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A B S T R A C T   

Background: : Predictors of treatment outcome in major depressive disorder (MDD) could contribute to evidence- 
based therapeutic choices. Combined pharmacotherapy and psychotherapy show increased efficacy but higher 
cost compared with antidepressant pharmacotherapy; baseline predictors of pharmacotherapy resistance could 
be used to identify patients more likely to benefit from combined treatment. 
Methods: : We performed a proof-of-principle study of the cost-effectiveness of using previously identified 
pharmacogenetic and clinical risk factors (PGx-CL-R) of antidepressant resistance or clinical risk factors alone 
(CL-R) to guide the prescription of combined pharmacotherapy and psychotherapy vs pharmacotherapy. The 
cost-effectiveness of these two strategies was compared with standard care (ST, pharmacotherapy to all subjects) 
using a three-year Markov model. Model parameters were literature-based estimates of response to pharmaco-
therapy and combined treatment, costs (UK National Health System) and benefits (quality-adjusted life years 
[QALYs], one QALY=one year lived in perfect health). 
Results: : CL-R was more cost-effective than PGx-CL-R: the cost of one-QALY improvement was £2341 for CL-R 
and £3937 for PGx-CL-R compared to ST. PGx-CL-R had similar or better cost-effectiveness compared to CL-R 
when 1) the cost of genotyping was £100 per subject or less or 2) the PGx-CL-R test had sensitivity ≥ 0.90 
and specificity ≥ 0.85. The cost of one-QALY improvement for CL-R was £3664 and of £4110 in two independent 
samples. 
Limitations: : lack of validation in large samples from the general population. 
Conclusions: : Using clinical risk factors to predict pharmacotherapy resistance and guide the prescription of 
pharmacotherapy combined with psychotherapy could be a cost-effective strategy.   

1. Introduction 

Major depressive disorder (MDD) is the fourth-leading cause of 
disability worldwide (GBD 2015 Disease and Injury Incidence and 

Prevalence Collaborators, 2016). Overcoming the trial and error prin-
ciple in treating MDD has been the object of multiple research efforts, 
but the heterogeneity of the disorder makes it challenging to identify 
reliable response predictors (Fried and Nesse, 2015; Kraus et al., 2019). 
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Pharmacogenetic biomarkers are a potential strategy, but only phar-
macokinetic variants are endorsed by guidelines so far (Fabbri et al., 
2018), while genetic variants involved in drug pharmacodynamics have 
an unclear role, probably because of their multiplicity and complex in-
teractions. Pharmacokinetic variants alone explain only a limited part of 
inter-individual variability in treatment clinical outcomes and, despite 
there is no definitive evidence, genotyping may be most beneficial in 
those who have experienced an adverse drug reaction or inadequate 
response to at least one previous antidepressant trial (International So-
ciety of Psychiatric Genetics, 2019; Greden et al., 2019). Another issue is 
the lack of definitive evidence on the cost-effectiveness of pharmaco-
genetic testing. Previous studies evaluated the cost-effectiveness of 
testing individual genetic variants in candidate genes, such as cyto-
chrome 2D6 and 2C19 (CYP2C19 and CYP2D6) genes and the serotonin 
transporter (SLC6A4) (Olgiati et al., 2012; Perlis et al., 2009; Maciel 
et al., 2018; Groessl et al., 2018; Hornberger et al., 2015). These studies 
showed that pharmacogenetic testing may be cost-effective compared to 
standard care, but results were heterogeneous, mostly because of the 
different effect size of the considered genetic variant(s) on clinical 
outcomes to different drugs. Further, none of the previous studies 
selected the candidate genes using genome-wide or sequencing data, 
and none of them compared pharmacogenetics-guided treatment with 
treatment guided by clinical risk factors, which is a cheaper option with 
broader availability since no genotyping is needed but only a clinical 
interview. To the best of our knowledge, the cost-effectiveness of using 
clinical predictors of pharmacotherapy response to guide treatment 
prescription in MDD has not been tested in previous studies, despite a 
number of clinical predictors have been identified (De Carlo et al., 
2016). 

Markov models were the most commonly used method to estimate 
cost-effectiveness in previous studies; they simulate a cohort of patients 
moving between health states (e.g. from depression to remission) over 
time based on a matrix of transition probabilities that depend on treat-
ment effects (Pierucci and Zarca, 2019). Each health state has a different 
level of well-being, defined as utility and measured as quality-adjusted 
life years (QALYs), each QALY representing a year lived in perfect 
health, and different costs associated with it. Utilities and costs are 
compared between an experimental intervention or treatment strategy 
and standard care. The experimental treatment strategy is considered as 
cost-effective vs standard care when it is more effective at an extra-cost 
that the society is willing to pay. There is no univocal value defining the 
willingness-to-pay threshold, the National Institute for Health and Care 
Excellence (NICE) provides a threshold of £20,000 per each QALY 
gained as a very general indication to evaluate cost-effectiveness of new 
interventions, but other thresholds have been suggested and the 
disability associated with a specific disease is an important factor to 
consider (National Institute for Health and Care Excellence, 2015). 

This study aimed to provide a proof-of-principle on the cost- 
effectiveness of different strategies to guide treatment choice in pa-
tients with MDD. We investigated the cost-effectiveness of genetic and 
clinical risk factors of pharmacotherapy resistance (PGx-CL-R model) 
and clinical risk factors alone (CL-R model) in guiding the identification 
of MDD patients more likely to benefit from an alternative treatment 
strategy compared to standard pharmacotherapy. The predictors used in 
the PGx-CL-R and CL-R models were developed to estimate the risk of 
pharmacotherapy resistance using a machine learning approach on 
whole exome sequence and genome-wide data in a previous work 
(Fabbri et al., 2020). We chose pharmacotherapy combined with psy-
chotherapy (cognitive behavioural therapy [CBT] or interpersonal 
therapy [IPT]) as alternative to standard care (pharmacotherapy alone) 
because: 1) it has evidence of increased efficacy with the same risk of 
side effects compared to pharmacotherapy alone, but higher cost and 
therefore limited availability (Cuijpers et al., 2014; Ijaz et al., 2018); 2) 
there is no convincing evidence supporting the choice of a particular 
antidepressant based on the genetic profile of a patient (Food and Drug 
Administration, 2019). 

2. Methods 

2.1. Predictive models and target patients 

The predictive models of TRD (treatment-resistant depression) used 
in this study were developed in a previous work (Fabbri et al., 2020). In 
this previous study, TRD was defined as lack of response to least two 
adequate antidepressant drugs during the current depressive episode in 
patients with MDD according to DSM-IV criteria. The study was 
cross-sectional and each antidepressant trial during the current episode 
was considered as adequate if the duration was at least four weeks and 
the dose was at least the minimum therapeutic dose reported in the drug 
labeling. The study was approved by local ethical committees of all 
participating centers and all patients signed an informed consent. 

Predictive models were developed in a training set of patients treated 
with serotonergic antidepressants, according to the pharmacology 
domain reported in the Neuroscience-based Nomenclature (Wilson, 
2018) (n=269); the corresponding receiver operating characteristic 
(ROC) curves were obtained by testing the models in an independent 
testing sample treated with serotonergic antidepressants (n=118) (ROC 
curves are in Supplementary Figure 1; the description of the 
clinical-demographic features of the samples is in Supplementary Table 
1). The choice to use models developed in patients treated with sero-
tonergic drugs aimed to reflect the characteristics of patients who would 
be treated with pharmacotherapy in primary care, having non-severe 
MDD and seeking treatment for the first time. This group was indeed 
the target of the present study since they are expected to benefit more 
from a baseline prediction of their risk to progress towards TRD (alter-
native treatment strategies can be implemented). 

The clinical risk-guided (CL-R) model included five clinical risk 
factors independently associated with TRD in the training sample 
(chronic depression, number of depressive episodes > 3, suicidal idea-
tion, Montgomery and Asberg Depression Rating Scale (MADRS) 
interest-activity score ≥ 13 and MADRS pessimism score ≥ 7). These two 
MADRS subscales were determined according to previous studies (Uher 
et al., 2012). The pharmacogenetic + clinical risk-guided (PGx-CL-R) 
model included the same clinical risk factors and the burden of rare 
variants (from whole-exome sequencing data) combined with common 
genetic variants (from genome-wide data) in 83 genes (Supplementary 
Table 2) selected in the training sample based on their 
Correlation-Adjusted T score and Local False Discovery Rate (a process 
that reduced dimensionality and selected variables with higher proba-
bility of being informative, Supplementary Methods). Both models were 
trained using a gradient-boosting classifier. Further details are reported 
in Supplementary Methods and in a previous paper (Fabbri et al., 2020). 
Compared to other studies of antidepressant response, the described 
data have the advantage of availability of both common and rare vari-
ants. Rare variants were indeed demonstrated to add significant infor-
mation to common variants when studying the genetics of complex 
disorders (Flannick et al., 2019). In addition, sequencing is becoming 
more and more feasible in large samples (e.g. biobanks including hun-
dreds of thousands participants) thanks to a more than exponential drop 
in costs in the last 10 years (National Human Genome Research Insti-
tute, 2018). 

We did not include CYP2C19 and CYP2D6 genes because: 

1) “Clinical trials to date have suggested testing might be most bene-
ficial for individuals who have experienced an adverse drug reaction 
or inadequate response to a previous antidepressant trial” (Interna-
tional Society of Psychiatric Genetics, 2019; Greden et al., 2019), 
while our study aims to guide treatment choice in patients seeking 
treatment for the first time to maximise potential benefits;  

2) CYP2C19 and CYP2D6 testing is useful to select which drug and dose 
to prescribe (PharmGKB, 2020), but it does not provide an overall 
estimate of the risk of treatment-resistance to pharmacotherapy, 
which was the aim of our predictive models, and therefore it does not 
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seem applicable to guide the prescription of combined pharmaco-
therapy and psychotherapy vs pharmacotherapy. Therefore, the 
design of a study to evaluate the cost-effectiveness of CYP2C19 and 
CYP2D6 genotyping should have been different (e.g. based on the 
concordance between prescribed drug and predicted activity of the 
enzyme responsible for the metabolism of the drug); 

3) structural variants in CYP2D6 would have required a different gen-
otyping approach to be accurately detected (Nofziger and Paul-
michl, 2018);  

4) CYP2C19 and CYP2D6 should be analysed according to a phenotypic 
classification based on haplotypes (PharmGKB, 2020), not using the 
variant burden score that we applied (Supplementary Methods). 

2.2. Cost and utility estimation 

We took as reference the costs within the National Health System 
(NHS) of the United Kingdom (UK). The considered costs included 
outpatient visits, hospitalizations, liaison mental health service in case 
of emergency room access and brief psychotherapy (16 sessions) based 
on data available on the Personal Social Services Research Unit (PSSRU) 
website for the year 2018 (Personal Social Services Research Unit 
(PSSRU), 2018a) (Personal Social Services Research Unit (PSSRU), 
2018b), while medication costs were based on NHS prices (as of April 
2019) (REGIONAL DRUG AND THERAPEUTICS CENTRE, 2019) in GBP. 
Psychotherapy was assumed to be CBT or ITP, 16 sessions per cycle, as 
these were the most common types of psychotherapies in the 
meta-analysis used to estimate the effects of combined treatment and the 
greatest part of the included studies had a number of sessions between 
10 and 20 (Cuijpers et al., 2014). CBT or ITP are also the types of psy-
chotherapy suggested in patients with depression by the NICE guidelines 
(NICE, 2018). 

The cost of whole-exome sequencing and genome-wide genotyping 
were based on commercial prices in 2019 in US dollars (Suwinski et al., 
2019) and converted in GBP using purchasing power parity (ppp) ex-
change rates in 2018 (OECD, 2018). Cost units for visits, psychotherapy 
and days spent in hospital were inflated by 2.1% yearly, based on the 
mean inflation rate in the United Kingdom (UK) in 2018-2020 (Statista 
portal, 2019). Indirect costs related to productivity were not included, 
because they are likely to be captured by the utility weights (QALYs) 
(Olgiati et al., 2012). 

The probability of hospitalization, emergency room access and mean 
hospitalization duration during a depressive episode were based on 
hospital episode statistics reported by the NHS for the period 2017-2018 
(NHS digital, 2018) and the literature (Citrome et al., 2019). The fre-
quency of visits in each health state was based on the NICE guidelines 
and the literature (NICE, 2018; Judd et al., 2016; Simon, 2000). An 
overview of the considered costs is reported in Supplementary Table 3. 

Utilities (health quality) were measured as QALYs (varying between 
1, that represents perfect health, and 0, that represents death). The 
assigned values were 0.40, 0.67, 0.88 and 0 for the health states of 
depression, response, remission and death, respectively (Olgiati et al., 
2012; Hornberger et al., 2015). A value of 0.88 and not 1 was considered 
for remission because of a negative utility associated with treatment 
(side effects) (Olgiati et al., 2012). 

2.3. Statistical analyses 

2.3.1. Creation of the Markov model 
A Markov model was created using the R package “heemod” (Pier-

ucci and Zarca, 2019). The time horizon was three years and each cycle 
lasted 12 weeks which reflects the duration of most clinical trials of 
antidepressant response in MDD (Jakobsen et al., 2017), including each 
treatment level of STAR*D which was used to estimate the reduction in 
response and remission probability after the first cycle (Supplementary 
Methods). Markov models estimate the cost-effectiveness of alternative 
treatment strategies to standard care based on the probability of 

transition of simulated individuals between health states having 
different costs and QALYs. A new intervention or treatment strategy is 
expected to have increased costs compared to standard care, but to 
improve health outcomes (QALYs), and Markov models estimate the 
ratio between costs and health benefits to evaluate if the additional costs 
are worth paying based on the expected benefits. 

Four health states were considered: depression, response, remission 
and death by suicide; the costs and QALYs associated with each of these 
health states were different and based on the existing literature and 
publicly available databases (paragraph 2.2). For example, the number 
of outpatient visits and the risk of hospitalization were different among 
the considered health states; the costs of psychotherapy were a major 
contributor to the costs in the PGx-CL-R and CL-R groups (Supplemen-
tary Table 3). 

At the beginning of the simulation, 1,000 depressed patients were 
included in each strategy arm (Figure 1). After the first cycle (12 weeks) 
and each following cycle (until the 12th, i.e. 3 years), transition to 
another state was regulated by the probabilities described in Supple-
mentary Table 4, which were also dependent on the time spent in a 
certain health state (Figure 2, which is based on the results of previous 
studies and meta-analyses (Cuijpers et al., 2014; Jakobsen et al., 2017; 
de Maat et al., 2007; Sinyor et al., 2010)). Transition probabilities for 
each treatment group (pharmacotherapy and pharmacotherapy com-
bined with psychotherapy) were estimated based on the existing liter-
ature, data from the STAR*D trial (Cuijpers et al., 2014; Jakobsen et al., 
2017; de Maat et al., 2007; Sinyor et al., 2010) and sensitivity/speci-
ficity of the predictive models (Supplementary Methods, Supplementary 
Tables 4 and 5). Whenever available, we used the results of 
meta-analyses (Cuijpers et al., 2014; Jakobsen et al., 2017; de Maat 
et al., 2007) rather than individual studies, since the reliability of the 
Markov model depends on the validity of the estimations provided by 
the studies used to calculate the model parameters. 

The two experimental groups were compared to standard care (ST, 
pharmacotherapy only). In the PGx-CL-R group, subjects at risk of TRD 
according to the corresponding predictive model were treated with 
pharmacotherapy combined with 16 sessions of psychotherapy per cycle 
until response or remission; subjects predicted to be non-TRD were 
assigned to pharmacotherapy. In the CL-R group, clinical risk factors 
only were used to assign patients to the combined treatment strategy or 
pharmacotherapy. In both PGx-CL-R and CL-R, transition probabilities 
were dependent on the sensitivity and specificity of the used predictive 
models of TRD. For example, response and remission rates reported in 
the literature for combined psychotherapy and pharmacotherapy 
(Cuijpers et al., 2014) were applied for patients correctly classified as 
TRD according to the used predictive models (true positives), since the 
effect size of this treatment was shown to not be different between 
general MDD samples and TRD samples (Ijaz et al., 2018). Response and 
remission to pharmacotherapy were also based on previous studies 
(Jakobsen et al., 2017; de Maat et al., 2007; Sinyor et al., 2010) and 
applied to our study design: response and remission probabilities took 
into account that patients with TRD not correctly classified (false neg-
atives) had nearly zero probability of response to standard pharmaco-
therapy. For a complete description of the approach see Supplementary 
Methods. 

Transitions were possible between all states, while death was 
modelled as an absorbing health state (i.e. subjects entering in this group 
could not move to other health states and their QALYs as well as the 
costs for their health care remained zero after that point to the end of the 
last cycle) (Figure 1). Only death by suicide was considered because 
other causes of death were expected to have a negligible effect in a time 
period of three years in an adult population in the UK. We did not 
consider dropouts because: 1) many are expected to re-enter the health 
care system seeking treatment if their depressive symptoms did not 
remit and this appears to be very likely in a time horizon of three years; 
2) no literature data are available to model the probability of dropout 
and return into the health care system in the considered time frame; 3) 
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no difference in dropout rates was reported between combined psy-
chotherapy and pharmacotherapy vs pharmacotherapy, therefore the 
inclusion of dropouts would not affect the difference in cost- 
effectiveness of the considered interventions (Cuijpers et al., 2014). 

Pharmacotherapy included only antidepressants for those who 
responded or remitted in the first two cycles, while in those who did not 
remit or respond in the first two cycles the cost of first-line pharmaco-
logical treatments for TRD, according to the Maudsley Prescribing 
Guidelines in Psychiatry (Taylor et al., 2018), was added. All pharma-
cological treatments were hypothesized to be continued for the whole 
duration of the simulation. 

For each strategy alternative to ST, we calculated the incremental 
cost-effectiveness ratio (ICER). ICER is the ratio between the difference 
in costs and difference in effect (QALYs) of an alternative treatment 
strategy (C1 and E1) compared to the reference strategy (C0 and E0), 
and it expresses the cost of one QALY improvement in the alternative 
strategy group compared to standard care: 

ICER =
(C1 − C0)
(E1 − E0)

2.3.2. Sensitivity analyses 
A probabilistic sensitivity analysis was used to simulate 10,000 cases 

in each strategy arm for each model parameter (each model parameter 
could vary based on its mean and standard deviation; Supplementary 
Table 6). This generated a probability distribution of ICERs and cost- 
effectiveness acceptability curves (CEAC) for each treatment strategy. 

We also studied the effect of changing key parameters in our model: 
sensitivity and specificity of the predictive models used in the PGx-CL-R 
and CL-R groups (Supplementary Figure 1) and costs of sequencing/ 
genotyping. Different combinations of sensitivity and specificity of the 
PGx-CL-R predictive model were also evaluated to estimate the extent to 
which hypothetical improvements in the test would change the results. 

2.3.3. Replication 
The cost-effectiveness of the CL-R strategy was tested in two inde-

pendent samples, GENDEP and TRD2 (clinical-demographic character-
istics are in Supplementary Table 1), but we could not test PGx-CL-R, 
because of the unavailability of whole exome sequence data. Indeed, in 
our previous study we showed that genome-wide array data provided 
poor coverage of coding regions (exons) which were particularly rele-
vant for the replication of the results (Fabbri et al., 2020). Based on 
sensitivity and specificity of the CL-R predictive model in these samples, 
we calculated the transition probabilities between the considered health 
states (Supplementary Table 7). GENDEP was a 12-week partially ran-
domized open-label pharmacogenetic study with two active treatments 

Figure 1. : Markov model representation. Each transition is associated with a probability (p1…pn) and each health state with a utility (u1…un), measured in QALYs, 
and cost (c1...cn) . 

Figure 2. : transition probabilities from depression to response and remission in the combined treatment group and pharmacotherapy group. Details on the esti-
mation of these probabilities are reported as Supplementary Methods. T1, T2, T3 and T4: weeks 12, 24, 36, 48. 
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(nortriptyline and escitalopram). 867 patients with MDD (ICD-10 or 
DSM-IV criteria) were included and severity of depressive symptoms 
was assessed at baseline and weekly by scales including the MADRS 
(Uher et al., 2010). TRD and response were defined according to a 
previous study (Iniesta et al., 2016). TRD2 included 417 MDD patients 
(DSM-IV criteria) who had failed to respond to a previous retrospec-
tively assessed antidepressant and were entered into an open two-phase 
naturalistic trial: in the first phase patients received a 6-week ven-
lafaxine treatment; then those who failed to respond to venlafaxine were 
treated for a further 6-week period with escitalopram. Depressive 
symptoms were assessed every two weeks using the MADRS (Souery 
et al., 2015). 

TRD2 and GENDEP studies were approved by the ethical committees 
of all participating centers and all patients signed an informed consent. 

3. Results 

Our analysis suggested that PGx-CL-R is not cost-effective compared 
to the other treatment strategies, since it showed an ICER of £3937 per 
QALY when compared to ST, while CL-R had an ICER of £2341 
compared to ST (Table 1; number of subjects in each group during the 
three-years simulation: Supplementary Figure 2). 

In our sensitivity analyses, PGx-CL-R would have an ICER compa-
rable to CL-R if:1) the cost of sequencing/genotyping is £100 or less 
(ICER would be £2343); or 2) the PGx-CL-R test had sensitivity ≥ 0.90 
and specificity ≥ 0.85 (Figure 3). The CEAC showed that if the 
willingness-to-pay threshold is £3923 or higher, CL-R has higher chances 
of being cost-effective compared to the other treatment strategies 
(Figure 4A). The ICER for CL-R and PGx-CL-R vs. ST were similar when a 
different threshold was used to distinguish TRD from non-TRD, aiming 
to maximize specificity (Supplementary Figure 1; Table 1) and we 
confirmed that CL-R was the most probable cost-effective strategy when 
the willingness-to-pay threshold was £3769 (Figure 4B). 

In GENDEP, the CL-R model had a sensitivity of 0.34 and a specificity 
of 0.76 and the area under the ROC curve was 0.61 (95% CI 0.55-0.67). 
The ICER of CL-R compared to ST was £3664. According to the CEAC, 
CL-R had a higher chance of being cost-effective compared to ST when 
the willingness-to-pay threshold was £5389 or higher (Supplementary 
Figure 3A). 

In TRD2, the CL-R model had a sensitivity of 0.30 and a specificity of 
0.76. The area under the ROC curve was 0.56 (95% CI 0.51-0.62). The 
ICER of CL-R compared to ST was £4110. According to the CEAC, if the 
willingness-to-pay threshold was £5942 or higher, CL-R had higher 
chances to be cost-effective compared to ST (Supplementary Figure 3B). 

4. Discussion 

4.1. Main findings 

Our results suggest that the PGx-CL-R treatment strategy is not cost- 
effective compared to CL-R, since it provided a specificity only 7-10% 
higher, at a high cost of exome sequencing/genotyping, which had a 
major impact on the ICER. According to our findings, there are two key 
scenarios which would make the ICER of PGx-CL-R analogous or better 
than the ICER of CL-R: 1) cost of genotyping of £100 or less; or 2) 
sensitivity of the test of at least 0.90 and specificity of at least 0.85 
(Figure 3). 

Our CL-R model was based on only five variables, in order to make 
the assessment as easy as possible, and we included only variables 
generalizable to most MDD samples. The clinical score showed a fair 
performance in the testing sample, in which it was estimated to improve 
the detection of TRD cases of 22% compared to assigning the combined 
treatment randomly to the same proportion of subjects (62% vs. 40% in 
1000 simulations). In the two replication samples, the predictive per-
formance was weaker, and the proportion of TRD cases that can be 
identified was 7% higher (GENDEP) and 4% higher (TRD2) than what 
would be expected if combined treatment was assigned randomly to the 
same proportion of subjects, probably as a consequence of different 
clinical characteristics of the replication samples. It should also be noted 
that these estimates depend on the prevalence of TRD, which was 
assumed to be 31% in this study (Supplementary Methods). The pro-
portion of TRD patients identified by our predictive models compared to 
chance would improve in samples with lower prevalence of TRD. For 
example, if the prevalence of TRD is 20%, the clinical model would 
improve the detection of TRD cases by 31%, 8% and 5% in the main 
testing sample, GENDEP and TRD2, respectively. The reported increase 
in TRD identification may be seen as a marginal benefit, but the corre-
sponding ICER are good compared to the standard for new interventions 
(National Institute for Health and Care Excellence, 2015) and MDD is the 
fourth-leading cause of disability worldwide (GBD 2015 Disease and 
Injury Incidence and Prevalence Collaborators, 2016), justifying the 
investment of resources in its treatment. The relatively low sensitivity of 
the clinical predictive model may not be a major issue, as long as the 
specificity is quite good, because the intervention is relatively expensive 
compared to standard care, and as long as there is an increase in the 
number of subjects who will develop TRD who are correctly identified 
and assigned to combined treatment compared to random allocation, 
with an acceptable risk of false positives, there is a potential benefit. 

Table 1 
Incremental cost-effectiveness ratio (ICER) for the different treatment strategies 
tested. Effect difference was measures in QALYs (quality-adjusted life years). All 
results refer to a three-years simulation. The reference treatment is standard care 
in all cases. PGx-CL-R=pharmacogenetics and clinical risk guided group. CL- 
R=clinical risk-guided group.  

Treatment 
strategy 

Sample Cost 
difference £ 

Effect 
difference 
(QALYs) 

ICER (£ 
per 
QALY) 

PGx-CL-R Main sample 1594 0.405 3937 
Main sample, 
sensitivity 
analysis†

1353 0.266 5083 

CL-R Main sample 941 0.401 2341 
Main sample, 
sensitivity 
analysis†

671 0.291 2311 

GENDEP 861 0.235 3664 
TRD2 864 0.210 4110  

† this is the sensitivity analysis performed by changing the threshold for dis-
tinguishing TRD and non-TRD patients, see Supplementary Figure 1 

Figure 3. : ICER values (British pound sterling or GBP) in the PGx-CL-R group 
for different combinations of sensitivity and specificity of the predictive test. 
The ICER of the CL-R group is marked by a red horizontal line for comparison. 
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Furthermore, our study made a step further compared to previous 
research that was limited to the evaluation of clinical variables associ-
ated with TRD without replication of their predictive performance in 
independent samples or estimation of their cost-effectiveness for guiding 
clinical decisions (Iniesta et al., 2016; Kautzky et al., 2018). 

Our results are in line with a previous clinical trial that assessed the 
cost-effectiveness of combined psychotherapy and pharmacotherapy vs 
pharmacotherapy in patients with MDD who did not respond to at least 
one previous pharmacotherapy. This study found that the ICER was 
£5374 for combined treatment vs pharmacotherapy after 3.3 years 
(Wiles et al., 2016). After three years, we showed similar ICER values in 
the probabilistic sensitivity analyses, but these were obtained by 
assigning the treatment group based on a clinical risk score at baseline, 
therefore saving the time and costs of the first treatment phase. 

4.2. Limitations 

The PGx-CL-R model validity could not be tested in other samples, 
because of the lack of comparable genetic data (whole-exome 
sequencing). However, the rapid growth of sequence data in large co-
horts such as biobanks, as well as the rapid drop in the costs of 
sequencing, will facilitate the replication and development of pharma-
cogenetic models with improved predictive performance, affordable 
costs and broad availability. The CL-R model showed weak predictive 
performance in two of the three testing samples, which could have in 
part been due to the partial comparability of the main clinical charac-
teristics of these samples (Supplementary Methods; Supplementary 
Table 1). This study provides a proof-of-principle approach to be refined 
in primary care samples rather than a definitive method ready to be 
applied in the clinical practice. The generalizability of the CL-R model is 
an important step before application to guide treatment choice in clin-
ical trials; testing the model in larger samples, possibly reflecting the 
characteristics of primary care patients, would be an important valida-
tion. Large population-based samples from biobanks and national reg-
istries can be used for this purpose. After this step, cost-effectiveness 
could be measured in a randomized controlled trial (RCT) rather than 
using a Markov simulation. It should be noted that there could be other 
scenarios in which genetic testing could be cost-effective vs other 
treatment strategies (e.g. we did not test the cost-effectiveness of 
CYP2D6/CYP2C19 genotyping, which can be performed for prices 
around £100 (e.g. $149 (MyDNA, 2020), or of commercial pharmaco-
genetic tests which currently have a median cost of CA$499 (range from 
CA$199 to CA$2310) (Maruf et al., 2020) and may be used to guide drug 
choice). 

Another issue related to the use of estimates from the literature was 
that response and remission to combined pharmacotherapy and psy-
chotherapy were based on a meta-analysis of RCTs, which were single- 
blind in ~1/3 of cases (the assessors were blind to treatment, but of 
course the patients were not) (Cuijpers et al., 2014). Besides, we used 
cost data referred to the UK NHS which could vary in other countries. 

A treatment strategy that our study did not explore was the use of 
pharmacological augmentation to antidepressants, which would likely 
be a cheaper option compared to augmentation with psychotherapy. 
However, there is no meta-analysis estimating the effect size of phar-
macological augmentation vs antidepressant monotherapy as first-line 
treatment in MDD; in TRD the effect size of this treatment on symp-
tom improvement is similar to that reported for augmentation with 
psychotherapy (Cuijpers et al., 2014; Ijaz et al., 2018; Zhou et al., 2015; 
Strawbridge et al., 2019). However, the main issue would be the 
increased risk of side effects associated with combined pharmaco-
therapy (our models have 10-20% of false positives who would receive 
combined pharmacotherapy with increased side effects but no benefits). 

4.3. Conclusions 

Our results suggest that a clinical risk score of pharmacotherapy 
resistance may be a cost-effective strategy to guide the prescription of 
combined psychotherapy and pharmacotherapy vs pharmacotherapy at 
the baseline assessment of patients with MDD. Despite this is likely the 
most cost-effective strategy to optimize the prescription of combined 
psychotherapy and pharmacotherapy at present, in the future the drop 
of genotyping/sequencing costs and availability of genetic data in large 
population-based samples could lead to the development of cost- 
effective genetic predictors. 
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