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1 Specification and estimation of the models

1.1 The econometric models

Let p(e;x|FF 1, 9%) denote the conditional probability density function of the price shock, where
FF, = o{e 14 €k, ...} is the filtration generated by {e;x} and 9} is the vector of unknown
parameters of the conditional density. Depending on which of the three models we consider, ¥, will
vary accordingly.

As a first step, we assume that e, is normally distributed with location (mean) py; and scale
(standard deviation) ¢ € RT, and thus p(e; x| FF 1, %) = N (ur, 03) and 9y = (g, pr) '

Furthermore, following Fernandez and Steel (1998) and Azzalini (2013), we also model € as a
static skew-t distribution with v, € (1, +00) degrees of freedom and skewness parameter v, € RT| i.e.,
plecr| FF 1, 9%) = Skew-t(ur, 03, vi, Vi), and 9y = (g, 2, vk, ) |- Note that the constraint vy, > 1 is
imposed to ensure that Ele; ;] < oo.

The resulting models are labeled as:

D

Model 1 Pio = buPr + € err & N (i, 03), (1)
11D

Model 2 : P, o =bi P,y + € g, ep ~ Skew-t(uy, goi, Vks Vi )- (2)

If we assume that the four parameters of the probability distribution of €4, i.e., location, scale,
kurtosis and skewness, are time-varying (i.e., they vary according to seasonality), we can model them
according to the score-driven approach proposed by Creal et al. (2011) and Harvey (2013). Then, we
suggest the following model:

Model 3 : Pio = b0rPyj + €, eenlFry ~ Skew-t (b, @7 g Vi Vek)- (3)

It is important to observe that ¢, 7 x and 14, must lay in proper spaces for every ¢. To guarantee
this, we transform them, via suitable link functions, to unconstrained parameters that are allowed
to float freely. Specifically, to ensure that ¢;; and v, € Ry, we use the exponential link functions
i = exp{ i} and v, = exp{&.x}, where A\, & € R. Finally, for the degrees of freedom vy we
opt for the transformation v, = 1 + exp{tr}, where ¢, € R.

Therefore, we consider the change of variables

Mtk

Al = |, S0o) ()

eXp{gt,k}

where f,; = (fotkes Mtkes Vigs &) - Then, according to Creal et al. (2011) and Harvey (2013), we
update the distribution parameters by using the following first-order vector recursion

Fioipg =0k +Pufy i+ Kiser, (5)

where s, is the unconstrained conditional scaled score, 8, = (d,,,,05,, 0yy, 0g,) | € R is a vector of
intercepts and ®;, € R*>* and K € R*** are diagonal matrices with diag(®x) = (., r,s Py Per)
and diag(Kx) = (K, K., ks Key,) |- Therefore, the vector of parameter for Model 3 is ¥y =



(s O Ous 0> Drurs P> Ditner D> Fopugs Ko Kiys i, ) - As a standard approach, we impose the con-
straints |¢,, | < 1, [oa.] <1, |y, | <1 and |, | <1 to keep the recursion (5) stable.

To calculate the unrestricted score in (5), we need to consider the conditional log-density of €,
which we parametrize as in Harvey and Sucarrat (2014):

1 1
lnp(emk\ftk,l,ﬁk) =In2—In(vep+ 1/ k) + lnF<%> —In F(Vtk) ——Ilnnw

2 2
1 1 — 2
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Ttk ' Uk Pk
The driving-force s, is computed as follows
Stk = J,Ikvt,ka (7)
n € k . . . . .
where V,, = Olna( g'}'jjfl’ﬂk) is the score vector of the predictive log-density in (6), and J; = ag;th”“)
s t,k
is the Jacobian matrix of the nonlinear mapping A( - ).
By taking derivatives in (4), we have
1 0 0 0
g 0 exp{Aix} 0 0
b 0 0 exp{ Wi} 0 ’
0 0 0 exp{&x}

whereas Vi = (Vi), Vi, Vi, V)T in equation (7) is computed as follows
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where ¥(z) = L InT'(z) is the digamma function, see Abramowitz and Stegun (1964).

1.2 Model estimation

All the models described in the previous Subsections can be estimated by maximum likelihood (ML).
For each of them, in addition to the vector of parameters 1;, we also have to estimate the parameter
bi. The regressor P, in (1), (2) and (3) is potentially endogenous. Endogeneity issues might occur
due to missing variables, since prices can also vary with the room quality, which is not fully observable
based on the information gathered from the Internet. Additionally, the last-minute price adjustment
€. 1s also affected by the unforeseen demand on both the OTA and the other distribution channels
(which determines the offer adjustment ¢; 1), which, in turn, might depend on the fixed early booking
price P .

To handle possible endogeneity, we adopt the nonlinear instrumental variable (IV) approach as in
Hansen et al. (2010), with a two-step estimation procedure. First, we obtain a preliminary estimation
of by. For Model 1 and Model 2 we use a standard two-stage least squares estimator where, for a given
hotel 4, the price P, is instrumented by the average of the prices t(7 ,;) posted by the other hotels:

1
_ E : )
2tk I 1 Ptka (8)

where L is the number of the hotels in the price quartile to which hotel ¢ belongs. In particular we
define quartiles by ordering hotels according to their median price (all ¢ and k). Instead, for Model
3, by is computed by standard ML.

Then, we calculate the residuals & = P — l;th,k, and a quasi-ML estimation of 1, is obtained
as follows:

T

9}, = arg max Z Inp(& | FE L, 9%).

O t=1

Finally, following Hansen et al. (2010), the nonlinear IV estimator of by, is given by

[9(br)]”

b, = arg min ———,
by, k

where O = Zthl 22 1s 2tk is the instrumental variable defined in (8) and

T
g(bg) = Zzt,k/)(Pt,o — b Py g, D), p(€r, Ur) =

t=1

8 ln p(et,k |Ek_1, ’l9k)
a€t,k .

We test the significance of the estimated parameters using the robust standard errors derived in
Hansen et al. (2010).
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Figure 1: Price histogram, pre-Covid-19, skew-t kernel (red line), and Gaussian kernel (blue line).
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Figure 2: Price histogram, during-Covid-19, skew-t kernel (red line), and Gaussian kernel (blue line).
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