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Depth self-supervision for single image novel view synthesis

Giovanni Minelli1 Matteo Poggi1 Samuele Salti1

Abstract— In this paper, we tackle the problem of generating
a novel image from an arbitrary viewpoint given a single
frame as input. While existing methods operating in this setup
aim at predicting the target view depth map to guide the
synthesis, without explicit supervision over such a task, we
jointly optimize our framework for both novel view synthesis
and depth estimation to unleash the synergy between the two at
its best. Specifically, a shared depth decoder is trained in a self-
supervised manner to predict depth maps that are consistent
across the source and target views. Our results demonstrate
the effectiveness of our approach in addressing the challenges
of both tasks allowing for higher-quality generated images, as
well as more accurate depth for the target viewpoint.

I. INTRODUCTION

In many fields, data is a necessary burden. It plays a crucial
role in the industry, helping in decision-making, progress
monitoring, and gaining insights. It becomes essential in
applications involving deep learning, such as most computer
vision tasks. However, obtaining data in large quantities
is often challenging, specifically when physical space is
limited and does not allow for deploying multiple sensors,
as often happens in robotic systems, or when cost and time
are significant constraints. Ongoing research is trying to
discover alternative ways to enable realistic data generation
to compensate for this lack. Among them, we can find Novel
View Synthesis (NVS) in computer vision, as the task of
generating images framing unseen or occluded parts in a
scene. It can be used for applications such as image editing,
enhancement of visual experiences or virtual reality [27],
where it would be desirable to generate new frames on the
fly out of a scene, or even in robotic navigation, potentially
allowing an agent to infer and predict a dangerous situation
before it could happen [55].

To tackle the NVS task, it is generally necessary to
reason about the 3D structure of the scene, which enables
to infer the relative motion of objects represented under
a view transformation. While recent methods have made
significant progress using multiple views to reconstruct 3D
scene geometry [29], [30], [24], [35], [41], [13], [25], they
cannot be seamlessly extended to work with a single image.
When working with a single 2D image, estimating the under-
lying geometry of the scene becomes an ill-posed problem.
Additional prior information in the form of depth [54], [26],
[59] or light fields [46] can be used to aid in this estimation
and ensure consistency in the geometric structure. However,
acquiring such additional data is challenging and requires
ad-hoc sensors.

To relax these constraints, recently some methods [8],
[20] proposed to implicitly encode knowledge about the

1Alma Mater Studiorum University of Bologna

?

Fig. 1: Framework overview. Our model generates a novel,
target image and its depth map out of a single, source frame.

scene geometry in a compact latent embedding extracted
from the source image and to reconstruct the desired novel
view by transforming such a representation according to the
relative pose between the two viewpoints. We dub them
source-to-target approaches. Although such a paradigm is
appealing, some limitations dampen its overall effectiveness,
where existing frameworks learn the NVS task with direct
supervision being limited to the image generation process
itself. However, the synthesis process is a direct consequence
of the scene geometry which is implicitly modeled during
inference – e.g., in the form of depth maps [8], [20] – yet
never explicitly optimized. We argue this lack of supervision
on geometry yields sub-optimal results, dampening the great
potential of source-to-target approaches.

In this paper, we propose a new pipeline for source-to-
target NVS that explicitly reasons on a latent representa-
tion of the scene at the geometry level. The key point of
our approach consists in exploiting self-supervised depth
estimation to better guide the network in learning such
underlying geometry, and to allow for the proper generation
of novel views. The synthesis task is performed by two
decoders, parsing the encoded embeddings, correcting the
distortion effects and producing highly detailed output, as
those sketched in Figure 1. The synergy between NVS and
depth estimation yields higher quality results in comparison
to existing approaches [8], [20], both on synthetic images and
on real data, for both generated novel images and estimated
depth maps. Our code is available at https://github.
com/johnMinelli/TwoWaySynth/.

https://github.com/johnMinelli/TwoWaySynth/
https://github.com/johnMinelli/TwoWaySynth/


II. RELATED WORK

In this section, we review the research trends in NVS being
most relevant to our work.

A. View synthesis from multi-view images.

This family of approaches can be used in a variety of
applications, including 3D reconstruction, object recognition,
and scene understanding. It can be performed by collecting
images from multiple cameras or by taking multiple pic-
tures from different angles with a single camera and then
reconstructing the 3D structure of the scene by exploiting
the consistency between views. Traditionally, this was done
using depth maps [6], or multi-view geometry methods [11],
[24], [35], [41], [42], [13], [25], but those approaches often
suffer from unreliable photometric consistency and artifacts
in the reconstructed images. Then, the use of neural networks
– CNNs in particular – has become a popular approach
for NVS, by exploiting deep features instead of using ex-
plicit images. This strategy leverages geometrical and optical
properties such as depth and occlusions to generate novel
views [34], [18], [58], [32], [2], [27]. Furthermore, the
fully differentiable frameworks often involved allows for
merging geometry estimation and novel view synthesis for
better results. [48] proposed a framework to combine flow-
based predictions from multiple input views and then do
pixel generation prediction via confidence maps. [43] reasons
about the visibility of the pixels in the different images to
implement a consensus volume and then determine the depth
of the scene usable to warp source pixels into target views.
[4] employs Transformers to fuse 3D point clouds relative
to the target viewpoint, extracted from a sparse set of input
images with estimated depths.

A very popular and novel paradigm for NVS from multiple
images is Neural Radiance Fields (NeRF) [29], using MLPs
to infer the volume density and view-dependent emitted
radiance from 5D input coordinates – spatial locations and
viewpoint directions. Images are generated by querying the
MLPs for a set of 3D points along the camera ray of each
pixel, through volumetric rendering. As a downside, NeRF
necessitates millions of queries to the MLP network and does
not generalise across different scenes – i.e., it requires per-
scene training. Some variants [56], [7], [52], [49] address
the generalisation issue of NeRF showing comparable per-
formance on selected testing scenes, while others focus on
training and rendering speed [47], [1], [30].

The underlying 3D geometry of the scene is crucial to
properly render novel views. A variety of representations
(both implicit and explicit) have been used for NVS. Some
methods approaching NVS from multi-view images estimate
it by means of 3D representations like voxels [51], [10],
[45], [17] or meshes [36], [37], [23], [21], but these methods
can be computationally expensive. Some approaches [36],
[37] obtain photorealistic results using a mixed approach:
starting from a possibly incomplete depth estimation ob-
tained through a structure-from-motion method [40], they
build a point cloud used as starting point for the meshing
process. Other works with higher computational and memory

efficiency rely instead on point clouds directly [54], [2],
[4], [38]. However, point-based representations can yield
artifacts or holes between points after projection on the image
plane, unless complex generative methods are included in the
pipeline to fill the gap with plausible generated content [54],
[28], [50].

All the approaches introduced so far obtain impressive
NVS results, yet require multiple images as input, a hard-to-
meet constraint in most applications. In contrast, our method
only requires a source image to render a novel view.

B. Source-to-target view synthesis

A different approach to NVS aims at generating a target
novel view given a single source image. The lack of ge-
ometry knowledge due to the absence of multiple images
is compensated by exploiting additional cues, often in the
form of ground truth geometry or semantic information to
train the 3D representation [31], [44], [51]. We mention in
particular the use of depth maps [54], [26], [59], surface
normals [26] and light field images [46]. However, collecting
large quantities of such data in real-world settings can be
challenging. As a result, synthetic environments are often
used for training, not excluding the possibility of later
refining the results using real-world data.

Image-based rendering techniques use geometry informa-
tion to generate new views using the pixels from the source
images. By projecting one or more images onto a target view
and blending the results, these methods can generalize to
unseen data creating free-viewpoint images [9], [34], [18].
[33] performs a transformation on the 3D latent space of an
encoder–decoder network used to predict an occlusion-aware
flow and then refine the transformed image with a completion
network. [3] shows how depth estimation and novel view
synthesis tasks are tightly linked by generating new data
to supervise the first task. [8] obtain novel views using
inverse warping in target position by using a 3D transforming
autoencoder [19] to predict the depth map needed. Generally,
directly generated images may suffer from blurriness, lack
of texture details or inconsistency of identity, and [20] solve
that by introducing a decoding step to obtain the NVS output.

Among these methods, [8], [20] allows for generating
target views without any additional supervision, by implicitly
modeling the geometry of the scene in a compact latent repre-
sentation, that is transformed according to the relative camera
poses between the source and the target images to generate
the latter. However, these frameworks are supervised at the
image level only, without any direct optimization of the latent
representation. Our work shares the main objective with these
approaches, yet overcomes this latter limitation by explicitly
supervising the process at the geometry level by means of
self-supervised depth estimation.

III. PROPOSED METHOD

In this section, we introduce our framework designed
to tackle the source-to-target NVS task by processing a
single RGB image, while assisted by depth estimation as
an auxiliary task. We consider as input a 255×255 RGB
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Fig. 2: Proposed architecture for joint NVS and depth estimation. A source image Is is forwarded to a feature encoder
to obtain a compact embedding zs and multi-scale features fs. Then, zs and fs are processed by three decoders for different
purposes, respectively 1) by a DepthDecoder to produce a set of depth maps D̃s (blue) at different resolutions, 2) by a second
DepthDecoder, sharing weights with the previous one, after having been aligned to the target view according to [R|t]s→t, to
produce a second set of depth maps D̃t (red), and 3) by the NVSDecoder, again after being aligned to the target viewpoint,
to generate the novel view Ĩt. To align zs to the target view, we apply a latent space transformation (Sec. III-B), while fs
are warped by means of forward or backward warping, according to estimated depths D̃s and D̃t respectively (Sec. III-C).

frame, i.e. the source image Is. During training, it is paired
with a second, target image – i.e., the novel view It we
wish to generate starting from the source one – and the
relative transformation between the two, expressed by a
4×4 matrix [R|t]s→t. The framework is trained to learn to
generate the latter view, i.e., a view Ĩt that closely resembles
It. Synthesis is performed by aligning a compact latent
space and the intermediate multi-scale features to the target
viewpoint. Accordingly, we will refer to ε̂ as the transformed
counterpart of a generic ε input from now on. We will
now introduce our architecture, depicted in Fig. 2, for joint
NVS and depth estimation, as well as the two key working
principles implemented inside it.

A. Architecture

The source image Is is forwarded through an encoder-
decoder pipeline to obtain an estimation of the view at
target position Ĩt. The encoder reduces the resolution of the
input image to a 1×1 multidimensional tensor which embeds
geometrical information, zs, while a set of 5 multi-scale
feature maps fs is obtained during this encoding process,
respectively from half to 1

32 of the original resolution. The
generation step will then be performed by the NVSDecoder,
the rightmost in Figure 2, which predicts the image from
an embedding aligned with the desired viewpoints. Such
latent representation can be obtained, following [8], [20],
by directly manipulating the source embeddings, as detailed
in the remainder. We used ResNet-18 convolutional blocks
with pre-trained weights for the encoder, replacing the last
pooling stage with an FC layer and a U-Net like architecture
for the decoders.

B. Latent Space Transformation

In order to decode an image from the compact embedding
forwarded to the NVSDecoder, such an embedding should
be geometrically aligned with the desired, target viewpoint.
Purposely, inspired by [8], [20] we train our encoder-decoder

architecture to learn a compact latent representation that is
equivariant to 3D transformations. This can be achieved by
directly applying a 3D geometric transformation to the latent
code itself. Specifically, the embedding zs is reshaped into
a N × 3 structure and then multiplied by the transformation
matrix Ts→t = [R|t]s→t, that describes the roto-translation
movement between source and target views. This produces
a new latent code ẑt:

ẑt = zs ×Rs→t + ts→t (1)

aligned to the viewpoint of the target image.
This operation is fully differentiable, thus back-

propagating through the whole framework will encourage
the features encoder to extract embeddings meaningful to
the 3D geometry of the scene. As a consequence, the
transformed latent code can be used as a coarse 3D structure
by the decoders to synthesize either the new view Ĩt or its
corresponding depth map D̃t.

C. Direct and inverse warping
While applying the 3D transformation in the latent space

is sufficient for producing an embedding aligned with the
target view, this is not enough for decoding accurate depth
maps and novel views. Indeed, feeding the decoder with
features coming from the encoder is crucial for preserving
fine-grained details in the final results predicted by U-
Net like architectures [39], and this is usually achieved by
implementing skip connections. Therefore, to obtain features
properly aligned with the target viewpoint, image-warping
operators are used to establish a relationship between the
pixel (homogeneous) coordinates pa of a generic image Ia
and those pb of a second frame Ib. This is achieved by using
known intrinsics K, pose [R|t]b→a, and depth D̃a.

pb ∼ KTa→bDaK
−1pa (2)

Accordingly, we can either apply inverse (backward) or
direct (forward) warping depending on the features we want



to warp, i.e., respectively from pb to pa or from pa to
pb. While the former is often implemented in the form of
spatial transformer networks [22] for tasks such as self-
supervised depth estimation [15], the latter is used less
frequently, because of the collisions and holes it produces
in the warped feature maps. As proposed in [20], a single
DepthDecoder – i.e., the second in Figure 2 – would be
sufficient to obtain depth map D̃t, which can then be used
to run inverse warping for fs and provide features f̂ inv

t to
the NVSDecoder. However, the DepthDecoder itself cannot
benefit from the encoder features, since they are still aligned
with the source viewpoint. This produces sub-optimal depth
predictions and, as a consequence, hinders the accuracy of
the NVSDecoder.

For this purpose, we deploy a second DepthDecoder –
i.e., the leftmost in Figure 2 – sharing the weight with the
first one, to estimate a depth map D̃s from features fs and
the embedding zs. This first depth map, aligned with the
source view, allows for running direct warping of the features
fs and aligning them to the target viewpoint, obtaining
f̂dir
t . The initial decoder benefiting of skip connections

produces a more accurate depth map D̃t, which in turn
allows for a better warping of features fs into f̂ inv

t for
the NVSDecoder and, finally, increases the quality of the
generated, novel image. Since the features fs are extracted
at different resolutions, intermediate depth maps estimated
at the same resolutions are used both in direct and inverse
warping operations.

D. Loss function

The whole model is trained in an end-to-end fashion,
tightly linking NVS and depth estimation. The overall loss
function is made of four terms detailed in the remainder.
Image reconstruction loss (Lrecon). We supervise the
NVSDecoder by upsampling each intermediate output Ĩit
from scale i up to the original full resolution (Ĩi↑t ) and by
computing its L1 distance from ground truth image It.

Lrecon =

S∑
i=0

|Ĩi↑t − It| (3)

Photometric reprojection loss (Lphoto). In addition to
features warping, the second DepthDecoder also uses depth
maps D̃t to warp source images Is and generate reprojected
images Ît, which provide self-supervision for the depth
estimation task. Dissimilarity between the reprojected images
Ît

i
and the real images It is measured at each intermediate

depth map scale i, with the real images being downsampled
accordingly.

Lphoto =

S∑
i=0

|Îit − Ii↓t | (4)

VGG perceptual loss (LV GG) As already demonstrated
by [20], the adoption of a VGG perceptual loss allows for
enhancing the realism of generated results by increasing
the sharpness of shapes. This is done by applying the
feature extractor Θ of a pre-trained VGG16 network on the

generated and the ground truth image individually, and then
computing the L1 distance between such features.

LV GG = |Θ(Ĩt)−Θ(It)| (5)

Edge-aware smoothness loss (Lsmooth). We further pro-
mote the smoothness of predicted depth maps by means of
an edge-aware term, as proposed in [15], [16].

Ls
smooth = |∂xDs|e∂xIs + |∂yDs|e∂yIs (6)

This encourages smooth predictions for textureless regions of
the images while preserving depth discontinuities. Similarly,
Lt
smooth can be computed from D̃t and It.
Depth consistency loss (Lskip). In order to improve

the results by the DepthDecoders, even when dealing with
altered or incomplete features as a consequence of either
latent space transformation or direct warping, an L1 loss is
introduced. We compare the last depth map of the DepthDe-
coder processing zt and ft, and the depth map from ẑt and
f̂dir
t input. The first two terms are respectively embedding

and features obtained by encoding the target view, and the
last two terms by encoding the source view and applying the
transformation introduced in Sec. III-B and III-C (i.e., step
1 in Figure 2).

Lskip = |D(zt, ft)−D(ẑt, f̂
dir
t )| (7)

The overall loss function is defined as

Ltot =αLrecon + βLphoto + γLV GG+

δ(Ls
smooth + Lt

smooth) + ωLskip

(8)

with α, β, γ, δ, ω being weighting terms.

IV. EXPERIMENTS

We assess the effectiveness of our framework on both
synthetic and real images and compare it with existing works
built over the same principles, by using the pre-trained
models released by the authors. We use the Adam optimizer
with β1 = 0.9, β2 = 0.999, set the initial learning rate to 6e−5

with a linear decay program, and train our model for a total
of 100k steps with a batch size of 8. The following sections
introduce the datasets and metrics used for our evaluation,
discuss the results in comparison with existing approaches,
and present an ablation study to validate our design choices.

A. Dataset

Following [20], [8], we evaluate our framework on
ShapeNet[5] and KITTI[14], respectively representative of
synthetic and real images.

ShapeNet. It provides a collection of 3D synthetic objects
with thousand of models for each category. We select two
categories, in order to benchmark our framework on images
with different topologies: chair models present complex
designs, often with wiry and elongated features that are
harder to be synthesized. On the opposite, car models are
more consistent in the shape but the main body presents
small details and rich textures that cannot be found in chairs.
The dataset used is composed of 6777 chair models and
3514 car models, each rendered in 72 poses (both elevation



TABLE I: Experimental results for NVS on ShapeNet. We
compare the synthesis quality achieved by Chen et al. [8],
Hou et al. [20] and our method. Best results in bold.

L1↓ SSIM↑

C
ha

ir
s Chen et al. [8] 0.097 0.907

Hou et al. [20] 0.073 0.923
Ours 0.026 0.943

C
ar

s Chen et al. [8] 0.044 0.946
Hou et al. [20] 0.049 0.946
Ours 0.026 0.954

and azimuth are taken with a sampling distance of 10°,
respectively in [0°,40°] and [0°,360°] ranges) at a resolution
of 512 × 512. For our model, those are downscaled to the
proper input size and pairs of images are constructed in a
range of [-40°,+40°] azimuth and random elevation. The train
test split used is equivalent to the one used by [20].

KITTI. This dataset has been collected during driving
sessions, using a car equipped with standard cameras and
Velodyne LiDAR sensors. It represents a standard real-world
benchmark, used for many computer vision tasks. From
KITTI we select 80k samples, obtained by excluding static
scenes. The images are center-cropped to match the input
size and pairs are constructed by taking the target view
randomly within a distance of 7 frames from the source.
We use the standard Eigen split[12] for training, while we
use the images from the Eigen test split as source views
and sample corresponding target views from the sequences
containing them. Poses are extracted from oxts files provided
with the datasets.

B. Metrics

To quantitatively evaluate the results achieved by our
framework, we adopt standard metrics for both tasks. Per-
formances relative to NVS are expressed by the L1 norm,
measuring the per-pixel difference between generated and
ground truth images and the structural similarity index
(SSIM) [53], measuring the perceptual quality of the image.
On the KITTI dataset, we also measure the Peak Signal-
to-Noise Ratio (PSNR), the higher the better, as well as the
Learned Perceptual Image Patch Similarity (LPIPS) [57]. For
the depth estimation task, we measure the accuracy of the
predictions by the second DepthDecoder – i.e., producing the
depth for the target view, crucial for performing the target
image synthesis – with respect to ground truth depth, adopt-
ing a standard set of metrics from [12] including square-
root of scale-invariant logarithmic error (SILog), absolute
relative error (Abs. Rel.), squared relative error (Sq. Rel.),
root mean squared error (RMSE), root mean squared error
between log depths (Log. RMSE) and threshold accuracy
(δ < 1.25i, i ∈ [1, 2, 3], with δ being the maximum between
the prediction over ground truth ratio and its inverse).

C. ShapeNet evaluation

Table I shows results for NVS on the ShapeNet dataset,
on chairs and cars. We can notice how our framework
consistently achieves a higher quality synthesis with respect

(a) Source (b) Target (c) [8] (d) [20] (e) Ours

Fig. 3: Qualitative results on ShapeNet. From left to right:
(a) source and (b) target images, novel views by (c) Chen et
al. [8], (d) Hou et al. [20] and (e) our framework.

to existing works [20], [8]. This can be further appreciated
qualitatively in Figure 3. On the one hand, we can notice how
[8] often results in distorted shapes due to propagation of
errors originated from a poor estimation of the target image
depth, obtained exclusively by transformative projection in
the synthesis step, while we can observe how [20] sometimes
produces abnormally elongated shapes, mostly visible on
cars. On the other hand, our improved encoding and decod-
ing process allows for obtaining novel views geometrically
consistent with the original one, preserving fine structures
(e.g., chair legs).

D. KITTI evaluation

We further evaluate the effectiveness of our framework
on KITTI, a real and more challenging dataset. Specifically,
thanks to the availability of depth data collected by the
Velodyne LiDAR sensor, we both evaluate the quality of the
generated novel views, as well as the accuracy of estimated
depth maps for such images. We point out how this depth
estimation task differs from standard single-image depth
estimation [15], [16], since depth is estimated according to
a viewpoint different from the one of the source image, and
thus is not directly comparable with this field of the literature.



TABLE II: Experimental results for NVS and depth estimation on KITTI. We compare the synthesis quality (left) and
depth accuracy (right) achieved by Chen et al., [8], Hou et al. [20] and our method. Best results in bold.

L1↓ SSIM↑ PSNR↑ LPIPS↓ SILog↓ Abs.Rel.↓ Sq.Rel.↓ RMSE↓ RMSElog ↓ δ1 ↑ δ2 ↑ δ3 ↑
Chen et al. [8] 0.200 0.657 16.012 0.350 25.947 0.191 3.711 10.013 0.270 0.755 0.889 0.944
Hou et al. [20] 0.231 0.649 15.068 0.451 28.852 0.233 2.865 9.037 0.304 0.633 0.848 0.939
Ours 0.178 0.699 17.248 0.339 15.858 0.116 1.189 6.089 0.167 0.863 0.960 0.988

(a) Source (b) Target (c) [8] (d) [20] (e) Ours (f) GT (g) [8] (h) [20] (i) Ours

Fig. 4: Qualitative results on KITTI. From left to right: (a) source and (b) target images, novel views by (c) Chen et al.
[8], (d) Hou et al. [20] and (e) our framework, (f) ground truth depth, estimated depth maps by (g) Chen et al. [8], (h) Hou
et al. [20] and (i) our framework.

Table II collects quantitative comparisons between existing
approaches [8], [20] and our pipeline, reporting scores con-
cerning both NVS and depth estimation tasks. We can notice
how our proposal outperforms both on any metric. Figure 4
shows qualitative results concerning this experiment. We can
notice how our framework, by jointly learning how to deal
with both NVS and depth estimation, produces more detailed
images and depth maps with respect to existing approaches.

Finally, we also highlight a limitation common to any
of the considered approaches, made evident by the KITTI
dataset itself. By their formulation, these frameworks can-
not properly deal with moving objects in the scene, often
occurring in real environments such as those featured in the
KITTI dataset. As a consequence, rendering a target view in
which we witness both a change of the camera viewpoint
and the motion of some objects in the scene will produce a
novel view in which the objects themselves did not move.
Figure 4 shows an example on the third row. The rightmost
car in the source image moves and, in addition to the small
movement of the camera, disappears from the target view.
However, each of the three methods generate images in
which the car is still visible as if it was static. We leave
explicitly modelling of the objects’ movements in the scene
as independent motions to future work.

E. Ablation study

We conclude our evaluation by measuring the impact of
each component in our pipeline through an ablation study
carried out on the KITTI dataset. Table III reports the
outcome of this experiment, both in terms of NVS and depth

estimation. Best results are reported in bold, while second
bests are colored in blue.

On top, we recall the results achieved by our full pipeline.
Then, we first study the impact of architectural choices,
reporting the results achieved by (I) forwarding direct warped
features of the encoder to the NVSDecoder by means of
source depth map – i.e., by removing the second DepthDe-
coder – as well as by (II) removing skip connections for-
warded as input to the NVSDecoder or (III) the DepthDe-
coder. We can notice how dropping any of these design
choices leads to a sensible decline in both NVS quality and
predicted depth accuracy. Figure 5 confirms this qualitatively.
Specifically, configuration (III) corresponds to [20], indeed
presenting the same blurring and distortion effects as it.
Configuration (II) underline the clear effectiveness of the
skip connections in the RGB space: here only a vague shape
can be synthesized from the encoded information, in contrast
with the highly detailed images obtained by our complete
pipeline. Finally, removing skip connections directed to the
DepthDecoders (III) affects the NVS process in a minor
manner compared to what we observed for the NVSDecoder.
However, the removal of such connections yields blurred
depth maps, consequently causing the inverse warping to
generate less effective reprojection of the encoder features
to match the target viewpoint.

At the bottom of the table, we also measure the impact
of the different terms building up our loss function. We
can notice how, by selectively turning off single terms,
we can prioritize one task over the other. For instance, by
neglecting the multiscale reconstruction loss Lrecon (IV) we



TABLE III: Ablation study on KITTI – NVS and depth estimation. We compare the synthesis quality (left) and depth
accuracy (right) achieved by our full pipeline and ablated variants (I-VIII). Best results in bold, second best in blue.

L1↓ SSIM↑ PSNR↑ LPIPS↓ SILog↓ Abs.Rel.↓ Sq.Rel.↓ RMSE↓ RMSElog ↓ δ1 ↑ δ2 ↑ δ3 ↑
Ours (full) 0.178 0.699 17.248 0.339 15.858 0.116 1.189 6.089 0.167 0.863 0.960 0.988

(I) No inverse warping 0.190 0.688 16.594 0.404 26.812 0.217 2.665 8.498 0.281 0.672 0.878 0.950
(II) NVSDec w/o skips 0.309 0.620 12.843 0.702 21.497 0.167 1.898 7.480 0.224 0.776 0.927 0.974
(III) DepthDec w/o skips 0.185 0.690 16.974 0.352 19.485 0.151 1.669 7.112 0.204 0.810 0.941 0.981
(IV) w/o Lrecon 0.189 0.693 17.015 0.337 15.690 0.112 1.163 6.057 0.165 0.868 0.960 0.988
(V) w/o LV GG 0.172 0.709 17.364 0.427 18.756 0.136 1.480 6.833 0.196 0.824 0.944 0.982
(VI) w/o Lphoto 0.180 0.698 17.177 0.338 16.204 0.117 1.361 6.326 0.170 0.860 0.958 0.985
(VII) w/o Lsmooth 0.183 0.694 17.064 0.341 16.189 0.117 1.314 6.266 0.170 0.861 0.958 0.986
(VIII) w/o Lconsistency 0.179 0.701 17.160 0.334 15.943 0.117 1.260 6.148 0.167 0.863 0.959 0.987

(a) GT (b) Full (c) (I) (d) (II) (e) (III)

Fig. 5: Qualitative results on KITTI – ablation study.
From left to right: (a) ground truth target image (top)
and ground truth depth (bottom), followed by (b-e) results
achieved by configurations (I), (II) and (III) from Table III.

reduce the supervision given to NVS. Consequently, depth
metrics improve at the expense of visual fidelity due to
discoloration and artifacts. Removing the contribution of
LV GG (V), the network no longer explicitly optimizes for
perceptual similarity in generated images, resulting in fuzzier
outputs. However, surprisingly, this leads to an improvement
in structural similarity, possibly due to the spreading of other-
wise small artifacts in the sky of KITTI images. To conclude,
we can notice how removing each one of the remaining
terms independently (VI,VII,VIII) has minor consequences
compared to the removal of Lrecon and LV GG.

V. CONCLUSIONS

In this paper, we proposed a new pipeline for source-
to-target novel view synthesis. Given a source image and
a target viewpoint, our framework can generate a novel
frame from this latter. Being our model explicitly trained
to learn for both the image synthesis and depth estimation
tasks, it achieves superior results both in terms of novel
generated images as well as predicting their corresponding
depth maps with respect to existing approaches for source-to-
target view synthesis. Future research directions will aim at
handling independently moving objects between the source
and target images, making our approach suitable for novel
view synthesis on unconstrained video sequences as well.
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