Fluid viscosity (ηmax)
which maximizes S and Rayleigh wave attenuation at given frequency ω. The solid line denotes the analytical solutions for S waves,
while colored dots indicate the numerical solutions for hybrid Rayleigh waves. The color map indicates the corresponding value of
attenuation.

4.2. Layered porous soil250

We now move our investigation to a substrate stratigraphy with a water table level h located at a given
and finite depth from the soil surface. For the sake of simplicity, we restrict our analysis to the case of an ideal
fluid, having in mind that a non-null value of viscosity would mainly affect the imaginary part of the dispersion
curve. Similarly, we conduct our investigation assuming a fixed value of tortuosity τ∞ = 2.8, and all the other
mechanical parameters as collected in Table 1.255

We start by considering a water table level h = 5 m, hence smaller than the Rayleigh wavelength in dry soil
at the main frequency of interest (i.e., λ = 24 m at ω0). As for the dispersion curve of a metasurface laying on
a fully saturated porous half-space, the fundamental branch bends off to approach the resonance frequency ω0

asymptotically (Fig. 8a), leaving a band gap where surface-to-bulk wave conversion is expected. The conversion
from Rayleigh waves to downward bulk waves (Fig. 8b) occurs with no significant reflections at the dry layer-260

saturated half-space interface, as evidenced by the wavefield obtained via FE harmonic simulations at ω = 15.1
rad/s. No significant changes are found when the water table is higher than the wavelength of interest, e.g.,
h = 30 m, as shown by the metasurface dispersion curve (Fig. 8c) and the associated harmonic simulations
(Fig. 8d).

A more complex scenario emerges when the presence of water is accompanied by a change in the mechanical265

properties between the dry and saturated layers. As an example, we here consider a variation in porosity
between the dry and saturated soil, a condition commonly found in real sites. In particular, we assume φ1 = 0.1,
φ2 = 0.25, τ∞ = 2.8, h = 30 m, keeping all the other parameters mechanical parameters as in Table 1. The
variation in porosity leads to different bulk wave velocities within the two layers. As a result, multiple surface
modes are found with increasing frequency. Such modes result from the interaction of P and S waves at both270

the traction-free boundary and the contact interface of the layers. Differently from the fundamental mode
which hybridizes with the metasurface resonances, we note that the second-order mode (see Fig. 8e) extends
below ω0, suggesting that the band gap and the related surface-to-shear conversion may vanish. To confirm this
result, we carry out numerical simulations at ω = 15.1 rad/s. The calculated wavefield, displayed in Fig. 8g,
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shows that incident Rayleigh mode initially redirected within the bulk, eventually evolves into a more complex275

wavefield reflected at the layer interface and then channeled below the metasurface as a higher-order surface
mode. This higher mode (see Fig. 8f), presents a null surface displacement, a feature already experimentally
and numerically observed for higher-order surface modes traveling through metasurfaces embedded in a dry
granular medium [37, 38].

Fig. 8. Influence of the water table and porosity: (a) Dispersion curves for h = 5 m, φ1 = φ2 = 0.25. (b) Normalized total
displacement of the skeleton for h = 5 m. (c) Dispersion curves for h = 30 m, φ1 = φ2 = 0.25. (d) Normalized total displacement of
the skeleton for h = 30 m. (e) Dispersion curves for h = 30 m, φ1 = 0.1, φ2 = 0.25. (f) The eigenmode at the star point (ω = 15.1
rad/s). (g) Normalized total displacement of the skeleton for h = 30 m. All simulations are at ω = 15.1 rad/s.

5. Conclusions and Discussions280

The recent surge of metamaterials [39] and metasurfaces developed for seismic wave control motivates the
derivation of analytical models [17, 21, 40] able to capture the interaction of bulk and surface waves with
structured and resonant surface devices. Within this context, our work provides a novel element of interest,
considering the propagation of surface waves through a porous layered saturated medium. This additional
complexity is required to better replicate soil configuration typically encountered in civil engineering practice,285

where the water table level can be located at a finite depth below the surface.
Our model is developed by exploiting a Biot’s description of the porous layer and an effective medium de-

scription of the metasurface dynamics, so as to derive the dispersive properties of Rayleigh waves propagating in
fully saturated or layered porous media equipped with surface mass-spring resonators. The obtained framework
allows unveiling the fundamental dynamics introduced by the fluid-solid interaction within the porous substrate.290

In particular, we found that within certain frequency ranges, the incident Rayleigh waves leak part of their
energy into the substrate as downward propagating slow pressure waves (P2), a mechanism that attenuates
the overall energy conveyed at the surface. This phenomenon is accompanied by the “classical” surface-to-
shear wave conversion, previously observed in metasurfaces over an elastic substrate, which occurs due to the
hybridization between Rayleigh waves and metasurface resonances. By leveraging our analytical framework,295

we investigated how these peculiar effects are influenced by some key mechanical parameters like tortuosity,
viscosity, and water table level. We found that energy leakage occurs only when the P2 wave velocity lower
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than S wave one. This condition is met only for specific value of tortuosity. Additionally, by exploiting the
proportionality between Rayleigh and S wave velocities, we found that the value of viscosity which maximizes
the surface wave attenuation changes for different frequency regime. In particular, we showed that this value of300

viscosity is bounded except for frequency close to the metasurface resonance.
Finally, we found that the water table level has a minor influence on both the surface wave band gap extension

and on the related surface-to-bulk waves conversion. Conversely, when the presence of water is accompanied
by a change in the porosity between the dry and the saturated layer, the converted S waves can be partially
back-reflected at the layer interface. The reflected waves can, in turn, excite higher-order surface modes that305

remain confined below the surface. These results suggest further investigations to define the existence and
extension of “screened/mitigated” zones for future realization of wave barriers and vibration mitigation systems
in layered saturated soils.

Overall, we expect that our theoretical framework will serve as a guide to better interpret data from ex-
perimental or numerical tests on engineered resonant structures, and by analogy, on forest of trees [41] or310

densely-built environments [42] interacting with surface ground motions in saturated soils.

Appendix A. Equivalence between u − w and u − pf Biot’s formulations

In this Appendix we show that the dispersion relation for Rayleigh waves existing in a Biot’s soil, obtained
in this work by using u−w variables as in Eq. (36), can be identically obtained by using the u− pf variables.

Let us recall the governing equations for a poroelastic medium. Assuming a time-harmonic variation of315

the skeleton displacement field u(x, t) = u(x)eiωt and of the relative fluid-solid displacement field w(x, t) =
w(x)eiωt, according to the Biot’s u − w formulation in Eq. (9), the governing equations for a poroelastic
medium reduce to:

(λ2 + µ2)∇(∇ · u) + µ2∇2u− α∇pf + ρω2u + ρfω
2w = 0 (A.1a)

−∇pf + ρfω
2u + ρcω

2w = 0 (A.1b)

where the pore pressure reads:
pf = −αM∇ · u−M∇ ·w (A.2)

From Eq. (A.1b) we can write the relative displacement w as:

w =
1

ω2ρc
(∇pf − ρfω2u) (A.3)

Substituting Eq. (A.3) into Eq. (A.1a) and taking the divergence of Eq. (A.1b), the governing equations, i.e.,
Eqs. (A.1a) and (A.1b), can be written as a function of u and pf [43]:

(λ2 + µ2)∇(∇ · u) + µ2∇2u + ω2

(
ρ−

ρ2f
ρc

)
u−

(
α− ρf

ρc

)
∇pf = 0 (A.4a)

ω2(ρf − αρc)∇ · u−∇2pf −
ρcω

2

M
pf = 0 (A.4b)

The Eqs. (A.4) provide the u− pf formulation of the Biot’s wave theory.
At this stage, by employing the Helmholtz decomposition of the potential functions (Eq. (11)) in Eqs. (A.2)320

and (A.4), we obtain: {[
λ2 + 2µ2 + α2M αM

αM M

]
∇2 + ω2

[
ρ ρf
ρf ρc

]}{
Φs

Φf

}
= 0 (A.5)

and,

µ2∇2Ψsy + ω2

(
ρ−

ρ2f
ρc

)
Ψsy = 0 (A.6)

Eqs. (A.5) and (A.6) describe the propagation of P and S bulk waves in a saturated medium, respectively. In
particular, Eq. (A.5) is identical to the characteristic equation of P waves obtained via u−w formulation (see
Eq. (15)). Similarly the scalar Eq. (A.6) yields the same root as Eq. (19) obtained via the u−w formulation.
Note that in the u − pf formulation only the Ψsy component of the vector potential is required to formulate325

the governing equation of shear waves.
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Exploiting the u − pf description of bulk waves in a poroelastic medium, we can tackle the derivation of
surface waves in a saturated half-space. For this purpose we assume the following potentials:

Φs =
(
Ā1e

−Q1z + Ā2e
−Q2z

)
ei(ωt−kx) (A.7a)

Φf =
(
Ā1δ1e

−Q1z + Ā2δ2e
−Q2z

)
ei(ωt−kx) (A.7b)

Ψsy = Ā3e
−Q3zei(ωt−kx) (A.7c)

By substituting Eqs. (A.7) into the elastic constitutive relations, we have:

σzz = (λ2 + α2M)∇2Φs + αM∇2Φf + 2µ2

(
∂2Φs

∂z2
+
∂2Ψsy

∂x∂z

)
=
[
−
(
λ2 + α2M + αMδ1

)
k2P1 + 2µ2Q

2
1

]
Ā1e

−Q1zei(ωt−kx)

+
[
−
(
λ2 + α2M + αMδ2

)
k2P2 + 2µ2Q

2
2

]
Ā2e

−Q2zei(ωt−kx)

+ 2iµ2kQ3Ā3e
−Q3zei(ωt−kx)

(A.8a)

τzx = 2µ2
∂2Φs

∂x∂z
+ µ2

(
∂2Ψsy

∂x2
− ∂2Ψsy

∂z2

)
= µ2

[
2ikQ1Ā1e

−Q1z + 2ikQ2Ā2e
−Q2z − (2k2 − k2S)Ā3e

−Q3z
]
ei(ωt−kx)

(A.8b)

pf = −M(α∇2Φs +∇2Φf )

= M
[
(α+ δ1)k2P1Ā1e

−Q1z + (α+ δ2)k2P2Ā2e
−Q2z

]
ei(ωt−kx) (A.8c)

The expressions of normal and tangential stresses as well as pore pressure obtained from the u−pf formulation,
are identical to the corresponding ones in Eq. (25) obtained via the u−w formulation. As a result, the use of
the u − pf formulation leads to the same characteristic equation, i.e. the dispersion relation described in Eq.
(36).330

We recognize that for our problem the two formulations of the Biot’s model are equivalent and no major
simplifications belong to one or the other formulation. Still, we remark that in scenarios where an impermeable
condition at the interface between the dry and the saturated layer is considered, the use of a u−w formulation
is advisable, since it naturally allows to impose a null normal component of the relative fluid displacement at
the impermeable interface [26].335
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[8] K. H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, C. Daraio, Composite 3d-printed metastructures for low-frequency and

broadband vibration absorption, Proceedings of the National Academy of Sciences 113 (30) (2016) 8386–8390.
[9] M. Yang, P. Sheng, Sound absorption structures: From porous media to acoustic metamaterials, Annual Review of Materials

Research 47 (2017) 83–114.360

[10] Z. Cheng, Z. Shi, Composite periodic foundation and its application for seismic isolation, Earthquake Engineering & Structural
Dynamics 47 (4) (2018) 925–944.

[11] F. Basone, M. Wenzel, O. S. Bursi, M. Fossetti, Finite locally resonant metafoundations for the seismic protection of fuel
storage tanks, Earthquake Engineering & Structural Dynamics 48 (2) (2019) 232–252.

[12] A. Franchini, O. S. Bursi, F. Basone, F. Sun, Finite locally resonant metafoundations for the protection of slender storage365

tanks against vertical ground accelerations, Smart Materials and Structures 29 (5) (2020) 055017.
[13] L. Xiao, F. Sun, O. S. Bursi, Vibration attenuation and amplification of one-dimensional uncoupled and coupled systems with

optimal metafoundations, Journal of Engineering Mechanics 146 (7) (2020) 04020058.
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