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1. Introduction

Since their introduction in Engle (1982) and Bollerslev (1986), Generalized AutoRegressive Conditional Heteroskedas-
ticity (GARCH) processes have been widely employed in Financial Econometrics, see e.g. Bollerslev et al. (2010). In the
GARCH original formulation, the conditional distribution of innovations was assumed to be Gaussian.

Even with Gaussian innovations, GARCH processes were shown to generate volatility-clustering, and, when stationary,
excess kurtosis in the stationary distribution, see e.g. Bollerslev et al. (1992). Other distributions are commonly used for
the innovations, starting with the Student t proposed in Bollerslev (1987); these distributions are usually symmetric with
fatter tails than the Gaussian. Despite its importance, the exact form of the h-step ahead prediction probability density
function (p.d.f.) for GARCH processes is however still unknown, see Andersen et al. (2006), page 811.

The present paper derives the analytical form of the multi-step-ahead prediction density of a Gaussian GJR GARCH(1,1)
process with asymmetric news-impact-curve, see Glosten et al. (1993), which nests the Gaussian GARCH(1,1). The derived
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formulae are valid for stationary as well as non-stationary GJR GARCH(1,1) processes. They also cover the case when the
intercept of the conditional variance equation equals zero, as in the RiskMetrics Value at Risk (VaR) calculations.

The form of the multi-step ahead GJR GARCH(1,1) prediction distribution is proved to be symmetric for any symmetric
distribution of the innovations. The closed form expression for Gaussian innovations shows that the prediction distribution
can be very far from Gaussian, calling into question the use of the Gaussian to approximate it, as in Lau and McSharry
(2010, page 1322). It is found, however, that for selected special cases such as the RiskMetrics one, the prediction
distribution is very close to the Gaussian.

The exact closed form of the prediction density can be used to compute exact tail probabilities and risk functionals
for single-period returns h-steps in the future, such as the Expected Shortfall. The paper also shows how to construct
uncertainty intervals for these functionals to reflect estimation uncertainty on the GARCH parameters.

The rest of the paper is organized as follows. Section 2 states the prediction problem and derives generic results on
the prediction p.d.f. for symmetric distributions of innovations. Section 3 states the main results; proofs of this section
are collected in the Appendix. Section 4 presents graphs of the prediction density and discusses estimation-uncertainty
regions for prediction functionals. Section 5 concludes.

The Supplementary Material contains a MATLAB implementation of the formulae for the Gaussian GJR GARCH(1,1)
prediction p.d.f. This paper follows the notational conventions in Abadir and Magnus (2002).

2. Problem definition

This section introduces notation for the reference GJR GARCH(1,1) process, it defines the prediction problem and
discusses the symmetry of the prediction density for symmetric distributions of the innovations, which is the most
common case in practice. Consider the asymmetric GJR GARCH(1,1)

Xt = Ov&¢, 0[2 =w-+ ott_1xf_1 + ,802_1, ar i =a+Alyo=a+ %(l —Gt) (2.1)
where « > 0, 8 > 0, w > 0, A > 0 are the parameters, collected in the vector § = (w, o, B, 1), 1y, <0 = %(1 — ¢¢) is the
indicator function for the event x; < 0, and ¢; := sgn(e;) = sgn(x;) is the sign of &; or of x;; these signs are the same
because o; > 0 almost surely. Process (2.1) contains several special cases: the GARCH(1,1) case is obtained for A = 0 and
the RiskMetrics method for computing the VaR corresponds to A = 0, w = 0, « = 0.06, 8 = 0.94, see Tsay (2010) section
7.2. The parameter vector 6 is assumed to be known; this assumption is relaxed in Section 4.

The sequence {&;} is assumed to be independent and identically distributed (i.i.d), with mean zero, variance 1, and with
Gaussian probability density function f.(v) == g(v?) = (271)_% exp(—v?/2). Hereafter f,(u) (respectively F,(u)) denotes
the p.d.f. (respectively the cumulative distribution function - c.d.f.) of random variable x evaluated at u.

The process is observed up to and including time t = 0, and the problem is to derive the p.d.f. of x, forh =1, 2,3, ...,
conditional on Xy and op, o9 > 0. In other words, the object of interest is the density fy, |x,.00(-|-, -), Which for simplicity is
abbreviated as f, (+).

In financial applications, the process x; is taken to represent single-period log returns on an asset bought at t — 1 and
sold at t, with x; = log p; — log p;_1, where p; is the asset price. The prediction density for x; derived in this paper hence
corresponds to a single-period return between t — 1 and ¢t, which for t > 1 implies buying an asset in the future and
selling it one period after.

This is different from a buy-and-hold strategy of buying an asset at time 0, say, and selling it at time t = 2,3, ...,
which correspond to multi-period returns of the type Z;l X; = log p; —log po. Multi-period returns are not covered by the
results in the present paper. Andersen et al. (2006, pp 811-812) discuss approximations to the prediction of multi-period
returns, and the possible use of the Central Limit Theorem on the sum Z}:] X; as proposed in Diebold (1988).

The map from x,_; to o, evaluated replacing otz_l by the unconditional variance (assuming it exists), is known as the
News Impact Curve, see Engle and Ng (1993). As it is well known, when A > 0 the News Impact Curve is asymmetric,
with a steeper slope for x;_; < 0. Despite the possible presence of an asymmetric News Impact Curve, the prediction
p.d.f. of x; is symmetric as long as the p.d.f. of g; is symmetric - a characteristic shared by most innovation densities used
in practice - as stated in the following proposition.

Proposition 2.1 (Symmetry). Let the p.d.f. of &; be symmetric with form f.(v) = g(v?) for some Riemann-integrable function
g : Ro+ — Ro 4, then the prediction density fi (u) of x; is symmetric, i.e. f, (u) = fi, (—u).

Proof. Because o; and ¢; are independent, the conditional density of x; given o; is fy, o, (ulr) = %fg[(%) by the usual
transformation theorem. By assumption f; (%) = g(;’—;), and hence fy o, (ulr) = %g(lr‘—;). This implies

00 [e'e) 00 1 2
fu (1) =f Sxt.o (U, T)dr =/ Setor (U)o (r)dr =f -g (u—z)fot(r)dr = fy(-u). O (2.2)
0 0 o T r

This result is in contrast with the expectation that the prediction density of x; could have asymmetries induced by
the asymmetric News Impact Curve alone, see Andersen et al. (2006) page 811. Proposition 2.1 applies as a special case

471



K.M. Abadir, A. Luati and P. Paruolo Journal of Econometrics 235 (2023) 470-483

0.8

0.6 |

0.4 1

0.2 1

0.125 0250 0375  0.500

¢
Fig. 1. Function B(&) of ¢ := w/(2012). Blue line: BlL)=—-¢+ V/¢% +2¢. Shaded area: region 8 > max(%,é(()), see Assumption 2.2.a and b. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

to the case of Gaussian errors &; considered in this paper, and implies that the prediction density derived below will be
symmetric.

In the specific case of Gaussian errors &, the prediction density f;, (u) is a normal variance mixture, see Barndorff-
Nielsen et al. (1982) for a definition, thanks to the argument used in the proof of Proposition 2.1. These distributions
are also called mixed-normal distributions, and they include the Student t and many other distributions in Econometrics,
such as the ones in Abadir and Paruolo (1997).

When A > 0, the signs ¢ := (¢1, ..., ¢h—1) of the innovations at times 1, ..., h — 1 are relevant for the conditional
variance equation in (2.1), where each ¢; takes values {—1, 1}.! The set of all possible signs is indicated by S, with 2"~!
elements, corresponding to all h — 1-vectors s = (s1, ..., Sp_1) with entries equal to £1.

The prediction p.d.f. is derived solving explicitly an integral similar to the one in (2.2). The integrand is expanded using
binomial expansions which are convergent under appropriate conditions on the 8 parameter, which needs to be not too
small relative to w and o*]z, as specified in Assumption 2.2.2 For instance 8 > 0.61803 is sufficient for Assumption 2.2 to
hold, which is usually satisfied in practice, see e.g. Bampinas et al. (2018).

In order to state Assumption 2.2, define ¢ := w/Za]z; note that ¢ is known at time 0 for given parameter values 6, and

that one has 0 < ¢ < % because o7 > w. Finally define the function B(g)=—¢+ V€2 + 2¢, which is increasing in ¢
and bounded by lim, _,) B(¢) = (~1+ V5)/2 ~ 0.61803.

Assumption 2.2 (Assumption on ). If > 0 then assume that:

a. for h = 3, one has 8 > E({);
b. for h > 3, one has 8 > max(5, B(¢)).

If @ = 0 no assumption is made on S.

Note that when w = 0, as in the RiskMetrics case, no restriction is imposed on §; the same applies for h = 2 step
ahead also when @ > 0. Assumption 2.2.a and b are graphed in Fig. 1.

A final piece of notation is introduced, which involves ¥ (a; c; z), the confluent hypergeometric function of the second
kind, also known as Tricomi function or Kummer U function, see Abadir (1999) and Gradshteyn and Ryzhik (2007, section
9.21). Its integral representation is

1 a—1 c—a—1

v(a;c;z) = — exp(—zt) t"  (1+41t) de, (2.3)
F(a) Ry

where I'(a) = fR+ exp(—t)t®1dt is the Gamma function and here Re(z) > 0, Re(a) > 0. Eq. (2.3) has a structure similar to

the Gamma function; computationally, ¥ (a; c; z) is pre-programmed in various software packages, like the exp function.

The ¥ function enters the Ay(r, 6, ¢) quantities defined below, which depend on a scalar r, the vector of parameters

0 and on the vector of signs ¢. For conciseness Ax(r, 6, ¢) is simply denoted as A s(r) where s is the value taken by the

1 Note that 0 is not included in the set of possible values for ¢; because Pr(¢; = 0) = 0 whenever ¢; is a continuous random variable.

2 The condition is only sufficient but it may not be necessary; further research will show if this condition can be improved.
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vector of signs ¢, and equals

1 _ h—1 r r—kq r—Kp_3 w Kn—2 oy sh=2
Ans(r) = (0 + Bo? "2 (Bo? T2 E ( )( )( _— (h=2r=2ir K.
ns(r) ( b 1) (/3 1) W k1 ky kn_o w + ﬂalz P

[N,

h—2 2
1 3 1 3
-l_[lll —;r—Kr+—;L v —;r_Kh—Z‘F—Q% , (24)
1 \2 2" 200 2 2" 2ay0?
where Ko := 0, K; := Y_i_, ki. The multiple sum is defined for h > 3 as D iy = 2ky=0 Z;;ﬁ}) e ZL;_’Z";S where
the individual sums extend to oo if r ¢ Ny := N U 0. Note that A, s(r) depends on s via oy, t =1,...,h— 1. Forh =2
the sum »°, . and the product ]_[';;12 are empty and (2.4) reduces to

1 1 1 3 (1)+,Baz
A ") = 2 r+2 2 2 2y T = i §
2.5,(T) (a) + Boj ) (ﬁ01 ) T 2 + 2" 20?7

which depends on s; via a;.
3. Main results
This section presents explicit closed formulae for the prediction p.d.f. fy, (1) in Theorem 3.1 and in Theorem 3.3.

Theorem 3.1 (GARCH(1,1) Prediction Density). Assume that e, are i.i.d. N(0, 1) and let Assumption 2.2 hold; then one has, for
h>2andw >0

b 1 /=12 i

fow)=(2m)2 ) = <T) G,  —00<U <00 (3.1)
1

where ¢ == 27" Y <G Gis = ¥ Bns(—] — 3). Ans(-) is defined in (2.4) and yys = ,8’1‘1/]_[?;1l o. The conditional

density fy,c(u|s) has the same form as fy, (u) in (3.1) with ¢; s in place of c;.

Proofs of this section are placed in the Appendix. Note that ¢; s, like y;, s and Ay, 5(+), depends on the value s of the vector
of signs ¢ via o, t = 1,..., h — 1. Observe also that ¢ s does not depend on the evaluation point u, and hence the ¢js
coefficients can be computed only once for the whole density. Immediate consequences of Theorem 3.1 are collected in
the following corollary.

Corollary 3.2 (C.d.f. and Moments). The prediction c.d.f. for h > 2 is given by

1 b~ u u\’
Fy(u)= 5 +(@7)"2 ;J'(ZJ—H) <—3> G —oo<U<Ooo (3.2)

where ¢; is as in Theorem 3.1; the odd moments for x, are 0 and the even moments are equal to

1 1
E(xﬁm) = zm—%(h—ﬂﬂ_%]“ (m + 5) Z yh?sA,,,s(m) m=1,2,... (3.3)
seS
Recall that yys = g1/ ]’[i’;ll o and Apg(m) depend on s via o, £ = 1,...,h — 1, see (2.4). The moments of a

GARCH(1,1) were first obtained in Baillie and Bollerslev (1992), see their equations (34) and (35). Note that the A, s(m)
coefficients that appear in the moments are made of finite sums extending to m and do not fall in the logarithmic case,

unlike in Theorem 3.1.% In fact, m — k € {0,1, ..., m} implies that
13 1 g o I
w(—;——i-m—k; E) = (—) g—%—m+’<2¥§__v
2 2 2) m_k = (—jv;m—k> 7!

is a finite sum, where (a); := Jl:;(l)(a + i) denotes Pochhammer’s symbol, see e.g. Abadir (1999) eq. (2).

Formula (3.1) in Theorem 3.1 is alternating in sign, and converges absolutely; the absolute value of its terms tends
to first increase and then decrease. For large values of u? this behavior may cause the accumulation of precision errors,
resulting in numerical failure to produce an accurate value of the sum. This observation led to an alternative expression
for the p.d.f., which is presented in the next theorem.

3 The logarithmic case is when the second argument in Tricomi’s ¥ function is in Z (i.e. is an integer), see Abadir (1999) and reference therein.
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Theorem 3.3 (Alternative Formulae for the GARCH(1,1) Prediction Density). Under the same assumptions of Theorem 3.1 one
has for h > 2,

o0
i (W) = % Z ,u] —00 < U < 00 (3.4)

where ¢ = 271 D ses s () and ¢j's depend on h and w in the following way:

e for h =2 and w > 0, w;(-) is defined as u;j(w) :== e **(pwY, p = 1/(2(w + Bo?)) and

. 1o, 11 .1 o+ Bo;
* =2 2 (=) w -1, —; 35
CJ«S 4 (O.'l a]) <2>] (J + 25 ) 2“10’12 ( )
e for h >3 and w > 0, w(-) is defined as w;(w) := e /) (w/(2w)Y, and
o (P s PR k2 h2 /1 g
qomn'® (Mo ot 2 (T 1) 20 3 oo () (7,5
t=1 k=0 ky=0 kp—> @+ /3()' i=2 ki

h-2

1 1
1_[ v (5; 1—K; Zh—t) v (5; 1—Kp_a; 21> , (3.6)

t=1

with Ko := 0, K; := Y"i_, ki, z1 == (0 + Bo2)/(2a102), zi = B/(Rei), i =2, ..., h—1;
e for h>2and w = 0, w(-) is defined as w;j(w) := (—w/(202p""1)y and

e h—1 _% h—1 1 /3
* o 2 . ;.
Cj,S =1 2 (O’l l_[Olt> l_[ v (E, 1 — 1 z—at) . (37)
The conditional density fy, -(u|s) has the same form as f,, (u) in (3.4) with s in place of (o

The prediction p.d.f. formulae in Egs. (3.4) and (3.7) for @ = 0 hold for all values of the parameters, see Assumption 2.2.
Unlike the sums in Theorem 3.1, the expressions in (3.4), (3.5), (3.6) involve non-negative terms, containing a factor e—au?
with a > 0. When u = 0, e’ equals 1, while for large |u], e~%" hecomes very small. Egs. (3.1) and (3.4) offer alternative
ways to compute the same p.d.f.

4. Implementation

The prediction p.d.f;s are plotted in Figs. 2 to 4 for various values of the parameters 6, using formula (3.1).* In order
to compare these densities with the N(0,1) p.d.f, the variate x, is standardized as X, = xj, /onjo where th|0 indicates the

variance of x; conditional on information available at time 0.

Fig. 2 shows the standardized prediction densities in case h = 2 for A = 0 and different pairs of («, 8) values. It shows
that the deviations from the Gaussian can be substantial; the prediction densities are more similar to a Gaussian when
the ratio 8/« is large.

Fig. 3 shows the GJR GARCH(1,1) case with A > 0. It is seen that A > 0 increases the kurtosis, but has no effect on
symmetry, see Proposition 2.1. Finally, Fig. 4 shows that in the RiskMetrics case the prediction p.d.f. is very close to the
Gaussian.

The explicit form of the prediction density allows one to compute the VaR Q) defined as the (negative) of the p
quantile of the prediction distribution, i.e. p = Pr(x, < —Qup) or the Expected Shortfall ES, ,, defined as ES;, =
—E(xp|xn < —Qup), see eg. Francq and Zakoian (2015). These functionals depend on the parameter vector § =
(w,a, B, A).

Suppose now that the GJR GARCH(l 1) in Eq. (2.1) has been estimated on a sample of data {xt}t, 741 Dy Quasi
Maximum Likelihood (QML). Let 0 be the corresponding QML Estimator and 6, the (pseudo)-true value of the parameters.
Under appropriate regularity conditions, see Lee and Hansen (1994), Jensen and Rahbek (2004) and Arvanitis and Louka
(2017) and references therein, one has results of the type T%R’(a— o) > N(0, £2r), where 2 indicates convergence in
distribution as T — oo, and R indicates a full-column-rank matrix with r columns.

The associated asymptotic confidence region has form

—{RO:(0—0)RQL'R(0—0)<c,) (4.1)

4 Computations were performed in MATHEMATICA. A MATLAB implementation is provided in the Supplementary Material.
5 One finds ”12|0 =0} = 0+ ax3 + Bo? and ”r2|o =w+ “z2—1|0 (@°+ p) for t =2,3,... where o® := E,_y(oy) = @ + A/2, and use is made of

Pr(x;—1 < 0) = %
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Fig. 2. Prediction density f,,(u) for standardized x;, @ = 0.1, 002 =1 xé = 1 varying values of («, B). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Prediction density for standardized x,, h = 1, 2, 3, in blue, purple and green respectively, ® = 0.25,« = 0.1, 8 = 0.7, aoz =1, xf] =1,A=02
(h = 1 is standard Gaussian). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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2.2 24 2.6 2.8 3.0 32

Fig. 4. RiskMetrics prediction p.d.f. f,, (u) for standardized x;, @ = 0, 002 =1 x% =1 and o = 0.06, B = 0.94. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where ¢, is the 1 — 5 quantile of a x?(r) distribution. The region A, has the property that Pr(R'6, € A,) — 1 — n. Note
that in (4.1) 2 can be replaced by a consistent estimator.

Consider next a (multivariate) functional of interest ¢, such as the VaR Q or the Expected Shortfall ES or both, which
depends on 6, ¢ = ¢(0). Define also the set of values B, taken by the ¢ map for any value of 6 in A,, i.e.

B, = 9(A,)) = {0(0),0 € A,}. (4.2)
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Then the following proposition shows that B,, is an uncertainty region for ¢ with at least asymptotic coverage equal to
1 — 7, similarly to Fanelli and Paruolo (2010) Proposition 1.

Proposition 4.1 (Uncertainty Region). B, is an uncertainty region for ¢ with at least asymptotic coverage equal to 1 — n,
ie. Pr(p(0g) € B)) > v=>1—n.

Proof. Simply note that the counter-images satisfy (p‘l(Bn) CA, O

In practice, one needs to compute the set ¢(A,). Assuming for simplicity that ¢(A,) is univariate, indicated here as
®(A;), an uncertainty region would be the interval (¢1, ¢2) where ¢; = infpea, {(0)} and ¢, = supOGA”{go(O)}. One way to
approximate the interval (¢1, ¢;) is to calculate the extremes of ¢(6) for a grid of points 6 in A,. A grid of points in A,

can for instance be constructed as R'0 = (c, .QR)%u +RO starting from uniformly distributed points u in the unit ball of
dimension r, generated e.g. as in Harman and Lacko (2010).

5. Conclusions

This paper derives the analytical form of the prediction density of a Gaussian GJR GARCH(1,1) process. This can be
used to evaluate the probability of tail events or of functionals that may be of interest for risk valuations for single-period
returns at any time horizon in the future. The analytical form of the prediction density can be very far from Gaussian.
Estimation uncertainty for the estimation of the GJR GARCH parameters can be translated in uncertainty regions for risk
functionals for single-period returns at any future time horizon.

The present results can be extended to other innovation distribution of current use; these extensions are left to future
research.

Appendix. Proofs of the main results in Section 3

This Appendix reports proofs of Theorem 3.1, Corollary 3.2 and Theorem 3.3, which are based on several preliminary
lemmas. The following compact notation is used for h — 1-dimensional vectors; z := (xf, cee xﬁ_1)/, c=(c1,.-.,¢n1).
Where no ambiguity arises, parentheses are dropped in product notation for conciseness.

Proposition A.1 (Densities). For symmetric f,(v) = g(v?), the symmetric p.d.f. fx,(+) is related to the p.d.f. of xﬁ in the following
way

fa(w) = fio(u*) Jul . (A1)

Moreover, Pr(gy = —1) = Pr(gy = 1) = 1 and one has

h 1 w

z,xﬁ|g(wv whls) = l_[ (wfotz) : g (O'_t;) (A'z)
t=1

where otz depends on w;_; (the value ofxf_j) and s._; (the sign of x,—;) forj =1, ..., t — 1 via (2.1).

Proof. Consider the transformation theorem to obtain xﬁ; from standard results (Mood et al., 1974, page 201, Example
19) or (Abadir et al., 2018, Exercise 7.32) one has

11 11
fxg(w) = <§ﬁ o (—V/w) + 2 xh(\/w)) 1y>o0. (A3)

By Proposition 2.1 one has fy, (—v/w) = fx,(v/w), and (A.3) simplifies into fx%(w) = w‘%th(ﬂ)l,,,>o, or, letting u indicate
w%, and solving for f;, (u), one finds f;, (u) = |u|fzh(u2 ), which proves (A.1).

One has by assumption that f,(¢) := g(e?) = (27 )_% exp(—e?/2). Hence, applying the transformation theorem to

. » o 1 2 1 (2
z¢ = x? using the conditional distribution fyx, _x_,(Ulu1, ... U—1) = (2w02) "2 exp (—%%) =(o2) 2g (Z—2> one finds
t t

1 1 1 w
th|X1$..A.X[_](lU|u19 e ut—l) = (w)_jfxrlxl..“,xt_l(wj |u17 LER ut—1)1w>0 = (w0[2)_§g (?) )
t
from which Eq. (A.2) follows. O

Densities are first computed conditionally on ¢ and later they are marginalized with respect to it. The basic building
block is given by the expression in (A.2). This density can be marginalized with respect to z as follows

215wnls) = f o gl (A4)
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Finally, fxﬁl g(whls) can be marginalized with respect to the signs ¢ using the mutual independence of the signs ¢;—; and
the fact that Pr(¢y, = —1) =Pr(¢p = 1) = % for all t, due to the symmetry of g. One hence finds

w) =) fo(wIsPr(s) =271 " fo (wls) (A5)
seS seS
where the sum ) ._¢ isover sj € {—1, 1}, for j =1, ..., h — 1. The prediction density fxﬁ(w) is found by combining (A.5),

(A4), (A2), (A.1).

The next proposition reports a recursion for the volatility process, similar in spirit to eq. (6) in Nelson (1990), that turns
out to be useful when solving the integral in (A.4). Lety := (y1,...,¥n—1) and v := (vq, ..., vp_1), Where v; indicates a
value of the random variable y; defined below.

Proposition A.2 (Volatility and Transformations). The volatility process can be written as

o
ot =o+(1+yBol,  yni= F“e,% (A6)
For h > 2, ahz has the following recursive expression in terms of y1, ..., Yn—1:
op =@+ (1+yp-1) {0 + (T +yp2) (- (@B" 2 + (1 +y1) g '07))) (A7)

with 012 =w+ /3002 + aoxé, which is measurable with respect to the information set at time 0. Moreover, one has

1 h—1
Yhs\ 2 -3 B _ w
xﬁlg(w|s) = <%> /1;1_1 l_[ (Ut g (a_tvt>) Op 1g (E> dv, (A8)

t=1

where y s == = g"1/( ]_[t 1 @¢) and the right-hand side of (A.8) depend on values of the vector of signs s via oty = o+ 5 A(] —5¢)
with t = 1,...,h—1

Proof. Consider fz,x,zll g(w, wp|s) from (A.2), and consider the transformation of from z to y. Observe that the domain

. . . h—1 . . . . . h—1
of 1ntegrat10n remains R}, that the inverse transformation is zz = Bo2y./a:, with Jacobian yj s [1= ol yns =
B" 1 /(IT'Z, ). Hence one finds

Ry B -1 w
vl (v, wls) = th,sl_[ (vt ‘g <a_Ut>) (wah) ‘g <_2>

t=1 t

from which (A.8) follows. O

Lemma A.3 (Limits of ¥). ¥(a; c; z) — 0 for c — —oo for real and positive a and z; ¥(a; c;z) — 0 for a — oo for any ¢
and real and positive z.

Proof. The proof uses the Lebesgue dominated convergence theorem, see e.g. Theorem 10.27 in Apostol (1974). Consider
the integral representation (2.3) of ¥(a; c; z) for real and positive a and z. Note that for negative ¢ and t > 0 one has

. 1 —z[ a—1 c—a—1 1 —ztga—1 __,
ka(t) : F(a) t 7 (1+1) F( )e t cr(t),
where ky(t), r(t) > 0, f]R t)dt = ¥(a; c; z) and fR t)dt = fR e 2t 1dt = +z‘“1"( a) = z~% The notation
k,(t) is chosen here to 1nd1cate that a sequence of values ap OT Cy w1ll be constructed. The above expression shows that
k,(t) is dominated by the function r(t), which is Lebesgue-integrable on R,.

Next observe that for any t > 0, and for ¢, — —o0, one has k,(t) — 0. Hence k,(t) converges to the zero function
k(t) :== 0 on the whole Ry, except for the point ¢ = 0. By the dominated convergence theorem, lim,_, o ¥ (a; Cp; 2) =
lime, fu@ k(t)dt = fR k(t)dt = 0. This proves that ¥ (a; c; z) — 0 for c — —oo for real and positive a and z.

Let now a, — oo for any ¢ and real and positive z. Observe that for any t > 0 < 1and I'(a,) — oo, and hence

’ 1_+r
kn(t) :== ;e‘”t"“_l 1+ 01 = _ e (14 t)™ (L)an_] — 0.
I'(a,) I'(ap) 1+¢
Hence ky(t) converges to the zero function k(t) := 0 on the whole R,. By the dominated convergence theorem,

limg, 00 ¥(ay; €;2) = limg, o0 fR k.(t)dt = fR k(t)dt = 0. This proves that ¥(a;c;z) — 0 for a — oo for real
and positive z and any ¢c. O
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Lemma A.4 (Conditions on §8). Assumption 2.2 ensures that for any j > 2

j—1
w (1 - Zﬂ") < o2, (A9)

i=1
which implies that in (A.6) one has
o < (14 vp_1) Boy_;. (A.10)

Proof. For j = 2 the inequality (A.9) reads ,32 2 + wB — w > 0. Solving the quadratic on the left-hand side for 8 one
finds two roots, B1 = (—w — /®? + 4wo?)/(20%) < 0 and B=(~o+, 0+ 4wa1 )/(26%) > 0, so that the quadratic is

non-negative for B < B or for B > B. Note that B = B(¢) = —¢ + (¢2 + 2;)2 where ¢ = w/(20}). Because B; < 0 is
not possible, this holds only when g > B(¢). This proves that (A.9) is valid for j = 2 for > p(¢) and a fortiori also for

B = max{3, B(¢)}.
An induction approach is used for j > 2. Assume that (A.9) is valid for some j = jo > 2 and 8 > max{z, B(¢)}; it can
then be shown that (A.9) is valid also replacing j with j 4 1. To see this, take (A.9) for j = jo and multiply by B. One finds

Jo—1
o <,3 _ Zlgiﬂ) < ,31‘0+1012_
i=1

1
Because B > 7, one has w(1 — B) < wp, so that,

Jo—1 Jo—1
» <] —B— Zﬁiﬂ) <w (ﬂ _ ZﬂiH) < ﬂj0+10']2.
i=1 i=1
Rearranging 1 — 8 — Z’O TR+l a5 1 — 11:021 B!, one finds that (A.9) holds also for j = jo + 1. The induction step hence
proves that (A.9) holds for any j if 8 > max{3, B(¢)}.

To show (A.10), observe that the minimum value for ﬁohz_l corresponds to v,_ = --- = vy = 0 and equals
® Z?j + p'~1o2, which is greater than or equal to w by (A.9), and hence w < Bo? | < (1 + vp_1) Bo?_ ;. O

Lemma A.5 (Binomial Expansion). Let w > 0; under Assumption 2.2 the following expansion holds for any m € R and for
q=2,3,...:

o2 m m—n m—Ng—3 m—N ,302 m—Ng_»
_q q 2)m Z — Ni—1 1 \m=N; 1 1 1 A1
(a)) ZZ Z B~ H( n; )( + vg-i) +( +U1)—w , (A1)
n1=0 ny=0 Ng—2= =0 i=1

where No := 0, N, :== Y_;_, n; and the sums anl —0 Xm0 " ZZ;__IZ’;‘; extend to oo if m ¢ No. Eq. (A.11) is implied by the
following recursions, defined in terms of ¢y, == o, 2w

m

Gpa= (:)H +u)" B g g =1,2,.... (A12)
n=0
If @ = 0, then one has directly
q—1
of =g "o [ J(1 + ). (A.13)

Proof. Define ¢ := 0,12 /o, and observe that from (A.6) one has

Oh—t1 = 1+ (14 vp_¢)BPr—c t=1,...,h—2.

Under Assumption 2.2, Eq. (A.10) in Lemma A4 implies that one can employ binomial expansions of ¢;" ., using
decreasing powers of (1 + v,_;)B¢n_¢. Hence
" /m
O 1 = ZO (n)(l oG p =1, .. h—2.
n=

This proves (A.12); note that if m is not a non-negative integer, the sum extends to co. Next reiterate the recursive
expansion for t = 1,2, ..., h — 2 until the expression contains ¢,; this gives (A.11). Eq. (A.13) is obtained by recursive
substitutions in (A.6) with w = 0. O
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Lemma A.6 (Integral). One has for a,b,n,z > 0

1 3
/ exp (—zv) (a+ bv)" v 2dv = a" 2b 2w 2 W (— N2 ) (A.14)
Ry 2 2°b

Proof. Set m := b/a and t := mv; note that, using the integral representation of ¥ in (2.3), one has
z _1
/ (@ + bv)" exp (—zv) v 2dv = a”/ (1+t)"exp (——t) (m™'t) 2m 'de
Rt Ry m

z 1 3 az
=a”m‘2/ (1+t)”eXp(——t)t‘5dt=a“+5b—5n%w(—; + 2 > 0
Ry m 2 2" b

—_

Lemma A.7 (Coefficients Aps(-)). Let

_lh—l h—1 dv
A (F) = N 2r TT =L A15
nslr) /R . exp( > Zat vt) @) 1 > (A.15)

then
1 -1 1 1 3 o+ Bo?
Ag (1) = 22 (Bo?) 2aiw Sir 4 op L), A16
(1) = (@4 pol) "3 (Bof) Pdw(Ser 55 E (A16)
and, if w > 0, under Assumption 2.2 one has for h > 3
r r—k r—Kp—s3
-3 r—Ke_y 1 3 B
A = 2 SIStk e loir—K+2—)-
ns(r) = "2 (Bot) Z Z > B ﬂ K 317Kt 555 —
Okz kh 2=l =0 t=1
1 3
-w’(h—Z(erﬁof)r‘K’l—”%lI/ =T =Ko+ = —w+5al , (A17)
2 2’ 20{101
where Ky .= 0, K; .= ZL] ki, and the sums extend to oo if r ¢ No; (A.17) reduces to (A.16) for h = 2.
If @ = 0 then
L 3 B
_ ph-1r__ 5= 251 .2
Ans(r) = " 'x 7 (o7) H"’(z r+ 2 Zat) (A.18)

which equals expression (A.17) for w = 0.

Proof. Set h = 2 in (A.15) and use (A.14) with a = w + BoZ, b = Bo} to show that

B . 1 11 1 3 w+ﬁ0-2
/Hhexp(—rﬁvl (@ + (1 +vp) Bof) vy *dvy = (@ + oy y*i (Bo?) 2m 2w 2Tty 20:1] ;

this proves Eq. (A.16).
Next consider the case h > 3. If w > 0, under Assumption 2.2 Eq. (A.9) holds for 2 < j < h, and one can use expansion
(A.11) in (A.15). One finds

r r—kq r—Kp_3

Zh -2 K; r— Kt_1 r—K, _ ﬂvh_t —% .
Aps(r) = Z Z Z B~ 1_[ ( K, Ri_z(l + vp_e) Eexp s vy, dvn

k1=0 ky=0 kp_>=0 t=1

2\ —Kn—2 1
/ <1+(1+v1)ﬂi> exp (—@) v, *dv
Ry w 201

AP S S (1=K 1 3 B
(h=2)r 1. i t=1 P >, .
= o 2 (o) ZZ Z B ( > (2,r I<t+2’2ah—t>
1

=0ky= kp—»=0 t=

w27 (o + ,3012)r_1<”_2+%(ﬂ0']2)_%7[%l1/ (; Kyt 3 w+ ﬁa] ) ’

2’ 20{101

where the second equality follows by repeated applications of (A.14). Simplifying, one finds (A.17). If instead w = 0, using
(A.13) and (A.14) one finds

h—

(h—=1yr P -3 (h=1r 7 551 2y 1 3.8
Aps(r) =B (o) l_[ . (14 v.) exp —Z—atvt v, 2dv, = B 2 W + 5 2o )
1

t=
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This proves (A.18). O

Proof of Theorem 3.1. The integral to be solved is

h—1
s 1 dv;
foswnls) = Y/ /Rh ( (Z e + )) 0 [T (A19)

(2m )2
Expand exp(—wj/(207)) as ijo (—wp/2Y (02)7/j! and note that

1

!
-3 o j h—1 h—1
Vh sWy 1/ —wy 1 B 2-j-1 dv,
§)="—"—— E | — exp|—= E — 2| | —=.
fzhls(wh| ) i ( 5 ) /];{14 xp( ) o U (Uh) 3 ﬁ

(277)2 =07

1 1

7,72 o j
Yh,sWh 1 <_wh> ( ) 1)
= — | —=)As|—T—3
(27.[)% ;):]! 2 2

where Ap, 5(+) is defined in (A.15). Substituting from (A.17) one finds the expression for c; s, which is valid both for @ > 0
as well as for o = 0, see (A.18). When marginalizing with respect to g, all elements in S are equally likely, and one
deduces ¢; := 271y . ¢ Note that if all ¢ 5 do not vary with s, one has ¢; = ¢j.

In order to show that f;, (u) is absolutely summable for finite u, consider for instance the case h = 2; the p.d.f is the
average of

1 1 1 i 1 .
ful(uls) = SGronof) 2 Y = (—pu’) @ (—; 1—j; z) :

j=0 J: 2
where
1 w+ Boi
p = PO TN z= - 3 > 0.
2 (a)-l—,Bo]) 20104

Because ¥ (% 1—j; z) is finite and non-negative, monotonically decreasing towards 0 by Lemma A.3 for increasing j, one
has supjcy ¥ (3:1—Jj;2) =M < 00, so that

=1 1
> 5 (=p 2“1/(5;1—]';&')

j=0
where exp (,ouz) is finite for any finite u. One hence concludes that the series is absolutely convergent for any finite u.
The case for h > 2 is similar. O

o0

Z (puYw <— 1—j; E) Zjl!(puz)’zMeXp (pu?)

o/ j=0

Proof of Corollary 3.2. The c.d.f.s are found by integrating termwise the p.d.f. from 0 to uy > 0, where termwise
integration is guaranteed by Theorem 10.26 in Apostol (1974). This delivers (3.2) for positive u. The symmetry of f, (-)
implies F,, (0) = % and Fy, (u) = 1 — Fy,(—u). Hence for 0 > u = —a, say, with a > 0, one has

1 e 1
Fy(u) = 1= Fy(@) = 5 —(27)71 ) DT e Cad L A
j=

L LI ,
=g ten J'(ZJ—I—l)( O 2o+ i)

“Mg

which proves that the expressions in (3.2) is valid also for negative u.
The moments are derived as follows. From (A.19) one sees that

h—1
5 Vs m—1 1wy 1/8 1 -3
E(x2M|¢) = o wh exp (_ia_hz) dwy, Hexp (—5 <a_tvt>> oy v, 2duy.

(2n)?

Recall that [, exp <—2i2) w2 dw = (20,12)m+% I (m+ 3) so that
®h

] 1 h—1 1/8 I
tirle) =27 (e g) [ TTow (<53 () ) o) o
+ t=1

m-tzl AT
=2""7 g2l m—|—5 Vh.sAn.s(M)
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where Aj ¢(-) is defined in (A.15), which equals (A.17) (or (2.4)). Hence

1 1

seS

Proof of Theorem 3.3. Consider first the case h = 2 and

1 1
Yoo W2 1/8 w 5.1 dv;
fo1e;(w]sq) = ‘—/ exp <—— (—v + —)) (05) 2 —. (A.20)
2161 1 o - 2 \ o 1 022 2 on

Observe that o5 can be written as b(1 + ¥) with b = o + Bo? and ¥ = vi/q where ¢ = (v + Bo? )/ﬂo],
0} = w+(1+v1)Boi = w+ Boi + Bovy = b(1+ ). Next note that w,/(204) = pw, /(14 ) with p = 1/(2(w + Bo?))
and

exp (—w2/(203)) = exp (—pw2/(1+ ¥)) = exp (—pw2) exp (pw2r /(1 + ¥)) ,

where the last term can be expanded as exp (pwy¥ /(1 + ) = Zoo p’wlz Y1+ )7

Observe that y, 5, = /a1, qdyy = dvy, and set z := (v + ,601 )/(205101 ) = Bq/(2a1). Substituting these expressions in
(A.20) one finds

Fatwls) = @n el 3 2 j / <——w> Y1+ )1+ 9)) 2 (qy) ady

j=0

= @) (g)zw 1) ey 2 f / exp (—zy) (1+ ) T () Ty

1 pars
=(271)_],3%w_% (011,80’2)_% e_pwiﬂf ]+1 /s ]+l 1: 2
1 2.7 5 >3 s

by the integral representation of ¥, see Eq. (2.3). By eq. (2) in Abadir (1999), one has I" (j + %) = (%) Substituting
back and rearranging, one finds (3.4) and (3.5).
For h > 3, consider first the case w > 0 and the expression

_ w 1( B 17 du A21
Sonic(w]s) = &nps /R’j;l exp (—E) exp 3 Z a_tvt [l ﬁ (A21)

t=1

N

1 _1 1
where &, s == yhfsw‘% (Zn)_% hT ]_[, Lo twy,? (Zn)_%. Let gy := 02 /o = 1+, ¥ == (1+vh_1)Ben_1, T = 1/(2w)
and write

exp <—%) = e‘”‘exp( 1_&{/) = e_”"zrj—!w](l +y)?

j=0

Hence, substituting this in (A.21) and using ohz = wgep one gets

4 o0 _rwrjl,(}i _j % ; _l h—1 h—1 dvt
Fic(wls) = &p s 2 Ze J'_!./ﬂaf‘;l (o 14 v 1)',39011 1€Xp | —3 Za_ L NG (A.22)

j=0 (=1 ¢

1

_i_1 i1 . . .
Expanding (ph] 2 as in Eq. (A.12) in Lemma A.5 one has goh] 2 =30 (_1;7)(1 + vh_t)_f_%_”ﬂ_J_% "o, i bon and
substituting in (A.22), one finds

J j—1
fanc(wls) = &psw™2 Ze_rwrj. Z( n 2)‘

n=0
a1, —loa 1[0 dvt
. h_](1 +vpo1) 27"BT2 g, % exp —3 Z —v[ ]_[ (A.23)
Ry =1
1
Next expand ¢, % " asin Eq. (A.11) in Lemma A.5 with ¢ = h — 1 and substitute in (A.23); one has:

rlw —j—1 = = h—
Fais(wls) = &ns00” z§:e—'w 7 E:ﬂ“%-”““—”( ) 2) / IR D DR D
. R_

n=0 + n1=0 np—3=0
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h—3 1 2\ —3-1—Nh_3 h—1 h—1
—5 —n— N1 _1_4-N Bo; 1 B dv;
. 1 o 2 t ‘l 1 _
tl_! ( n, (1+ vh—1-r) +(1+v)— o exp 5 E _Otc Vg tl_ll —ﬁ

t=1

(A.24)

Relabel ki :=n, k; := n;_1 fori = 2, ..., h—2 and note that K; = n+N;_1; hence the previous expression can be simplified
as follows

. [ [} h-2
§ —wru}IE: _J_l z: z: _1th_)—yh=2 . —l—K‘_1
f:Zhlg wls Eh sw 2 e r J < kl 2) . o ﬂ 2(h 2) Zi:] Ki 1_[ ( 2 ki t .
ky=0 kp—_p=0 i=2

k1=0
_ 1 g h—1 h—1
1 o2\ 2 M £ du,
: (1+vpg) 27 <1 +(1+ Ul)_1> exp —= = —. (A.25)
'/l;ﬁr_] E @ t=1 at D Ve

By the results in Lemma A.6 the integral in the last line in (A.25) equals
h—2

—Kn—2— —Kn—2 -3 5 1
w (w+f50 ) (,30 2w 2 = 1= Kes zpy 52 1—Ku_2; 21
t=1

_ _1 1
where z;,i=1, ..., h — 1 are defined in (3.6). Hence, recalling that &, s = ﬁth ]_[h__1 ‘wy (Zn)_%, and rearranging

h .
one finds f;, c(wl|s) = “Tw2 Z} o L (W) -+ with y(w) := e r/w’ and

]l
el ]l AR S A
¢ =2 1_[%2((71)_22( )Z Z B X <w+ﬂa ) H( : ki >

i=1 kl=0 k2 0 kh 2= =0 i=2

h—2 1 1
. Ul =1—Ke;zn—t |V | =351 —Kp_2;21 ),
i (3-re v (31-ke)

which gives (3.6). Note that the second parameter 1 — K; (respectively 1 — j) of the ¥ functions in (3.6) (respectively
(3.7)) converges to —oo for k; — oo, so that []'_2 W (31 —Kezn—e) ¥ (5: 1 — Kn_a; 1) converges to 0 for k; — oo by

27
Lemma A.3.
Finally consider the case w = 0 for h > 2, write exp ( ";’;2> = Zjoio (_ % )J jl. (O_hZ)—] 5o that
= ' h—-1 h—1
wJ 1 1 IB . dvr
flhlg(wls) = &ns Z (__) - f exp (—— ( _Ut) (O.hZ)—]—z l_[ )
j=0 2/ 1 R}‘]*'_I 2 = Y t=1 \/v_t

Note that for @ = 0, by (A.13) (62)" = [1'1 (1 + vp_p)™ B~ D"(62)™ which implies that

> Jﬂ(—f——)w 1) 1 B o1
fa1c(wls) = Shs (71 : Z( 201 > J—' H/R’H exp <—27[tvt> (I +v)7 20, *dy,

J= t=1

h—1 1 . 1 o) ](h] 1h1
= @ [ Tay *wd (of) 22( 207 ) o ‘”( i)’
1 1

. 3 Zat
i=1 j=0 t=

where &, s = (271)‘7 ;3 7 ]_[l Lol w™7. This completes the proof. O
Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.04.010.
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