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Abstract: In recent years, group equivariant non-expansive operators (GENEOs) have started to find

applications in the fields of Topological Data Analysis and Machine Learning. In this paper we show

how these operators can be of use also for the removal of impulsive noise and to increase the stability

of TDA in the presence of noisy data. In particular, we prove that GENEOs can control the expected

value of the perturbation of persistence diagrams caused by uniformly distributed impulsive noise,

when data are represented by L-Lipschitz functions from R to R.
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1. Introduction

In the last thirty years, Topological Data Analysis (TDA) developed as a useful mathe-
matical theory for analyzing data [1], benefiting from the dimensionality reduction guar-
anteed by topology [2–4]. Topology can construct low-dimensional representations of
high-dimensional manifolds of data, thereby reducing the dimensionality of the parameter
space and ultimately reducing the learning cost of machine learning models. One of the
main tools in TDA is the concept of the persistence diagram, which is a collection of points
in the real plane that describes the homological changes of the sublevel sets of suitable
continuous functions. These changes give important information about the data of interest,
focusing on some of their most relevant properties. Persistence diagrams can be used in
the presence of noise, since a well-known stability theorem states that these topological
descriptors change in a controlled way when we know that the functions expressing the
filtrations we are interested in change in a controlled way with respect to the sup-norm.
More precisely, the sup-norm distance between two functions is an upper bound for the
bottleneck distance between the corresponding persistence diagrams [5]. Furthermore,
Lp-stability of persistence diagrams with respect to the sup-norm have been proved in [6].
Unfortunately, in many applications, the sup-norm of the noise is not guaranteed to be
small, and hence these results cannot be directly applied. In particular, these results cannot
be directly used when data are represented by functions from R to R and affected by
impulsive noise, i.e., noise that carries a sudden sharp change of short duration, when the
variable is seen as a time. It is indeed well known that persistence diagrams can completely
change when the data are subject to impulsive noise.

Analogously, in the discrete setting of TDA, the presence of outliers in cloud points
can drastically affect the corresponding persistence diagrams. The problem of managing
outliers has been studied by several authors with different techniques. In [7], an approach
based on confidence sets has been introduced. A method inspired by the k-nearest neighbors
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regression and the local median filtering has been used in [8], while the concept of the
bagplot has been applied in [9]. In [10], an approach based on reproducing kernels has
been proposed.

In our paper, we start exploring a different probabilistic approach, in the topological
setting. The main idea is that studying the properties of data should primarily be based on
the analysis of the observers that are asked to examine the data, since we cannot ignore that
different observers can differently judge the same data. This approach has been initially
proposed in [11] and requires both the definition of the space of group equivariant non-
expansive operators (GENEOs) and the development of geometrical techniques to move
around in this space [12,13]. In other words, in this model we should not wonder how we
have to manage the data but rather how we have to manage the observers (i.e., GENEOs)
analyzing the data. As a first step in this direction, in this paper we show how GENEOs
could be used to obtain stability of persistence diagrams of 1D signals in the presence of
impulsive noise. For the use of such operators in the comparison of 1D signals under the
action of several transformation groups, we refer the interested reader to the paper [14].
This type of signal is important in many applications, such as those concerning EEG data
and time series.

GENEOs have been studied in [14] as a new tool in TDA, since they allow for an
extension of the theory that is not invariant under the action of every homeomorphism of the
considered domain. This is important in applications where the invariance group is not the
group of all homeomorphisms, such as the ones concerning shape comparison. Interestingly,
GENEOs are also deeply related to the foliation method used to define the matching
distance in two-dimensional persistent homology [15,16] and can be seen as a theoretical
bridge between TDA and Machine Learning [11]. Furthermore, these operators make
available lower bounds for the natural pseudo-distance dG(ϕ1, ϕ2) := inf

g∈G
‖ϕ1 − ϕ2 ◦ g‖∞,

associated with a group G of self-homeomorphisms of the domain of the signals ϕ1, ϕ2 [14].
For general information about the interest in the theory of GENEOs and its applications,
we refer the reader to [17].

In our paper, we prove that GENEOs can control the expected value of the perturbation
of persistence diagrams caused by uniformly distributed impulsive noise when data are
represented by L-Lipschitz functions from R to R. In order to do that, we choose a “mother”
bump function ψ, i.e., a continuous function that is non-negative, upper bounded by 1,
and compactly supported, and we assume that our noise is made up of finite bumps each
obtained by translating, heightening, and/or widening ψ. The function ϕ̂ = ϕ + R repre-

sents the corrupted data, where the noise is given by the function R =
k

∑
i=1

aiψ(bi(x − ci))

for some ai, bi, ci ∈ R, with bi > 0, and some positive integer k.
In this situation, trying to use a convolution to approximate our starting data is not

effective, because even if it does contract the bumps, it does not cut them and hence does not
improve the sup-norm distance from the original data. A classical approach for the removal
of impulsive noise is the one of using a median filter [18]. Although this approach would
be quite efficient in the discrete case, let us remark that in our setting, we are considering
continuous functions. The median for the continuous case is defined as the interval of those
values m such that

m
∫

−∞

f (x)dx =

+∞
∫

m

f (x)dx,

where f is a density of probability. However, this operator is not stable: a small alteration
in the starting function could lead to a significant change in the median.

The operators we consider in this paper are Fδ(ϕ)(x) = max(ϕ(x − δ), ϕ(x + δ)) and
Fε(ϕ)(x) = min(ϕ(x − ε), ϕ(x + ε)). The main idea is that Fδ removes the noise “directed
downwards” and Fε the noise “directed upwards”, and hence, their composition should be
able to eliminate all the bumps. These operators are GENEOs with respect to isometries
of the real line. We prove that moving in the space of GENEOs by taking suitable values
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for ε and δ, we can get quite close to restoring the original function ϕ, depending on how
the bumps are positioned. The closer the bumps are to being Dirac delta functions and the
further they are from each other, the better our approximation can be. On the ground of
this result, we finally obtain an estimate of the expected value E(‖Fδ ◦ Fε(ϕ̂)− ϕ‖∞).

We conclude this introduction by observing that, while the operators we use in this
paper are elementary, the theory of GENEOs makes available procedures to learn more
complex operators by combining simple GENEOs through techniques belonging to the
rising field of Geometric Deep Learning [11–13]. For this reason, we hope that our results
can not only illustrate a practical use of some particular GENEOs but also be a first step
towards the application of Machine Learning for increasing the stability of TDA in the
presence of noise.

The paper is structured as follows. In Section 2, the mathematical background is laid.
The case we consider and our notations are explained in Section 3. In Section 4, we prove
the results that are needed in order to demonstrate our main results. In Section 5, the main
theorems giving us probabilistic upper bounds are formulated. In Section 6, some examples
and experiments are presented in order to better illustrate the use of our results. A brief
discussion concludes the paper.

2. Mathematical Setting

In this section, we will recall some basic concepts we will use in this paper.
To avoid misunderstandings about pairs and intervals, we will use the symbols (u, v),

[u, v], and ]u, v[ to denote a pair, a closed interval, and an open interval, respectively.

2.1. Representing Data as Real Functions

Let us consider a set Φ of bounded functions from a set X to R, which will represent
the data we wish to take into account (e.g., functions describing sounds). We shall call Φ

the set of admissible measurements on X. We endow Φ with the topology induced by the
sup-norm ‖· ‖∞ and the corresponding distance DΦ. A pseudo-metric DX can be defined
on X by setting DX(x1, x2) = sup

ϕ∈Φ

|ϕ(x1)− ϕ(x2)| for every x1, x2 ∈ X. We recall that a

pseudo-metric on a set X is a distance d without the property d(x, y) = 0 =⇒ x = y (in
other words, we do not have the so-called “identity of indiscernibles”). We will consider
the topological space (X, τDX

) where τDX
is the topology induced by DX. A base for this

topology is given by the set of open balls {B(x, r) : x ∈ X, r ∈ R}, where B(x, r) := {x′ ∈
X : DX(x, x′) < r}. The choice of this topology makes every function in Φ a continuous
functions. As shown in [11], this fact enables us to use persistence diagrams in the study
of Φ.

2.2. GENEOs as Operators Acting on Data

We are interested in considering transformations of data. Let HomeoΦ(X) be the
group of Φ-preserving homeomorphisms from X to X with respect to the topology τDX

,
meaning that every g in HomeoΦ(X) is a homeomorphism of X such as both ϕ ◦ g and
ϕ ◦ g−1 belong to Φ for every ϕ in Φ. Let G be a subgroup of HomeoΦ(X). G represents
the set of transformations on data for which we will require equivariance to be respected.

Under the previously stated assumptions, we call the ordered pair (Φ, G) a perception
pair. We can now introduce the concept of GENEO.

Definition 1. Let (Φ, G) and (Ψ, H) be perception pairs and assume that a homomorphism
T : G → H is given. A function F : Φ → Ψ is called a Group Equivariant Non-Expansive
Operator (GENEO) from (Φ, G) to (Ψ, H) with respect to T if the following properties hold:

1. (Group Equivariance) F(ϕ ◦ g) = F(ϕ) ◦ T(g) for every ϕ ∈ Φ, g ∈ G;
2. (Non-Expansivity) DΨ(F(ϕ1), F(ϕ2)) ≤ DΦ(ϕ1, ϕ2) for every ϕ1, ϕ2 ∈ Φ.
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Let us now consider the set Fall of all GENEOs from (Φ, G) to (Ψ, H) with respect to
T : G → H. The space Fall is endowed with the extended pseudo-metric DFall

, defined by
setting DFall

(F1, F2) = supϕ∈Φ DΨ(F1(ϕ), F2(ϕ)) for every F1, F2 ∈ Fall. The word extended
refers to the possibility that DFall

takes an infinite value.
The following result can be proven [11]:

Theorem 1. If (Φ, DΦ),(Ψ, DΨ) are compact and convex then the metric space (Fall, DFall
) is

compact and convex.

If a non-empty set F ⊆ Fall is fixed, we can define the following pseudo-distance
DF ,Φ on Φ:

Definition 2. For any ϕ1, ϕ2 in Φ we set

DF ,Φ(ϕ1, ϕ2) = sup
F∈F

‖F(ϕ1)− F(ϕ2)‖∞.

This pseudo-distance allows us to compare data by taking into account how agents
operate on data. Notice how, if G becomes larger, the natural pseudo-distance dG becomes
harder to compute but this new pseudo-distance DF ,Φ becomes easier to evaluate. In order
to find a lower bound for DF ,Φ it is useful to introduce the notion of persistence diagram.

2.3. Persistence Diagrams

We will now recall some basic definitions and results in persistent homology. The
interested reader can find more details in [4].

Let us consider an ordered pair (X, ϕ) where X is a topological space and ϕ : X → R

is a continuous function. For any t ∈ R we can set Xt := ϕ−1(]−∞, t]). If u < v, the
inclusion iu,v : Xu → Xv induces a homomorphism ik

u,v : Hk(Xu) → Hk(Xv) between the
kth homology groups of Xu and Xv. We can define the kth persistent homology group, with
respect to ϕ and computed at the point (u, v), as PHk(u, v) := ik

u,v(Hk(Xu)). Moreover, we
can define the kth persistent Betti numbers function rk(u, v) as the rank of PHk(u, v).

The kth persistent Betti numbers function can be represented by the kth persistence
diagram. This diagram is defined as the multi-set of all the ordered pairs (uj, vj), where uj

and vj are the times of birth and death of the jth k-dimensional hole in X, respectively. We
call time of birth of a hole the first time at which the homology class appears, and time of
death the first time at which the homology class merges with an older one. When a hole
never dies, we set its time of death equal to ∞. We also add to this set all points of the form
(w, w) for w ∈ R.

In Figure 1 the filtration of the set X :=
[

0, 3
4 π
]

given by the function ϕ(x) = 2 sin x
is illustrated. In this example, the topology on X is the one defined by the space Φ of
admissible functions given by all functions a sin(x + b) with a, b ∈ R. The reader can easily
check that this topology is the same as the Euclidean topology. The persistence diagram in
degree k = 0 of the function ϕ is displayed in Figure 2.
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Figure 1. How the sublevel sets change with respect to the filtration induced by ϕ.
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Figure 2. Persistence diagram of the function 2 sin x on
[

0, 3
4 π
]

. The point (0, ∞) describes the

existence of a connected component that is born at zero and never dies. The point (
√

2, 2) claims that

there is a connected component born at
√

2 that dies (merges with the other one) at 2. The trivial

points on the diagonal u = v are not displayed.

2.4. Comparing Persistence Diagrams

Persistence diagrams can be efficiently compared by means of a suitable metric dmatch.
In order to define it, we first define the pseudo-distance

δ((x, y), (x′, y′)) = min{max{|x − x′|, |y − y′|}, max{|x − y|/2, |x′ − y′|/2}}
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for all (x, y), (x′, y′) ∈ {(x, y) ∈ R with x ≤ y} ∪ {(x, ∞) with x ∈ R} by agreeing that
∞ − y = ∞, y − ∞ = −∞ for y 6= ∞, ∞ − ∞ = 0, ∞/2 = ∞, |±∞| = ∞, min{∞, c} = c,
max{∞, c} = ∞.

If two persistence diagrams, D, D′, are given, we can set

dmatch(D, D′) = inf
σ∈Σ

sup
P∈D

δ(P, σ(P))

where Σ represents the set of all bijections between the multisets D, D′. This function is
usually called the bottleneck distance between D and D′.

For every degree k we can now define a new pseudo-metric:

Dmatch
F ,Φ (ϕ1, ϕ2) = sup

F∈F
dmatch(DF(ϕ1)

, DF(ϕ2)
)

where DF(ϕ1)
, DF(ϕ2)

are the persistence diagrams at degree k of the functions F(ϕ1),
F(ϕ2), respectively.

In this paper we will limit ourselves to considering data represented as functions from
R to R, and we recall that for this kind of data, persistence diagrams are non-trivial only in
degree k = 0 (i.e., when persistent homology is used to count connected components). For
this reason, in the following we will always assume k = 0.

3. Our Model

In this paper, we will be mainly interested in the set LipL of all L-Lipschitz functions
from R to R, for some fixed constant L ∈ R, and in the set C0(R) of all functions from R

to R that are continuous with respect to the Euclidean topology. We will set X = R and
consider the perception pairs (LipL, G), (C0(R), G), where G is the group of the Euclidean
isometries of R.

We will assume our noise originates from a finite number of copies of a “mother”
non-negative continuous bump function ψ : R → R, such that supp(ψ) ⊆ ]−σ, σ[ for some
σ > 0 and ‖ψ‖∞ ≤ 1. We recall that the support of a function is the closure of the set of
points where the function is non-zero. After fixing two positive real numbers, η and β,
the noise we will be adding is a function R belonging to the space Rη,β that contains the

null function and all functions of the form
k

∑
i=1

aiψ(bi(x − ci)), where k is a positive integer,

and ai, bi, ci are real numbers such that |ci − cj| ≥ η for i 6= j and bi ≥ β for every index i.

For any R ∈ Rη,β, we define S(R) :=
k
⋃

i=1

]

ci − σ
β , ci +

σ
β

[

and remark that if x 6∈ S(R), then

R(x) = 0.
Figure 3 shows how drastically persistence diagrams can change when the data are

subject to impulsive noise. Our purpose will be to recover ϕ ∈ LipL as well as possible
from the function ϕ̂ = ϕ + R. An example of such a situation is depicted in Figure 4.

The following result will be of use.

Proposition 1. Let F1, F2 be GENEOs from (C0(R), G) to (C0(R), G) with respect to the trivial
homomorphism T = id : G → G. Then F1 ◦ F2 is a GENEO from (C0(R), G) to (C0(R), G) with
respect to T.

Proof. For every ϕ ∈ C0(R), g ∈ G we have that

F1 ◦ F2(ϕ ◦ g) = F1(F2(ϕ ◦ g))

= F1(F2(ϕ) ◦ g)

= F1(F2(ϕ)) ◦ g

= (F1 ◦ F2)(ϕ) ◦ g.
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Therefore, F1 ◦ F2 is G-equivariant. Moreover, for any ϕ1, ϕ2 ∈ C0(R)

DC0(R)(F1 ◦ F2(ϕ1)), F1 ◦ F2(ϕ2)) = DC0(R)(F1(F2(ϕ1)), F1(F2(ϕ2)))

≤ DC0(R)(F2(ϕ1)), F2(ϕ2))

≤ DC0(R)(ϕ1, ϕ2).

It follows that F1 ◦ F2 is non-expansive.
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Figure 3. How drastically impulsive noise can influence persistence diagrams.
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Figure 4. In the figure on the left, we have our original function ϕ. In the middle we have a noise

function R, and in the right figure, we have the corrupted function ϕ̂ := ϕ + R.

4. Cutting Off the Noise by GENEOs

We start by introducing two families of GENEOs from (C0(R), G) to (C0(R), G) with
respect to the identical homomorphism.
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Definition 3. Let ϕ ∈ LipL and ε > 0. For all x ∈ R we define:

1. Fε(ϕ)(x) = max(ϕ(x − ε), ϕ(x + ε));
2. Fε(ϕ)(x) = min(ϕ(x − ε), ϕ(x + ε)).

Proposition 2. The maps Fε and Fε are GENEOs from (C0(R), G) to (C0(R), G) with respect to
the identical homomorphism.

Proof. We start by proving that Fε is G-equivariant.
Let g be the translation x 7→ x + k with k ∈ R, then

Fε(ϕ ◦ g) = max{ϕ((x + k)− ε), ϕ((x + k) + ε)}
= max{ϕ((x − ε) + k), ϕ((x + ε) + k)}
= Fε(ϕ) ◦ g.

Let g be the symmetry x 7→ −x, then

Fε(ϕ ◦ g) = max{ϕ((−x)− ε), ϕ((−x) + ε)}
= max{ϕ(−(x + ε)), ϕ(−(x − ε))}
= max{ϕ(x + ε), ϕ(x − ε)} ◦ g

= Fε(ϕ) ◦ g.

Since every isometry in G can be written as the composition of a symmetry and a translation,
our statement follows.

Furthermore, for any x ∈ R

|Fε(ϕ1)(x)− Fε(ϕ2)(x)| =
= |max{ϕ1(x − ε), ϕ1(x + ε)} − max{ϕ2(x − ε), ϕ2(x + ε)}|
≤ max{|ϕ1(x − ε)− ϕ2(x − ε)|, |ϕ1(x + ε)− ϕ2(x + ε)|}
≤ max{‖ϕ1 − ϕ2‖∞, ‖ϕ1 − ϕ2‖∞}
= ‖ϕ1 − ϕ2‖∞.

It follows that ‖Fε(ϕ1)− Fε(ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞, and hence Fε is non-expansive.
We observe that min{a, b} = −max{−a,−b}, and hence Fε(ϕ) = −Fε(−ϕ) for every

ϕ ∈ C0(R). Moreover, the map that takes ϕ to −ϕ is a GENEO from (C0(R), G) to
(C0(R), G) with respect to the identical homomorphism. Therefore, Proposition 1 ensures
that G-equivariance and non-expansivity also hold for Fε.

Since Proposition 1 shows that the composition of GENEOs is still a GENEO, the
operator Fδ ◦ Fε is a GENEO from (C0(R), G) to (C0(R), G) with respect to the identical
homomorphism.

We now want to prove that if a function ϕ̂ is obtained by adding impulsive noise to a
function ϕ, then the value of

‖Fδ ◦ Fε(ϕ̂)− ϕ‖∞

is bounded, and possibly small, provided that δ and ε are chosen appropriately. The main
idea is that the operator Fε cuts the noise “directed upwards” and Fδ cuts the noise “directed
downwards”.

In order to proceed, we need two lemmas.

Lemma 1. Let R ∈ C0(R), ϕ ∈ LipL for some L ∈ R, and set ϕ̂ := ϕ + R. Then for any ε > 0
and δ > 0

(i) −Lε + Fε(R) ≤ Fε(ϕ̂)− ϕ ≤ Lε + Fε(R);

(ii) −Lδ + Fδ(R) ≤ Fδ(ϕ̂)− ϕ ≤ Lδ + Fδ(R);
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(iii) −L(δ + ε) + Fδ ◦ Fε(R) ≤ Fδ ◦ Fε(ϕ̂)− ϕ ≤ L(δ + ε) + Fδ ◦ Fε(R).

Proof. Since ϕ is Lipschitz of constant L, we have that for any value x ∈ R |ϕ(x − ε)−
ϕ(x)| ≤ Lε and |ϕ(x + ε)− ϕ(x)| ≤ Lε. Therefore,

Fε(ϕ̂)(x) = Fε(ϕ + R)(x)

= min{ϕ(x − ε) + R(x − ε), ϕ(x + ε) + R(x + ε)}
≤ min{ϕ(x) + Lε + R(x − ε), ϕ(x) + Lε + R(x + ε)}
= ϕ(x) + Lε + min{R(x − ε), R(x + ε)}
= ϕ(x) + Lε + Fε(R)(x).

Analogously, Fε(ϕ̂)(x) ≥ ϕ(x)− Lε + Fε(R)(x). The same steps applied to Fδ yield the
second statement of the lemma. As for the last claim, we can see that:

Fδ ◦ Fε(ϕ̂)(x)

= max{Fε(ϕ̂)(x − δ), Fε(ϕ̂)(x + δ)}
≤ max{ϕ(x − δ) + Lε + Fε(R)(x − δ), ϕ(x + δ) + Lε + Fε(R)(x + δ)}
≤ max{ϕ(x) + Lδ + Lε + Fε(R)(x − δ), ϕ(x) + Lδ + Lε + Fε(R)(x + δ)}
= ϕ(x) + Lδ + Lε + max{Fε(R)(x − δ), Fε(R)(x + δ)}
= ϕ(x) + Lδ + Lε + Fδ ◦ Fε(R)(x).

Analogously, we can prove the lower bound.

Henceforth, we will assume that any summation on an empty set of indexes is the
null function.

Lemma 2. Let R ∈ Rη,β and λ ≥ σ
β . If λ ≤ ρ ≤ η

2 − λ then

(a) Fρ(R)(x) = ∑
ai<0

[aiψ(bi(x − ρ − ci)) + aiψ(bi(x + ρ − ci))] ≤ 0

(b) Fρ(R)(x) = ∑
ai>0

[aiψ(bi(x − ρ − ci)) + aiψ(bi(x + ρ − ci))] ≥ 0

for all x ∈ R. Moreover Fρ(R), Fρ(R)(x) ∈ R2λ,β.

Proof. We will suppose without loss of generality that ci < ci+1 for all i = 1, . . . , k − 1 and
ai 6= 0 for all indexes i.

We want to show that at least one of x − ρ and x + ρ must always be outside of
k
⋃

i=1
]ci − λ, ci + λ[. If by contradiction both x − ρ and x + ρ were in the same ]ci − λ, ci + λ[,

then we would have ρ < λ, against our hypotheses. Moreover, x − ρ and x + ρ cannot
belong to different intervals ]ci − λ, ci + λ[ and

]

cj − λ, cj + λ
[

for i < j: if by contradiction
x − ρ ∈ ]ci − λ, ci + λ[ and x + ρ ∈

]

cj − λ, cj + λ
[

for some i < j, then 2ρ = x + ρ − (x −
ρ) > (cj − λ)− (ci + λ) ≥ cj − ci − 2λ ≥ η − 2λ, and hence we would have ρ >

η
2 − λ,

against our hypotheses.

Since
]

ci − σ
β , ci +

σ
β

[

⊆ ]ci − λ, ci + λ[, it follows that at least one among the values

R(x− ρ) and R(x+ ρ) must always be zero. Let us now set I−i := ](ci − ρ)− λ, (ci − ρ) + λ[
and I+i := ](ci + ρ)− λ, (ci + ρ) + λ[. These two intervals must be disjoint, since (ci + ρ −
λ)− (ci − ρ + λ) = 2ρ − 2λ ≥ 0.

Let us now consider {I−1 , I+1 , . . . , I−k , I+k }. We will now prove that any two distinct
elements from this set must be a disjoint. Since we have just proven that I−i ∩ I+i = ∅ for
i = 1, . . . , k, the following holds in the case i < j:

1. I+i ∩ I+j = ∅, since cj + ρ − λ − (ci + ρ + λ) ≥ cj − ci − 2λ ≥ η − 2λ ≥ 0;
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2. I−i ∩ I−j = ∅, since cj − ρ − λ − (ci − ρ + λ) ≥ cj − ci − 2λ ≥ η − 2λ ≥ 0;

3. I+i ∩ I−j = ∅, since cj − ρ − λ − (ci + ρ + λ) ≥ cj − ci − 2ρ − 2λ ≥ η − 2
( η

2 − λ
)

−
2λ = 0;

4. I+j ∩ I−i , since cj + ρ − λ − (ci − ρ + λ) ≥ cj − ci + 2ρ − 2λ ≥ η + 2λ − 2λ ≥ 0.

Let us now fix k ∈ {1, . . . , k}.
Since supp(akψ(bk(x − ck))) ⊆ ]ck − λ, ck + λ[, then supp(akψ(bk(x − ρ − ck))) ⊆ I−k

and supp(akψ(bk(x + ρ − ck))) ⊆ I+k .
Hence, for any x ∈ R we have that

Fρ(R)(x) = min{R(x − ρ), R(x + ρ)}

=



















0 if x /∈
k
⋃

i=1
(I−i ∪ I+i )

ajψ(bj(x + ρ − cj)) if x ∈ I−j and aj < 0

ajψ(bj(x − ρ − cj)) if x ∈ I+j and aj < 0.

This means that

Fρ(R)(x) = ∑
ai<0

[aiψ(bi(x − ρ − ci)) + aiψ(bi(x + ρ − ci))] ≤ 0.

Now, given ci + ρ and cj − ρ centers of bumps of Fρ(R), we have that

|(ci + ρ)− (cj − ρ)| ≥ min{η − 2ρ, 2ρ} ≥ 2λ.

It follows that Fρ(R) ∈ R2λ,β.
By noting that Fρ(R) = −Fρ(−R), we obtain the second part of the thesis.

Let us remark that, in particular, if λ = 2 σ
β , then Fρ(R), Fρ(R) ∈ R4 σ

β ,β. We observe

that for there to exist a ρ that satisfies the hypotheses of Lemma 2, the inequality η ≥ 4λ

must hold.
We are now actually ready to prove a result that will be useful in the remainder of

our paper.

Theorem 2. Given θ, β, L ∈ R, let R̄ ∈ Rθ,β, ϕ ∈ LipL and set ϕ̂ := ϕ+ R̄. If 2 σ
β ≤ ε ≤ θ

2 − 2 σ
β

then for any σ
β ≤ δ ≤ 1

2 min{θ − 2ε, 2ε} − σ
β the following inequality holds:

‖Fδ ◦ Fε(ϕ̂)− ϕ‖∞ ≤ L(ε + δ).

Proof. Let x ∈ R. Firstly, let us notice that the condition 2 σ
β ≤ ε ≤ θ

2 − 2 σ
β implies that

σ
β ≤ 1

2 min{θ − 2ε, 2ε} − σ
β . From Lemma 1, we know that

−L(δ + ε) + Fδ ◦ Fε(R̄)(x) ≤ Fδ ◦ Fε(ϕ̂)(x)− ϕ(x) ≤ L(δ + ε) + Fδ ◦ Fε(R̄)(x).

Let us now prove that Fδ ◦ Fε(R̄)(x) = 0.
By applying Lemma 2 with η := θ, λ := 2 σ

β , ρ := ε and R := R̄, we obtain

Fε(R̄)(x) = ∑
ai<0

[aiψ(bi(x − ε − ci)) + aiψ(bi(x + ε − ci))] ≤ 0.

Let us remark that Fε(R̄) ∈ R4 σ
β ,β. Moreover,

1. Fδ ◦ Fε(R̄)(x) = max{Fε(R̄)(x − δ), Fε(R̄)(x + δ)} ≤ 0 since both terms are negative;

2. Fδ ◦ Fε(R̄)(x) = Fδ(Fε(R̄))(x) ≥ 0.

These inequalities follow from Lemma 2, by setting η := 4 σ
β , λ := σ

β , ρ := δ and R := Fε(R̄).
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Therefore, we have proved that |Fδ ◦ Fε(ϕ̂)(x)− ϕ(x)| ≤ L(δ + ε) for any x ∈ R. It
follows that ‖Fδ ◦ Fε(ϕ̂)− ϕ‖∞ ≤ L(ε + δ).

Let us remark that Theorem 2 works under the (only) implicit assumption that θ ≥ 8 σ
β .

In our setting, this should not be restrictive since it means that the noise added is made up
of scattered, thin bumps, without any reference to the height of the bumps. This is what we
expect when considering additive impulsive noise.

Corollary 1. Given θ, β, L ∈ R, let R ∈ Rθ,β, ϕ ∈ LipL, and set ϕ̂ := ϕ + R. If θ ≥ 8 σ
β , then

∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
≤ 3L

σ

β
.

Proof. The claim follows from Theorem 2 by taking ε := 2 σ
β and δ := σ

β .

Corollary 1 and the well-known stability of persistence diagrams with respect to the
max-norm [5] immediately imply the following result, which is of interest in TDA (the
symbol dmatch denotes the usual bottleneck distance between persistence diagrams).

Corollary 2. Given θ, β, L ∈ R, let R ∈ Rθ,β, ϕ ∈ LipL, and set ϕ̂ := ϕ + R. If θ ≥ 8 σ
β , and

D and D′ are the persistence diagrams in degree 0 of the filtering functions ϕ and F
σ
β ◦ F2 σ

β
(ϕ̂),

respectively, then

dmatch(D, D′) ≤ 3L
σ

β
.

5. Our Main Results

We are now ready to prove our main results. We start by recalling a simple statement
concerning the probability p that any two distinct points in a randomly chosen set of
cardinality k in an interval of length ℓ have a distance greater than η (cf., e.g., [19]). For the
reader’s convenience, we report the proof here.

Lemma 3. Let X1, . . . , Xk, with k ≥ 2, be independent random variables, uniformly distributed on
the interval [0, ℓ], for some ℓ > 0. Let

M := min
1≤i,j≤k

i 6=j

|Xi − Xj|

be the minimal distance between two distinct random variables. Then, we have

P(M > η) =















1 if η ≤ 0,
(

1 − (k−1)η
ℓ

)k
if 0 < η <

ℓ

k−1 ,

0 if η ≥ ℓ

k−1 .

Proof. It suffices to consider the case 0 < η <
ℓ

k−1 . By symmetry, we have

P(M > η) = k! P((M > η) ∩ (X1 < X2 < · · · < Xk))

(since X1, . . . , Xk are uniformly distributed)

= k!
Leb(S)

ℓk
(1)
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where S = {x ∈ [0, ℓ]k | x1 < x2 − η < x3 − 2η < · · · < xk − (k − 1)η}, and Leb
denotes the Lebesgue measure. Setting yi = xi − (i − 1)η for i = 1, . . . , k, we have that
Leb(S) = Leb(S′) where

S′ = {y ∈ [0, ℓ− (k − 1)η]k | y1 < y2 < · · · < yk}.

On the other hand, again by symmetry, we have

Leb(S′) =
Leb([0, ℓ− (k − 1)η]k)

k!
=

(ℓ− (k − 1)η)k

k!

and plugging this last identity into (1) we obtain the thesis.

We can now prove the following result, concerning the expected value of the error
∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
. We remark explicitly that the error is random because it is a function

of c1, . . . , ck, which are independent random variables uniformly distributed on the interval
[0, ℓ].

Theorem 3. Let us choose a function ϕ ∈ LipL, a non-negative continuous function ψ : R → R

with ‖ψ‖∞ ≤ 1 and supp(ψ) ⊆ ]−σ, σ[ for some σ > 0, two positive numbers β and ℓ, and an
integer k ≥ 2. For i = 1, . . . , k, let us fix ai ∈ R and bi ≥ β, and set ᾱ := max|ai|. Moreover,
let c1, . . . , ck be independent random variables, uniformly distributed on the interval [0, ℓ]. Let us

consider the random variable ϕ̂ := ϕ + R, where R(x) :=
k

∑
i=1

aiψ(bi(x − ci)) for any x ∈ R. If

σ
β <

ℓ

8(k−1)
, then

E
(∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞

)

≤ 3L
σ

β
+ kᾱ

(

1 −
(

1 − 8
(k − 1)

ℓ

σ

β

)k
)

.

Proof. By setting δ = σ
β and ε = 2 σ

β in statement (iii) of Lemma 1, we have that

∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
≤ 3L

σ

β
+
∥

∥

∥
F

σ
β ◦ F2 σ

β
(R)
∥

∥

∥

∞
.

Since the operator F
σ
β ◦ F2 σ

β
is non-expansive and F

σ
β ◦ F2 σ

β
(0) = 0, it follows that

∥

∥

∥
F

σ
β ◦ F2 σ

β
(R)
∥

∥

∥

∞
≤ ‖R‖∞ ≤ kᾱ‖ψ‖∞ ≤ kᾱ.

Therefore,
∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
≤ 3L σ

β + kᾱ. If we apply Lemma 3 with η = 8 σ
β , we

obtain that R ∈ R8 σ
β ,β with probability p :=

(

1 − 8
(k−1)

ℓ

σ
β

)k
. If R ∈ R8 σ

β ,β, we can

apply Theorem 2 by setting δ = σ
β , ε = 2 σ

β and θ = 8 σ
β , and hence we obtain that

∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
≤ 3L σ

β with probability at least p. Since
∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
≤

3L σ
β + kᾱ in any case, it follows that

E
(∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞

)

≤ 3L
σ

β
p +

(

3L
σ

β
+ kᾱ

)

(1 − p)

= 3L
σ

β
+ kᾱ(1 − p).



Entropy 2023, 25, 1150 13 of 28

Theorem 3 and the well-known stability of persistence diagrams with respect to the
max-norm [5] immediately imply the following result, which is of interest in TDA (the
symbol dmatch denotes the usual bottleneck distance between persistence diagrams).

Corollary 3. Let us make the same assumptions of Theorem 3. Let D and D′ be the persistence

diagrams in degree 0 of the filtering functions ϕ and F
σ
β ◦ F2 σ

β
(ϕ̂), respectively. If σ

β <
ℓ

8(k−1)
, then

E
(

dmatch(D, D′)
)

≤ 3L
σ

β
+ kᾱ

(

1 −
(

1 − 8
(k − 1)

ℓ

σ

β

)k
)

.

This result shows that the use of suitable GENEOs can make TDA (relatively) stable
also in the presence of impulsive noise, under the assumptions we have considered in
this paper.

Theorem 3 and Corollary 3 can be easily extended to the case that the number k of
bumps is a random variable:

Theorem 4. Let k be a random variable that takes values in the subset S = {2, 3, . . . , K} of the
positive integers, where we assume that the probability of the integer j ∈ S is pj. Let us choose
a function ϕ ∈ LipL, a non-negative continuous function ψ : R → R with ‖ψ‖∞ ≤ 1 and
supp(ψ) ⊆ ]−σ, σ[ for some σ > 0, two positive numbers β and ℓ. Let ck

1, . . . , ck
k be random

variables that, conditioned to k, are independent and uniformly distributed on the interval [0, ℓ].
Moreover, for i = 1, . . . , k, let us fix ak

i ∈ R and bk
i ≥ β, and set ᾱk := maxi|ak

i |. Let us also

consider the random variable ϕ̂ := ϕ + Rk, where Rk(x) :=
k

∑
i=1

ak
i ψ(bk

i (x − ck
i )) for any x ∈ R. If

σ
β <

ℓ

8(K−1)
, then

E
(∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞

)

≤ 3L
σ

β
+

K

∑
j=2

pj jᾱj

(

1 −
(

1 − 8
(j − 1)

ℓ

σ

β

)j
)

.

Proof. It follows immediately from Theorem 3.

Corollary 4. Let us make the same assumptions of Theorem 4. Let D and D′ be the persistence

diagrams in degree 0 of the filtering functions ϕ and F
σ
β ◦ F2 σ

β
(ϕ̂), respectively. If σ

β <
ℓ

8(K−1)
, then

E
(

dmatch(D, D′)
)

≤ 3L
σ

β
+

K

∑
j=2

pj jᾱj

(

1 −
(

1 − 8
(j − 1)

ℓ

σ

β

)j
)

.

Proof. It follows immediately from Corollary 3.

6. Examples and Experiments

We will now validate our approach based on GENEOs by giving two examples and
illustrating some experimental results.

6.1. Examples

In order to verify how our approach works, we will set τn :=
(

1 − 1
n

)

2 σ
β + 1

n

(

θ
2 − 2 σ

β

)

and consider the upper bound
∥

∥

∥
F

τn
2 ◦ Fτn(ϕ̂)− ϕ

∥

∥

∥

∞
≤ 3

2 Lτn, obtained by applying Corollary 1.

We observe that τn ≥ 2 σ
β for every index n, and lim

n→+∞
τn = 2 σ

β . We will examine two exam-

ples that use the GENEOs F
τn
2 ◦ Fτn and show how our method based on such operators

and the method based on convolutions differ, as for their capability in removing additive

impulsive noise. Moreover, we will compare the actual error
∥

∥

∥
F

τn
2 ◦ Fτn(ϕ̂)− ϕ

∥

∥

∥

∞
to its
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upper bound 3
2 Lτn, by running several simulations. The convolutions that will be applied

in our examples use the functions Th : R → R defined by setting

Th(x) :=

{

h
2 if − 1

h ≤ x ≤ 1
h

0 otherwise

for h > 0. We will see that, although the convolution with such functions is also a GENEO,
it will not be able to efficiently remove the noise.

Our noise function R will be constructed starting from the mother function ψ defined

by setting ψ(x) := e
1− 1

1−x2 for x ∈ ]−1, 1[ and ψ(x) := 0 for x /∈ ]−1, 1[. Using the notation
introduced in the previous sections, we will set σ = 1.1, thus satisfying the condition
supp(ψ) ⊆ ]−σ, σ[. The impulsive noise will be added in an interval [−ℓ, ℓ ]. The following
parameters are considered, with these respective uniform distributions:

• k ∼ Unif{1,...,10}
• ai ∼ Unif]−100,100[ for i = 1, . . . , k

• bi ∼ Unif]0,100[ for i = 1, . . . , k

• ci ∼ Unif]−ℓ+ σ
β ,ℓ− σ

β

[ for i = 1, . . . , k.

We set β := min
i=1,...,N

bi, ᾱ := max
i=1,...,N

|ai|, and η := min
i 6=j

|ci − cj|. After producing random

values for the parameters N, ai, bi, ci, our algorithm checks whether η > 8 σ
β ; otherwise it

generates another set of parameters.

6.1.1. First Example

Let us consider the function

ϕ(x) :=

{

sin x if − 4π ≤ x ≤ 4π

0 otherwise

for x ∈ R. We observe that ϕ ∈ LipL, for L = 1. We will add noise in the interval [−4π, 4π]
(meaning ℓ = 4π) and visualize the results in such an interval. Figure 5 illustrates how the
function ϕ̂ looks compared to ϕ.

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y
'
'̂

Figure 5. Example 1: Comparison between ϕ and ϕ̂.
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We will start by considering how well the convolution ϕ̂ ∗ Tn can approximate the
original function ϕ, when n goes from 3 to 100. From Figure 6, it is immediately apparent
that the max-norm distance between ϕ̂ ∗ Tn and ϕ remains quite large.

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5
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1.5

2
n = 3

x
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'̂ $ Tn
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y
'
'̂ $ Tn
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0
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x

y
'
'̂ $ Tn

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
n = 100

x

y
'
'̂ $ Tn

Figure 6. Example 1: Denoising via convolution with Th (h = n).

If we apply a convolution with T1
n
, for 3 ≤ n ≤ 100, we obtain the results displayed in

Figure 7, showing that all information represented by the function ϕ is progressively destroyed.

In contrast, if we apply the operator F
τn
2 ◦ Fτn(ϕ̂), for n = 3, 5, 20, 100, we obtain

the results displayed in Figure 8. As we can see, this operator is much more efficient in
removing the bumps and restoring the function ϕ. We recall that as n increases, τn tends to
2 σ

β , and our operator becomes more effective at removing the noise.

As a matter of fact, when we apply a convolution with the function Th and check
the corresponding errors via the sup-norm, we obtain the results displayed in Figure 9.
Since lim

h→+∞
ϕ̂ ∗ Th = ϕ̂ and lim

h→+∞
ϕ̂ ∗ T1

h
= 0, we obtain that the errors tend to ‖ϕ̂ − ϕ‖∞ =

max
i=1,...,N

|ai| = ᾱ and ‖ϕ‖∞, respectively.

In contrast, if we apply the operator F
τn
2 ◦ Fτn , we obtain the results displayed in

Figure 10. This shows that the upper bound for the error stated in Corollary 1 is quite
tight. As we can expect, the best denoising is achieved when we replace τn with 2 σ

β (see

Figure 11).
Finally, we executed 1000 simulations. In each simulation, we added random impul-

sive noise to the function ϕ to produce a function ϕ̂. We then applied F
σ
β ◦ F2 σ

β
to ϕ̂ to see

how close the upper bound in Corollary 1 is to the actual error ‖F
σ
β ◦ F2 σ

β
(ϕ̂)− ϕ‖∞. The

same parameters as in the beginning of this example were used. As we can see in Figure 12,
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the overestimation committed by our upper bound is often quite close to zero relative to
the Lipschitz constant L of the function ϕ.
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Figure 7. Example 1: Denoising via convolution with Th (h = 1
n ).
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Figure 8. Cont.
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Figure 8. Example 1: Denoising via the proposed GENEO F
τn
2 ◦ Fτn .
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Figure 12. Example 1: Histogram counting the number of cases in each of ten bins concerning the

overestimation value 3L σ
β − ‖F

σ
β ◦ F2 σ

β
(ϕ̂) − ϕ‖∞ obtained in our simulations. Most of the cases

belong to the first bin, specifically 665 cases, containing the functions ϕ for which 0 ≤ 3L σ
β − ‖F

σ
β ◦

F2 σ
β
(ϕ̂)− ϕ‖∞ ≤ 0.02.

This suggests that this upper bound is quite accurate.
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6.1.2. Second Example

Let us consider the function

ϕ(x) :=

{

1
1000 (x − 5)(x − 3)(x + 1)(x + 4)(x + 5) if − 5 ≤ x ≤ 5

0 otherwise

for x ∈ R. The coefficient 1
1000 was chosen so that the Lipschitz constant L would be

comparable to the one in the previous example. In this example, L = 27
25 . Figure 13

illustrates how the function ϕ̂ looks compared to ϕ.
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x
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Figure 13. Example 2: Comparison between ϕ and ϕ̂.

We will start by considering how well the convolution ϕ̂ ∗ Tn can approximate the
original function ϕ, when n goes from 3 to 100. From Figure 14, it is immediately apparent
that the max-norm distance between ϕ̂ ∗ Tn and ϕ remains quite large.

If we apply a convolution with T1
n
, for 3 ≤ n ≤ 100, we obtain the results displayed in

Figure 15, showing that all information represented by the function ϕ is progressively destroyed.

In contrast, if we apply the operator F
τn
2 ◦ Fτn(ϕ̂), for n = 3, 5, 20, 100, we obtain the

results displayed in Figure 16. As we can see, this operator is much more efficient in
removing the bumps and restoring the function ϕ.

When we apply a convolution with the function Th and check the corresponding
errors via the sup-norm, we obtain the results displayed in Figure 17. As we have already
seen, since lim

h→+∞
ϕ̂ ∗ Th = ϕ̂ and lim

h→+∞
ϕ̂ ∗ T1

h
= 0, we obtain that the errors tend to

‖ϕ̂ − ϕ‖∞ = max
i=1,...,k

|ai| = ᾱ and ‖ϕ‖∞, respectively.

In contrast, if we apply the operator F
τn
2 ◦ Fτn , we obtain the results displayed in

Figure 18. This shows that the upper bound for the error stated in Corollary 1 is quite
tight. As we can expect, the best denoising is achieved when we replace τn with 2 σ

β (see

Figure 19).
Finally, we again executed 1000 simulations. We used the same methodology as in

the previous case, but this time we considered the polynomial presented at the beginning
of this example. As we can see in Figure 20, the overestimation committed by our upper
bound is often quite close to zero relative to the Lipschitz constant L of the polynomial ϕ.
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Figure 14. Example 2: Denoising via convolution with Th (h = n).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
n = 3

x

y
'
'̂ $ T 1

n

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
n = 5

x

y
'
'̂ $ T 1

n

Figure 15. Cont.



Entropy 2023, 25, 1150 21 of 28

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
n = 20

x

y
'
'̂ $ T 1

n

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
n = 100

x

y
'
'̂ $ T 1

n

Figure 15. Example 2: Denoising via convolution with Th (h = 1
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Figure 16. Example 2: Denoising via the proposed GENEO F
τn
2 ◦ Fτn .
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Figure 17. Example 2: Error made by applying a convolution with Tn (left) or T 1
n

(right).
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Figure 18. Example 2: Error made by using the GENEO F
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2 ◦ Fτn .
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Figure 20. Example 2: Histogram counting the number of cases in each of ten bins concerning the

overestimation value 3L σ
β − ‖F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ‖∞ obtained in our simulations: 431 cases belong to

the first bin and 154 belong to the second one; hence, most of the cases belong to the first two bins

containing the functions ϕ for which 0 ≤ 3L σ
β − ‖F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ‖∞ ≤ 0.24.

6.2. Experiments

In order to check how good the upper bound stated in Theorem 3 is, we have made
the following experiment. In the first step, we fixed ℓ = 20 and σ = 1.1, and assumed the
following parameters to be given: L > 0, N ∈ N, α > 0, β > 0, k ∈ N, a1, . . . , ak ∈]0, α[,
b1, . . . , bk > β, c1, . . . , ck ∈]0, ℓ[.

Firstly, we used the parameters L > 0, N ∈ N to generate a random L-Lipschitz
function ϕ in the following way. We randomly chose and sorted in ascending order N
points x1, . . . , xN in the open interval ]0, ℓ[, with uniform distribution. Hence, we obtained
the following decomposition: ]0, ℓ[=]0, x1]∪]x1, x2] ∪ . . .∪]xN , ℓ[. We defined our Lipschitz
function ϕ to be 0 outside ]0, ℓ[. After setting (x0, y0) = (0, 0) and (xN+1, yN+1) = (ℓ, 0) for
i ∈ {1, . . . , N + 1}, the value yi of the function at xi was randomly chosen, with uniform
distribution in an interval that allows for an L-Lipschitz extension to [0, ℓ] of the function,
i.e.,

[max{yi−1 − L(xi − xi−1),−L(ℓ− xi)}, min{yi−1 + L(xi − xi−1), L(ℓ− xi)}].

Finally, the graph of the Lipschitz function ϕ on [0, ℓ] was obtained by connecting each
point (xi−1, yi−1) to (xi, yi) with a segment for i ∈ {1, . . . , N + 1}. We observe that ϕ

constructed this way is an L-Lipschitz function.
Secondly, we used the parameters α > 0, β > 0, k ∈ N, a1, . . . , ak ∈]0, α[, b1, . . . , bk > β,

c1, . . . , ck ∈]0, ℓ[ to generate a noise function as follows. We considered the mother function

ψ defined by setting ψ(x) := e
1− 1

1−x2 for x ∈ ]−1, 1[ and ψ(x) := 0 for x /∈ ]−1, 1[. For
each L-Lipschitz function ϕ produced in the previously described way, we considered the

function ϕ̂ = ϕ +
k

∑
i=1

aiψ(bi(x − ci)).

In Figures 21 and 22, some examples of the functions we have produced are displayed
for N = 3 and N = 7, respectively. In each figure, the functions are displayed without
noise (left) and with added noise (right).

In the second step, we fixed ℓ = 20 and σ = 1.1 again, and considered a probabilistic
model where α, β, L are given and the values N, k, ai, bi, ci are random variables. In this
setting, we compared the noise ‖ϕ̂ − ϕ‖∞ with the probabilistic upper bound stated in

Theorem 3 and the value
∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
, which represents the reduced noise that we

can obtain by applying our method. In order to average our results, for each triplet (α, β, L)



Entropy 2023, 25, 1150 24 of 28

with α ∈ {50, 55, 60, . . . , 100}, β ∈ {3, 4, 5, . . . , 13}, and L ∈ {1, 2, . . . , 10}, we randomly
generated 100 examples of an L-Lipschitz function ϕ and its noisy version ϕ̂ by randomly
choosing the parameters N, k, ai, bi, ci according to the following distributions:

• N ∼ Unif{1,...,10}
• k ∼ Unif{1,...,10}
• ai ∼ Unif]0,α[ for i = 1, . . . , k

• bi ∼ Unif]β,20[ for i = 1, . . . , k

• ci ∼ Unif]
3 σ

β ,ℓ−3 σ
β

[ for i = 1, . . . , k.

Then, for the chosen values of each one of the three variables α, β, L, we computed the
mean, with respect to the other two variables, of the average of the noise ‖ϕ̂ − ϕ‖∞ and the

average of the reduced noise
∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞
obtained by our method, both evaluated

for (ϕ, ϕ̂) varying in the set of cardinality 100 that we produced. We also computed the
mean of the probabilistic upper bound stated in Theorem 3 with respect to the same two
variables. The results are displayed in Figures 23–25. We remind the reader that α and β,
respectively, express the maximum height and the thinness of the noise bumps, while L is a
Lipschitz constant for each function ϕ that we are interested in. These results illustrate the
effectiveness of using GENEOs in the reduction of impulsive noise.
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Figure 21. Five examples of the functions we produced for N = 3. In each figure, the functions are

displayed without noise (left) and with added noise (right).
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Figure 22. Five examples of the functions we produced for N = 7. In each figure, the functions are

displayed without noise (left) and with added noise (right).
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Figure 23. Plots of the means of the averaged values of ‖ϕ̂ − ϕ‖∞ (yellow), the means of 3L σ
β +

kα

(

1 −
(

1 − 8
(k−1)

ℓ

σ
β

)k
)

(brown), and the means of the averaged values of
∥

∥

∥
F

σ
β ◦ F2 σ

β
(ϕ̂)− ϕ

∥

∥

∥

∞

(blue) for β ∈ {3, 4, 5, . . . , 13} and L ∈ {1, 2, . . . , 10}, when α varies in the set {50, 55, 60, . . . , 100}.
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Figure 24. Plots of the means of the averaged values of ‖ϕ̂ − ϕ‖∞ (yellow), the means of 3L σ
β +

kα

(
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(brown), and the means of the averaged values of
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∥
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∞

(blue) for α ∈ {50, 55, 60, . . . , 100} and L ∈ {1, 2, . . . , 10}, when β varies in the set {3, 4, 5, . . . , 13}.
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Figure 25. Plots of the means of the averaged values of ‖ϕ̂ − ϕ‖∞ (yellow), the means of 3L σ
β +

kα

(

1 −
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)

(brown), and the means of the averaged values of
∥
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σ
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β
(ϕ̂)− ϕ

∥

∥

∥

∞

(blue) for α ∈ {50, 55, 60, . . . , 100} and β ∈ {3, 4, 5, . . . , 13}, when L varies in the set {1, 2, . . . , 10}.

7. Conclusions

In our paper, we have proved a stability property for persistence diagrams of functions
from R to R in the presence of impulsive noise. This property shows that TDA can
also be useful when noise drastically changes the topology of the sublevel sets of the
filtering functions we are considering, and highlights some new potential interactions
between TDA and the theory of GENEOs. The experimental section shows that our
approach is indeed able to remove impulsive noise in most cases. It would be interesting
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to investigate the possibility of extending our method to real-valued functions defined on
n-dimensional domains and allowing the function ψ to be a random variable, by selecting
suitable GENEOs. We observe that the operators Fε and Fε introduced in Definition 3 can
be easily adapted to the case of functions from Rn to R, by setting Fε(ϕ)(x) = max{ϕ(x +
v)|v ∈ Rn, ‖v‖ = ε} and Fε(ϕ)(x) = min{ϕ(x + v)|v ∈ Rn, ‖v‖ = ε} for all x ∈ Rn.
Applying a suitable operator Fδ ◦ Fε to real-valued filtering functions defined on Rn should
allow us to control the expected value of the perturbation of persistence diagrams caused
by uniformly distributed impulsive noise, even for n > 1 and in degrees greater than 0.
Our long-term goal is to realize Machine Learning methods in which optimal operators for
impulse noise removal can be learned and selected in the convex hull of a given finite set of
GENEOs, using a theorem which guarantees that the convex combination of GENEOs is
still a GENEO (cf. [11]). We plan to devote our research to this topic in the future.
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