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Real-Time RGB-D Camera Pose Estimation in
Novel Scenes using a Relocalisation Cascade

Tommaso Cavallari, Stuart Golodetz, Nicholas A. Lord, Julien Valentin,

Victor A. Prisacariu, Luigi Di Stefano and Philip H. S. Torr

Abstract—Camera pose estimation is an important problem in computer vision, with applications as diverse as simultaneous

localisation and mapping, virtual/augmented reality and navigation. Common techniques match the current image against keyframes

with known poses coming from a tracker, directly regress the pose, or establish correspondences between keypoints in the current

image and points in the scene in order to estimate the pose. In recent years, regression forests have become a popular alternative to

establish such correspondences. They achieve accurate results, but have traditionally needed to be trained offline on the target scene,

preventing relocalisation in new environments. Recently, we showed how to circumvent this limitation by adapting a pre-trained forest to

a new scene on the fly. The adapted forests achieved relocalisation performance that was on par with that of offline forests, and our

approach was able to estimate the camera pose in close to real time, which made it desirable for systems that require online

relocalisation. In this paper, we present an extension of this work that achieves significantly better relocalisation performance whilst

running fully in real time. To achieve this, we make several changes to the original approach: (i) instead of simply accepting the camera

pose hypothesis produced by RANSAC without question, we make it possible to score the final few hypotheses it considers using a

geometric approach and select the most promising one; (ii) we chain several instantiations of our relocaliser (with different parameter

settings) together in a cascade, allowing us to try faster but less accurate relocalisation first, only falling back to slower, more accurate

relocalisation as necessary; and (iii) we tune the parameters of our cascade, and the individual relocalisers it contains, to achieve

effective overall performance. Taken together, these changes allow us to significantly improve upon the performance our original

state-of-the-art method was able to achieve on the well-known 7-Scenes and Stanford 4 Scenes benchmarks. As additional

contributions, we present a novel way of visualising the internal behaviour of our forests, and use the insights gleaned from this to show

how to entirely circumvent the need to pre-train a forest on a generic scene.

Index Terms—Camera pose estimation, relocalisation, RGB-D, online adaptation, cascade

✦
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media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TPAMI.2019.2915068

1 INTRODUCTION

Camera pose estimation is a key computer vision problem,
with applications in simultaneous localisation and mapping
(SLAM) [1], [2], [3], [4], virtual and augmented reality [5],
[6], [7], [8], [9], [10] and navigation [11]. In SLAM, the
camera pose is commonly initialised upon starting recon-
struction and then tracked from frame to frame, but tracking
can easily be lost due to e.g. rapid movement or textureless
regions in the scene; when this happens, it is important to be
able to relocalise the camera with respect to the scene, rather
than forcing the user to restart the reconstruction. Camera
relocalisation is also crucial for loop closure when trying to
build globally consistent maps [12], [13], [14].

Approaches to camera relocalisation roughly fall into
two main categories: (i) those that attempt to find the pose
directly, e.g. by matching the input image against keyframes
with known poses [15], [16], [17], or by directly regressing
the pose [18], and (ii) those that establish correspondences
between points in camera and world space, so as to deploy
e.g. a Perspective-n-Point (PnP) algorithm [19] (on RGB
data) or the Kabsch algorithm [20] (on RGB-D data) to

• TC, SG, NL and JV assert joint first authorship.
• TC was first with the University of Bologna, then with the University of

Oxford, and is now with FiveAI Ltd. SG and NL were with the University
of Oxford, and are now with FiveAI Ltd. JV is with Google Inc. VP and PT
are with the University of Oxford. LDS is with the University of Bologna.
E-mail: {tommaso.cavallari,stuart,nick}@five.ai.

generate a number of camera pose hypotheses from which a
single hypothesis can be selected, e.g. using RANSAC [21].
Hybrid approaches that first find pose candidates directly
and then refine them geometrically also exist [22], [23], [24].

Recently, Shotton et al. [25] proposed the use of a re-
gression forest to directly predict corresponding 3D points
in world space for all pixels in an RGB-D image (each
pixel in the image effectively denotes a 3D point in cam-
era space). By generating predictions for all pixels, their
approach avoids the explicit detection, description and
matching of keypoints typically required by more tradi-
tional correspondence-based methods, making it simpler
and faster. Moreover, this also provides them with a sig-
nificantly larger number of correspondences with which
to verify or reject camera pose hypotheses. However, one
major limitation they have is a need to train a regression
forest on the scene of interest offline (in advance), which
prevents on-the-fly camera relocalisation in novel scenes.

Subsequent work has significantly improved upon the
relocalisation performance of [25]. Guzman-Rivera et al. [26]
rely on multiple regression forests to generate a number
of camera pose hypotheses, then cluster them and use the
mean pose of the cluster whose poses minimise the recon-
struction error as the result. Valentin et al. [27] replace the
modes [25] used in the leaves of the forests with mixtures
of anisotropic 3D Gaussians in order to better model uncer-
tainties in the 3D point predictions. Brachmann et al. [28]
deploy a stacked classification-regression forest to achieve
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results of a quality similar to [27] for RGB-D relocalisation
(their approach can also be used for pure RGB localisation,
albeit with lower accuracy). Meng et al. [29] perform RGB re-
localisation by estimating an initial camera pose using a re-
gression forest, then querying a nearest neighbour keyframe
image and refining the initial pose by sparse feature match-
ing between the camera input image and the keyframe.
Massiceti et al. [30] map between regression forests and
neural networks to leverage the performance benefits of
neural networks for dense regression while retaining the
efficiency of random forests for evaluation. Meng et al.
[31] store a priority queue of non-visited branches whilst
passing a feature vector down the forest during testing,
and then backtrack to see whether some of those branches
might have been better than the one chosen. Meng et al. [32]
make use of both point and line segment features to achieve
more robust relocalisation in poorly textured areas and/or
in the face of motion blur. Brachmann et al. [33] show how
to replace the RANSAC stage of the conventional pipeline
with a probabilistic approach to hypothesis selection that
can be differentiated, allowing end-to-end training of the
full system. Li et al. [34] use a fully-convolutional encoder-
decoder network to predict scene coordinates for the whole
image at once, to take global context into account. This
obviates [33]’s need for patch sampling, but needs signif-
icant data augmentation to avoid overfitting. Brachmann
and Rother [35] significantly improve on the results of
[33], whilst also showing how to avoid the need for a 3D
model at training time (albeit at a cost in performance). Very
recently, Li et al. [36] have shown how to use an angle-based
reprojection loss to remove [35]’s need to initialise the scene
coordinates with a heuristic when training without a model.
However, despite all of these advances, none of these papers
remove the need to train on the scene of interest in advance.

Recently, we showed [37] that this need for offline train-
ing on the scene of interest can be overcome through online
adaptation to a new scene of a regression forest that has been
pre-trained on a generic scene. We achieve genuine on-the-
fly relocalisation similar to that which can be obtained using
keyframe-based approaches (e.g. [17]), but with significantly
higher relocalisation performance. Moreover, unlike such
approaches, which can struggle to relocalise from novel
poses because of their reliance on matching the input image
to a database of keyframes, our approach performs well
even at some distance from the training trajectory.

Our initial implementation of this approach [37]
achieved relocalisation performance that was competitive
with offline-trained forests, whilst requiring no pre-training
on the scene of interest and relocalising in close to real
time. This made it a practical and high-quality alterna-
tive to keyframe-based methods for online relocalisation in
novel scenes. In this paper, we present an extension of [37]
that achieves significantly better relocalisation performance
whilst running fully in real time. To achieve this, we make
several novel improvements to the original approach:

1) Instead of simply accepting the camera pose produced
by RANSAC without question, we make it possible to
select the most promising of the final few hypotheses it
considers using a geometric approach (see §3.2.4).

2) We chain several instances of our relocaliser (with dif-
ferent parameters) into a cascade, letting us try fast, less

accurate relocalisation first, and only fall back to slow,
more accurate relocalisation if needed (see §3.2.5).

3) We tune the parameters of our cascade, and the individ-
ual relocalisers it contains, to achieve the most effective
overall performance (see §B).

These changes allow us to achieve state-of-the-art results
on the well-known 7-Scenes [25] and Stanford 4 Scenes [23]
benchmarks. We then make two further contributions:

4) We present a novel way of visualising the internal
behaviour of SCoRe forests, and use this to explain in
detail why adapting a forest pre-trained on one scene
to a new scene makes sense (see §4.4).

5) Based on the insights gleaned from this visualisation,
we show that it is feasible to avoid pre-training the
forest altogether by making use of a random decision
function in each branch node (see §4.5). Whilst this
approach leads to a small loss in performance with
respect to a pre-trained forest, we show that it can still
achieve better performance than existing methods.

This paper is organised as follows: in §2, we survey
existing camera relocalisation approaches; in §3, we describe
our approach; in §4, we evaluate our approach extensively
on the 7-Scenes [25] and Stanford 4 Scenes [23] benchmarks;
finally, in §5, we conclude. Source code for our approach can
be found online at https://github.com/torrvision/spaint.

2 RELATED WORK

Due to the importance of camera relocalisation, many ap-
proaches have been proposed to tackle it over the years [38]:

(i) Straight-to-pose methods try to determine the pose
directly from the input image. Within these, matching meth-
ods try to match the input image against keyframes stored
in an image database (potentially interpolating between
keyframes where necessary), and direct regression methods
train a decision forest or neural network to directly predict
the pose. For example, Gee and Mayol-Cuevas [16] estimate
the pose by matching the input image against synthetic
views of the scene. Other methods match descriptors com-
puted from the input image against a database, e.g. Galvez-
Lopez et al. [15] compute a bag of binary words based on
BRIEF descriptors for the current image and compare it with
bags of words for keyframes in the database using an L1
score. Glocker et al. [17] encode frames using Randomised
Ferns, which when evaluated on images yield binary codes
that can be matched quickly by their Hamming distance.
In terms of direct regression, Kendall et al. [18]’s PoseNet
uses a convolutional neural network to directly regress the
6D camera pose from the current image. Their later works
build on this to model the uncertainty in the result [39] and
explore different loss functions to achieve better results [40].
Melekhov et al. [41] train an hourglass network, using skip
connections between their encoder and decoder, to directly
regress the camera pose. Kacete et al. [42] directly regress the
camera pose using a sparse decision forest. Clark et al. [43]
and Walch et al. [44] directly regress the pose using LSTMs.
Valada et al. [45] train a multi-task network to predict
both 6D global pose and the relative 6D poses between
consecutive frames, and report dramatic improvements over
earlier neural network-based approaches on 7-Scenes [25]
and Cambridge Landmarks [18], although their best results

https://github.com/torrvision/spaint
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rely on using the estimated pose from the previous frame.
Radwan et al. [46] add semantics to this approach.

(ii) Correspondence-based methods (e.g. the regression for-
est approaches we mention in §1) find correspondences
between camera and world space points and use them to
estimate the pose. A common approach is to find 2D-to-3D
correspondences between keypoints in the current image
and 3D scene points, so as to deploy e.g. a Perspective-
n-Point (PnP) algorithm [19] (on RGB data) or the Kabsch
algorithm [20] (on RGB-D data) to generate a number of
pose hypotheses that can be pruned to a single hypothesis
using RANSAC [21]. Williams et al. [47] recognise/match
keypoints using an ensemble of randomised lists, and ex-
clude unreliable or ambiguous matches when generating
hypotheses. Li et al. [48] use graph matching to disam-
biguate visually-similar keypoints. Sattler et al. [49] use a
fine visual vocabulary and a visibility graph to find locally
unique 2D-to-3D matches. Sets of consistent matches are
then used to compute hypotheses. Sattler et al. [50] find cor-
respondences in both the 2D-to-3D and 3D-to-2D directions
and apply a 6-point DLT algorithm to compute hypotheses.
Schmidt et al. [51] train a fully-convolutional network using
a contrastive loss to output robust descriptors that can be
used to establish dense correspondences.

Some hybrid methods use both paradigms. Mur-Artal et
al. [22] describe a relocalisation approach that initially finds
pose candidates using bag of words recognition [52], which
they incorporate into their ORB-SLAM system. They then
refine these candidates using PnP and RANSAC. Valentin
et al. [23] find pose candidates using a retrieval forest and
a multiscale navigation graph, before refining them using
continuous pose optimisation. Taira et al. [24] use NetVLAD
[53] to find the N closest database images to the query im-
age, before using dense feature matching and P3P-RANSAC
to generate candidate poses. They then render a synthetic
view of the scene from each candidate pose, and yield the
pose whose view is most similar to the query image.

Several less traditional approaches have also been tried.
Deng et al. [54] match a 3D point cloud representing the
scene to a local 3D point cloud constructed from a set of
query images that can be incrementally extended by the user
to achieve a successful match. Lu et al. [55] perform 3D-to-
3D localisation that reconstructs a 3D model from a short
video using structure-from-motion and matches that against
the scene within a multi-task point retrieval framework.
Laskar et al. [56] train a Siamese network to predict the rela-
tive pose between two images. At test time, they find the N
nearest neighbours to the query image in a database, predict
their poses relative to the query image, and use these in con-
junction with the known poses of the neighbours to estimate
the query pose. Balntas et al. [57] train a Siamese network
to generate global feature descriptors using a continuous
metric learning loss based on camera frustum overlap. Like
[56], they then predict the relative poses between the query
image and nearest neighbours in a database, and use these
to determine the query pose. Schönberger et al. [58] train
a variational encoder-decoder network to hallucinate com-
plete, denoised semantic 3D subvolumes from incomplete
ones. At test time, they match query subvolumes against
ones in a database using the network’s embedding space,
and use the matches to generate pose hypotheses.

3 METHOD

3.1 Overview

Our approach is shown in Figure 1. Initially, we train a
regression forest offline to predict 2D-to-3D correspondences
for a generic scene using the approach described in [27]. To
adapt this forest to a new scene, we remove the contents
of the leaf nodes in the forest (i.e. GMM modes and asso-
ciated covariance matrices) whilst retaining the branching
structure of the trees (including learned split parameters).
We then adapt the forest online to the new scene by feeding
training examples down the forest to refill the empty leaves,
dynamically learning a set of leaf distributions specific to
that scene. Thus adapted, the forest can then be used to
predict correspondences for the new scene that can be used
for camera pose estimation. Reusing the tree structures
spares us from expensive offline learning on deployment
in a novel scene, allowing for relocalisation on the fly.

To estimate the camera pose, we extend the pipeline
we proposed in [37], which fed triples of correspondences
to the Kabsch [20] algorithm to generate pose hypotheses,
and then refined them down to a single output pose using
pre-emptive RANSAC. As highlighted in [37], returning a
single pose from RANSAC has the disadvantage of some-
times yielding the wrong pose when the energies of the
last few candidates considered by RANSAC are relatively
similar (e.g. when different parts of the scene look nearly
the same). To address this, we thus add in an additional
pipeline step that scores and ranks the last few RANSAC
candidates using an independent, model-based approach
(see §3.2.4). This significantly improves the performance of
the relocaliser in situations exhibiting serious appearance
aliasing (see §4), but at a cost in speed. To mitigate this, we
introduce the concept of a relocalisation cascade (see §3.2.5),
which runs multiple variants of our relocaliser in sequence,
starting with a fast variant that is less likely to succeed, and
progressively falling back to slower, better relocalisers as the
earlier ones fail. This leads to fast average-case relocalisation
performance without significantly compromising on quality.

3.2 Details

3.2.1 Offline Forest Training

Training is done as in [27], greedily optimising a standard
reduction-in-spatial-variance objective over the randomised
parameters of simple threshold functions. Like [27], we
make use of ‘Depth’ and ‘Depth-Adaptive RGB’ (‘DA-RGB’)
features, centred at a pixel p, as follows:

f
Depth
Ω = D(p)−D

(

p+ δ
D(p)

)

(1)

fDA-RGB
Ω = C(p, c)− C

(

p+ δ
D(p) , c

)

(2)

In this, D(p) is the depth at p, C(p, c) is the value of the cth

colour channel at p, and Ω is a vector of randomly sampled
feature parameters. For ‘Depth’, the only parameter is the
2D image-space offset δ, whereas ‘DA-RGB’ adds the colour
channel selection parameter c ∈ {R,G,B}. We randomly
generate 128 values of Ω for ‘Depth’ and 128 for ‘DA-RGB’.
We concatenate the evaluations of these functions at each
pixel of interest to yield 256D feature vectors.
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Fig. 1: Overview of our approach (without the cascade). First, we train a regression forest offline to predict 2D-to-3D
correspondences for a generic scene. To adapt this forest to a new scene, we remove the scene-specific information in the
forest’s leaves while retaining the branching structure (with learned split parameters) of the trees; we then refill the leaves
online using training examples from the new scene. The adapted forest can be deployed to predict correspondences for
the new scene, triples of which are then fed to the Kabsch [20] algorithm to generate a large number of pose hypotheses.
We then reduce these hypotheses to a much smaller number of refined hypotheses using RANSAC [21] (in this paper, we
modify our RANSAC module from [37] to return multiple hypotheses rather than just a single one). Finally, we score and
rank the final few hypotheses using a model-based approach, yielding a single resulting output pose.

At training time, a set S of training examples, each con-
sisting of such a feature vector f ∈ R

256, its corresponding
3D location in the scene and its colour, is assembled via
sampling from a ground truth RGB-D video with known
camera poses for each frame (obtained by tracking from
depth camera input). A random subset of these training
examples is selected to train each tree in the forest.

Starting from the root of each tree, we recursively parti-
tion the training examples in the current node into two using
a binary threshold function. To decide how to split each
node n, we randomly generate a set Θn of 512 candidate
split parameter pairs, where each θ = (φ, τ) ∈ Θn denotes
the binary threshold function

θ(f) = f [φ] ≥ τ. (3)

In this, φ ∈ [0, 256) is a randomly-chosen feature index, and
τ ∈ R is a threshold, chosen to be the value of feature φ
in a randomly chosen training example. Examples that pass
the test are routed to the right subtree of n; the remainder
are routed to the left. To pick a suitable split function for
n, we use exhaustive search to find a θ∗ ∈ Θn whose cor-
responding split function maximises the information gain
that can be achieved by splitting the training examples that
reach n. Formally, the information gain corresponding to

split parameters θ ∈ Θn is

V (Sn)−
∑

i∈{L,R}
|Si

n(θ)|
|Sn|

V (Si
n(θ)), (4)

in which V (X) denotes the spatial variance of set X , and
SL
n (θ) and SR

n (θ) denote the left and right subsets into
which the set Sn ⊆ S of training examples reaching n
is partitioned by the split function denoted by θ. Spatial
variance is defined in terms of the log of the determinant of
the covariance of a fitted 3D Gaussian [27].

For a given tree, the above process is simply recursed
to a maximum depth of 15. We train 5 trees per forest.
The (approximate, empirical) distributions in the leaves are
discarded at the end of this process (we replace them during
online forest adaptation, as discussed in the next section).

3.2.2 Online Forest Adaptation

To adapt a forest to a new scene, we replace the distributions
discarded from its leaves at the end of pre-training with
dynamically updated ones drawn entirely from the new
scene. Here, we detail how the new leaf distributions used
by the relocaliser are computed and updated online.

We draw inspiration from the use of reservoir sam-
pling [59] in SemanticPaint [10], which makes it possible
to store an unbiased subset of an empirical distribution in a
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Fig. 2: An example of the effect that online adaptation has
on a pre-trained forest: (L) the modal clusters present in a
small number of randomly selected leaves of a forest pre-
trained on the Chess scene from the 7-Scenes dataset [25]
(the colour of each mode indicates its containing leaf); (R)
the modal clusters that are added to the same leaves during
the process of adapting the forest to the Kitchen scene.

bounded amount of memory. On initialisation, we allocate
(on the GPU) a fixed-size sample reservoir for each leaf of
the existing forest. Our reservoirs contain up to κ entries,
each of which stores a 3D location (in world coordinates)
and an associated colour. At runtime, we pass training
examples (of the form described in §3.2.1) down the forest
and identify the leaves to which each example is mapped.
We then add the 3D location and colour of each example to
the reservoirs associated with its leaves.

To obtain the 3D locations of the training examples, we
need to know the transformation that maps points from
camera space to world space. When training on sequences
from a dataset, this is trivially available as the ground
truth camera pose, but in a live scenario, it will generally
be obtained as the output of a fallible tracker.1 To avoid
corrupting our forest’s reservoirs, we avoid passing new
examples down the forest when tracking is unreliable. We
measure tracker reliability using the support vector machine
(SVM) approach described in [13]. For frames for which a
reliable camera pose is available, we proceed as follows:

1) First, we compute feature vectors for a subset of the
pixels in the image, as detailed in §3.2.1. We empiri-
cally choose our subset by subsampling densely on a
regular grid with 4-pixel spacing, i.e. we choose pixels
{(4i, 4j) ∈ [0, w) × [0, h) : i, j ∈ N

+}, where w and h
are respectively the width and height of the image.

2) Next, we pass each feature vector down the forest,
adding the 3D position and colour of the corresponding
scene point to the reservoir of the leaf reached in each
tree. Our CUDA-based random forest implementation
uses the node indexing described in [60].

3) Finally, for each leaf reservoir, we cluster the contained
points using a CUDA implementation of Really Quick
Shift (RQS) [61] to find a set of modal 3D locations.
We sort the clusters in each leaf in decreasing size
order, and keep at most Mmax modal clusters per
leaf. For each cluster we keep, we compute 3D and
colour centroids, and a covariance matrix. The cluster
distributions are used when estimating the likelihood
of a camera pose, and also during continuous pose
optimisation (see §3.2.3). Since running RQS over all
the leaves in the forest would take too long if run in a

1. We are largely agnostic to the camera tracker used, but in keeping
with our scenario of relocalising in a known scene, at least some frames
must be tracked reliably to allow the relocaliser to be trained.

single frame, we amortise the cost over multiple frames
by updating 256 leaves in parallel each frame in round-
robin fashion. A typical forest contains around 42, 000
leaves, so each leaf is updated roughly once every 6s.

Figure 2 illustrates the effect that online adaptation has on
a pre-trained forest: (a) shows the modal clusters present
in a small number of randomly selected leaves of a forest
pre-trained on the Chess scene from the 7-Scenes dataset
[25]; (b) shows the modal clusters that are added to the
same leaves during the process of adapting the forest to the
Kitchen scene. Note that whilst the positions of the predicted
modes have (unsurprisingly) completely changed, the split
functions in the forest’s branch nodes (which we preserve)
still do a good job of routing similar parts of the scene into
the same leaves, enabling effective sampling of 2D-to-3D
correspondences for camera pose estimation.

3.2.3 Camera Pose Estimation

As in [27], camera pose estimation is based on the preemp-
tive, locally-optimised RANSAC of [62]. We begin by ran-
domly generating an initial set of up to Nmax pose hypothe-
ses. A pose hypothesis H ∈ SE(3) is a transform that maps
points in camera space to world space. To generate each
pose hypothesis, we apply the Kabsch algorithm [20] to 3
point pairs of the form (xC

i ,x
W
i ), where xC

i = D(ui)K
−1u̇i

is obtained by back-projecting a randomly chosen point
ui in the live depth image D into camera space, and xW

i

is a corresponding scene point in world space, randomly
sampled from M(ui), the modes of the leaves to which
the forest maps ui. In this, K denotes the depth camera
intrinsics. We subject each hypothesis to three checks:

1) First, we randomly choose one of the three point pairs
(xC

i ,x
W
i ) and compare the RGB colour of the corre-

sponding pixel ui in the colour input image to the
colour centroid of the mode (see §3.2.2) from which
we sampled xW

i . We reject the hypothesis iff the L∞

distance between the two exceeds a threshold.
2) Next, we check that the three hypothesised scene points

are sufficiently far from each other. We reject the hy-
pothesis iff the minimum distance between any pair of
points is below a threshold (tuned, but generally 30cm).

3) Finally, we check that the distances between all scene
point pairs and their corresponding back-projected
depth point pairs are sufficiently similar, i.e. that the
hypothesised transform is ‘rigid enough’. We reject the
hypothesis iff this is not the case.

If a hypothesis gets rejected by one of the checks, we try to
generate an alternative hypothesis to replace it. In practice,
we use Nmax dedicated threads, each of which attempts to
generate a single hypothesis. Each thread continues gen-
erating hypotheses until either (a) it finds a hypothesis
that passes all of the checks, or (b) a maximum number
of iterations is reached. We proceed with however many
hypotheses we obtain by the end of this process.

Having generated our large initial set of hypotheses,
we next aggressively prune it by scoring each hypothesis
and keeping the Ncull lowest-energy transforms (if there are
fewer than Ncull hypotheses, we keep all of them). To score
the hypotheses, we first select an initial set I = {i} of pixel
indices in D (of size η), and back-project the denoted pixels
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ui to corresponding points xC
i in camera space as described

above. We then score each hypothesis H by summing the
Mahalanobis distances between the transformations of each
xC
i under H and their nearest modes:

E(H) =
∑

i∈I

(

min(µ,Σ)∈M(ui)

∥

∥

∥Σ− 1

2 (HxC
i − µ)

∥

∥

∥

)

(5)

After this initial cull, we use pre-emptive RANSAC to prune
the remaining ≤ Ncull hypotheses to a much smaller set of
chosen hypotheses, which will then be scored and ranked
(see §3.2.4). (This differs from [37], where our RANSAC
module was designed to output a single hypothesis, and
no subsequent scoring was performed.) We iteratively (i)
expand the sample set I (by adding η new pixels each time),
(ii) refine the pose candidates via Levenberg-Marquardt op-
timisation [63], [64] of the energy function E, (iii) re-evaluate
and re-score the hypotheses, and (iv) discard the worse half.
We stop when the number of hypotheses remaining reaches
a desired threshold. The actual optimisation is performed
not in SE(3), where it would be hard to do, but in the
corresponding Lie algebra, se(3). See [27] for details of this
process, and [65] for a longer explanation of Lie algebras.

In [37], this process yielded a single pose hypothesis,
which it was possible to either return directly, or, if the re-
localiser was integrated into a 3D reconstruction framework
such as InfiniTAM [66], return after first refining it using
ICP [67]. Here, the process instead yields a set of chosen
hypotheses, from which we then need to select a single, final
output pose. To do this, we assume the presence of a 3D
scene model, since 3D reconstruction is a key application of
our approach, and propose a model-based way of ranking
the hypotheses to choose a best pose (if a 3D model is not
present, one of the hypotheses can be returned as-is, or the
hypotheses can be scored and ranked in a different way).

3.2.4 Model-Based Hypothesis Ranking

To score a hypothesis chosen by RANSAC, we first refine
it using ICP [67] with respect to the 3D scene model (see
Figure 3). If this fails, we discard the pose, since regardless
of its correctness, it was not a pose that would have been
good enough to allow tracking to resume. If this succeeds,
we further verify correctness by rendering a synthetic depth
raycast of the scene model from the refined pose, and
comparing it to the live depth image from the camera.2

To do this, we draw inspiration from [4], which compared
synthetic depth raycasts to verify a relative transform esti-
mate between two different sub-scenes. By contrast, we use
comparisons between the live depth image and synthetic
raycasts of a single scene to compute scores that can be used
to rank the different pose hypotheses against each other.

Formally, let Dℓ be the live depth image, Ξ = {ξ1, ...ξk}
be the set of chosen pose hypotheses, and D̃ξ be a synthetic
depth raycast of the 3D model from pose ξ. Moreover, for
any depth image D, let Ω(D) denote the domain of D
and Ωv(D) denote the range of pixels x for which D(x)
is valid, and let Ωv

ℓ,ξ = Ωv(Dℓ) ∩ Ωv(D̃ξ). To assign a score
to hypothesis ξ, we first compute a mean (masked) absolute
depth difference between Dℓ and D̃ξ via

µ(ξ) =
(

∑

x∈Ωv
ℓ,ξ

∣

∣

∣Dℓ(x)− D̃ξ(x)
∣

∣

∣

)

/|Ωv
ℓ,ξ|, (6)

2. Comparing a colour raycast to the live colour image is also possi-
ble, but we found depth-based ranking to be more effective in practice.

Model-Based Hypothesis RankingModel-Based Hypothesis Ranking

Refine Pose with 

Model-Based ICP
Discard

Render Synthetic 

Depth

Score Refined Pose

Fail

Pose Score (1..N)

Succeed

Rank Poses

Fig. 3: Our model-based approach to ranking the camera
pose hypotheses that survive the RANSAC stage (see §3.2.4).
For each hypothesis, we first refine the pose by performing
ICP [67] with respect to the 3D scene model. If this succeeds,
we score the hypothesis by comparing a synthetic depth
raycast from the refined pose to the live depth image from
the camera. Once all hypotheses have been scored, we rank
them and return the one with the lowest score.

similar to Equation (4) in [4]. We then compute a final score
s(ξ) for ξ via

s(ξ) =

{

µ(ξ) if |Ωv(D̃ξ)|/|Ω(D̃ξ)| ≥ 0.1

∞ otherwise.
(7)

In this, the purpose of the (empirically chosen) threshold
is to ensure that the hypothesised pose points sufficiently
towards the 3D scene model to allow it to be verified: we
found 0.1 to be effective in practice. Having scored all of the
hypotheses in this way, we can then simply pick the pose
ξ∗ with the lowest score (i.e. the one whose synthetic depth
raycast was closest to the live depth) and return it:

ξ∗ = argminξ∈Ξ s(ξ) (8)

3.2.5 Relocalisation Cascade

Ranking the last few RANSAC candidates as described in
§3.2.4 significantly improves relocalisation performance in
scenarios exhibiting serious appearance aliasing (see §4),
but can in practice be quite expensive (clearly undesirable
in an interactive SLAM context) because of the need to
perform ICP for each candidate. In practice, however, many
scenarios do not exhibit such aliasing, and in those contexts,
hypothesis ranking provides little benefit. As an additional
contribution, we thus propose a novel relocalisation cascade
approach that uses hypothesis ranking only when necessary.

Figure 4 shows how this works: we instantiate multiple
instances of our relocaliser, backed by the same regression
forest, but with different parameters for the hypothesis
generation and RANSAC steps, and run them one at a
time on the camera input until one of them produces an
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Cascade RelocalisationCascade Relocalisation

Camera InputCamera Input

Failure Output Pose 

Hypothesis

Success

Success

Success

Success

Depth

RGBRGB

Depth

RGB

Relocaliser(θ1)

...

Relocaliser(θ2)

Relocaliser(θK)

Relocaliser(θ1)

...

Relocaliser(θ2)

Relocaliser(θK) Fail
Failure

Failure

Failure

Fig. 4: Our relocalisation cascade (see §3.2.5): we instantiate
multiple instances of our relocaliser, backed by the same
regression forest, but with different hypothesis generation
and RANSAC parameters, and run them one at a time on
the camera input until one of them produces an acceptable
pose (or we reach the end of the cascade). The idea is to
gradually fall back from fast but less effective relocalisers to
slower but more effective ones, with the aim of yielding an
effective overall relocaliser that is fast on average.

acceptable pose (or we reach the end of the cascade). The
idea is to put ‘faster’ relocalisers (i.e. ones that have been
tuned more for speed than performance) towards the start
of the cascade, and ‘slower’ ones (i.e. ones that have been
tuned more for performance than speed) towards the end of
it, yielding an effective cascade that is fast on average. The
key to making this work well is in how to decide whether
or not a given relocaliser in the cascade has produced an
acceptable pose. If we accept poses produced by early-stage
relocalisers too readily, the cascade’s relocalisation quality
will suffer; conversely, if we are too draconian in rejecting
such poses, then the cascade will be slow (since we will be
running the slower, late-stage relocalisers far too often).

In practice, the depth-difference scores computed during
hypothesis ranking (see §3.2.4) provide us with an effective
basis on which to make these decisions: in particular, it
suffices to fall back from one relocaliser in the cascade to the
next iff the score associated with the final output pose of the
relocaliser is above a threshold (reflecting a high likelihood
of an incorrect pose). The thresholds used are important
parameters of the cascade: the way in which we tune both
them and the parameters of the relocalisers in the cascade is
described in §B.

4 EXPERIMENTS

We perform both quantitative and qualitative experiments
to evaluate our approach. In §4.1, we compare several vari-
ants of our approach, trained on the Office sequence from the
7-Scenes dataset [25] and then adapted to each target scene,
to state-of-the-art offline relocalisers trained directly on the
target scene. We show that our adapted forests achieve state-
of-the-art relocalisation performance despite being trained
on a different scene, allowing them to be used for online
relocalisation. Further results, showing that very similar
performances can be obtained with forests trained on the
other 7-Scenes sequences, can be found in §A, along with
detailed timings for each stage of our pipeline. In §4.2,
we show our ability to adapt forests on-the-fly from live

sequences, allowing us to support tracking loss recovery
in interactive scenarios. In §4.3, we evaluate how well our
approach generalises to novel poses in comparison to a
keyframe-based random fern relocaliser based on [17]. Our
results show that we are able to relocalise well even from
poses that are quite far away from the training trajectory. In
§4.4, we visualise the internal behaviour of SCoRe forests,
and use this to explain why the behaviour of a forest is
relatively independent of the specific scene on which it was
trained. Finally, in §4.5, we use the insights gained from
this visualisation to show that pre-training can be avoided
entirely by replacing the pre-trained forest with a generated
one that plays the same role.

4.1 Headline Performance

To evaluate the headline performance of our approach, we
compare our relocaliser to a variety of state-of-the-art offline
relocalisers on the 7-Scenes [25] and Stanford 4 Scenes [23]
benchmarks (see Tables 1 and 2).3

We test several variants of our approach, using the
following testing procedure. For all variants of our approach
except Ours (Random), we first pre-train a forest on a generic
scene (Office from 7-Scenes [25]) and remove the contents
of its leaves, as described in §3: this process runs offline
over a number of hours (but we only need to do it once).
Next, we adapt the forest by feeding it new examples from a
training sequence captured on the scene of interest: this runs
online at frame rate (in a real system, this allows us to start
relocalising almost immediately whilst training carries on
in the background, as we show in §4.2). Finally, we test the
adapted forest by using it to relocalise from every frame of a
separate testing sequence captured on the scene of interest.

Ours (Default) is an improved variant of [37], in which
each leaf can now store up to 50 modes. With hypothesis
ranking of the last 16 candidates enabled, this approach
achieves an average of 96.41% of frames within 5cm/5◦ of
the ground truth on 7-Scenes, beating the previous state-of-
the-art [51] by over 4%. However, as mentioned in §3.2.5,
hypothesis ranking significantly slows down the speed of
the relocaliser: we thus present several faster variants of our
approach. Ours (Fast) is a variant tuned for maximum speed
(see Table 8 for the tuned parameters). With ICP enabled,
it is able to achieve an average of over 90% on 7-Scenes
in under 30ms; however, it achieves slightly lower perfor-
mance on the difficult Stairs sequence. To achieve a better
trade-off between performance and speed, we present two

relocalisation cascades (see §3.2.5), F
7.5cm
→ S and F

5cm
→ I

7.5cm
→ S,

each of which starts with our Fast relocaliser and gradually
falls back to slower, more effective relocalisers if the depth
difference for the currently predicted pose exceeds the spec-
ified thresholds. We describe the tuning of the parameters

3. For completeness, we include [35], [36], [45] and [46] in Table 1
alongside the other results. However, it is important to note that they
are not directly comparable to the other approaches: on the one hand,
they are not allowed to use depth, which puts them at a disadvantage;
on the other hand, [45] and [46] make use of the estimated pose from
the previous frame, which is unavailable under the standard evaluation
protocol and gives them a significant advantage. For these reasons, we
italicise all four sets of results to make it clear that they cannot be
directly compared to the other methods in the table.
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Chess Fire Heads Office Pumpkin Kitchen Stairs Average Avg. Med. Error Frame Time (ms)

RGB-D, online, single-frame

Ours (Default) 99.75% 97.35% 100% 99.80% 82.25% 95.64% 79.10% 93.41% 0.011m/1.16◦ 128
+ ICP 99.85% 99.15% 100% 99.85% 90.00% 91.52% 80.00% 94.34% 0.013m/1.16◦ 133
+ Ranking 99.95% 99.70% 100% 99.48% 90.85% 90.68% 94.20% 96.41% 0.013m/1.17◦ 257

Ours (Fast) w/ICP 99.75% 97.10% 98.40% 99.55% 89.35% 89.26% 62.40% 90.83% 0.014m/1.17◦ 30

Ours (Cascade F
7.5cm
→ S) 99.90% 98.95% 99.90% 99.48% 90.95% 89.34% 86.10% 94.95% 0.013m/1.17◦ 52

Ours (Cascade F
5cm
→ I

7.5cm
→ S) 99.85% 99.40% 99.90% 99.40% 90.85% 89.64% 89.80% 95.55% 0.013m/1.17◦ 66

Ours (Random) 99.80% 96.90% 100% 98.48% 78.65% 91.98% 71.60% 91.06% 0.012m/1.18◦ 121
+ ICP 99.85% 98.50% 100% 99.10% 89.50% 90.32% 77.80% 93.58% 0.013m/1.16◦ 126

Ours (2017) [37] 99.2% 96.5% 99.7% 97.6% 84.0% 81.7% 33.6% 84.6% – –
+ ICP 99.4% 99.0% 100% 98.2% 91.2% 87.0% 35.0% 87.1% – 141

RGB-D, offline, single-frame

Shotton et al. [25] 92.6% 82.9% 49.4% 74.9% 73.7% 71.8% 27.8% 67.6% – –
Guzman-Rivera et al. [26] 96% 90% 56% 92% 80% 86% 55% 79.3% – –
Valentin et al. [27] 99.4% 94.6% 95.9% 97.0% 85.1% 89.3% 63.4% 89.5% – –
Brachmann et al. [28] 99.6% 94.0% 89.3% 93.4% 77.6% 91.1% 71.7% 88.1% 0.061m/2.7◦ –
Meng et al. [32] 99.5% 97.6% 95.5% 96.2% 81.4% 89.3% 72.2% 90.3% 0.017m/0.70◦ –
Schmidt et al. [51] 97.75% 96.55% 99.8% 97.2% 81.4% 93.4% 77.7% 92.0% – –
Brachmann and Rother [35] 97.1% 89.6% 92.4% 86.6% 59.0% 66.6% 29.3% 76.1% 0.036m/1.1◦ –

RGB-only, offline, single-frame

Brachmann and Rother [35] 93.8% 75.6% 18.4% 75.4% 55.9% 50.7% 2.0% 60.4% 0.084m/2.4◦ –
Li et al. [36] 96.1% 88.6% 86.9% 80.6% 60.3% 61.9% 11.3% 71.8% 0.043m/1.3◦ –

RGB-only, offline, sequential

Valada et al. [45] – – – – – – – 59.1% 0.048m/3.801◦ –
Radwan et al. [46] – – – – – – – 99.2% 0.013m/0.77◦ 79

TABLE 1: Comparing our adaptive approach to state-of-the-art offline methods on the 7-Scenes dataset [25] (the percentages
denote proportions of test frames with ≤ 5cm translation error and ≤ 5◦ angular error; red and blue colours denote
respectively the best and second-best results in each column). Italics denote results that are not directly comparable (see
§4.1). ‘+ Ranking’ means ranking the last 16 candidates produced by RANSAC, as per §3.2.4. For all versions of our method
except Ours (Random), we report the results obtained by adapting a forest pre-trained on the Office sequence from 7-Scenes.
We achieve results that are superior to the offline methods, without needing to pre-train on the test scene. Moreover, our

F
7.5cm
→ S cascade achieves state-of-the-art results whilst running at nearly 20 FPS. Finally, Ours (Random) uses a randomly

generated forest (see §4.5) and achieves state-of-the-art results without any offline training on any scene.

Sequence LTN [23] BTBRF [31] PLForests [32] Ours + ICP + Ranking Ours (F
7.5cm
→ S) Ours (Random) + ICP

Kitchen 85.7% 92.7% 98.9% 100% 100% 100% 100% 99.72% 100%
Living 71.6% 95.1% 100% 99.80% 100% 100% 100% 99.59% 100%

Bed 66.4% 82.8% 99.0% 100% 100% 100% 100% 100% 100%
Kitchen 76.7% 86.2% 99.0% 100% 100% 100% 99.52% 100% 100%
Living 66.6% 99.7% 100% 100% 100% 100% 100% 100% 100%
Luke 83.3% 84.6% 98.9% 97.92% 99.20% 99.20% 99.20% 96.31% 99.20%

Floor5a 66.2% 89.9% 98.8% 99.20% 100% 100% 99.60% 98.59% 100%
Floor5b 71.1% 98.9% 99.0% 99.75% 99.01% 100% 99.01% 99.26% 99.01%

Gates362 51.8% 96.7% 100% 100% 100% 100% 100% 100% 100%
Gates381 52.3% 92.9% 98.8% 99.24% 100% 100% 99.91% 98.10% 99.91%
Lounge 64.2% 94.8% 99.1% 100% 100% 100% 100% 100% 100%
Manolis 76.0% 98.0% 100% 100% 100% 100% 100% 100% 100%

Average 67.4% 92.7% 99.3% 99.66% 99.85% 99.93% 99.77% 99.30% 99.84%
Avg. Med. Trans. – – – 0.009m 0.006m 0.007m 0.007m 0.010m 0.007m
Avg. Med. Rot. – – – 0.51◦ 0.26◦ 0.26◦ 0.26◦ 0.54◦ 0.26◦

Frame Time (ms) – – – 122 127 240 33 119 123

TABLE 2: Comparing our adaptive approach to state-of-the-art offline methods on the Stanford 4 Scenes dataset [23]. See
Table 1 for an explanation of the different variants of our approach. All variants achieve state-of-the-art results, equalling

or exceeding even the near-perfect results of [32]. Moreover, our F
7.5cm
→ S cascade can achieve such results at 30 FPS.

of the individual relocalisers in the cascades and the depth-
difference thresholds used to fall back between them in §B.
Both cascades presented achieve state-of-the-art results in
under 70ms, offering high-quality performance at frame rate

(nearly 20 FPS in the case of F
7.5cm
→ S).

Finally, Ours (Random) denotes a variant of our approach
that uses a randomly generated forest (see §4.5). By achiev-

ing an average of 93.58% on 7-Scenes after ICP, it shows that
it is possible to achieve state-of-the-art performance without
any prior offline training on a generic scene.

4.2 Tracking Loss Recovery

In §4.1, we investigated our ability to adapt a forest to a
new scene by filling its leaves with data from a training
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Fig. 5: Our approach’s performance for tracking loss recov-
ery (§4.2). Filling the leaves of a forest pre-trained on Office
frame-by-frame directly from the testing sequence, we are
able to start relocalising almost immediately in new scenes.

sequence for that scene, before testing the adapted forest on
a separate testing sequence shot on the same scene. Here,
we quantify our approach’s ability to perform this adap-
tation on the fly by filling the leaves frame-by-frame from
the testing sequence: this allows recovery from tracking
loss in an interactive scenario without the need for prior
online training on anything other than the live sequence,
making our approach extremely convenient for tasks such
as interactive 3D reconstruction.

Our testing procedure is as follows: at each new frame
(except the first), we assume that tracking has failed, and
try to relocalise using the forest we have available at that
point; we record whether or not this succeeds. Regardless,
we then restore the ground truth camera pose (or the tracked
camera pose, in a live sequence) and, provided tracking
hasn’t actually failed, use examples from the current frame
to continue training the forest. As Figure 5 shows, we
are able to start relocalising almost immediately in a live
sequence (in a matter of frames, typically 4–6 are enough).
Subsequent performance then varies based on the difficulty
of the sequence, but rarely drops below 80%. This makes
our approach highly practical for interactive relocalisation.

4.3 Generalisation to Novel Poses

To evaluate how well our approach generalises to novel
poses, we examine how the proportion of frames we can
relocalise decreases as the distance of the (ground truth) test
poses from the training trajectory increases. We compare our
approach with the keyframe-based relocaliser in InfiniTAM
[13], which is based on the random fern approach of Glocker
et al. [17], and with the original version of our own approach
[37]. Relocalisation from novel poses is a well-known failure
case of keyframe-based methods, so we would expect the
random fern approach to perform poorly away from the
training trajectory; by contrast, it is interesting to see the
extent to which both incarnations of our approach can
relocalise from a wide range of novel poses.

We perform the comparison separately for each 7-Scenes
sequence, and then aggregate the results. For each sequence,
we first group the test poses into bins by pose novelty.
Each bin is specified in terms of a maximum translation and
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Fig. 6: Evaluating how well our approach generalises to
novel poses in comparison to a keyframe-based random
fern relocaliser based on [17]. The performance decay expe-
rienced as test poses get further from the training trajectory
is much less severe with our approach than with ferns.

Fig. 7: Novel poses from which we are able to relocalise
to within 5cm/5◦ on the Fire sequence from 7-Scenes [25].
Pose novelty measures the distance of a test pose from a
nearby pose (blue) on the training trajectory (yellow). We
can relocalise from both easy poses (up to 35cm/35◦ from
the training trajectory, green) and hard poses (> 35cm/35◦,
red). The images below the main figure show views of the
scene from the training poses and testing poses indicated.

rotation difference of a test pose with respect to the training
trajectory (for example, poses that are within 5cm and 5◦ of
any training pose are assigned to the first bin, remaining
poses that are within 10cm and 10◦ are assigned to the
second bin, etc.). We then determine the proportion of the
test poses in each bin for which it is possible to relocalise to
within 5cm translational error and 5◦ angular error using (a)
the random fern approach, (b) our approach (both versions)
without ICP and (c) our approach (both versions) with ICP.
As shown in Figure 6, the decay in performance experienced
as the test poses get further from the training trajectory
is much less severe with our approach than with ferns.
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Fig. 8: Visualising the leaves (from the first tree) and world-
space points that the forest predicts for three images of Fire
from 7-Scenes [25]. Top-to-bottom: input images, predicted
leaves (randomly colourised), predicted world-space points
(mapped to an RGB cube), ground truth world-space points.

Moreover, our improvements to our original approach [37]
have notably improved its ability to successfully relocalise
test frames that are more than 50cm/50◦ from the training
trajectory (from less than 60% to more than 85%).

A qualitative example of our ability to relocalise from
novel poses is shown in Figure 7. In the main figure, we
show a range of test poses from which we can relocalise in
the Fire scene, linking them to nearby poses on the training
trajectory so as to illustrate their novelty in comparison
to poses on which we have trained. The most difficult
of these test poses are also shown in the images below
alongside their nearby training poses, visually illustrating
the significant differences between the two.

4.4 Visualising the Forest’s Behaviour

Ultimately, we are able to adapt a forest to a new scene
because the split functions that we preserve in the forest’s
branch nodes are able to route similar parts of the new
scene into the same leaves, regardless of the scene on which
the forest was originally trained. In effect, we exploit the
observation that the forest is ultimately a way of clustering
points in a scene together based on their appearance, in a
way that is broadly independent of the scene on which it
was pre-trained (we would prefer to cluster points based
on their spatial location, but since that information is not
available at test time, we rely on appearance as a proxy).
Such appearance clustering is very common in the literature,
e.g. [68] uses a decision forest to perform patch matching for
optical flow and stereo, and [49] uses a visual vocabulary to
match features with points for relocalisation.

To illustrate this, we visualise both the leaves and world-
space points that the forest predicts for the pixels in three

images of the Fire sequence from 7-Scenes [25] in Figure 8.
As the pixel-to-leaf mapping (second row) shows, the for-
est (as expected) clusters points with similar appearances
together, as can be seen from the fact that many similar-
looking points that are adjacent to each other fall into the
same leaves. Notably, the forest also manages, to some
extent, to predict the same leaves for similar-looking points
from different frames, as long as they view the scene from
roughly similar viewpoints – e.g. the pixels on the seat of
the chair in the first two columns are mostly predicted to
fall into the same leaves. Its ability to do so clearly depends
on the viewpoint-invariance or otherwise of the features we
use (see §3.2.1), and indeed when the viewpoint changes
more significantly, as in the third column, different leaves
can be predicted. However, in practice this is not a problem:
there is no need for the forest to predict the same leaves for
points in the scene when viewed from different angles, only
to predict leaves that represent roughly the same locations
in space. In reality, many leaves can occupy the same part
of space, and as long as the forest is able to predict one of
them, we can still produce suitable correspondences (see
third row of Figure 8). This makes our approach highly
robust in practice, and explains why good results can be
achieved even with the relatively simple features we use.

4.5 Is Pre-Training Necessary?

Since the purpose of the forest is purely to cluster scene
points based on their appearance (see §4.4), this raises the
interesting question of whether pre-training on an actual
scene is really necessary in the first place. To explore this,
we performed an additional experiment in which we tried
replacing the pre-trained forest used for our previous exper-
iments with ones that were entirely randomly generated. We
considered forests consisting of 5 complete binary trees of
equal height. As in §3.2.1, we generated a binary threshold
function for each branch node consisting of a feature index
φ ∈ [0, 256) and a threshold τ ∈ R. In this case, instead
of randomly choosing a feature index, we first randomly
decided whether to use a Depth or DA-RGB feature (with a
probability p of choosing a depth feature), and then chose
a relevant feature index randomly. We empirically fixed the
threshold τ to 0 (we also tried replicating the distribution
of thresholds from a pre-trained forest, but found that it
made no difference in practice: this makes sense, since the
features we use are signed depth/colour differences, which
we would naturally expect to be distributed around 0). We
tuned the height of the forest and the probability p offline
using coordinate descent (see §B.1), with tmax = 200ms,
keeping all other parameters as the defaults (see Table 8).
This tuning process found an optimal height of 14 and a
probability p of 0.4.

Our results on both the 7-Scenes [25] and Stanford 4
Scenes [23] benchmarks are shown as Ours (Random) in
Tables 1 and 2. In both cases, we achieve similar-quality
results to those of our default relocaliser, at similar speeds.
This indicates that pre-training on a real scene is not strictly
necessary, and that the appearance-clustering role played
by a pre-trained forest can be replaced by alternative ap-
proaches without compromising performance.
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5 CONCLUSION

In recent years, offline approaches based on using regres-
sion to predict 2D-to-3D correspondences [25], [26], [27],
[28], [30], [32] have been shown to achieve state-of-the-art
camera relocalisation results, but their adoption for online
relocalisation in practical systems such as InfiniTAM [3],
[13] has been hindered by the need to train extensively on
the target scene ahead of time. In [37], we showed that
it was possible to circumvent this limitation by adapting
offline-trained regression forests to novel scenes online. Our
adapted forests achieved relocalisation performance on 7-
Scenes [25] that was competitive with the offline-trained
forests of existing methods, and our approach ran in under
150ms, making it competitive for practical purposes with
fast keyframe-based approaches such as random ferns [13],
[17]. Unlike such approaches, we were also much better able
to relocalise from novel poses, removing much of the need
for the user to move the camera around when relocalising.

In this paper, we have extended this approach to achieve
results that comfortably exceed the existing state-of-the-art.

In particular, our F
7.5cm
→ S cascade simultaneously beats the

current top performer [51] on 7-Scenes by around 3% and
runs at nearly 20 FPS. We also achieve near-perfect results
on Stanford 4 Scenes [23], beating even the existing high-
performing state-of-the-art [32]. Finally, we have shown
that it is possible to obtain state-of-the-art results on both
datasets without any need at all for offline pre-training on
a generic scene, whilst clarifying the role that regression
forests play in scene coordinate regression pipelines.

APPENDIX A

ADDITIONAL EXPERIMENTS

A.1 Timing Breakdown

To evaluate the usefulness of our approach for on-the-fly
relocalisation in new scenes, we compare several variants
of it to the keyframe-based random fern relocaliser imple-
mented in InfiniTAM [13], [17]. To be practical in a real-time
system, a relocaliser needs to perform in real time during
normal operation (i.e. for online training whilst successfully
tracking the scene), and ideally take no more than 200ms for
relocalisation itself (when the system has lost track).

As shown in Table 3, the random fern relocaliser is fast
both for online training and relocalisation, taking only 1.2ms
per frame to update the keyframe database, and 6.8ms
to relocalise when tracking is lost. However, speed aside,
the range of poses from which it is able to relocalise is
quite limited. By contrast, the variants of our approach,
whilst taking longer both for online training and for actual
relocalisation, can relocalise from a much broader range of
poses, whilst still running at more than acceptable speeds.
Indeed, the Fast variant of our approach is able to relocalise
in under 30ms, making it competitive with the 6.8ms taken
by random ferns, whilst dramatically outperforming it on
relocalisation quality. Our cascade approaches are slower,
but achieve even better relocalisation performance, and at
< 70ms are still more than fast enough for practical use.

A timing breakdown for the default variant of our
relocaliser, Ours (Default), is shown in Figure 9. Notably,
a significant proportion of the time it takes is spent on

Per-Frame Training (ms) Relocalisation (ms)

Ours (Default) 5.8 128.0
+ ICP 5.8 132.7
+ Ranking 5.8 256.8

Ours (Fast) 11.0 25.1
+ ICP 11.0 29.9

Ours (Cascade F
7.5cm
→ S) 11.0 52.4

Ours (Cascade F
5cm
→ I

7.5cm
→ S) 11.1 66.1

Random Ferns [13], [17] 1.2 6.8

TABLE 3: Comparing the typical timings of our approach
vs. random ferns during both normal operation and relo-
calisation. Our approach is slower than random ferns, but
achieves dramatically higher relocalisation performance, es-
pecially from novel poses. All of our experiments are run on
a machine with an Intel Core i7-7820X CPU and an NVIDIA
GeForce GTX 1080Ti GPU.

Relocalisation Timing (w/o Ranking)

Candidate Generation (15ms)

Candidate Culling (12ms)

Inlier Sampling and Energy Computation (7ms)

Optimisation (84ms)

ICP Refinement (4ms)

Relocalisation Timing (w/Ranking)

Candidate Generation (15ms)

Candidate Culling (12ms)

Inlier Sampling and Energy Computation (7ms)

Optimisation (84ms)

Hypothesis Ranking (111ms)

Fig. 9: A timing breakdown for the default variant of our re-
localiser (see §A.1). Pose optimisation during the RANSAC
stage of the pipeline is the dominant cost when hypothesis
ranking is disabled. Ranking becomes the dominant cost
when it is enabled, since it is linear in the number of
hypotheses considered.

optimising poses during the RANSAC stage of the pipeline
(a fact that is later exploited when we tune the parameters
for our cascades in §B and §C). With hypothesis ranking
disabled, the second largest amount of time is spent on
generating candidate hypotheses: at least some of the time
this takes is likely due to warp divergence on the GPU, since
some candidate generation threads are likely to generate
acceptable hypotheses before others. With ranking enabled,
the ranking itself dominates: this is unsurprising, since it is
linear in the number of hypotheses considered.

A.2 Successful/Failed Frame Timings

To better understand how the time taken by our approach
to try to relocalise a frame varies depending on whether
or not that frame can be successfully relocalised, we timed
several different variants of our relocaliser on 7-Scenes [25],
and compared the average times taken for just the success-
ful/failed frames to the timing results for all frames (see Ta-
ble 5). The results indicate that for the non-cascade variants,
there is little difference between the times taken for suc-
cessful/failed frames, which is what we would expect. By
contrast, for the cascade variants, the average time taken for
failed frames is significantly higher than that for successful
ones: this makes sense, since the way in which our cascades
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Relocalisation Performance on Test Scene
Training Scene

Chess Fire Heads Office Pumpkin Kitchen Stairs Average (all scenes)

Reloc 99.55% 97.00% 100% 98.85% 80.70% 95.56% 75.60% 92.47%
+ ICP 99.85% 98.75% 100% 99.13% 88.75% 91.32% 78.90% 93.81%Chess
+ Ranking 99.75% 99.15% 100% 99.15% 90.25% 90.02% 95.80% 96.30%

Reloc 99.55% 98.20% 99.80% 98.68% 77.65% 95.14% 75.40% 92.06%
+ ICP 99.85% 99.80% 100% 98.95% 87.80% 91.36% 76.50% 93.47%Fire
+ Ranking 99.80% 100% 100% 99.08% 90.25% 90.18% 94.40% 96.24%

Reloc 99.50% 96.15% 100% 96.80% 76.95% 93.00% 53.30% 87.96%
+ ICP 99.85% 98.60% 100% 98.78% 89.05% 91.26% 59.00% 90.93%Heads
+ Ranking 99.80% 99.00% 100% 98.20% 90.75% 89.72% 86.80% 94.90%

Reloc 99.75% 97.35% 100% 99.80% 82.25% 95.64% 79.10% 93.41%
+ ICP 99.85% 99.15% 100% 99.85% 90.00% 91.52% 80.00% 94.34%Office
+ Ranking 99.95% 99.70% 100% 99.48% 90.85% 90.68% 94.20% 96.41%

Reloc 99.40% 97.00% 99.90% 99.05% 81.95% 94.62% 75.50% 92.49%
+ ICP 99.85% 98.65% 100% 99.83% 90.00% 91.50% 76.00% 93.69%Pumpkin
+ Ranking 99.85% 99.40% 100% 99.28% 91.10% 90.36% 93.50% 96.21%

Reloc 99.95% 97.60% 100% 99.55% 80.65% 95.20% 76.30% 92.75%
+ ICP 99.85% 98.95% 100% 99.80% 89.25% 91.42% 78.40% 93.95%Kitchen
+ Ranking 99.90% 99.60% 100% 99.25% 90.20% 90.74% 94.50% 96.31%

Reloc 99.55% 97.05% 99.90% 99.00% 80.15% 94.70% 82.70% 93.29%
+ ICP 99.85% 98.60% 100% 99.28% 88.55% 91.10% 84.20% 94.51%Stairs
+ Ranking 99.85% 99.15% 100% 99.23% 90.60% 89.94% 96.90% 96.52%

Reloc 99.61% 97.19% 99.94% 98.82% 80.04% 94.84% 73.99% 92.06%
+ ICP 99.85% 98.93% 100% 99.37% 89.06% 91.35% 76.14% 93.53%Average
+ Ranking 99.84% 99.43% 100% 99.10% 90.57% 90.23% 93.73% 96.13%

TABLE 4: The performance of our adaptive approach after pre-training on various scenes of the 7-Scenes dataset [25]. We
show the scene used to pre-train the forest in each version of our approach in the left column. The pre-trained forests are
adapted online for the test scene, as described in the main text. Note that ‘+ ICP’ and ‘+ Ranking’ are cumulative, i.e. the
third set of results for each training scene refer to a version of our approach in which both ICP and model-based hypothesis
ranking are used. The percentages denote proportions of test frames with ≤ 5cm translational error and ≤ 5◦ angular error.

Average Frame Time (ms)
Successful Failed All

Default 125.0 107.9 124.0
Default (w/ICP) 129.8 114.0 128.9
Default (w/Ranking) 254.5 255.9 254.6

Fast 24.9 24.8 24.9
Fast (w/ICP) 29.8 30.1 30.0

Intermediate 74.6 71.7 73.9
Intermediate (w/ICP) 79.4 76.7 78.8

Slow 77.3 73.5 76.4
Slow (w/Ranking) 202.5 202.3 202.4

Cascade F
5cm
→ I 51.0 104.5 54.8

Cascade F
5cm
→S 73.0 202.8 81.9

Cascade F
7.5cm
→ S 44.6 148.3 51.4

Cascade F
5cm
→ I

7.5cm
→ S 61.0 180.4 69.3

TABLE 5: The average times taken to relocalise success-
ful/failed/all frames from the 7-Scenes dataset [25]. ‘Suc-
cessful’ frames are defined as those frames whose relo-
calised poses are within 5cm/5◦ of the ground truth. Note
that unlike the average numbers elsewhere in the paper,
which as per common practice were computed by averaging
the averages for the different sequences in the dataset, these
averages were computed by averaging over the individual
frames (this is equivalent to weighting the average of aver-
ages by the number of frames in each sequence).

work is to try the relocalisers in order, and for failed frames,
we end up running the full cascade. For successful frames,
we are often able to avoid running the slower relocalisers
towards the end of the cascade, as indicated by the fact
that the average times for the successful frames with each

cascade are much lower than the corresponding average
times for the slower relocalisers in the cascade. Moreover, it
is notable that the average times for all frames are quite close
to those for successful frames, indicating that in practice,
most frames are successfully relocalised.

A.3 Adaptation Performance

In §4.1, we evaluated how the performance of forests that
had been pre-trained offline on the Office sequence from 7-
Scenes [25] and then adapted to the target scene compared
to that of offline methods that had been trained offline
directly on the target scene. Here, we show that very sim-
ilar results can be obtained by pre-training on any of the
sequences from 7-Scenes, thus demonstrating that there is
nothing specific to Office that makes it particularly suitable
for pre-training (this is to be expected, since we show in
§4.5 that similar results can be obtained without pre-training
offline at all).

As mentioned in §4.1, we use the following testing
procedure. First, we pre-train a forest on a generic scene
offline and remove the contents of its leaves. Next, we
adapt the forest by feeding it new examples from a training
sequence captured on the scene of interest: this runs online
at frame rate. Finally, we test the adapted forest by using it
to relocalise from every frame of a separate testing sequence
captured on the scene of interest.

As shown in Table 4, in all cases the results are very
accurate. Whilst there are certainly some variations in the
performance achieved by adapted forests pre-trained on
different scenes (in particular, the forest trained on the Heads
sequence from the dataset, which is very simple, is slightly
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(a) 10% (b) 20% (c) 50% (d) 80% (e) 90%

Fig. 10: Examples of the different levels of missing depth used in our experiment (see §A.4.1).

(a) σ = 0 (b) σ = 0.025 (c) σ = 0.05 (d) σ = 0.075 (e) σ = 0.1

Fig. 11: Examples of the different levels of noisy depth used in our experiment (see §A.4.2), and their effects on the 3D
reconstructions fused by InfiniTAM (using a voxel size of 2cm). The depth images with added noise are shown on the top
row. Rendered images of the 3D models fused based on these levels of noise are shown on the bottom row.

worse), the differences are not profound: in particular, re-
localisation performance seems to be more tightly coupled
to the difficulty of the scene of interest than to the scene on
which the forest was pre-trained. Notably, all of our adapted
forests achieve results that are comparable (and in many
cases superior) to those of state-of-the-art offline methods
(see Table 1).

A.4 Robustness to Missing/Noisy Depth

To evaluate our approach’s robustness to missing/noisy
depth, we performed two sets of experiments, one in which
we randomly masked out various percentages of the depth
images, and another in which we corrupted all of the depth
values in the images with zero-mean, depth-dependent
Gaussian noise, with various standard deviations.4 Our ex-
pectation was that our relocaliser would be relatively robust
to missing depth, since only a small number of reliable
correspondences are needed to accurately estimate the pose,
but that it might be more sensitive to noisy depth, since we
rely on having reasonably accurate world space points in
the leaves of the forest in order to correctly relocalise.

A.4.1 Missing Depth

For the missing depth experiment, we evaluated how the
performance of our Default relocaliser on 7-Scenes [25] var-
ied for different levels of missing depth, ranging from 10%

4. For both experiments, we disabled the built-in SVM in InfiniTAM
that measures tracker reliability (see §3.2.2), in order to better isolate
how our relocaliser performs for missing/noisy depth. In this case, all
of the poses are ground truth poses from 7-Scenes [25] that are already
assumed to be sufficiently reliable.

up to 95%. To mask out a percentage p ∈ [0, 1] of the pixels
in a depth image, we uniformly sampled a real number
ri ∼ [0, 1] for each pixel in the image, and set the pixel
to zero iff ri ≤ p. Examples of the different levels of missing
depth involved can be seen in Figure 10.

The results are shown in Figure 12. As expected, they
demonstrate that our relocaliser is relatively robust to miss-
ing depth: the average pre-ICP relocalisation performance
remains above 85% even with 70% of the depth values
missing, and the average post-ICP performance is even
more robust, remaining over 85% even with 90% of the
depth values missing (this is to be expected, since even if the
pre-ICP relocaliser itself performs a bit worse, it only has to
return an initial pose that falls within the ICP convergence
basin to allow ICP to succeed). The performance does start
to decrease more significantly when 95% of the depth values
are missing: this is most likely because by that stage, there
are far fewer remaining points, and it becomes harder to find
the reliable correspondences needed. Nevertheless, even at
that stage, our post-ICP performance remains over 80%.

A.4.2 Noisy Depth

For the noisy depth experiment, we evaluated how the
performance of our Default relocaliser on 7-Scenes [25] var-
ied when we added different levels of zero-mean, depth-
dependent Gaussian noise to the depth images. We consid-
ered Gaussians with several different σ values, as shown
in Figure 11. To add depth-dependent noise to a depth
image for a given σ value, we uniformly sampled a value
ni ∼ N (0, σ2) for each pixel in the image, and then replaced
the pixel’s depth value di with di +ni × di. Examples of the
effect this has for different σ values can be seen in Figure 11.
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Fig. 12: The performance of our Default relocaliser on 7-
Scenes [25] for different levels of missing depth (see §A.4.1).
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Fig. 13: The performance of our Default relocaliser on
7-Scenes [25] for different levels of zero-mean, depth-
dependent Gaussian noise (see §A.4.2).

As expected, the results in Figure 13 indicate that our
method is rather more sensitive to noisy depth than it was to
missing depth (see §A.4.1). In particular, it seems reasonably
tolerant of a small amount of depth noise (σ = 0.025, i.e. a
standard deviation of 2.5cm at 1m), but its performance de-
grades much more significantly for larger amounts of noise.
This makes sense, since our method needs to find reasonably
accurate correspondences between points in camera space
and world space in order to relocalise, and thus the world
space points we add to the leaves of the forest at adaptation
time need to be reasonably accurate. If the depth is too noisy,
these points are likely to be inaccurate, leading to much
worse relocalisation performance.

Notably, our relocaliser’s post-ICP performance drops
sharply as σ increases, whereas its pre-ICP performance
degrades much more gracefully. There are two main reasons
for this: (i) ICP is much more sensitive to outlying points
than the RANSAC stage of our pipeline (which, like all
RANSAC-based approaches, explicitly aims to exclude out-
liers from consideration), and (ii) as σ increases, it becomes
increasingly difficult for InfiniTAM to fuse a high-quality 3D
model to which ICP can register the current depth image
(see Figure 11). To mitigate this latter problem, we used a
larger voxel size of 2cm for this experiment (without which,

DA-RGB + Depth DA-RGB Only Depth Only

Chess 99.85% 99.65% 99.75%
Fire 98.50% 99.00% 97.15%

Heads 100% 100% 99.90%
Office 99.10% 98.95% 97.80%

Pumpkin 89.50% 90.20% 80.90%
Kitchen 90.32% 89.50% 85.26%
Stairs 77.80% 68.90% 68.70%

Average 93.58% 92.31% 89.92%
Avg. Median Error 0.013m/1.16◦ 0.013m/1.17◦ 0.013m/1.17◦

TABLE 6: Comparing the post-ICP performance on 7-Scenes
[25] of three variants of our relocaliser based on randomly-
generated forests (see §4.5) with different sets of features.
‘DA-RGB + Depth’ is the same as ‘Ours (Random)’, i.e. a
randomly-generated forest that uses both Depth-Adaptive
RGB features and Depth features. ‘DA-RGB Only’ is a
randomly-generated forest that uses only Depth-Adaptive
RGB features. ‘Depth Only’ is a randomly-generated forest
that uses only Depth features.

InfiniTAM is unable to fuse a reasonable model at all for
high levels of depth noise), but even with this change, the
model quality notably decreases for high values of σ. Based
on these results, we thus recommend disabling ICP when
the depth is anticipated to be particularly noisy.

A.5 Usefulness of DA-RGB Features

To evaluate the usefulness of the Depth-Adaptive RGB
(‘DA-RGB’) features we describe in §3.2.1, we compared
the post-ICP performance on 7-Scenes [25] of three variants
of our relocaliser that are based on randomly-generated
forests (see §4.5) with different sets of features. Specifically,
we randomly generated three forests – one (also shown as
‘Ours (Random)’ in Tables 1 and 2) based on feature vectors
containining 128 DA-RGB features and 128 Depth features,
another based on feature vectors containing 256 DA-RGB
features, and a final one based on feature vectors containing
256 Depth features. For the first forest, we randomly chose
to split each branch node based on a Depth rather than a
DA-RGB feature with probability p = 0.4, as per §4.5; for
the other forests, p was irrelevant, since all of the features
were of one type or the other. We used a tree height of 14 in
each case.

The results are shown in Table 6. For most sequences,
we found that using DA-RGB features was superior to
using Depth features alone. Moreover, we found that a
combination of both DA-RGB and Depth features performed
best overall, particularly on hard sequences like Stairs. Based
on these results, we recommend using a combination of both
types of feature, rather than either of the two alone.

A.6 Outdoor Relocalisation

Whilst our RGB-D relocaliser was primarily designed with
indoor relocalisation in mind, it can also be used to relocalise
outdoors. To show this, we evaluated its performance on
the Cambridge Landmarks dataset [18], [39], [40], which
consists of a number of outdoor scenes at much larger
scales5 than those in either 7-Scenes [25] or Stanford 4 Scenes

5. Note that for this reason, we used a voxel size of 4cm in InfiniTAM
for these models, and doubled the default size of the voxel hash table.
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Kings College Street Old Hospital Shop Façade St. Mary’s Church Great Court
5600m2 50000m2 2000m2 875m2 4800m2 8000m2

Ours (Default) 0.07m/0.24◦ (37.03%) – 0.11m/0.37◦ (35.17%) 0.04m/0.27◦ (60.19%) 0.06m/0.40◦ (42.45%) –
+ ICP 0.01m/0.06◦ (76.09%) – 0.01m/0.06◦ (74.73%) 0.01m/0.04◦ (97.09%) 0.01m/0.06◦ (77.74%) –
+ Ranking 0.01m/0.06◦ (76.97%) – 0.01m/0.04◦ (82.97%) 0.01m/0.04◦ (99.03%) 0.01m/0.06◦ (79.62%) –

PoseNet (Geom. Loss) [40] 0.99m/1.1◦ 20.7m/25.7◦ 2.17m/2.9◦ 1.05m/4.0◦ 1.49m/3.4◦ 7.00m/3.7◦

Active Search (SIFT) [50] 0.42m/0.6◦ 0.85m/0.8◦ 0.44m/1.0◦ 0.12m/0.4◦ 0.19m/0.5◦ –
DSAC (RGB Training) [33] *0.30m/0.5◦ – 0.33m/0.6◦ 0.09m/0.4◦ *0.55m/1.6◦ *2.80m/1.5◦

DSAC++ [35] 0.18m/0.3◦ – 0.20m/0.3◦ 0.06m/0.3◦ 0.13m/0.4◦ 0.40m/0.2◦

TABLE 7: Comparing the average median localisation errors (m/◦) of our adaptive approach to those of state-of-the-art
offline methods on the Cambridge Landmarks dataset [18], [39], [40]. Since our approach requires depth, we only compare
to methods that make use of the 3D models provided with the dataset, so as to facilitate a fairer comparison. As elsewhere
in the paper, the percentages denote proportions of test frames with ≤ 5cm translation error and ≤ 5◦ angular error; red
and blue colours denote respectively the best and second-best results in each column. Note that existing state-of-the-art
methods do not report 5cm/5◦ percentages on this dataset because their median translation errors are greater than 5cm, but
since our method achieves much lower errors for most scenes (with the exceptions of Street and Great Court), we are able
to report these numbers as well. As elsewhere, ‘+ Ranking’ means ranking the last 16 candidates produced by RANSAC,
as per §3.2.4. Note that the DSAC numbers marked with an asterisk were the result of end-to-end optimisation that did
not converge. For all versions of our method, we report the results obtained by adapting a forest pre-trained on the Office
sequence from 7-Scenes [25]. For all scenes except Street and Great Court, we achieve results that are superior to the other
methods, without needing to pre-train on the test scene. See §A.6 for further discussion.

(a) Street (b) Great Court

Fig. 14: The Street and Great Court scenes from the Cam-
bridge Landmarks dataset [18], [39], [40].

[23]. Whilst Cambridge Landmarks was originally designed
for RGB-only relocalisation, depth images for each sequence
can be constructed by rendering the 3D models provided
with each scene as part of the dataset. For consistency
with other works, we used the depth images rendered by
Brachmann and Rother [35] for this purpose.6

The results in Table 7 show how our approach compares
to the best existing methods that also make use of the 3D
models provided with Cambridge Landmarks. Encourag-
ingly, we achieve state-of-art-results on four out of the six
scenes on which we tested, showing that our approach
has the potential to be effective for outdoor relocalisation.
However, like some of the other methods in the table,
our approach was unable to successfully relocalise in the
remaining two scenes (Street and Great Court), owing to
the significantly greater scales involved. As shown in Fig-
ure 14(a), Street covers a 500m × 100m area [18], which
is an order of magnitude greater than Kings College (the
largest scene in which our method was able to successfully
relocalise). To date, only Active Search [50], which is based
on SIFT, has been able to achieve reasonable relocalisation
results in this scene. For Great Court, the problem is not the
overall scale of the scene, but that the camera sequences
traverse the centre of a large quadrangle in Cambridge, such
that most of the scene geometry is far away from the camera
(see Figure 14(b)). Since our approach relies on reasonably

6. We thank Eric Brachmann for providing us with these images.

accurate depth values (see §A.4.2), and depth inaccuracy
tends to increase with distance, and since we also need
there to be points in each leaf that are sufficiently close
together to allow them to be clustered, and the points in
an RGB-D image become sparser at greater distances due to
perspective, it is unsurprising that our method struggles in
this case. Methods like DSAC++ [35] have a much better
chance of working for scenes like Great Court, because
they train a network to predict the pose end-to-end on the
target scene, and so are less dependent on the accuracy of
the correspondences they predict as an intermediate step.
However, their method, unlike ours, requires offline training
on the target scene.

Overall, our initial results on Cambridge Land-
marks suggest that our approach is already effective for
moderately-sized outdoor scenes in which the average dis-
tance from the camera to the nearest scene geometry is
not extreme. To make it also work effectively on city-scale
scenes like Street, we could in future consider initially using
a coarse relocaliser to determine a particular area of the
scene, and then using an instance of our relocaliser to yield
an accurate pose within that area. However, extending our
approach in this way is beyond the scope of this paper.

APPENDIX B

PARAMETER TUNING

The parameters associated with our relocaliser are shown
in Table 8. Our goal when tuning is to find a set of values
for them that let us accurately relocalise as many frames as
possible, whilst staying within a fixed time bound to allow
our relocaliser to be used in interactive contexts. To achieve
this, we start by defining the following cost function, which
computes a cost for running relocaliser r on sequence s in
the context of a desired time bound tmax:

cost(r, s, tmax) =

{

(1− score(r, s))2 if time(r, s) ≤ tmax

∞ otherwise
(9)
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Name Category θ∗ (Default) θ∗
1

(Fast) θ∗
2

(Intermediate) θ∗
3

(Slow)

clustererSigma Forest 0.1 0.1 0.1 0.1
clustererTau Forest 0.05 0.2 0.2 0.2

maxClusterCount (Mmax) Forest 50 50 50 50
minClusterSize Forest 20 5 5 5

reservoirCapacity (κ) Forest 1024 2048 2048 2048

maxCandidateGenerationIterations RANSAC 6000 500 1000 250
maxPoseCandidates (Nmax) RANSAC 1024 2048 2048 2048

maxPoseCandidatesAfterCull (Ncull) RANSAC 64 64 64 64
maxTranslationErrorForCorrectPose RANSAC 0.05 0.05 0.1 0.1

minSquaredDistanceBetweenSampledModes RANSAC 0.09 0 0.09 0.0225
poseUpdate RANSAC True False True True

ransacInliersPerIteration (η) RANSAC 512 256 256 256
usePredictionCovarianceForPoseOptimization RANSAC True N/A False False

maxRelocalisationsToOutput RANSAC 16 1 1 16

TABLE 8: The parameters associated with our relocaliser, their values for our default relocaliser (θ∗), and their
tuned values for the individual relocalisers in our various cascades (θ∗1 , θ

∗
2 , θ

∗
3), as described in §C. Note that

maxCandidateGenerationIterations is set to a seemingly low value for Slow, even though the overall performance
of Slow is better than Fast and Intermediate overall – as shown in Table 11, this parameter makes little difference to the
performance, and so can be tuned somewhat arbitrarily by the optimiser. In practice, maxRelocalisationsToOutput,
which controls the number of hypotheses considered during model-based hypothesis ranking, has a much more significant
effect on the relocalisation performance, which explains the better performance of Slow overall.

In this, score(r, s) ∈ [0, 1] yields the fraction of the frames in
s that are correctly relocalised by r to within 5cm/5◦ of the
ground truth, and time(r, s) yields the average time that r
takes to run on a single frame of s.

B.1 Tuning a Single Relocaliser

To tune a single relocaliser, we choose a time bound tmax

and then use the implementation of coordinate descent [69]
in the open-source SemanticPaint framework [70] to find the
parameters θ∗ that minimise

θ∗ = argmin
θ

∑

s∈Sequences

cost (reloc(θ), s, tmax) , (10)

in which reloc(θ) denotes a variant of the relocaliser with
parameters θ. Any suitable set of sequences can be used
for tuning; in our case, we took the training sequences
from the well-known 7-Scenes dataset [25], split them into
training and validation subsets7, and tuned on the valida-
tion subsets. (More precisely, for each scene, we first adapt
the relocaliser by refilling its leaves with points from the
training sequence for the scene, as per §3.2.2, and then
evaluate the cost on the validation sequence for the scene.)

B.2 Tuning a Relocalisation Cascade

Tuning a relocalisation cascade is more involved, since we
need to tune not only the parameters for each individual re-
localiser in the cascade, but also the depth-difference thresh-
olds used to decide when to fall back from one relocaliser to
the next in the sequence. Formally, let Θ = {θ1, . . . , θN} be
the sets of parameters for the N individual relocalisers in an
N -stage relocalisation cascade, and let T = {τ1, . . . , τN−1}
be the depth-difference thresholds used to decide when to

7. To aid reproducibility, the splits are shared on our project page.

fall back from one relocaliser to the next in the sequence.
Then we could in principle cast the problem as

(Θ∗, T ∗) = argmin
(Θ,T )

∑

s∈Sequences

cost(cascade(Θ, T ), s, tmax),

(11)
in which cascade(Θ, T ) denotes a cascade with parameters
Θ for the individual relocalisers and thresholds T to decide
when to fall back from one relocaliser to the next. However,
this has the disadvantage of treating the parameters for each
relocaliser as completely independent of each other, whereas
in reality we can significantly reduce the memory our ap-
proach needs by making all of the individual relocalisers in
the cascade share the same regression forest.

To achieve this, we first observe that of the parameters
in Table 8, only those in the Forest category are associated
with the forest itself, whilst those in the RANSAC category
can be varied independently of the forest. We can therefore
take the following approach to tuning a cascade:

1) Choose N , the number of relocalisers to use in the

cascade, and time bounds t
(1)
max > . . . > t

(N)
max for them.

(See §C for how we chose these parameters.)
2) For each individual relocaliser i, divide its parameters

θi into shared ones associated with the forest (φ) and
independent ones associated with RANSAC (ρi):

θi = φ ∪ ρi

Then, tune all of the parameters of the fastest relocaliser
to jointly find suitable parameters for the forest and
RANSAC, before fixing the optimised forest parameters
φ∗ for all individual relocalisers in the cascade (we tune
the forest parameters on the fastest relocaliser since it is
impossible to get really fast relocalisation just by tuning
the RANSAC parameters):

θ∗1 = argmin
θ

∑

s∈Sequences

cost

(

reloc(θ), s, t(1)max

)

(12)
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3) Next, tune only the RANSAC parameters of all the
other relocalisers in the cascade, i.e. for i > 1:

ρ∗i = argmin
ρ

∑

s∈Sequences

cost

(

reloc(φ∗ ∪ ρ), s, t(i)max

)

(13)
4) Finally, having determined optimised parameters Θ∗

for all the relocalisers in the cascade, tune the depth-
difference thresholds between them by choosing a max-
imum average time bound tmax and minimising:

T ∗ = argmin
T

∑

s∈Sequences

cost (cascade(Θ∗, T ), s, tmax)

(14)

The result of this process is a relocalisation cascade that
takes no longer than tmax to relocalise on average. Provided
we do not choose an overall time bound that is so low
that it forces the cascade to always accept the results of the
first relocaliser, this can also result in excellent average-case
relocalisation performance (as we show in Table 1).

APPENDIX C

CASCADE DESIGN

We had two goals when designing our cascades:

• Obtain ≥ 85% accuracy for all sequences in both the
7-Scenes [25] and Stanford 4 Scenes [23] datasets.

• Relocalise in under tmax = 100ms on average (for a
frame rate of at least 10 FPS), amortised across the
entire dataset in each case.

Since the fastest relocalisers we were able to tune took
around 30ms to relocalise, there was a practical upper-
bound of N ≤ 3 on the size of the cascades that we could
use to meet the 100ms time bound. We therefore chose to
initially tune three individual relocalisers with t

(1)
max = 50ms,

t
(2)
max = 100ms and t

(3)
max = 200ms, and then combine them

into various possible cascades with N = 2 or N = 3
(tuning the thresholds separately in each case) to see if
adding in a third relocaliser was worthwhile, or whether
two relocalisers was enough.

The parameters that our tuning found for the individual
relocalisers (which we call Fast, Intermediate and Slow) are
shown in Table 8, and their results on 7-Scenes [25] and
Stanford 4 Scenes [23] are shown in Tables 9 and 10. Several
interesting observations can be made from Table 8. Firstly,
it is noticeable that the Fast relocaliser disables continu-
ous pose optimisation, which is fairly costly in practice.
In principle, we would expect this to have a significant
negative effect on performance, and indeed (as can be seen
in Table 9) this is the case prior to running ICP. However,
the post-ICP results are actually relatively good, indicating
that even without the pose optimisation, our approach is
able to relocalise well enough to get into ICP’s basin of
convergence (intuitively, refining the final pose with ICP
after the fact has a similar overall effect to optimising the
pose hypotheses during RANSAC). Secondly, none of the
tuned relocalisers make use of the covariance information
in the leaves during pose optimisation, indicating that it
may be possible to avoid storing it in practice. This is a

potentially important observation for future work, since
storing the covariance has a significant memory cost. Finally,
it is noticeable that the Slow relocaliser only attempts to
generate a pose candidate on each thread at most 250
times, whereas the other relocalisers all try much harder
to generate the initial candidates. In principle, we might
hope for the performance to be slightly better for higher
maxCandidateGenerationIterations values, but in
practice we found that for Slow, it made little actual dif-
ference to our results (see Table 11), indicating that most
threads do not actually need more than 250 iterations to
generate a candidate. It is also worth mentioning that our
optimiser was explicitly designed to find sets of parame-
ters that perform well within a particular time bound, in
order to relocalise quickly on average, and so even if the
performance had been slightly better for higher values of
this parameter, it would still have been naturally inclined
to focus on parameters that make a significant difference
to performance (e.g. maxRelocalisationsToOutput) at
the expense of more minor parameters such as this one.

Having tuned the individual relocalisers, we then used
them to construct and tune three different types of cascade:
(i) Fast → Intermediate, (ii) Fast → Slow, and (iii) Fast →
Intermediate → Slow. We hypothesised that relocalisers of
type (i) might be fast but have performance that was limited
by that of the Intermediate relocaliser, that those of type (ii)
might achieve good results but be slow (since they might be
forced to run the slow relocaliser on only moderately hard
frames), and that those of type (iii) might be best overall. For
all types, our tuning process found that a depth-difference
threshold of 5cm was a good choice for falling back from
Fast to Intermediate, and that 7.5cm was a good choice for
falling back from Intermediate to Slow. For falling back from
Fast to Slow, the tuning proposed 5cm as a good threshold,
but we decided to also try 7.5cm (the proposed Intermediate
to Slow threshold) to see if an interesting alternative balance
between accuracy and speed could be achieved.

We evaluated all of these cascades on the 7-Scenes [25]
and Stanford 4 Scenes [23] datasets. On Stanford 4 Scenes
(see Table 10), all four cascades we tested achieved almost
perfect results, which we believe can be attributed to the
relatively straightforward nature of the underlying dataset
(see §D), leading to all four cascades choosing to run the
fast relocaliser on almost all frames. The results on 7-Scenes
(see Table 9) are more interesting. In particular, we found

that, as expected, our F
5cm
→ I cascade was relatively fast, but

was unable to achieve high-quality results on all sequences.

Also as expected, our 3-stage cascade (F
5cm
→ I

7.5cm
→ S) was

generally preferable to F
5cm
→S, with similar accuracy and

a higher frame rate, as a result of its ability to use the
Intermediate relocaliser on only moderately difficult frames.

Interestingly, our hand-tuned relocaliser (F
7.5cm
→ S) was also

good, achieving acceptable results on all sequences whilst

running at almost the speed of F
5cm
→ I.

Overall, we believe that the best cascade to choose most
likely depends on the application at hand. All four cascades
achieved accurate relocalisation at a high frame rate. The
differences between them were most exposed by the Stairs
sequence from 7-Scenes [25], which is a notoriously difficult
sequence that most approaches have struggled to cope with.
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Chess Fire Heads Office Pumpkin Kitchen Stairs Average Avg. Median Error Frame Time (ms)

Fast 65.35% 47.55% 72.00% 56.10% 47.15% 47.60% 18.40% 50.59% 0.058m/2.44◦ 25.06
Fast (w/ICP) 99.75% 97.10% 98.40% 99.55% 89.35% 89.26% 62.40% 90.83% 0.014m/1.17◦ 29.91

Intermediate 86.60% 81.25% 69.00% 88.28% 67.20% 75.48% 53.20% 74.43% 0.033m/1.91◦ 73.12
Intermediate (w/ICP) 99.85% 98.90% 99.70% 99.73% 89.85% 90.34% 75.00% 93.34% 0.013m/1.17◦ 77.87

Slow 86.40% 81.25% 68.00% 88.70% 67.15% 75.42% 53.40% 74.33% 0.033m/1.95◦ 77.78
Slow (w/Ranking) 99.90% 100% 100% 99.55% 90.80% 89.38% 94.10% 96.25% 0.013m/1.17◦ 203.64

F
5cm
→ I 99.85% 99.40% 99.70% 99.70% 90.65% 89.68% 76.00% 93.57% 0.013m/1.17◦ 51.85

F
5cm
→S 99.90% 99.50% 99.80% 99.45% 90.50% 89.42% 91.80% 95.77% 0.013m/1.17◦ 77.20

F
7.5cm
→ S 99.90% 98.95% 99.90% 99.48% 90.95% 89.34% 86.10% 94.95% 0.013m/1.17◦ 52.45

F
5cm
→ I

7.5cm
→ S 99.85% 99.40% 99.90% 99.40% 90.85% 89.64% 89.80% 95.55% 0.013m/1.17◦ 66.08

TABLE 9: The results of both the individual relocalisers that make up our cascades and the cascades themselves on 7-Scenes
[25]. The percentages denote proportions of test frames with ≤ 5cm translation error and ≤ 5◦ angular error.

Sequence Fast (w/ICP) Intermediate (w/ICP) Slow (w/Ranking) F
5cm
→ I F

5cm
→S F

7.5cm
→ S F

5cm
→ I

7.5cm
→ S

Kitchen 100% 99.72% 100% 100% 100% 100% 100%
Living 99.80% 100% 100% 100% 100% 100% 100%

Bed 98.53% 98.53% 100% 99.51% 100% 100% 100%
Kitchen 100% 100% 100% 100% 100% 99.52% 100%
Living 100% 100% 100% 100% 100% 100% 100%
Luke 99.04% 99.20% 99.20% 99.20% 99.20% 99.20% 99.04%

Floor5a 97.99% 99.00% 98.99% 99.60% 99.80% 99.60% 100%
Floor5b 98.77% 98.77% 100% 99.01% 98.77% 99.01% 99.26%

Gates362 100% 100% 100% 100% 100% 100% 100%
Gates381 100% 100% 100% 100% 100% 99.91% 100%
Lounge 100% 100% 100% 100% 100% 100% 100%
Manolis 100% 100% 99.88% 100% 100% 100% 100%

Average 99.51% 99.60% 99.84% 99.78% 99.81% 99.77% 99.86%
Avg. Median Error 0.007m/0.26◦ 0.007m/0.26◦ 0.007m/0.26◦ 0.007m/0.26◦ 0.007m/0.26◦ 0.007m/0.26◦ 0.007m/0.26◦

Frame Time (ms) 29.69 72.32 171.66 32.71 33.49 32.83 33.00

TABLE 10: The results of both the individual relocalisers that make up our cascades and the cascades themselves on
Stanford 4 Scenes [23]. The percentages denote proportions of test frames with ≤ 5cm translation error and ≤ 5◦ angular
error.

Max. Candidate Generation Iterations Average Frame Time (ms)

250 85.47% 179.38
500 85.37% 182.54
1000 85.39% 184.48

TABLE 11: The average results of our Slow relo-
caliser (with ranking enabled) on our validation sub-
set of 7-Scenes [25], for various different settings of
the maxCandidateGenerationIterations parameter.
In practice, we found that this parameter made very little
difference to the results.

For more real-world use, the differences between our cas-
cades are most likely small enough that they can be ignored
in practice.

APPENDIX D

DATASET ANALYSIS

To better understand the near-perfect results of all four of
our cascades on the Stanford 4 Scenes [23] dataset (see §C),
we analysed the proportions of test frames from both 7-
Scenes [25] and Stanford 4 Scenes that are within certain
distances of the training trajectories. The results, as shown
in Figure 15, help explain why our approach invariably
achieves such good results on Stanford 4 Scenes, whilst not
yet fully saturating the more difficult 7-Scenes benchmark.

In particular, it is noticeable that in Stanford 4 Scenes, the
vast majority of the test frames fall within 30cm/30◦ of
the training trajectory, whilst in 7-Scenes, far more of the
test frames are at a much greater distance, particularly
those from the Fire sequence. This makes 7-Scenes a far
harder benchmark in practice: test frames that are near the
training trajectory are much easier to relocalise, since there
is then less need to match keypoints across scale/viewpoint
changes. In Stanford 4 Scenes, almost all of the sequences are
dominated by test frames that are around 10-15cm/◦ from
the training trajectory, making it an easy dataset to saturate.

Two other considerations make 7-Scenes difficult to fully
saturate in practice. The more significant of the two is
that the original dataset was captured with KinectFusion
[1], which is prone to tracking drift, even at room scale,
meaning that in practice the ground truth poses for some
frames can be slightly inaccurate. This can cause at least
two different types of problem: firstly, if the ground truth
poses for the training sequence are slightly inaccurate, then
InfiniTAM is liable to fuse an imperfect 3D model (e.g.
see Figure 22), which can affect the poses to which our
ICP-based refinement process will converge at test time;
secondly, if the ground truth poses for the testing sequence
are slightly inaccurate, then relocalised poses that would
have been within 5cm/5◦ of a ‘perfect’ pose can be marked
as incorrect, and other poses that would have been too far
from the ‘perfect’ pose but are within 5cm/5◦ of the ground
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Fig. 15: The proportions of test frames from both 7-Scenes [25] and Stanford 4 Scenes [23] that are within certain distances
of the training trajectories, visualised in two different ways. It is noticeable, particularly from the 3D surface plots, that in
Stanford 4 Scenes the vast majority of the test frames fall within 30cm/30◦ of the training trajectory, whilst in 7-Scenes, far
more of the test frames are at a much greater distance, particularly those from the Fire sequence. This makes 7-Scenes a
much harder dataset to saturate in practice.

Fig. 16: The 7-Scenes dataset [25] (top row) was unfortunately captured with the internal calibration between the colour
and depth cameras disabled, leading to poor alignment between the two. This is especially noticeable in the colour fusion
results (see right-hand image). By contrast, the images in the Stanford 4 Scenes dataset [23] (bottom row) are accurately
aligned, leading to much better results.
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truth pose given can be marked as correct. Dataset problems
like this are unfortunately very difficult to mitigate at the
level of an individual method such as ours – whilst it might
in principle be possible (if time-consuming) to bundle adjust
all of the frames in each sequence to correct any inaccu-
rate poses, any results obtained on the corrected sequences
would then be incomparable with those obtained on the
standard dataset. As such, we limit ourselves in this paper to
simply noting that this problem is a noticeable failure mode
of our approach on this dataset (see §E.2), and in common
with other approaches, rely on the ground truth poses as
given when computing our results.

A more minor issue is that the dataset was unfortunately
captured with the internal calibration between the depth
and colour cameras disabled, leading to poor alignment
between the two (see Figure 16). In the context of our ap-
proach, this can lead to a slight offset between the locations
at which the depth and RGB features for each pixel are com-
puted, which can in principle cause the correspondences
for some pixels (particularly those near the boundaries of
objects) to be incorrectly predicted by the forest. However, in
practice we found that we were fairly robust to this problem:
most of the correspondences are still predicted correctly, and
incorrect correspondences are in any case handled naturally
by the RANSAC stage of our pipeline.

APPENDIX E

FAILURE CASE ANALYSIS

As shown in both the main paper and this supplementary
material, our approach is able to achieve highly-accurate
online relocalisation in real time, from novel poses and
without needing extensive offline training on the target
scene. However, there are inevitably still situations in which
it will fail. In this section, we analyse a few examples, and
attempt to explain the underlying reasons in each case.

E.1 Visual Ambiguities

One of the most common reasons for our relocaliser to fail is
the presence of repetitive structures and/or textures in the
scene. Two examples of this are shown in the following sub-
sections – one showing a staircase, and the other showing a
stretch of similar-looking red cupboards. Our relocaliser can
sometimes struggle in situations like this because it relies on
local features around each pixel to predict the pixel’s world-
space coordinates, and these local features do not always
provide sufficient context for it to disambiguate between
similar-looking points. We achieve significant robustness to
this problem by allowing multiple correspondences to be
predicted for each pixel (we use forests with multiple trees,
and store multiple clusters of world-space points in each
leaf), but for some inputs, our relocaliser can still fail.

E.1.1 Stairs

The first example we consider is from the Stairs scene in 7-
Scenes [25]. This is a notoriously difficult scene containing a
staircase that consists of numerous visually-identical steps.
When viewing the scene from certain angles, the relocaliser
is able to rely on points in the scene that can be identified
unambiguously to correctly estimate the pose, but from

Fig. 17: The 470th frame of the Stairs sequence from 7-
Scenes [25]. This is an example of an input that can confuse
our relocaliser, owing to the presence of multiple visually-
identical steps.

Fig. 18: The top 16 pose candidates (left-to-right, top-to-
bottom) corresponding to the failure case from the Stairs
scene shown in Figure 17. The coloured points indicate
the 2D-to-3D correspondences that are used to generate the
initial pose hypotheses. Note that in this case, none of the
candidates would relocalise the camera successfully. This is
because the points at the same places on different stairs tend
to end up in similar leaves, making the modes in the leaves
less informative and significantly reducing the probability
of generating good initial hypotheses.

viewpoints such as that in Figure 17, it is forced to use
more ambiguous points, e.g. those on the stairs themselves
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or the walls. When this happens, relocalisation is prone to
fail, since the relocaliser finds it difficult to tell the difference
between the different steps.

To illustrate this, we visualise the last 16 surviving cam-
era hypotheses for this instance in Figure 18, in descending
order (left-to-right, top-to-bottom). It is noticeable that in
this case, none of the top 16 hypotheses would have suc-
cessfully relocalised the camera. As suggested by the points
predicted in the 3D scene for each hypothesis (which are
often in roughly the right place but on the wrong stairs),
this is because the points at the same places on different
stairs tend to end up in similar leaves, making the modes
in the leaves less informative and significantly reducing the
probability of generating good initial hypotheses.

E.1.2 Pumpkin

The second example we consider is from the Pumpkin se-
quence (see Figure 19). Here, the input image seems slightly
easier to relocalise than in the previous example, but in
practice, the repetitive red cupboards and dark grey ceiling
panels (not to mention the reflections from the ceiling lights)
provide many opportunities for a relocaliser such as ours to
get confused (see Figure 20). In this case, as with the Stairs
example, all of the individual matches seem individually
reasonable (in the sense that the matched points genuinely
do have a similar appearance), but the end result is never-
theless to relocalise in the wrong place.

E.1.3 Analysis

Notably, in both of these examples, there seem to be at least
a few visually distinctive points that could have been chosen
in order to successfully relocalise (e.g. for the Pumpkin ex-
ample, the top-right corner of the cupboards, the T-junction
between the cupboards and the machine, and the top-left
corner of the white notice all look useful), but no candidates
based on these points were ever generated. Ultimately, this
is caused by the fact that RANSAC randomly samples only
a subset of all of the possible candidates, and there is thus
always a possibility of missing a candidate that might have
worked. One way of mitigating this problem might be to
explicitly search for visually distinctive points in the image
(i.e. reintroduce a keypoint detection stage into the pipeline)
and generate additional candidates based on any points
found. We do not currently implement this approach (and
it would be expected to carry a speed cost), but it offers an
interesting avenue for further work.

E.2 Inaccurate Ground Truth Poses

As mentioned in §D, one of the other main types of failure
we experienced was ultimately caused by slightly inaccurate
ground truth poses in the 7-Scenes dataset [25], which was
captured using KinectFusion [1], a reconstruction method
that is known to be prone to tracking drift. To demonstrate
this, we consider an example from the Red Kitchen scene (see
Figure 21).

In this sequence, we would hope that e.g. the brown
box on the worktop would be perfectly reconstructed as
InfiniTAM fuses frames from the training sequence into the
3D model, but as Figure 22 shows, this is not in fact the case.
Initially, the box is indeed reconstructed as expected, but as

Fig. 19: The 920th frame of the Pumpkin sequence from
7-Scenes [25]. This is another example that can confuse
our relocaliser, owing to the presence of the repetitive red
cupboards and dark grey ceiling panels.

Fig. 20: The top 16 pose candidates (left-to-right, top-to-
bottom) corresponding to the failure case from the Pumpkin
scene shown in Figure 19. The coloured points indicate
the 2D-to-3D correspondences that are used to generate
the initial pose hypotheses. Note that in this case, none
of the candidates would relocalise the camera successfully,
although several are close to being acceptable.

the sequence proceeds, subtle inaccuracies in the ground
truth poses cause parts of the box to be eroded away. When
we later try to relocalise a frame from the testing sequence
(see Figure 23), the box has been significantly eroded, as has
the wall at the left-hand side of the images. This is more than
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Fig. 21: The 71st frame of the Red Kitchen testing sequence
from 7-Scenes [25]. Here, our relocaliser initially produces
a pose that is within 5cm/5◦ of the ground truth, but ICP
against the fused 3D model then refines it to a pose that is
further from the ground truth. The ultimate cause of this
is slightly inaccurate ground truth poses in the training
sequence, leading to InfiniTAM fusing an imperfect 3D
model, which then affects the pose to which ICP converges.

Fig. 22: The process of fusing the Red Kitchen training
sequence from 7-Scenes [25] using InfiniTAM (left-to-right,
top-to-bottom). Initially (top-left), the brown box on the
worktop is correctly reconstructed, but as the fusion process
proceeds, it gradually becomes more and more eroded. This
is ultimately caused by slightly inaccurate ground truth
poses in the dataset, causing points that should be fused
into the same place in the model to be fused at a slight offset
from each other, with the results as shown (bottom-right).

enough in practice to cause ICP against the corrupted model
to converge to a pose that is more than 5cm/5◦ from the
ground truth, which will lead to the frame being recorded
as having failed to relocalise after ICP. Moreover, since we
cannot be sure that the ground truth pose for this specific
test frame is not itself slightly inaccurate, an estimated
pose that might have been within 5cm/5◦ of the genuinely
correct pose could in principle be marked as having failed,
even though it would have succeeded if compared to a
‘perfect’ ground truth pose.

E.2.1 Analysis

In practice, problems like these are almost impossible to
mitigate, since they are ultimately caused by limitations
of the 7-Scenes dataset itself, rather than those of our

Fig. 23: The top 16 pose candidates (left-to-right, top-to-
bottom) corresponding to the failure case from the Red
Kitchen scene shown in Figure 21. The coloured points indi-
cate the 2D-to-3D correspondences that are used to generate
the initial pose hypotheses. Note that in this case, the relo-
calised pose before ICP was within 5cm/5◦ of the ground
truth, but that the 3D model seems somewhat eroded in
comparison to the original input images. This is caused
by slightly inaccurate ground truth poses in the training
sequence, leading to InfiniTAM fusing an imperfect 3D
model, which then affects the pose to which ICP converges.

relocaliser: indeed, it could be argued that our relocaliser
manages to achieve state-of-the-art results and a reasonably
high degree of robustness even in the face of slightly inac-
curate input data. Our results on the Stanford 4 Scenes [23]
dataset, which was captured much more carefully (e.g. see
Figure 16), and on the Cambridge Landmarks dataset (see
§A.6), which uses bundle-adjusted poses, also support this
view.
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