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1 Specification and estimation of the models
1.1 The econometric models
Let p(ϵt,k|Fk

t−1,ϑk) denote the conditional probability density function of the price shock, where
Fk
t−1 = σ{ϵt−1,k, ϵt−2,k, . . . } is the filtration generated by {ϵt,k} and ϑk is the vector of unknown

parameters of the conditional density. Depending on which of the three models we consider, ϑk will
vary accordingly.

As a first step, we assume that ϵt,k is normally distributed with location (mean) µk and scale
(standard deviation) φk ∈ R+, and thus p(ϵt,k|Fk

t−1,ϑk) = N (µk, φ
2
k) and ϑk = (µk, φk)

⊤.
Furthermore, following Fernandez and Steel (1998) and Azzalini (2013), we also model ϵt,k as a

static skew-t distribution with νk ∈ (1,+∞) degrees of freedom and skewness parameter γk ∈ R+, i.e.,
p(ϵt,k|Fk

t−1,ϑk) = Skew-t(µk, φ2
k, νk, γk), and ϑk = (µk, φ

2
k, νk, γk)

⊤. Note that the constraint νk > 1 is
imposed to ensure that E[ϵt,k] <∞.

The resulting models are labeled as:

Model 1 : Pt,0 = bkPt,k + ϵt,k, ϵt,k
IID∼ N (µk, φ

2
k), (1)

Model 2 : Pt,0 = bkPt,k + ϵt,k, ϵt,k
IID∼ Skew-t(µk, φ2

k, νk, γk). (2)

If we assume that the four parameters of the probability distribution of ϵt,k, i.e., location, scale,
kurtosis and skewness, are time-varying (i.e., they vary according to seasonality), we can model them
according to the score-driven approach proposed by Creal et al. (2011) and Harvey (2013). Then, we
suggest the following model:

Model 3 : Pt,0 = bkPt,k + ϵt,k, ϵt,k|Fk
t−1 ∼ Skew-t (µt,k, φ2

t,k, νt,k, γt,k). (3)

It is important to observe that φt,k, γt,k and νt,k must lay in proper spaces for every t. To guarantee
this, we transform them, via suitable link functions, to unconstrained parameters that are allowed
to float freely. Specifically, to ensure that φt,k and γt,k ∈ R+, we use the exponential link functions
φt,k = exp{λt,k} and γt,k = exp{ξt,k}, where λt,k, ξt,k ∈ R. Finally, for the degrees of freedom νt,k we
opt for the transformation νt,k = 1 + exp{ψt,k}, where ψt,k ∈ R.

Therefore, we consider the change of variables

Λ(f t,k) =


µt,k

exp{λt,k}
1 + exp{ψt,k}
exp{ξt,k}

 , (4)

where f t,k = (µt,k, λt,k, ψt,k, ξt,k)
⊤. Then, according to Creal et al. (2011) and Harvey (2013), we

update the distribution parameters by using the following first-order vector recursion

f t+1,k = δk +Φkf t,k +Kkst,k, (5)

where st,k is the unconstrained conditional scaled score, δk = (δµk , δλk , δψk
, δξk)

⊤ ∈ R4 is a vector of
intercepts and Φk ∈ R4×4 and Kk ∈ R4×4 are diagonal matrices with diag(Φk) = (ϕµk , ϕλk , ϕψk

, ϕξk)
⊤

and diag(Kk) = (κµk , κλk , κψk
, κξk)

⊤. Therefore, the vector of parameter for Model 3 is ϑk =
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(δµk , δλk , δψk
, δξk , ϕµk , ϕλk , ϕψk

, ϕξk , κµk , κλk , κψk
, κξk)

⊤. As a standard approach, we impose the con-
straints |ϕµk | < 1, |ϕλk | < 1, |ϕψk

| < 1 and |ϕξk | < 1 to keep the recursion (5) stable.
To calculate the unrestricted score in (5), we need to consider the conditional log-density of ϵt,k,

which we parametrize as in Harvey and Sucarrat (2014):

ln p(ϵt,k|Fk
t−1,ϑk) = ln 2− ln(γt,k + 1/γt,k) + ln Γ

(νt,k + 1

2

)
− ln Γ

(νt,k
2

)
− 1

2
ln π

− 1

2
lnφ2

t,k −
νt,k + 1

2
ln

(
1 +

(ϵt,k − µt,k)
2

γ
2sgn(ϵt,k−µt,k)
t,k νt,kφ2

t,k

)
. (6)

The driving-force st,k is computed as follows

st,k = J⊤
t,k∇t,k, (7)

where ∇t,k =
∂ ln p(ϵt,k|Fk

t−1,ϑk)

∂f t,k
is the score vector of the predictive log-density in (6), and J t,k =

∂Λ(f t,k)

∂f⊤
t,k

is the Jacobian matrix of the nonlinear mapping Λ( · ).
By taking derivatives in (4), we have

J t,k =


1 0 0 0
0 exp{λt,k} 0 0
0 0 exp{ψt,k} 0
0 0 0 exp{ξt,k}

 ,
whereas ∇t,k = (∇µ

t,k,∇
φ
t,k,∇ν

t,k,∇
γ
t,k)

⊤ in equation (7) is computed as follows

∇µ
t,k =

∂ ln p(ϵt,k|Fk
t−1,ϑk)

∂µt,k
=


(νt,k+1)(ϵt,k−µt,k)/(γ−2

t,k νt,kφ
2
t,k)

1+(ϵt,k−µt,k)2/(γ−2
t,k νt,kφ

2
t,k)

if (ϵt,k − µt,k) ∈ (−∞, 0),

(νt,k+1)(ϵt,k−µt,k)/(γ2t,kνt,kφ
2
t,k)

1+(ϵt,k−µt,k)2/(γ2t,kνt,kφ
2
t,k)

if (ϵt,k − µt,k) ∈ [0,+∞),

∇φ
t,k =

∂ ln p(ϵt,k|Fk
t−1,ϑk)

∂φt,k
=


1
φt,k

(
(νt,k+1)(ϵt,k−µt,k)2/(γ−2

t,k νt,kφ
2
t,k)

1+(ϵt,k−µt,k)2/(γ−2
t,k νt,kφ

2
t,k)

− 1
)

if (ϵt,k − µt,k) ∈ (−∞, 0),

1
φt,k

(
(νt,k+1)(ϵt,k−µt,k)2/(γ2t,kνt,kφ

2
t,k)

1+(ϵt,k−µt,k)2/(γ2t,kνt,kφ
2
t,k)

− 1
)

if (ϵt,k − µt,k) ∈ [0,+∞),

∇ν
t,k =

∂ ln p(ϵt,k|Fk
t−1,ϑk)

∂νt,k
=

1

2

[
Ψ

(
νt,k + 1

2

)
−Ψ

(
νt,k
2

)
− 1

νt,k
− ln

(
1 +

(ϵt,k − µt,k)
2

γ
2sgn(ϵt,k−µt,k)
t,k νt,kφ2

t,k

)

+
νt,k + 1

νt,k

(
(ϵt,k − µt,k)

2/(γ
2sgn(ϵt,k−µt,k)
t,k νt,kφ

2
t,k)

1 + (ϵt,k − µt,k)2/(γ
2sgn(ϵt,k−µt,k)
t,k νt,kφ2

t,k)

)]
,

∇γ
t,k =

∂ ln p(ϵt,k|Fk
t−1,ϑk)

∂γt,k
=

1− γ2t,k
γ3t,k + γt,k

+ sgn(ϵt,k − µt,k)γ
2sgn(ϵt,k−µt,k)−1

t,k
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× νt,k + 1

γ
2sgn(ϵt,k−µt,k)
t,k

(
(ϵt,k − µt,k)

2/(γ
2sgn(ϵt,k−µt,k)
t,k νt,kφ

2
t,k)

1 + (ϵt,k − µt,k)2/(γ
2sgn(ϵt,k−µt,k)
t,k νt,kφ2

t,k)

)
,

where Ψ(x) = d
dx

ln Γ(x) is the digamma function, see Abramowitz and Stegun (1964).

1.2 Model estimation
All the models described in the previous Subsections can be estimated by maximum likelihood (ML).
For each of them, in addition to the vector of parameters ϑk, we also have to estimate the parameter
bk. The regressor Pt,k in (1), (2) and (3) is potentially endogenous. Endogeneity issues might occur
due to missing variables, since prices can also vary with the room quality, which is not fully observable
based on the information gathered from the Internet. Additionally, the last-minute price adjustment
ϵt,k is also affected by the unforeseen demand on both the OTA and the other distribution channels
(which determines the offer adjustment ςt,1), which, in turn, might depend on the fixed early booking
price Pt,k.

To handle possible endogeneity, we adopt the nonlinear instrumental variable (IV) approach as in
Hansen et al. (2010), with a two-step estimation procedure. First, we obtain a preliminary estimation
of b̃k. For Model 1 and Model 2 we use a standard two-stage least squares estimator where, for a given
hotel i, the price Pt,k is instrumented by the average of the prices P ( · )

t,k posted by the other hotels:

zt,k =
1

L− 1

L∑
l=1
l ̸=i

P
(l)
t,k , (8)

where L is the number of the hotels in the price quartile to which hotel i belongs. In particular we
define quartiles by ordering hotels according to their median price (all t and k). Instead, for Model
3, b̃k is computed by standard ML.

Then, we calculate the residuals ϵ̃t,k = Pt,0 − b̃kPt,k, and a quasi-ML estimation of ϑk is obtained
as follows:

ϑ̃k = argmax
ϑk

T∑
t=1

ln p(ϵ̃t,k|Fk
t−1,ϑk).

Finally, following Hansen et al. (2010), the nonlinear IV estimator of bk is given by

b̂k = argmin
bk

[ĝ(bk)]
2

Q̂k

,

where Q̂k =
∑T

t=1 z
2
t,k, zt,k is the instrumental variable defined in (8) and

ĝ(bk) =
T∑
t=1

zt,kρ(Pt,0 − bkPt,k, ϑ̃k), ρ(ϵt,k,ϑk) =
∂ ln p(ϵt,k|Fk

t−1,ϑk)

∂ϵt,k
.

We test the significance of the estimated parameters using the robust standard errors derived in
Hansen et al. (2010).
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2 Last-minute price distribution for six selected hotels
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Figure 1: Price histogram, pre-Covid-19, skew-t kernel (red line), and Gaussian kernel (blue line).
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Figure 2: Price histogram, during-Covid-19, skew-t kernel (red line), and Gaussian kernel (blue line).
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