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ABSTRACT
Gas-poor galaxies can be modelled as composite collisionless stellar systems, with a dark matter halo and one or more stellar
components, representing different stellar populations. The dynamical evolution of such composite systems is often studied
with numerical N-body simulations, whose initial conditions typically require realizations with particles of stationary galaxy
models. We present a novel method to conceive these N-body realizations, which allows one to exploit at best a collisionless
N-body simulation that follows their evolution. The method is based on the use of an effective N-body model of a composite
system, which is in fact realized as a one-component system of particles that is interpreted a posteriori as a multicomponent
system, by assigning in post-processing fractions of each particle’s mass to different components. Examples of astrophysical
applications are N-body simulations that aim to reproduce the observed properties of interacting galaxies, satellite galaxies, and
stellar streams. As a case study we apply our method to an N-body simulation of tidal stripping of a two-component (dark matter
and stars) satellite dwarf galaxy orbiting in the gravitational potential of the Milky Way.
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1 I N T RO D U C T I O N

Collisionless N-body simulations are standard tools to study the
evolution of stellar systems such as galaxies and clusters of galaxies,
with typical applications ranging from stability analysis, to the study
of galaxy interactions and mergers, tidal stripping of satellites, and
dynamical friction. When the phenomenon studied with the N-body
simulation involves composite collisionless stellar systems, to set up
the initial conditions it is often necessary to build N-body realizations
of stationary multicomponent models. Here we present effective N-
body models that allow one to study efficiently the evolution of such
composite systems.

The approach presented here can be used in several studies of
galactic dynamics, provided the studied galaxies are gas-poor, so that
they can be modelled as multicomponent stellar systems, with dark
matter (DM) haloes and one or more stellar components, representing
different stellar populations. Examples of potential applications are
N-body simulations of tidal stripping aimed at reproducing the
observed properties of satellite dwarf galaxies (e.g. Battaglia, Sollima
& Nipoti 2015; Ural et al. 2015; Sanders, Evans & Dehnen 2018;
Iorio et al. 2019) or those of tidal streams (e.g. Łokas et al. 2010;
Dierickx & Loeb 2017; Laporte et al. 2018; Vasiliev, Belokurov &
Erkal 2021) in the Milky Way. But, more generally, the effective
N-body models presented here can be used in N-body simulations of
dissipationless galaxy mergers (e.g. Nipoti, Londrillo & Ciotti 2003a;
Boylan-Kolchin, Ma & Quataert 2006; Frigo & Balcells 2017) or of
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the dynamical evolution of galaxies in clusters of galaxies (e.g. Nipoti
et al. 2003b; Laporte et al. 2013).

The method proposed in this paper builds on and bears resem-
blance with other techniques previously proposed in the literature.
The key of the effective N-body models considered here is to design
composite stellar system starting from the total distribution function
(DF) and then obtain its component by subtraction. In the literature,
there are a few other studies in which composite stellar systems
are built starting from the total DF or mass density distribution.
Evans (1993, 1994) built axisymmetric composite stellar systems
with total logarithmic or power-law gravitational potential, starting
from the analytic DF of the total distribution. Other authors (Hiotelis
1994; Ciotti, Morganti & de Zeeuw 2009; Ciotti & Ziaee Lorzad
2018; Ciotti, Mancino & Pellegrini 2019) used instead the total
mass density distribution as starting point to build multicomponent
anisotropic spherical stellar systems. White (1980) and Ciotti, Sti-
avelli & Braccesi (1995) used a technique similar to the one used
in this work to build equilibrium models of isotropic or radially
anisotropic spherical stellar systems with metallicity gradients (see
also Nipoti et al. 2003b, 2020). Within this framework, here for
the first time we exploit the idea of building different components
by subtraction from the total DF to envisage a very effective and
general method for N-body modelling. This method allows us to
use N-body simulations involving only one-component systems to
model the dynamical evolution of entire families of composite stellar
systems, with stars and DM.

This paper is organized as follows. In Section 2, we review
the properties of stationary composite collisionless stellar systems
and introduce the concept of their effective N-body modelling. In
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Section 3, we extend our view to the dynamical evolution of such
systems, when they are not isolated. Section 4 treats in more detail
the case of two-component spherical isotropic systems. In Section 5,
we present the application of our method to an N-body simulation of
tidal stripping. Section 6 concludes.

2 STATIONARY COMPOSITE COLLISIONLESS
STELLAR SYSTEMS

2.1 Distribution functions and portion functions

Let us consider a stationary composite stellar system with Ncomp

components, in which the kth component has DF fk. The total DF is
ftot = ∑Ncomp

k=1 fk . The total gravitational potential �tot generated by
these components satisfies the Poisson equation

∇2�tot(x) = 4πGρtot(x), (1)

where

ρtot(x) =
∫

ftot d3v (2)

is the total mass density distribution, and x and v are, respectively, the
position and velocity vectors. We know from Jeans’ theorem (e.g.
Binney & Tremaine 2008) that the DFs of stationary collisionless
stellar systems depend on the phase-space coordinates (x, v) through
n ≤ 3 integrals of motion I = I1, . . . , In, which are functions of
(x, v) that are conserved along the orbits. If we extract from ftot =
ftot(I) an orbit with integrals of motion I , the probability that a
particle on such orbit belongs to the kth component is

Pk(I) = fk(I)

ftot(I)
. (3)

In this paper, we will refer to the function Pk(I) as the portion
function of the kth component. By definition 0 ≤ Pk ≤ 1.

2.2 N-body realizations

2.2.1 Standard multicomponent N-body model

The standard approach to build an N-body realization of a stationary
multicomponent stellar system is to represent the kth component
with Nk particles with phase-space coordinates extracted from the
DF fk(I), with I = I(x, v): the jth particle (j = 1, ..., Nk) has
mass mj, phase-space coordinates (xj , vj ), and integrals of motion
I j = I(xj , vj ). The total number of particles is Ntot =

∑
kNk. Jeans’

theorem guarantees that each component of this N-body realization
is stationary, because its particles are extracted from a DF depending
only on integrals of motions. In this approach, in the N-body
realization we assign to each particle a given ‘kind’, for instance
‘DM particle’ or ‘stellar particle’ if it belongs to, respectively, the
DM halo or the stellar component. In a purely collisionless N-body
system the orbits of particles are independent of the particle kind
and of the particle mass. This suggests to explore different N-body
realizations in which the particles are not labelled as being of a
given kind or belonging to a given component. In the following we
introduce such an alternative approach.

2.2.2 Effective multicomponent N-body model

Instead of extracting a set of particles for each component, as in
the standard method described above, we can construct an N-body
realization of a stationary composite stellar system by extracting Ntot

particles from the total DF ftot(I), obtaining for the ith particle a set
of phase-space coordinates (xi , vi) and corresponding integrals of
motion I i = I(xi , vi) (i = 1, ..., Ntot). In this way, we do not assign
a given particle to one of the components, but we can nevertheless
interpret our system as multicomponent as follows. Given thatPk(I i)
is the probability that the ith particle belongs to the kth component
(equation 3), the mass contribution of the ith particle to the kth
component is ξ k, imi, where mi is the mass of the ith particle and
ξk,i ≡ Pk(I i) is the mass fraction of the ith particle that belongs to
the kth component. For instance in a two-component system with a
stellar component (with DF f�) and DM component (with DF fDM

≡ ftot − f�), the ith particle has stellar mass ξ�, imi and DM mass
ξDM, imi, where ξ�,i = P�(I i) and ξDM, i = 1 − ξ�, i are, respectively,
its stellar and DM mass fractions, and P�(I) ≡ f�(I)/ftot(I) is the
portion function (equation 3) of the stellar component. For any choice
of Pk(I) the kth component is univocally defined. For instance, the
total mass of the kth component is Mk = ∑

iξ k, imi, and similarly one
can compute the mass density and velocity distributions of the kth
component simply by weighting the contribution of the ith particle by
ξ k, imi. If such an N-body system is evolved in isolation, the properties
(e.g. density and velocity distributions) of all its Ncomp components
are time independent in the limit1 Ntot → ∞, because ftot(I) is the
DF of a stationary system and Pk(I) is a function of the integrals
of motions. The main advantage of this method with respect to the
standard method (Section 2.2.1) is that Pk(I) must not be specified
a priori, so each simulation can be interpreted in infinite different
ways by assuming Pk(I) a posteriori. Of course, the aim of N-body
simulations is to study systems whose physical properties evolve in
time: in the next section we move to discuss such a case.

3 DY NA M I C A L E VO L U T I O N O F C O M P O S I T E
COLLI SI ONLESS STELLAR SYSTEMS

N-body simulations are often used to study the dynamical evolution,
in the presence of an external perturbation, of stellar systems that
are initially close to equilibrium. Examples are simulations of the
evolution of satellite stellar systems orbiting within a host stellar
system (for instance satellite galaxies orbiting within a host galaxy)
or simulations of galaxy mergers. In order to illustrate our approach,
let us focus on the case of satellites and consider, for instance, the
simulation of a satellite dwarf galaxy made of stars and DM orbiting
in a host galaxy. As often done in this kind of simulations, we assume
that the host galaxy is represented simply as a static gravitational
potential, while the satellite is represented with particles as a two-
component N-body system (with a stellar component and a DM
halo) that would be in equilibrium if isolated (e.g. Battaglia et al.
2015).

3.1 Standard multicomponent N-body models

In the standard method the satellite is set up as a two-component
stationary stellar system with N� stellar particles extracted from a
DF f� and NDM DM particles extracted from a DF fDM, both in
equilibrium in the total gravitational potential of the satellite �tot

= �� + �DM. The total density distribution of the satellite is ρ tot

= ρ� + ρDM, where ρ� is the density of the stellar component and
ρDM is the density of the DM component. At the initial time of
the simulation the phase-space coordinates of the centre of mass of

1Of course this is not true, strictly speaking, for finite Ntot because of
discreteness effects.
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the satellite are assigned so that the satellite is in orbit in the fixed
external gravitational potential of the host galaxy. Because of the
tidal interaction with the gravitational field of the host galaxy, the
satellite evolves modifying the distributions of its components, for
instance producing tidal tails, and losing stellar and DM particles
via tidal stripping. The relative distribution of the dark and stellar
components of the satellite are fixed in the initial conditions, so the
outcome of the simulation is univocal. To explore the evolution of a
satellite on the same orbit, with the same total DF ftot = f� + fDM,
but with different dark and stellar DFs, a new N-body simulation is
necessary in this standard approach.

3.2 Effective multicomponent N-body models

When the effective multicomponent N-body modelling is used, the
satellite is set up as a one-component stellar system with Ntot particles
extracted from a DF ftot(I), with total density distribution ρ tot. As
in the standard approach (Section 3.1), at the initial time of the
simulation the satellite is put in orbit in the fixed external gravitational
potential of the host galaxy, and the evolution of all the particles is
followed for the time spanned by the simulation. The simulation is
then interpreted, a posteriori, by assigning to each particle a stellar
mass and a DM mass, by choosing a stellar portion function P�(I),
where I are the integrals of motion of the particle when the satellite
is set up in equilibrium and isolated. In practice, if the ith particle
has mass mi, its stellar mass is m�,i = P�(I i)mi and its DM mass
is mDM,i = mi − m�,i = [1 − P�(I i)]mi , where I i are the values of
the integrals of motion of the ith particle in the isolated satellite.
For given P�, from the simulation we can infer the evolution of the
stellar and DM components of the satellite, separately, for instance
measuring the stellar and DM mass loss due to tidal stripping. The
same simulation can be reinterpreted in infinite ways by choosing
different P�.

4 A SIMPLE CASE: TWO-COMPONENT
ISOTROPIC SPHERICAL SYSTEMS

Here we present an application of the effective N-body models
introduced above to spherical two-component collisionless stellar
systems with isotropic velocity distributions.

4.1 Two-component spherical stellar systems with ergodic
distribution functions

The simplest family of multicomponent collisionless stellar systems
generated by DFs is the family of two-component spherical stellar
systems with isotropic velocity distribution. In this case the DFs
of both components are ergodic, i.e. they are functions only of the
energy per unit mass E. For the sake of clarity, we specialize to
the case in which one of the component is the stellar component,
with DF f�(E), and the other is the DM halo, with DF fDM(E),
where E = −E is the relative energy per unit mass. The total DF
is ftot(E) = f�(E) + fDM(E). As explained in Sections 2.2.2 and
3.2, when building an effective N-body model of such a system,
we consider a single component with DF ftot(E). The stellar and
DM components are defined by choosing a stellar portion function
0 ≤ P�(E) ≤ 1, so 0 ≤ f�(E) ≤ ftot(E) ∀ E . The portion function
of the DM component is PDM(E) = 1 − P�(E), so 0 ≤ fDM(E) ≤
ftot(E) ∀ E . One-component systems with the same ftot(E) can be
interpreted as different two-component systems, depending on the
choice of P�(E). For instance, for an isolated spherical isotropic

system with DF ftot(E), the stellar density profile is

ρ�(r) = 4π
∫

P�(E)ftot(E)v2 dv, (4)

where E(r, v) = �tot(r) − 1
2 v2 and � tot(r) = −�tot(r) is the relative

total potential (here r is the spherical radial coordinate and v the
magnitude of the velocity vector). The DM density distribution is

ρDM(r) = 4π
∫

[1 − P�(E)]ftot(E)v2 dv. (5)

4.2 An analytic expression of the portion function

Our aim is to have an analytic expression of P�(E), depending
on a handful of parameters, flexible enough to represent realistic
stellar components of spheroids. In this work, we adopt as analytic
expression of the portion function for spherical isotropic systems the
four-parameter function:

P�(E) = A

( E
E0

)α

exp

[
−
( E
E0

)β
]
, (6)

where α, β, and A are dimensionless parameters, and E0 is a
characteristic relative energy. In the following we will refer to this
analytic function as generalized Schechter function, because when
β = 1 it reduces to the well-known Schechter (1976) function,
widely used in a different context to model the galaxy luminosity
function. In Section 4.3, we show a representative case in which
the generalized Schechter P�(E) performs well in producing stellar
components with realistic density profiles. However, we stress that
the method proposed in this paper can be applied with P�(E)
with functional forms different from equation (6), for instance
with more free parameters if an even more flexible function is
required.

4.3 A case study: a system with total Hernquist density profile

Let us focus on the case of a self-gravitating system in which the
total density distribution follows a Hernquist (1990) profile:

ρtot(r) = Mtot

2πa3

1

(r/a)[1 + (r/a)]3
, (7)

where a is the scale radius and Mtot the total mass. This total density
distribution is shown in the bottom row of panels of Fig. 1 as a solid
curve. The total gravitational potential of the system, related to ρ tot

by equation (1), is

�tot(r) = −GMtot

r + a
. (8)

The ergodic DF ftot(E) generating a self-gravitating system with mass
density distribution (equation 7) is known analytically (Hernquist
1990) and is shown in the middle row of panels of Fig. 1 as a solid
curve.

Such a spherical system with Hernquist total density profile can
be split in a stellar component and a DM component by assuming
a stellar portion function P�(E). In particular, adopting as P� the
generalized Schechter function (equation 6), we can build stellar
components with double power-law density profile, whose detailed
properties depend on the values of the parameters α, β, A, and
Ẽ0 ≡ E0/(GMtota

−1). For instance, for α = 2, β = 4, A = 0.3,
and Ẽ0 = 0.7 we obtain the stellar portion function, DF, and mass
density distribution represented by the dotted curves in Fig. 1: the
bottom row of panels shows that the resulting density profile is

MNRAS 503, 4221–4230 (2021)
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Figure 1. Density ρ ≡ ρ/(Mtota
−3) (bottom row of panels) as a function of radius and DF f ≡ f /(G3Mtota

3)−1/2 (middle row of panels) as a function of
specific relative energy ˜E ≡ E/(GMtota

−1) for models with the same total distribution (solid curves), but stellar distributions (dotted, dashed, and dot–dashed
curves) obtained with different generalized Schechter stellar portion functions P� (top row of panels). When not specified otherwise, the parameters of the
portion function (equation 6) are α = 2, β = 4, A = 0.3, and ˜E0 ≡ E0/(GMtota

−1) = 0.7, which are the values adopted for the model represented by the dotted
curves. In each column, the values of the parameters reported in the top panel apply also to the middle and bottom panels. Mtot and a are, respectively, the total
mass and scale radius of the total density profile, which is a Hernquist sphere (equation 7).

a double power law with logarithmic slope γ � ≡ d ln ρ�/d ln r 	
−0.5 in the centre and γ � 	 −5.5 in the outskirts. Different slopes
can be obtained by changing the values of the parameters. The
parameter α determines the probability of having weakly bound stars
(i.e. with low relative energy E): in particular the lower the α, the
shallower the outer stellar density profile (see the leftmost column
of panels in Fig. 1). The parameter β determines the probability
of having strongly bound stars (i.e. with high E), in the sense that
large values of β penalize the most bound orbits, thus the higher
the β, the shallower the inner stellar density profile (see the second
column of panels in Fig. 1): in this case a core of constant density
is obtained for β = 12, while for β = 1 ρ� ∝ r−1 in the centre.
The parameter A, which is the normalization of P�, does not affect
the shape of the stellar density profile but, by shifting vertically
f�(E), it determines the fractional mass contribution of the stellar
component, in the sense that the stars contribute more for higher
values of A (see the third column of panels in Fig. 1). Finally, the
parameter E0 tunes the energy Epeak at which P� peaks, which for
the generalized Schechter function is Epeak = E0 (α/β)1/β . Thus, the

value of E0 influences mainly the position of the knee of the stellar
density distribution, which is at larger radii for lower E0 (see the
rightmost column of panels in Fig. 1). Note, however, that also the
logarithmic slope γ � at radii smaller than the position of the knee
changes with E0, because the stellar DF f� (shown in the second
row of panels in Fig. 1) depends not only on P�, but also on the
shape of ftot. The portion function, DF, and density profile of the
DM component, not shown in Fig. 1, can be obtained simply by
subtraction: PDM = 1 − P�, fDM = ftot − f�, and ρDM = ρ tot − ρ�.
All these quantities are guaranteed to be everywhere positive because
P� < 1 ∀E .

5 APPLI CATI ON TO AN N- B O DY SI M U L AT I O N
OF TI DAL STRI PPI NG

Here, we apply the effective multicomponent method described
above to an N-body simulation that follows the evolution of a satellite
galaxy in the gravitational potential of the Milky Way.

MNRAS 503, 4221–4230 (2021)
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Figure 2. Angle-averaged initial (t = 0, solid curve) and final (t = 12 Gyr,
dashed curve) total (DM plus stars) density profiles of the satellite in the
N-body simulation.

5.1 Set-up of the N-body simulation

The initial conditions of the N-body realization of the satellite have
been produced using the PYTHON module OPOPGADGET2 developed
by G. Iorio. The N-body system is realized as a one-component
spherical isotropic stellar system with density profile

ρtot(r) = ρ0

(r/a)[1 + (r/a)]3
exp

[
−
(

r

rt

)2
]
, (9)

representing the total (DM plus stellar) distribution of the satellite,
which is a Hernquist profile (equation 7) exponentially truncated
at rt. In particular, we adopt a = 0.9 kpc, rt = 17 kpc, and cen-
tral density ρ0 such that the total mass of the system is Mtot ≡
4π

∫ ∞
0 ρtot(r)r2 dr = 4.5 × 107 M�. The satellite’s initial total den-

sity distribution in physical units is shown in Fig. 2 as a black solid
line. The number of particles is Ntot = 105, and all particles have the
same mass m = Mtot/Ntot = 450 M�. The positions and velocities
of the Ntot particles are assigned in Cartesian coordinates (relative
to the satellite’s centre of mass) as in Iorio et al. (2019), using the
ergodic DF ftot(E) obtained numerically via Eddington’s inversion
formula (Eddington 1916). The N-body system is in equilibrium if
isolated, as we verified by running a simulation with the same initial
conditions as that presented in this work, but with the satellite in
isolation, i.e. without the Milky Way external potential.

The simulation was run using the collisionless code FVFPS

(Londrillo, Nipoti & Ciotti 2003; Nipoti et al. 2003a) with the
addition of the axisymmetric Milky Way model of Johnston, Spergel
& Hernquist (1995) as external static gravitational potential (see
Battaglia et al. 2015). We adopted θmin = 0.5 as the minimum
value of the opening parameter, softening length ε = 0.02 kpc, and
constant time step �t = 0.01tdyn, where tdyn = 1/

√
Gρ̄h is the

initial dynamical time of the satellite and ρ̄h is its initial average
density within the stellar half-mass radius rh. For the adopted initial
conditions tdyn 	 3.5 × 108 yr.

As orbit of the satellite we assume the orbit dubbed P07ecc
in Battaglia et al. (2015), which is almost polar with eccentricity
	0.4 and pericentric radius 	61 kpc. At the initial time of the
simulation the phase-space coordinates of the centre of mass of the
satellite are (x, y, z) = (35.814, 0, 137.389) kpc and (vx, vy, vz) =

2https://github.com/iogiul/OpOpGadget

(−94.875,−77.81, 2.901) km s−1, in a Cartesian coordinate system,
centred in the Galactic Centre, in which xy is the Galactic equatorial
plane. The simulation is evolved for 12 Gyr. For each snapshot of the
simulation we measure the angle-averaged density distribution ρ tot(r)
and integrated total mass distribution M(r), by binning the particles in
concentric spherical shells. Here r is the distance from the satellite’s
centre, which is defined as the position of the peak of the density
distribution of the satellite, computed as in Iorio et al. (2019). In a
similar way, for given stellar portion function P�, we can measure
for each snapshot the angle-averaged stellar density distribution ρ�(r)
and stellar mass profile M�(r), by weighting the particles’ masses as
described in Section 2.2.2. The DM density and mass distributions
are obtained using as portion function PDM = 1 − P�.

5.2 Results

5.2.1 Evolution of the total mass distribution

The projected total (DM plus stars) density distribution of the satellite
at different times in the simulation is shown in Fig. 3 (left-hand
column of panels), for a line of sight parallel to the equatorial
plane of the Milky Way. As expected, the initially spherical density
distribution of the satellite is distorted by the interaction with the tidal
force field of the Milky Way, which produces two significant tidal
tails, one leading and one trailing, departing from the main body
of the disrupting satellite. However, as illustrated by the zoomed-
in surface density maps in the insets in Fig. 3, the central regions
remain close to spherical symmetry. While the central total density
profile hardly evolves, at larger radii the total density profile changes
drastically with time, and at t = 12 Gyr (dashed curve in Fig. 2) it is
heavily truncated at r ≈ 1 kpc and characterized by a shallow tail at
r ≈ 10 kpc produced by the stripped particles. To quantify the mass
loss we take as reference mass at each time the mass M3 kpc of all
the particles within a sphere of radius r = 3 kpc from the centre of
the satellite. The choice of 3 kpc as reference radius is somewhat
arbitrary, but is empirically motivated by the requirement to include
most of the stellar mass at t = 0 (see Section 5.2.2) and to exclude
most of the stellar tidal tails in the subsequent snapshots (see insets
in Fig. 3). We note that M3 kpc 	 0.69Mtot at t = 0. The black curve
in Fig. 4, which plots M3 kpc as a function of time, shows that, within
3 kpc, the satellite loses almost 70 per cent of its initial mass over
12 Gyr of evolution.

5.2.2 Evolution of the stellar and dark matter mass distributions

The simulation is interpreted a posteriori in different ways by
choosing different portion functions P�(E), where E is the initial
particle relative energy, computed for the isolated satellite. Here we
consider two models: model C, in which the initial stellar distribution
is more compact, and model E, in which the initial stellar distribution
is more extended. Both models are obtained assuming as functional
form of P� the generalized Schechter function (equation 6). The
values of the parameters of P� are α = 3, β = 1, A = 1.35, and
Ẽ0 = 0.8 for model C, and α = 0.5, β = 12, A = 0.5, and Ẽ0 = 0.7
for model E. The initial stellar density profile of model C (red solid
curve in upper left-hand panel of Fig. 5) has a central cusp (ρ� ∝ r−1)
and declines steeply in the outer parts, while the stellar density profile
of model E (green solid curve in upper right-hand panel of Fig. 5)
has a central core (ρ� ∝ constant) and is shallower in the outskirts.
The position of the knee of the stellar density profile (i.e. the radius
of transition between inner and outer slope) occurs at larger radius
for model E than for model C.

MNRAS 503, 4221–4230 (2021)
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Figure 3. Left-hand column of panels: total (DM plus stars) mass surface density distribution of the satellite in the N-body simulation at t = 4 Gyr (top panel),
t = 8 Gyr (middle panel), and t = 12 Gyr (bottom panel), for a line of sight along the y-axis, in the adopted Cartesian coordinate system, centred in the Galactic
Centre, in which the z-axis is orthogonal to the Galactic equatorial plane xy. Middle column of panels: same as left-hand column of panels, but showing the
stellar mass surface density distribution of the satellite according to model C. Right-hand column of panels: same as middle column of panels, but for model E.
In each panel the inset represents a zoomed-in surface density map of 3 × 3 kpc2 centred in the peak of the density distribution of the satellite.

The stellar and DM density and mass profiles at different times in
the simulation are shown in Fig. 5 for model C in the left-hand column
of panels and for model E in the right-hand column of panels. In
model E, the initial DM density is higher than the initial stellar density
at all radii. In model C, the initial stellar density is higher than the
DM density in the centre (r � 200 pc), while the dark halo dominates
at larger radii. In both cases the evolution of the DM density profile
resembles that of the total mass distribution, with substantial losses
at large radii. The evolution of the stellar component is instead very
different in the two cases: the stellar distribution of model C remains
almost unaltered for 12 Gyr, while it is heavily stripped in model E.
The fractional stellar mass loss for the two models is quantified in
Fig. 4 using as reference the stellar mass within a sphere of radius
3 kpc from the satellite’s centre: over 12 Gyr in model C the satellite
loses about 30 per cent of its stellar mass, while in model E more than
70 per cent of the stellar mass is tidally stripped along the orbit. We

note that the reference radius r = 3 kpc encloses the large majority
of the stellar mass at t = 0 (98 per cent in model C and 78 per cent
in model E), but is small enough to exclude most of the tidal tails
during the orbital evolution.

The extent, density, and morphology of the stellar tidal tails can be
assessed by looking at Fig. 3, showing, for models C (middle column
of panels) and E (right-hand column of panels), the projected stellar
density distribution of the satellite at different times in the simulation
for a line of sight parallel to the Galactic equatorial plane. The stellar
streams are extremely tenuous in model C, while are much more
pronounced in model E.

5.2.3 Stellar kinematics

Here we study the stellar kinematics of the satellite and of the streams,
focusing in particular on the line-of-sight stellar velocity dispersion
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Figure 4. Evolution of the total (DM plus stars) mass (black curve) and of
the stellar mass (red curve for model C and green curve for model E) of the
satellite in the N-body simulation. Here M3 kpc is the mass within 3 kpc from
the satellite’s centre and M3 kpc,i is the initial value of M3 kpc.

σ los. As an illustrative case, we take as line of sight the direction of
the y-axis in our reference Galactic Cartesian coordinate system and
we take as fiducial boundary between the main body of the satellite
and the tidal tails R = 3 kpc, where R =

√
(x − x0)2 + (z − z0)2 is

the projected distance from the satellite’s centre (x0, z0) in the xz
plane. For the main body of the satellite we compute σ los from sets
of particles belonging to circular annuli: the line-of-sight velocity
dispersion σ los, j of the jth radial bin Rj < R < Rj + 1 is given by

σ 2
los,j =

∑
i m�,i

(
vy,i − 〈

vy

〉)2∑
i m�,i

, (10)

where vy, i is the y component of the velocity of the ith particle, 〈vy〉
= (

∑
im�, ivy, i)/(

∑
im�, i), and the sums are over all particles with Rj

< Ri < Rj + 1. Here m�,i = P�(Ei)mi , where mi is the mass of the
ith particle and Ei is its initial energy in the isolated satellite. Fig. 6
shows the satellite’s initial and final profiles of σ los for models C and
E. In the initial conditions σ los is higher for model E, which has a
flatter stellar density profile, than for model C, which has a steeper
stellar density profile (see upper panels of Fig. 5). This just reflects
the fact that, for a given gravitational potential, a higher velocity
dispersion is needed to maintain in equilibrium a more extended
stellar component. For both models the final σ los profile has a shape
similar to the corresponding initial profile, but lower normalization:
σ los decreases with time mainly because the potential well becomes
shallower, owing to substantial mass loss (see Fig. 5, lower panels).

It is also interesting to assess how the kinematics of the stellar
tidal tails depends on the initial stellar density distribution. For this
purpose we consider the t = 12 Gyr snapshot and, taking again the
y-axis as line of sight, we distinguish the leading tail (lying above
and to the right of the satellite in the bottom panels of Fig. 3) and
the trailing tail (lying to the left of the satellite in the bottom panels
of Fig. 3). Specifically, we assign to the leading tail all particles with
R > 3 kpc and z >z0 − 1.8(x − x0), and to the trailing tail all particles
with R > 3 kpc and z < z0 − 1.8(x − x0), with x0 = 31.9 kpc and
z0 = −124.8 kpc. σ los as a function of R is shown in Fig. 7 for the
leading and trailing tails of models C and E. For given model, the two
tails have similar σ los profiles out to R ≈ 40 kpc: at larger distances
form the satellite the leading tail tends to have higher stellar velocity
dispersion than the trailing tail. For given tail (leading or trailing),
the σ los profile is systematically higher for model E than for model C,
which reflects the higher velocity dispersion of the stellar component

of model E in the initial conditions (Fig. 6). To quantify the overall
velocity dispersion of each tail, we compute the quantity σ los, tail,
defined by

σ 2
los,tail =

∑Nbin
j=1 σ 2

los,j��,j∑Nbin
j=1 ��,j

, (11)

where σ los, j and ��, j are, respectively, the line-of-sight stellar veloc-
ity dispersion and stellar surface density of the jth radial bin of the tail
(we used Nbin = 24 bins uniformly spaced in R between R 	 3 kpc
and R 	 100 kpc). The leading tail has σlos,tail 	 2.8 km s−1 for
model C and σlos,tail 	 3.6 km s−1 for model E; the trailing tail
has σlos,tail 	 2.8 km s−1 for model C and σlos,tail 	 3.5 km s−1 for
model E.

5.2.4 A family of models with smoothly varying P�

So far we have applied to our simulation two models (C and E), i.e.
two choices ofP�. However, the power of the presented method lies in
the fact that infinite models can be explored by varying continuously
the values of the parameters of P�. Thus we illustrate here how some
properties of the satellite and of the tails vary in entire family of n
models whose extremes are models C and E. The ith member of this
family of models (for i = 1, ..., n) has P�(E) given by equation (6)
with parameters

α = αC + i − 1

n − 1
(αE − αC), (12)

β = βC + i − 1

n − 1
(βE − βC), (13)

A = AC + i − 1

n − 1
(AE − AC), (14)

and

E0 = E0,C + i − 1

n − 1
(E0,E − E0,C), (15)

where (αC, βC, AC, E0,C) and (αE, βE, AE, E0,E) are the sets of values
of parameters of models C and E, respectively (see Section 5.2.2).
With this definition we get model C for i = 1 and model E for i = n;
for 1 < i < n we get models with 0 < P� < 1 that are intermediate
between models C and E: the stellar component is more embedded
in the DM halo for lower values of i. Each member of this family
of models can be conveniently labelled with the value of its initial (t
= 0) stellar half-mass radius rhalf, � (that is the radius of the sphere
containing half of the stellar mass), which increases monotonically
with i. The initial stellar density profile of the simulated satellite is
shown in Fig. 8 for models C and E, and for three representative
intermediate models, labelled with their values of rhalf, �.

Fig. 9 shows the dependence on rhalf, � of some global properties
of the stellar component of the simulated satellite for the family of
models defined above. The upper panel of Fig. 9 plots the fraction of
stellar mass lost (defined as the stellar mass in particles more distant
than 3 kpc from the satellite’s centre) as a function of rhalf, � after 5
and 12 Gyr of evolution. The fraction of stellar mass lost increases
smoothly from more embedded (smaller rhalf, �) to less embedded
(larger rhalf, �) models. The lower panel of Fig. 9 plots the line-of-
sight stellar velocity dispersion σ los, tail (see Section 5.2.3) of the
leading and trailing tails as a function of rhalf, �. σ los, tail, which is
similar for the two tails for a given model, increases smoothly with
rhalf, �: the less embedded the initial stellar component, the higher the
velocity dispersion of the stellar streams.
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Figure 5. Upper panels: angle-averaged density profiles of the satellite in the N-body simulation at different times, indicated in the legend, for models C
(left-hand panels) and E (right-hand panels). The red and green curves represent the stellar density, while the blue curves represent the DM density. Lower
panels: stellar and DM mass profiles for the same times and models as in the corresponding upper panels.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a new approach to N-body modelling of composite
collisionless stellar systems. The method, which we refer to as
effective multicomponent N-body modelling, allows one to build a
one-component system, and interpret it a posteriori in infinite ways as
a multicomponent system using functions of the integrals of motion,
dubbed portion functions. In an N-body simulation the construction
of the different components can be done in post-processing, thus
greatly extending the applicability of the simulation. As an example
of application, we presented the results of an N-body simulation
of a satellite orbiting in the tidal field of the Milky Way, which
is interpreted a posteriori as a two-component (stars plus DM)
system. This example nicely illustrates the potential of the presented
method, by showing the dependence of the structure and kinematics
of the final satellite and stellar streams on the choice of the portion
function.

For simplicity, we have presented as an application only the case
in which the parent one-component stellar system is spherical and
isotropic, and the portion function depends only on the initial particle
energy. But the very same method can be applied to anisotropic
spherical system and to non-spherically symmetric systems, provided
their DF is known analytically or numerically. For instance, one
could build anisotropic multicomponent spherical systems with
total DF ftot = ftot(E, L), where L is the magnitude of the specific
angular momentum (see Binney & Tremaine 2008), by using portion
functionsPk(E, L). A straightforward case is that of Osipkov–Merritt
anisotropic spherical models (Osipkov 1979; Merritt 1985), in which
the DF is a function of a single variable Q, which is a combination
of E and L, so Pk = Pk(Q). Moreover, the method is not limited to
spherical systems, and can be also applied to axisymmetric systems
with total DF ftot = ftot(E, Lz), where Lz is the component of the
specific angular momentum along the symmetry axis (see Binney &
Tremaine 2008), using portion functionsPk(E, Lz), as well as to both
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Figure 6. Line-of-sight (along the y-axis) stellar velocity dispersion profile
for the satellite at the beginning (solid lines) and at the end (dashed lines) of
the simulation for models C (red lines) and E (green lines).

Figure 7. Line-of-sight (along the y-axis) stellar velocity dispersion profile
of the leading (solid lines) and trailing (dotted lines) tidal tails at the end of
the simulation for models C (red lines) and E (green lines).

Figure 8. Initial stellar density profile of the simulated satellite for models
C and E, and for three intermediate models, labelled with the value of their
stellar half-mass radius.

Figure 9. Upper panel: fraction of stellar mass lost by the satellite in the
simulation after 5 (dot-dashed line) and 12 (dashed line) Gyr of evolution
as a function of the initial stellar half-mass radius for a family of models
with smoothly varying initial stellar density distribution, ranging from the
compact model C to the extended model E. Here M�, lost is the stellar mass
in particles more distant than 3 kpc from the satellite’s centre and M�, i is the
initial stellar mass. Lower panel: final line-of-sight stellar velocity dispersion
of the leading (solid line) and trailing (dotted line) tails in the simulation for
the same family of models as in the upper panel.

spherical and flattened models with total DF ftot( J) depending on
the action integrals J (e.g. Binney 2014; Vasiliev 2019), and portion
functions Pk( J).

Of course, the presented effective N-body modelling method has its
own limitations. A necessary condition to use the effective modelling,
and thus to obtain the components’ DFs by subtraction from the total
DF, is to know, numerically or analytically, the total DF, which can
be straightforward only in systems in which the total distribution is
simple, for instance because one of the components (typically the DM
halo) is dominant. Moreover, the construction of the portion functions
is relatively easy when the shapes of the system’s components are
simple and similar among each other, but can be unfeasible in very
complex configurations. However, as it is well known, the build-up
of a complex composite stellar system (for instance an equilibrium
galaxy model with disc, bulge, and not everywhere dominant dark
halo) is a hard task also in standard approaches based on the DFs of
the system’s components.

The main power of the effective N-body modelling is that the
components of a composite simulated stellar system can be assigned
in post-processing. This is especially useful when a simulation aims
to reproduce an observed distribution of stars, as it is often the case.
A typical case is that in which the composite system consists of a
stellar component and a DM halo. For a given simulation, one can
a posteriori explore the space of the free parameters of the stellar
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portion function (for instance the four-parameter space α, β, A, and
E0, when P� is in the form of equation 6) to find the set of parameters
(and thus the initial stellar and DM distributions) such that the final
stellar distribution represents best the observed data. In the near
future we are going to apply this approach to try to reproduce with N-
body simulations the observed properties of satellite dwarf spheroidal
galaxies and reconstruct their dynamical evolution and stellar mass-
loss history.
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